Search Results

Search found 15638 results on 626 pages for 'virtual assembly builder'.

Page 83/626 | < Previous Page | 79 80 81 82 83 84 85 86 87 88 89 90  | Next Page >

  • Sql query builder c# for windows mobile

    - by pdiddy
    I'm building a windows mobile app. And using SqlCe. I'm looking for a good sql query builder. So instead of writing "SELECT COLUMNS FROM TABLE WHERE etc... Is there a good free library that can build this sort of query? EDIT: You know when you write your code with ADO.net something like this SqlCeCommand command = new SqlCeCommand(Connection); command.CommandText = "SELECT * FROM Orders WHERE customerId = @customerId"; Well i'm looking for some library that could build that SELECT statement using classes instead of writing it through string. So something like: SqlCeCommand command = new SqlCeCommand(Connection); SqlQueryBuilder query = new SqlQueryBuilder(); query.Table = "Orders"; query.AddWhere("customerId", myValue) command.CommandText = query.toString(); Something like that .... so a class that will build the query..

    Read the article

  • Debug website on host from virtual machine

    - by Luchaguate
    I have a Windows 7 machine hosting a Windows 7 virtual machine. I am developing a web application using visual studio 2010 on my host machine. I want to run the application in debug mode and access my localhost server from a browser on the virtual machine. (The purpose of this is to be able to debug an application that uses Windows Authentication using different users without having to log off and on for different users on my host machine...) I am using a bridged connection for the virtual machine. I googled how to solve this problem and most of the threads that I found said that if I was using a bridged connection, I could access the server on the host machine by just entering the IP address of my host machine into the url in the browser of the virtual machine. I have tried some different urls using the IP but none of them have worked. As an example, suppose I run my web application in visual studio on my host machine and its url is http://localhost:62789/MyPage.aspx Assume also that I ran ipconfig in CommandPrompt on my host machine and found out that the IP address for my host machine is xxx.xxx.xxx.x. What url should I enter on the virtual machine to access my web application? Thanks in advance.

    Read the article

  • Xcode/Interface Builder Mac App Development

    - by user1459546
    Well i want from the drop down menu(Menu Item List) one item to be working as an link, to open an url/website in safari - thats it. When this is so simple, why no one come up with a clue here - I tried many different ways in Xcode, with Apple Xcode Samples... i think i need an AppDelegate.m, drag or link some parts, get actions... i failed to get it going somewhere - now i'm lost. Any advice/help/link/tip would be much appreciate to solve this "simple" issue... Using Xcode/Interface Builder 3.2.6 - Please help or i go totally mad, insane and i will crash my f...ing mac right now - Thanks

    Read the article

  • query in query builder in a Table Adapter

    - by Sony
    I am working with the datasets of .net I have an Oracle Query which is working fine . but I copy the query as sql statement within Table Adapter wizard and after I clicked the Query Builder button ,there is SQL syntax error. The query is below: SELECT lead_id, NAME, ADDRESS, CITY, EMAIL, PHONE, PINCODE, STATE, QUALIFICATION, DOB, status FROM (SELECT l.lead_id, l.NAME, l.ADDRESS, l.CITY, l.EMAIL, l.PHONE, l.PINCODE, l.STATE, l.QUALIFICATION, l.DOB, CASE WHEN s.status IS NULL THEN 'Not Updated !' ELSE s.status END status, row_number() over(PARTITION BY l.lead_id ORDER BY t .CREATED_DATE DESC) rn FROM LEADS l JOIN Leads lc ON l.USER_ID = lc.USER_ID AND l.USER_ID = :iuser_id AND(l.CREATED_DATE BETWEEN (TO_DATE(:ifrom_date , 'dd-mm-yyyy') ) AND (TO_DATE (:ito_date, 'dd-mm-yyyy' ) )) LEFT JOIN LEADTRANSACTION t ON l.lead_id = t .lead_id LEFT JOIN STATUS s ON s.STATUS_ID = t .STATUS_ID) WHERE rn = 1;

    Read the article

  • Query useing two databases in SQL Report Builder

    - by user912447
    I am new to SQL Server Report Builder 2.0 and I need to compare two different databases in one query. Basically I need to check if values from one database table exist in a different database's table. I know I can add multiple Datasources to my report and access each one with Subreports, but each DataSet that I create can only have one query in it. So how can I go about using one query to access two databases? Or if there is another way to somehow join my results from multiple DataSets, that would work too. Also, the databases are on the same server.

    Read the article

  • virtual serial port on Arch linux

    - by Milan
    Hello, I am using Arch linux and I need to create virtual serial port on it. I tried everything but it seems doesnt work. All I want is to connect that virtual port to another virtual port over TCP and after that to use it in my python application to communicate with python application to other side. Is that posible? Please help me. Thanx

    Read the article

  • Is C really "disguised assembly"?

    - by regn
    As a C++ programmer I have now decided to learn C to have "more control" over what I write. Are there any syntactical features in C which lead to rather unpredictable assembler code? Like virtual functions in C++ Is C disguised assembler? I would quite like that idea.

    Read the article

  • Drawing lines between windows just like in Interface Builder

    - by Koning Baard
    I have two windows, each with a round NSView: ------------------ ------------ |X-+ Oscillator | |X-+ Mixer | |----------------| |----------| | | | | | O | | O | | | | | | | | | ------------------ ------------ Both windows are in a seperate NIB. I want to be able to draw a line between the two round NSViews at runtime, using drag'n'drop, just like connecting IBOutlets in Interface Builder: ------------------ ------------ |X-+ Oscillator | |X-+ Mixer | |----------------| |----------| | | | | | O-------+-----+-----O | | | | | | | | | ------------------ ------------ I also want to be able to determine to which NSViews the NSViews are connected using the drawn lines. I need this to connect Oscillators to Mixers. I also want to be able to remove the connections by dragging into empty space. Can anyone explain me how to do this? Thanks.

    Read the article

  • Quels outils de construction d'interfaces graphiques (GUI-Builder) pour la plateforme Java SE préférez-vous ? Partagez votre expérience

    Nous vous proposons un sondage consacré aux outils pour la construction d'interfaces graphiques (couramment nommés en anglais GUI-Builder) pour les boîtes à outils graphiques de la plateforme Java SE. A noter que ces outils peuvent supporter une ou plusieurs boîtes à outils graphiques. Que cela soit pour les boîtes à outils AWT/Swing, SWT/JFace, Java FX... l'objectif reste le même c'est-à-dire qu'ils tentent de faciliter et d'accélérer la construction des interfaces graphiques. Sans être exhaustif, les plus connus de ces outils sont : Eclipse WindowBuilder Swing GUI Builder Netbeans

    Read the article

  • Flex puts _docs_ folder into the bin. Can that be stopped?

    - by picardo
    I started using Flex Builder 3 only recently. There is a behavior I want to change. Flex apparently looks for folders that have underscore in front of their names inside the libraries on the project path, and transfers them to the bin directory. This often results in several megabytes of junk in my bin, and I want to change this behavior. Does anyone know how to do that?

    Read the article

  • Package SWF into an EXE or APP

    - by Jeremy White
    I am trying to adjust my Flash development workflow so that I am using Flash Builder for all of my coding and multiple FLA files for the user interfaces. I will be creating an ActionScript project in Flash Builder and then having each FLA export a SWC into a resources folder. It is important that I retain the ability to export PC and Mac -- EXE and app, respectively -- projector files. Is there a way of doing this with the Flash compiler or any 3rd party tools?

    Read the article

  • Getting started on a stream interface driver

    - by Ranhiru
    I want to build a stream interface driver for testing purposes but I am completely lost. I don't know which IDE to use VS2008 or Platform Builder. Platform Builder is whopping 20GB to download :( Can anyone guide me on how i create the .dll file and include XXX_Open, XXX_Close, XXX_Write, XXX_Read in the dll file? Should i write the .dll file in C++ or can i write it in C#? Please guide me through the basics :) Thanx a lot :)

    Read the article

  • Designing the iPhone interface in a nib or in code?

    - by Jacob Relkin
    I've been pondering over this question for a long time already. On the one hand, Interface Builder offers a really easy way to design the interface and wire the elements up with objects in code. On the other hand, in larger projects, Interface Builder becomes a hassle to maintain. Any suggestions would be greatly appreciated.

    Read the article

  • How do you specify a really large character in UIButton?

    - by Epsilon Prime
    I have a series of buttons that have suit symbols on them. Currently I provide these suit symbols as bitmaps. In preparation for iPhone 4 I'd like to use text instead. However Interface Builder rescales the button to account for whitespace underneath the symbol so I can't get the image to fill the button completely. Any hints on getting Interface Builder to behave?

    Read the article

  • Should classes from the same namespace be kept in the same assembly?

    - by Dan Rasmussen
    For example, ISerializable and the Serializable Attribute are both in the System.Runtime.Serialization namespace, but not the assembly of the same name. On the other hand, DataContract attributes are in the namespace/assembly System.Runtime.Serialization. This causes confusion when a class can have using System.Runtime.Serialization but still not have reference to the System.Runtime.Serialization assembly, meaning DataContract cannot be found. Should this be avoided in practice, or is it common for namespaces to be split over multiple assemblies? What other issues should one be careful of when doing this?

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is called MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been cleaned up so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# level syntax sugar. There is no difference to await a async method or a normal method. A method returning Task will be awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } The above code is already cleaned up, but there are still a lot of things. More clean up can be done, and the state machine can be very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> void IAsyncStateMachine.MoveNext() { try { switch (this.State) { // Orginal code is splitted by "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; IAsyncStateMachine this1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this1.MoveNext()); // Callback break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; IAsyncStateMachine this2 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this2.MoveNext()); // Callback break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync_(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; (multiCallMethodAsyncStateMachine as IAsyncStateMachine).MoveNext(); // Original code are in this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clear - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback Since it is about callback, the simplification  can go even further – the entire state machine can be completely purged. Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is literally pretending to wait. In a await expression, a Task object will be return immediately so that caller is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is named MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine, MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been refactored, so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# language level syntax sugar. There is no difference to await a async method or a normal method. As long as a method returns Task, it is awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } Once again, the above state machine code is already refactored, but it still has a lot of things. More clean up can be done if we only keep the core logic, and the state machine can become very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> public void MoveNext() // IAsyncStateMachine member. { try { switch (this.State) { // Original code is split by "await"s into "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; MultiCallMethodAsyncStateMachine that1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => that1.MoveNext()); break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; MultiCallMethodAsyncStateMachine that2 = this; this.currentTaskToAwait.ContinueWith(_ => that2.MoveNext()); break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] public void SetStateMachine(IAsyncStateMachine stateMachine) // IAsyncStateMachine member. { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; multiCallMethodAsyncStateMachine.MoveNext(); // Original code are moved into this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clean - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback If we focus on the point of callback, the simplification  can go even further – the entire state machine can be completely purged, and we can just keep the code inside MoveNext(). Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is not to wait. In a await expression, a Task object will be return immediately so that execution is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Invoking .Net COM assembly from Powerbuilder application (without registration)

    - by as
    We have a Powerbuilder 10 application that is using .Net COM assemblies. We are trying to embed the manifest in the PB application (to invoke COM assemblies without registration). The merged manifest file has added sections for dependecies on the .Net COM assemblies. We have tries various tools to inject the new manifest with different results - using GenMan32 to inject truncates the application from 6MB to 45KB. - using ResourceTuner, the file size looks okay, but trying to launch application gives "Fatal Disk Error". Any suggestions on invoked .Net ComEnabled assembly from PB without registration?

    Read the article

  • Could not load file or assembly

    - by sldevelop
    Hi guys, I'm tring to create a generic collection of dynamic type at runtime of Silverlight application. My code: Type listType = Type.GetType("System.Collections.ObjectModel.ObservableCollection`1[[" + type.AssemblyQualifiedName + "]], System.Windows, Version=2.0.5.0, Culture=neutral, PublicKeyToken=7cec85d7bea7798e", true); type - is variable of Type type. That Type is creating at runtime. At that code line I've got error: Could not load file or assembly ', Version=0.0.0.0, Culture=neutral, PublicKeyToken=null' or one of its dependencies. The system cannot find the file specified. How can I resolve that error?

    Read the article

  • Assembly reference in Silverlight class library and used only in xaml is not packaged in XAP

    - by Brandon Copeland
    I have a 3rd party library (A). That library is referenced in my Silverlight class library (B). That Silverlight class library is referenced in my Silverlight application (C). The 3rd party library is not explicitly referenced in the Silverlight application. It seems that "A" is added to my XAP if "A" is used in any class in "B" because of a chain in dependencies (C - B - A). This is the behavior I would expect and need. If "A" is never explicitly used in a C# class but only defined in Xaml, the assembly is not packaged to the XAP. Maybe "A" includes a control that is only used declaratively and never referenced otherwise. Is this behavior by design? Am I missing a property somewhere that controls this? I would prefer to not explicitly reference the third party library in my Silverlight application. What's to best practice to ensure all necessary assemblies are packaged in the XAP?

    Read the article

  • error during build using sandcastle help builder with visual studio 2010 .NET 4.0 project

    - by ZeroAbsolute
    I was using sandcastle to generate help for my project in visual studio 2008. When i change my project to visual studio 2010 and change the project .NET version to .NET 4.0 i got this problem with Sandcastel. I can't understand why sandcastel is using C:\Windows\Microsoft.NET\Framework64\v3.5\MSBuild.exe and not C:\Windows\Microsoft.NET\Framework64\v4.0\MSBuild.exe thinking that i specified as framework version the v4.0.30319 Can anyone tell me how to resolve this issue?? Where to change the path of the msbuild.exe or some other solution ??? Generating reflection information... [C:\Windows\Microsoft.NET\Framework64\v3.5\MSBuild.exe] GenerateRefInfo: MrefBuilder (v2.4.10520.1) Copyright c Microsoft 2006 Info: Loaded 1 assemblies for reflection and 0 dependency assemblies. MREFBUILDER : error : Unresolved assembly reference: System.Windows.Forms (System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089) required by WLAEDInt Last step completed in 00:00:01.2731 ------------------------------- SHFB: Error BE0043: Unexpected error detected in last build step. See output above for details.

    Read the article

  • maven-assembly-plugin and ar archives

    - by kayahr
    In my maven project I want to assemble an ipkg file (This is like a Debian Package but for embedded systems). For this I need to create AR archives with the assembly plugin. In the plugin documentation I found this: "and any other format that the ArchiveManager has been configured for". But I can't find out how to "configure" the "ArchiveManager". How can I do this? Or better: Maybe someone already did this and I can use an already existing plugin?

    Read the article

  • Preventing referenced assembly PDB and XML files copied to output

    - by Jason Morse
    I have a Visual Studio 2008 C#/.NET 3.5 project with a post build task to ZIP the contents. However I'm finding that I'm also getting the referenced assemblies' .pdb (debug) and .xml (documentation) files in my output directory (and ZIP). For example, if MyProject.csproj references YourAssembly.dll and there are YourAssembly.xml and YourAssembly.pdb files in the same directory as the DLL they will show up in my output directory (and ZIP). I can exclude *.pdb when ZIP'ing but I cannot blanket exclude the *.xml files as I have deployment files with the same extension. Is there a way to prevent the project from copying referenced assembly PDB and XML files?

    Read the article

  • Strong name validation failed on VB.NET Assembly

    - by Matt Baker
    I have a VB.Net 1.1 application works just fine after compiling in Visual Studio. However, I want to use ILMerge to combine all the referenced assemblies into a single executable just to make it easier to move around. After I send it through ILMerge and try to run it I get the error "Strong name validation failed for .exe" ..... But none of my stuff is strong named! I saw this post here: http://stackoverflow.com/questions/403731/strong-name-validation-failed and tried running it through 'sn.exe -Vr .exe' but that gives me this error: ".exe does not represent a strongly named assembly" Has anyone else had this problem before? How do I fix it?

    Read the article

< Previous Page | 79 80 81 82 83 84 85 86 87 88 89 90  | Next Page >