Search Results

Search found 7216 results on 289 pages for 'low cost'.

Page 84/289 | < Previous Page | 80 81 82 83 84 85 86 87 88 89 90 91  | Next Page >

  • what differs a computer scientist/software engineer to regular people who learn programming language and APIs?

    - by Amumu
    In University, we learn and reinvent the wheel a lot to truly learn the programming concepts. For example, we may learn assembly language to understand, what happens inside the box, and how the system operates, when we execute our code. This helps understanding higher level concepts deeper. For example, memory management like in C is just an abstraction of manually managed memory contents and addresses. The problem is, when we're going to work, usually productivity is required more. I could program my own containers, or string class, or date/time (using POSIX with C system call) to do the job, but then, it would take much longer time to use existing STL or Boost library, which abstract all of those thing and very easy to use. This leads to an issue, that a regular person doesn't need to get through all the low level/under the hood stuffs, who learns only one programming language and using language-related APIs. These people may eventually compete with the mainstream graduates from computer science or software engineer and call themselves programmers. At first, I don't think it's valid to call them programmers. I used to think, a real programmer needs to understand the computer deeply (but not at the electronic level). But then I changed my mind. After all, they get the job done and satisfy all the test criteria (logic, performance, security...), and in business environment, who cares if you're an expert and understand how computer works or not. You may get behind the "amateurs" if you spend to much time learning about how things work inside. It is totally valid for those people to call themselves programmers. This makes me confuse. So, after all, programming should be considered an universal skill? Does programming language and concepts matter or the problems we solve matter? For example, many C/C++ vs Java and other high level language, one of the main reason is because C/C++ features performance, as well as accessing low level facility. One of the main reason (in my opinion), is coding in C/C++ seems complex, so people feel good about it (not trolling anyone, just my observation, and my experience as well. Try to google "C hacker syndrome"). While Java on the other hand, made for simplifying programming tasks to help developers concentrate on solving their problems. Based on Java rationale, if the programing language keeps evolve, one day everyone can map their logic directly with natural language. Everyone can program. On that day, maybe real programmers are mathematicians, who could perform most complex logic (including business logic and academic logic) without worrying about installing/configuring compiler, IDEs? What's our job as a computer scientist/software engineer? To solve computer specific problems or to solve problems in general? For example, take a look at this exame: http://cm.baylor.edu/ICPCWiki/attach/Problem%20Resources/2010WorldFinalProblemSet.pdf . The example requires only basic knowledge about the programming language, but focus more on problem solving with the language. In sum, what differs a computer scientist/software engineer to regular people who learn programming language and APIs? A mathematician can be considered a programmer, if he is good enough to use programming language to implement his formula. Can we programmer do this? Probably not for most of us, since we specialize about computer, not math. An electronic engineer, who learns how to use C to program for his devices, can be considered a programmer. If the programming languages keep being simplified, may one day the software engineers, who implements business logic and create softwares, be obsolete? (Not for computer scientist though, since many of the CS topics are scientific, and science won't change, but technology will).

    Read the article

  • Gaming on Cloud

    - by technomad
    Sometimes I wonder the pundits of cloud computing are way to consumed with the enterprise applications. With all the CAPEX / OPEX, ROI-talk taking the center stage, an opportunity to affect masses directly is getting overlooked. I am a self proclaimed die hard gamer. I come from the generation of gamers who started their journey in DOS games like Wolfenstein 3D and Allan Border Cricket (the latter is still a favorite pastime). In the late 90s, a revolution called accelerated graphics started in DirectX and OpenGL. Games got more advanced. Likes of Quake III and Unreal Tournament became the crown jewels of the industry. But with all these advancements, there started a race. A race of GFX giants ATI and NVIDIA to beat each other for better frame and image quality. Revisions to the graphics chipsets became frequent. Games became eye candies but at the cost of more GPU power / memory. Every eagerly awaited title started demanding more muscle power in graphics and PC hardware. Latest games and all the liquid smooth frame rates became the territory of the once with deep pockets who could spend lavishly on latest hardware. Enthusiasts like yours truly, who couldn’t afford this route, started exploring over-clocking, optimized hardware cooling... etc. to pursue the passion. Ever rising cost of hardware requirements lead to rampant piracy of PC games. Gamers were willing to spend on the latest titles, but the ones with tight budget prefer hardware upgrades against a legal copy of the game. It was also fueled by emergence of the P2P file sharing networks. Then came the era of Xbox and PS3s. It solved the major issue of hardware standardization and provided an alternative to ever increasing hardware costs. I have always admired these consoles, but being born and brought up in a keyboard/mouse environment, I still find it difficult to play first person shooters with a gamepad. I leave the topic of PC v/s Consol gaming for another day, but the bottom line is… PC gamers deserve an equally democratized solution. This is where I think Cloud Computing can come to rescue. It can minimize hardware requirements. Virtually end the software piracy and rationalize costs for gamers. Subscription based models like pay-as-you-play. In game rewards, like extended subscription credits for exceptional gamers (oh yes, I have beaten Xaero on nightmare in Quake III, time and again!) Easy deployment for patches and fixes. Better game AI. The list goes on and on… Fortunately, companies like OnLive are thinking in the same direction. Their gaming service is all set to launch on 17th June 2010 in E3 2010 expo in L.A. I wish them all the luck. I hope they will start a trend which will bring the smiles back on the face of budget gamers with the help of cloud computing.

    Read the article

  • An Actionable Common Approach to Federal Enterprise Architecture

    - by TedMcLaughlan
    The recent “Common Approach to Federal Enterprise Architecture” (US Executive Office of the President, May 2 2012) is extremely timely and well-organized guidance for the Federal IT investment and deployment community, as useful for Federal Departments and Agencies as it is for their stakeholders and integration partners. The guidance not only helps IT Program Planners and Managers, but also informs and prepares constituents who may be the beneficiaries or otherwise impacted by the investment. The FEA Common Approach extends from and builds on the rapidly-maturing Federal Enterprise Architecture Framework (FEAF) and its associated artifacts and standards, already included to a large degree in the annual Federal Portfolio and Investment Management processes – for example the OMB’s Exhibit 300 (i.e. Business Case justification for IT investments).A very interesting element of this Approach includes the very necessary guidance for actually using an Enterprise Architecture (EA) and/or its collateral – good guidance for any organization charged with maintaining a broad portfolio of IT investments. The associated FEA Reference Models (i.e. the BRM, DRM, TRM, etc.) are very helpful frameworks for organizing, understanding, communicating and standardizing across agencies with respect to vocabularies, architecture patterns and technology standards. Determining when, how and to what level of detail to include these reference models in the typically long-running Federal IT acquisition cycles wasn’t always clear, however, particularly during the first interactions of a Program’s technical and functional leadership with the Mission owners and investment planners. This typically occurs as an agency begins the process of describing its strategy and business case for allocation of new Federal funding, reacting to things like new legislation or policy, real or anticipated mission challenges, or straightforward ROI opportunities (for example the introduction of new technologies that deliver significant cost-savings).The early artifacts (i.e. Resource Allocation Plans, Acquisition Plans, Exhibit 300’s or other Business Case materials, etc.) of the intersection between Mission owners, IT and Program Managers are far easier to understand and discuss, when the overlay of an evolved, actionable Enterprise Architecture (such as the FEA) is applied.  “Actionable” is the key word – too many Public Service entity EA’s (including the FEA) have for too long been used simply as a very highly-abstracted standards reference, duly maintained and nominally-enforced by an Enterprise or System Architect’s office. Refreshing elements of this recent FEA Common Approach include one of the first Federally-documented acknowledgements of the “Solution Architect” (the “Problem-Solving” role). This role collaborates with the Enterprise, System and Business Architecture communities primarily on completing actual “EA Roadmap” documents. These are roadmaps grounded in real cost, technical and functional details that are fully aligned with both contextual expectations (for example the new “Digital Government Strategy” and its required roadmap deliverables - and the rapidly increasing complexities of today’s more portable and transparent IT solutions.  We also expect some very critical synergies to develop in early IT investment cycles between this new breed of “Federal Enterprise Solution Architect” and the first waves of the newly-formal “Federal IT Program Manager” roles operating under more standardized “critical competency” expectations (including EA), likely already to be seriously influencing the quality annual CPIC (Capital Planning and Investment Control) processes.  Our Oracle Enterprise Strategy Team (EST) and associated Oracle Enterprise Architecture (OEA) practices are already engaged in promoting and leveraging the visibility of Enterprise Architecture as a key contributor to early IT investment validation, and we look forward in particular to seeing the real, citizen-centric benefits of this FEA Common Approach in particular surface across the entire Public Service CPIC domain - Federal, State, Local, Tribal and otherwise. Read more Enterprise Architecture blog posts for additional EA insight!

    Read the article

  • Non use of persisted data

    - by Dave Ballantyne
    Working at a client site, that in itself is good to say, I ran into a set of circumstances that made me ponder, and appreciate, the optimizer engine a bit more. Working on optimizing a stored procedure, I found a piece of code similar to : select BillToAddressID, Rowguid, dbo.udfCleanGuid(rowguid) from sales.salesorderheaderwhere BillToAddressID = 985 A lovely scalar UDF was being used,  in actuality it was used as part of the WHERE clause but simplified here.  Normally I would use an inline table valued function here, but in this case it wasn't a good option. So this seemed like a pretty good case to use a persisted column to improve performance. The supporting index was already defined as create index idxBill on sales.salesorderheader(BillToAddressID) include (rowguid) and the function code is Create Function udfCleanGuid(@GUID uniqueidentifier)returns varchar(255)with schemabindingasbegin Declare @RetStr varchar(255) Select @RetStr=CAST(@Guid as varchar(255)) Select @RetStr=REPLACE(@Retstr,'-','') return @RetStrend Executing the Select statement produced a plan of : Nothing surprising, a seek to find the data and compute scalar to execute the UDF. Lets get optimizing and remove the UDF with a persisted column Alter table sales.salesorderheaderadd CleanedGuid as dbo.udfCleanGuid(rowguid)PERSISTED A subtle change to the SELECT statement… select BillToAddressID,CleanedGuid from sales.salesorderheaderwhere BillToAddressID = 985 and our new optimized plan looks like… Not a lot different from before!  We are using persisted data on our table, where is the lookup to fetch it ?  It didnt happen,  it was recalculated.  Looking at the properties of the relevant Compute Scalar would confirm this ,  but a more graphic example would be shown in the profiler SP:StatementCompleted event. Why did the lookup happen ? Remember the index definition,  it has included the original guid to avoid the lookup.  The optimizer knows this column will be passed into the UDF, run through its logic and decided that to recalculate is cheaper than the lookup.  That may or may not be the case in actuality,  the optimizer has no idea of the real cost of a scalar udf.  IMO the default cost of a scalar UDF should be seen as a lot higher than it is, since they are invariably higher. Knowing this, how do we avoid the function call?  Dropping the guid from the index is not an option, there may be other code reliant on it.   We are left with only one real option,  add the persisted column into the index. drop index Sales.SalesOrderHeader.idxBillgocreate index idxBill on sales.salesorderheader(BillToAddressID) include (rowguid,cleanedguid) Now if we repeat the statement select BillToAddressID,CleanedGuid from sales.salesorderheaderwhere BillToAddressID = 985 We still have a compute scalar operator, but this time it wasnt used to recalculate the persisted data.  This can be confirmed with profiler again. The takeaway here is,  just because you have persisted data dont automatically assumed that it is being used.

    Read the article

  • Head in the Clouds

    - by Tony Davis
    We're just past the second anniversary of the launch of Windows Azure. A couple of years' experience with Azure in the industry has provided some obvious success stories, but has deflated some of the initial marketing hyperbole. As a general principle, Azure seems to work well in providing a Service-Oriented Architecture for services in enterprises that suffer wide fluctuations in demand. Instead of being obliged to provide hardware sufficient for the occasional peaks in demand, one can hire capacity only when it is needed, and the cost of hosting an application is no longer a capital cost. It enables companies to avoid having to scale out hardware for peak periods only to see it underused for the rest of the time. A customer-facing application such as a concert ticketing system, which suffers high demand in short, predictable bursts of activity, is a great example of an application that would work well in Azure. However, moving existing applications to Azure isn't something to be done on impulse. Unless your application is .NET-based, and consists of 'stateless' components that communicate via queues, you are probably in for a lot of redevelopment work. It makes most sense for IT departments who are already deep in this .NET mindset, and who also want 'grown-up' methods of staging, testing, and deployment. Azure fits well with this culture and offers, as a bonus, good Visual Studio integration. The most-commonly stated barrier to porting these applications to Azure is the problem of reconciling the use of the cloud with legislation for data privacy and security. Putting databases in the cloud is a sticky issue for many and impossible for some due to compliance and security issues, the need for direct control over data, and so on. In the face of feedback from the early adopters of Azure, Microsoft has broadened the architectural choices to cater for a wide range of requirements. As well as SQL Azure Database (SAD) and Azure storage, the unstructured 'BLOB and Entity-Attribute-Value' NoSQL storage alternative (which equates more closely with folders and files than a database), Windows Azure offers a wide range of storage options including use of services such as oData: developers who are programming for Windows Azure can simply choose the one most appropriate for their needs. Secondly, and crucially, the Windows Azure architecture allows you the freedom to produce hybrid applications, where only those parts that need cloud-based hosting are deployed to Azure, whereas those parts that must unavoidably be hosted in a corporate datacenter can stay there. By using a hybrid architecture, it will seldom, if ever, be necessary to move an entire application to the cloud, along with personal and financial data. For example that we could port to Azure only put those parts of our ticketing application that capture and process tickets orders. Once an order is captured, the financial side can be processed in our own data center. In short, Windows Azure seems to be a very effective way of providing services that are subject to wide but predictable fluctuations in demand. Have you come to the same conclusions, or do you think I've got it wrong? If you've had experience with Azure, would you recommend it? It would be great to hear from you. Cheers, Tony.

    Read the article

  • Cloud Computing Pricing - It's like a Hotel

    - by BuckWoody
    I normally don't go into the economics or pricing side of Distributed Computing, but I've had a few friends that have been surprised by a bill lately and I wanted to quickly address at least one aspect of it. Most folks are used to buying software and owning it outright - like buying a car. We pay a lot for the car, and then we use it whenever we want. We think of the "cloud" services as a taxi - we'll just pay for the ride we take an no more. But it's not quite like that. It's actually more like a hotel. When you subscribe to Azure using a free offering like the MSDN subscription, you don't have to pay anything for the service. But when you create an instance of a Web or Compute Role, Storage, that sort of thing, you can think of the idea of checking into a hotel room. You get the key, you pay for the room. For Azure, using bandwidth, CPU and so on is billed just like it states in the Azure Portal. so in effect there is a cost for the service and then a cost to use it, like water or power or any other utility. Where this bit some folks is that they created an instance, played around with it, and then left it running. No one was using it, no one was on - so they thought they wouldn't be charged. But they were. It wasn't much, but it was a surprise.They had the hotel room key, but they weren't in the room, so to speak. To add to their frustration, they had to talk to someone on the phone to cancel the account. I understand the frustration. Although we have all this spelled out in the sign up area, not everyone has the time to read through all that. I get that. So why not make this easier? As an explanation, we bill for that time because the instance is still running, and we have to tie up resources to be available the second you want them, and that costs money. As far as being able to cancel from the portal, that's also something that needs to be clearer. You may not be aware that you can spin up instances using code - and so cancelling from the Portal would allow you to do the same thing. Since a mistake in code could erase all of your instances and the account, we make you call to make sure you're you and you really want to take it down. Not a perfect system by any means, but we'll evolve this as time goes on. For now, I wanted to make sure you're aware of what you should do. By the way, you don't have to cancel your whole account not to be billed. Just delete the instance from the portal and you won't be charged. You don't have to call anyone for that. And just FYI - you can download the SDK for Azure and never even hit the online version at all for learning and playing around. No sign-up, no credit card, PO, nothing like that. In fact, that's how I demo Azure all the time. Everything runs right on your laptop in an emulated environment.  

    Read the article

  • Reaching to the Holy Grail of Data Management

    - by Irem Radzik
    Pervasive, continuous access to trusted data. That’s the ultimate goal of data management. It enables to leverage data as an asset to create value for customers and the organization. It creates the strong foundation needed to move the business forward. How you get there is also critical. As with all IT initiatives using high performance solutions with low cost of ownership is another key requirement in today’s IT world. Oracle's  data integration product strategy focuses on helping customers achieve this ultimate goal with high performance and low TCO.  At OpenWorld, we will be showing how Oracle Data Integration products help you reach your data management goals, considering new trends in information management, such as big data and cloud computing. We will also provide an update on the latest product releases, such as Oracle GoldenGate 11gR2. If you will be at OpenWorld, please join us on Monday Oct 1st 10:45am at Moscone West – 3005 to hear our VP of Product Development, Brad Adelberg, present "Future Strategy, Direction, and Roadmap of Oracle’s Data Integration Platform". The Data Integration track at OpenWorld covers variety of topics and speakers. In addition to product management of Oracle GoldenGate, Oracle Data Integrator, and Enteprise Data Quality presenting product updates and roadmap, we have several customer panels and stand-alone sessions featuring select customers such as St. Jude Medical, Raymond James, Aderas, Turkcell, Paychex, Comcast,  Ticketmaster, Bank of America and more. You can see an overview of Data Integration sessions here. If you are not able to attend OpenWorld, please check out our latest resources for Data Integration and Oracle GoldenGate. In the coming weeks you will see more blogs about our products’ new capabilities and what to expect at OpenWorld. I hope to see you at OpenWorld and stay in touch via our future blogs. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;}

    Read the article

  • The long road to bug-free software

    - by Tony Davis
    The past decade has seen a burgeoning interest in functional programming languages such as Haskell or, in the Microsoft world, F#. Though still on the periphery of mainstream programming, functional programming concepts are gradually seeping into the imperative C# language (for example, Lambda expressions have their root in functional programming). One of the more interesting concepts from functional programming languages is the use of formal methods, the lofty ideal behind which is bug-free software. The idea is that we write a specification that describes exactly how our function (say) should behave. We then prove that our function conforms to it, and in doing so have proved beyond any doubt that it is free from bugs. All programmers already use one form of specification, specifically their programming language's type system. If a value has a specific type then, in a type-safe language, the compiler guarantees that value cannot be an instance of a different type. Many extensions to existing type systems, such as generics in Java and .NET, extend the range of programs that can be type-checked. Unfortunately, type systems can only prevent some bugs. To take a classic problem of retrieving an index value from an array, since the type system doesn't specify the length of the array, the compiler has no way of knowing that a request for the "value of index 4" from an array of only two elements is "unsafe". We restore safety via exception handling, but the ideal type system will prevent us from doing anything that is unsafe in the first place and this is where we start to borrow ideas from a language such as Haskell, with its concept of "dependent types". If the type of an array includes its length, we can ensure that any index accesses into the array are valid. The problem is that we now need to carry around the length of arrays and the values of indices throughout our code so that it can be type-checked. In general, writing the specification to prove a positive property, even for a problem very amenable to specification, such as a simple sorting algorithm, turns out to be very hard and the specification will be different for every program. Extend this to writing a specification for, say, Microsoft Word and we can see that the specification would end up being no simpler, and therefore no less buggy, than the implementation. Fortunately, it is easier to write a specification that proves that a program doesn't have certain, specific and undesirable properties, such as infinite loops or accesses to the wrong bit of memory. If we can write the specifications to prove that a program is immune to such problems, we could reuse them in many places. The problem is the lack of specification "provers" that can do this without a lot of manual intervention (i.e. hints from the programmer). All this might feel a very long way off, but computing power and our understanding of the theory of "provers" advances quickly, and Microsoft is doing some of it already. Via their Terminator research project they have started to prove that their device drivers will always terminate, and in so doing have suddenly eliminated a vast range of possible bugs. This is a huge step forward from saying, "we've tested it lots and it seems fine". What do you think? What might be good targets for specification and verification? SQL could be one: the cost of a bug in SQL Server is quite high given how many important systems rely on it, so there's a good incentive to eliminate bugs, even at high initial cost. [Many thanks to Mike Williamson for guidance and useful conversations during the writing of this piece] Cheers, Tony.

    Read the article

  • New Oracle BI Applications released

    - by THE
    Oracle has just released two new Applications for Oracle Business Intelligence Analytics with the Normal 0 21 false false false DE X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} 7.9.6.x Extension Pack: Normal 0 21 false false false DE X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} · Oracle Manufacturing Analytics, part of the Oracle BI Applications product family, helps discrete and process manufacturing organizations optimize their supply networks by integrating data from across the enterprise value chain, thereby enabling executives, operations managers, cost accountants and production supervisors to make informed and actionable decisions related to manufacturing execution. Normal 0 21 false false false DE X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} · Oracle Enterprise Asset Management Analytics, part of the Oracle BI Applications product family, offers complete and enhanced visibility to enterprise-wide maintenance information. Pre-built reports covering Maintenance History, Maintenance Cost Analysis and Maintenance Work Orders, provide Maintenance Managers information to maximize performance, identify potential issues much in advance, and address them before they escalate into serious problems.  More Information about the existing Business Intelligence Analytics Applications can be found on this page: http://www.oracle.com/us/solutions/ent-performance-bi/bi-applications-066544.html If you are not familiar with Oracle Manufacturing or Oracle Enterprise Asset Management, these PDFs might get you started: http://www.oracle.com/us/products/applications/060289.pdf http://www.oracle.com/us/products/applications/057127.pdf

    Read the article

  • The Minimalist Approach to Content Governance - Request Phase

    - by Kellsey Ruppel
    Originally posted by John Brunswick. For each project, regardless of size, it is critical to understand the required ownership, business purpose, prerequisite education / resources needed to execute and success criteria around it. Without doing this, there is no way to get a handle on the content life-cyle, resulting in a mass of orphaned material. This lowers the quality of end user experiences.     The good news is that by using a simple process in this request phase - we will not have to revisit this phase unless something drastic changes in the project. For each of the elements mentioned above in this stage, the why, how (technically focused) and impact are outlined with the intent of providing the most value to a small team. 1. Ownership Why - Without ownership information it will not be possible to track and manage any of the content and take advantage of many features of enterprise content management technology. To hedge against this, we need to ensure that both a individual and their group or department within the organization are associated with the content. How - Apply metadata that indicates the owner and department or group that has responsibility for the content. Impact - It is possible to keep the content system optimized by running native reports against the meta-data and acting on them based on what has been outlined for success criteria. This will maximize end user experience, as content will be faster to locate and more relevant to the user by virtue of working through a smaller collection. 2. Business Purpose Why - This simple step will weed out requests that have tepid justification, as users will most likely not spend the effort to request resources if they do not have a real need. How - Use a simple online form to collect and workflow the request to management native to the content system. Impact - Minimizes the amount user generated content that is of low value to the organization. 3. Prerequisite Education Resources Needed Why - If a project cannot be properly staffed the probability of its success is going to be low. By outlining the resources needed - in both skill set and duration - it will cause the requesting party to think critically about the commitment needed to complete their project and what gap must be closed with regard to education of those resources. How - In the simple request form outlined above, resources and a commitment to fulfilling any needed education should be included with a brief acceptance clause that outlines the requesting party's commitment. Impact - This stage acts as a formal commitment to ensuring that resources are able to execute on the vision for the project. 4. Success Criteria Why - Similar to the business purpose, this is a key element in helping to determine if the project and its respective content should continue to exist if it does not meet its intended goal. How - Set a review point for the project content that will check the progress against the originally outlined success criteria and then determine the fate of the content. This can even include logic that will tell the content system to remove items that have not been opened by any users in X amount of time. Impact - This ensures that projects and their contents do not live past their useful lifespans. Just as with orphaned content, non-relevant information will slow user's access to relevant materials for the jobs. Request Phase Summary With a simple form that outlines the ownership of a project and its content, business purpose, education and resources, along with success criteria, we can ensure that an enterprise content management system will stay clean and relevant to end users - allowing it to deliver the most value possible. The key here is to make it straightforward to make the request and let the content management technology manage as much as possible through metadata, retention policies and workflow. Doing these basic steps will allow project content to get off to a great start in the enterprise! Stay tuned for the next installment - the "Create Phase" - covering security access and workflow involved in content creation, enabling a practical layer of governance over our enterprise content repository.

    Read the article

  • How Does a 724% Return on Your Salesforce Automation Investment Sound?

    - by Brian Dayton
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Oracle Sales Cloud and Marketing Cloud customer Apex IT gained just that, a 724% return on investment (ROI) when they implemented these Oracle Cloud solutions in their fast-moving, rapidly-growing business. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";} Congratulations Apex IT! Apex IT was just announced as a winner of the Nucleus Research 11th annual Technology ROI Awards. The award, given by the analyst firm highlights organizations that have successfully leveraged IT deployments to maximize value per dollar spent. Fast Facts: Return on Investment - 724% Payback - 2 months Average annual benefit - $91,534 Cost: Benefit Ratio – 1:48 Business Benefits In addition to the ROI and cost metrics the award calls out improvements in Apex IT’s business operations—across both Sales and Marketing teams: Improved ability to identify new opportunities and focus sales resources on higher-probability deals Reduced administration and manual lead tracking—resulting in more time selling and a net new client increase of 46% Increased campaign productivity for both Marketing and Sales, including Oracle Marketing Cloud’s automation of campaign tracking and nurture programs Improved margins with more structured and disciplined sales processes—resulting in more effective deal negotiations Please join us in congratulating Apex IT on this award and their business achievements. Want More Details? Don’t take our word for it. Read the full Apex IT ROI Case Study and learn more about Apex IT’s business—including their work with Oracle Sales and Marketing Cloud on behalf of their clients in leading Sales organizations. Learn More About Oracle Sales Cloud www.oracle.com/salescloud www.facebook.com/oraclesalescloud www.youtube.com/oraclesalescloud Oracle Customer Experience and Complementary Sales Solutions Oracle Configure, Price and Quote (CPQ) Cloud Oracle Marketing Cloud Oracle Customer Experience /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Read the article

  • Obfuscation is not a panacea

    - by simonc
    So, you want to obfuscate your .NET application. My question to you is: Why? What are your aims when your obfuscate your application? To protect your IP & algorithms? Prevent crackers from breaking your licensing? Your boss says you need to? To give you a warm fuzzy feeling inside? Obfuscating code correctly can be tricky, it can break your app if applied incorrectly, it can cause problems down the line. Let me be clear - there are some very good reasons why you would want to obfuscate your .NET application. However, you shouldn't be obfuscating for the sake of obfuscating. Security through Obfuscation? Once your application has been installed on a user’s computer, you no longer control it. If they do not want to pay for your application, then nothing can stop them from cracking it, even if the time cost to them is much greater than the cost of actually paying for it. Some people will not pay for software, even if it takes them a month to crack a $30 app. And once it is cracked, there is nothing stopping them from putting the result up on the internet. There should be nothing suprising about this; there is no software protection available for general-purpose computers that cannot be cracked by a sufficiently determined attacker. Only by completely controlling the entire stack – software, hardware, and the internet connection, can you have even a chance to be uncrackable. And even then, someone somewhere will still have a go, and probably succeed. Even high-end cryptoprocessors have known vulnerabilities that can be exploited by someone with a scanning electron microscope and lots of free time. So, then, why use obfuscation? Well, the primary reason is to protect your IP. What obfuscation is very good at is hiding the overall structure of your program, so that it’s very hard to figure out what exactly the code is doing at any one time, what context it is running in, and how it fits in with the rest of the application; all of which you need to do to understand how the application operates. This is completely different to cracking an application, where you simply have to find a single toggle that determines whether the application is licensed or not, and flip it without the rest of the application noticing. However, again, there are limitations. An obfuscated application still has to run in the same way, and do the same thing, as the original unobfuscated application. This means that some of the protections applied to the obfuscated assembly have to be undone at runtime, else it would not run on the CLR and do the same thing. And, again, since we don’t control the environment the application is run on, there is nothing stopping a user from undoing those protections manually, and reversing some of the obfuscation. It’s a perpetual arms race, and it always will be. We have plenty of ideas lined about new protections, and the new protections added in SA 6.6 (method parent obfuscation and a new control flow obfuscation level) are specifically designed to be harder to reverse and reconstruct the original structure. So then, by all means, obfuscate your application if you want to protect the algorithms and what the application does. That’s what SmartAssembly is designed to do. But make sure you are clear what a .NET obfuscator can and cannot protect you against, and don’t expect your obfuscated application to be uncrackable. Someone, somewhere, will crack your application if they want to and they don’t have anything better to do with their time. The best we can do is dissuade the casual crackers and make it much more difficult for the serious ones. Cross posted from Simple Talk.

    Read the article

  • Can someone explain the true landscape of Rails vs PHP deployment, particularly within the context of Reseller-based web hosting (e.g., Hostgator)?

    - by rcd
    Currently, I have a reseller account with the company HostGator. I design websites, which up until now have occasionally been wrapped in Wordpress CMSs and the like (PHP applications). I then sell hosting (of the site I've designed) to the client, which is pretty simple, in that I can simply click a button and add a new shared hosting account/site with whatever settings I want. Furthermore, I then utilize WHMCS to automate billing and account management. It's a nice package and pretty simple. I pay something like $25 a month, and can sell a hundred accounts under this (because my clients bandwidth requirements are low). Now I am finding the need to develop more customized applications, including a minimalist CMS and several proprietary things. I soon anticipate developing these apps for clients as well. Thus, I've spent the past few months learning Rails, and it's coming along well now. The thing that has nagged at me all along, though, is the deployment issue. I can't wrap my brain around it. It seems like all of the popular options (Heroku, etc) have nice automation with git and are set up in the "Rails Way". I get that (sort of). But it's terribly expensive... a single dyno, a helper, and the cheapest database (which they say is mainly suitable for testing) that isn't limited to 5MB runs $51. This is for ONE app!!! Throw in a "production" DB and you're over $200. This is like... the same prices as getting a server somewhere, right? Meanwhile, going back to what I guess is a "traditional" hosting environment with Hostgator, their server only has Ruby 1.8.7 and Rails 2.3.5... No Rails 3. AND, no Passenger (not that I really understand the difference in CGI or mod_rails or whatever, but they say Passenger is the simplest). So I'm to understand that if I build an app in Rails 3, it won't run at all on this host? But damn, I already have these accounts under my reseller account there, all running static html and/or PHP stuff, right? So what now? How do I get all of this under one simple (and affordable) roof? Forgive my ignorance, but I just don't get it. Managing a VPS is cool and all, but entails learning server admin stuff and security... And it's expensive. I get that a shared and/or reseller "server-based" (forgive the terminology) may be inadequate for large-scale apps that use a lot of bandwidth... But what about for those of us who are building real (but small and low bandwidth) apps (with Rails) and who want to deploy them simply, cheaply, using the same conceptual approach as PHP? Even after learning all of this Ruby and Rails stuff for months, I'm questioning whether it's worth it when it comes to deployment. I want to build a small app, upload it to my home directory on a shared server account, and just make it run. Why should that be so hard? Am I just choosing the wrong language/framework? Forgive my ignorance in the subject; these questions are not rhetorical; just trying to learn here. So: 1) I'd appreciate if someone could give me a good rundown of how to understand deployment in Rails vs. PHP. 2) I'd appreciate if someone could address my issue with running a hosting/web business around reseller hosting (Hostgator) while also being able to host Rails apps. Can it be done? And how can a company like Hostgator completely ignore what's current in Rails/Ruby? Thanks.

    Read the article

  • Is the Leptonica implementation of 'Modified Median Cut' not using the median at all?

    - by TheCodeJunkie
    I'm playing around a bit with image processing and decided to read up on how color quantization worked and after a bit of reading I found the Modified Median Cut Quantization algorithm. I've been reading the code of the C implementation in Leptonica library and came across something I thought was a bit odd. Now I want to stress that I am far from an expert in this area, not am I a math-head, so I am predicting that this all comes down to me not understanding all of it and not that the implementation of the algorithm is wrong at all. The algorithm states that the vbox should be split along the lagest axis and that it should be split using the following logic The largest axis is divided by locating the bin with the median pixel (by population), selecting the longer side, and dividing in the center of that side. We could have simply put the bin with the median pixel in the shorter side, but in the early stages of subdivision, this tends to put low density clusters (that are not considered in the subdivision) in the same vbox as part of a high density cluster that will outvote it in median vbox color, even with future median-based subdivisions. The algorithm used here is particularly important in early subdivisions, and 3is useful for giving visible but low population color clusters their own vbox. This has little effect on the subdivision of high density clusters, which ultimately will have roughly equal population in their vboxes. For the sake of the argument, let's assume that we have a vbox that we are in the process of splitting and that the red axis is the largest. In the Leptonica algorithm, on line 01297, the code appears to do the following Iterate over all the possible green and blue variations of the red color For each iteration it adds to the total number of pixels (population) it's found along the red axis For each red color it sum up the population of the current red and the previous ones, thus storing an accumulated value, for each red note: when I say 'red' I mean each point along the axis that is covered by the iteration, the actual color may not be red but contains a certain amount of red So for the sake of illustration, assume we have 9 "bins" along the red axis and that they have the following populations 4 8 20 16 1 9 12 8 8 After the iteration of all red bins, the partialsum array will contain the following count for the bins mentioned above 4 12 32 48 49 58 70 78 86 And total would have a value of 86 Once that's done it's time to perform the actual median cut and for the red axis this is performed on line 01346 It iterates over bins and check they accumulated sum. And here's the part that throws me of from the description of the algorithm. It looks for the first bin that has a value that is greater than total/2 Wouldn't total/2 mean that it is looking for a bin that has a value that is greater than the average value and not the median ? The median for the above bins would be 49 The use of 43 or 49 could potentially have a huge impact on how the boxes are split, even though the algorithm then proceeds by moving to the center of the larger side of where the matched value was.. Another thing that puzzles me a bit is that the paper specified that the bin with the median value should be located, but does not mention how to proceed if there are an even number of bins.. the median would be the result of (a+b)/2 and it's not guaranteed that any of the bins contains that population count. So this is what makes me thing that there are some approximations going on that are negligible because of how the split actually takes part at the center of the larger side of the selected bin. Sorry if it got a bit long winded, but I wanted to be as thoroughas I could because it's been driving me nuts for a couple of days now ;)

    Read the article

  • The long road to bug-free software

    - by Tony Davis
    The past decade has seen a burgeoning interest in functional programming languages such as Haskell or, in the Microsoft world, F#. Though still on the periphery of mainstream programming, functional programming concepts are gradually seeping into the imperative C# language (for example, Lambda expressions have their root in functional programming). One of the more interesting concepts from functional programming languages is the use of formal methods, the lofty ideal behind which is bug-free software. The idea is that we write a specification that describes exactly how our function (say) should behave. We then prove that our function conforms to it, and in doing so have proved beyond any doubt that it is free from bugs. All programmers already use one form of specification, specifically their programming language's type system. If a value has a specific type then, in a type-safe language, the compiler guarantees that value cannot be an instance of a different type. Many extensions to existing type systems, such as generics in Java and .NET, extend the range of programs that can be type-checked. Unfortunately, type systems can only prevent some bugs. To take a classic problem of retrieving an index value from an array, since the type system doesn't specify the length of the array, the compiler has no way of knowing that a request for the "value of index 4" from an array of only two elements is "unsafe". We restore safety via exception handling, but the ideal type system will prevent us from doing anything that is unsafe in the first place and this is where we start to borrow ideas from a language such as Haskell, with its concept of "dependent types". If the type of an array includes its length, we can ensure that any index accesses into the array are valid. The problem is that we now need to carry around the length of arrays and the values of indices throughout our code so that it can be type-checked. In general, writing the specification to prove a positive property, even for a problem very amenable to specification, such as a simple sorting algorithm, turns out to be very hard and the specification will be different for every program. Extend this to writing a specification for, say, Microsoft Word and we can see that the specification would end up being no simpler, and therefore no less buggy, than the implementation. Fortunately, it is easier to write a specification that proves that a program doesn't have certain, specific and undesirable properties, such as infinite loops or accesses to the wrong bit of memory. If we can write the specifications to prove that a program is immune to such problems, we could reuse them in many places. The problem is the lack of specification "provers" that can do this without a lot of manual intervention (i.e. hints from the programmer). All this might feel a very long way off, but computing power and our understanding of the theory of "provers" advances quickly, and Microsoft is doing some of it already. Via their Terminator research project they have started to prove that their device drivers will always terminate, and in so doing have suddenly eliminated a vast range of possible bugs. This is a huge step forward from saying, "we've tested it lots and it seems fine". What do you think? What might be good targets for specification and verification? SQL could be one: the cost of a bug in SQL Server is quite high given how many important systems rely on it, so there's a good incentive to eliminate bugs, even at high initial cost. [Many thanks to Mike Williamson for guidance and useful conversations during the writing of this piece] Cheers, Tony.

    Read the article

  • EPPM Is a Must-Have Capability as Global Energy and Power Industries Eye US$38 Trillion in New Investments

    - by Melissa Centurio Lopes
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} “The process manufacturing industry is facing an unprecedented challenge: from now until 2035, cumulative worldwide investments of US$38 trillion will be required for drilling, power generation, and other energy projects,” Iain Graham, director of energy and process manufacturing for Oracle’s Primavera, said in a recent webcast. He adds that process manufacturing organizations such as oil and gas, utilities, and chemicals must manage this level of investment in an environment of constrained capital markets, erratic supply and demand, aging infrastructure, heightened regulations, and declining global skills. In the following interview, Graham explains how the right enterprise project portfolio management (EPPM) technology can help the industry meet these imperatives. Q: Why is EPPM so important for today’s process manufacturers? A: If the industry invests US$38 trillion without proper cost controls in place, a huge amount of resources will be put at risk, especially when it comes to cost overruns that may occur in large capital projects. Process manufacturing companies must not only control costs, but also monitor all the various contractors that will be involved in each project. If you’re not managing your own workers and all the interdependencies among the different contractors, then you’ve got problems. Q: What else should process manufacturers look for? A: It’s also important that an EPPM solution has the ability to manage more than just capital projects. For example, it’s best to manage maintenance and capital projects in the same system. Say you’re due to install a new transformer in a power station as part of a capital project, but routine maintenance in that area of the facility is scheduled for that morning. The lack of coordination could lead to unforeseen delays. There are also IT considerations that impact capital projects, such as adding servers and network cable for a control system in a power station. What organizations need is a true EPPM system that’s not just for capital projects, maintenance, or IT activities, but instead an enterprisewide solution that provides visibility into all types of projects. Read the complete Q&A here and discover the practical framework for successfully managing this massive capital spending.

    Read the article

  • Good locations worldwide for a coder gypsy wannabe

    - by fung
    Yes, this is not programming related but please bear with me =). I run a small niche SaaS business. Lately I've been thinking of traveling and experiencing life in other places. Would really appreciate suggestions for good places a developer could relocate to. In particular I'm looking for a place that: Has good internet connection (cheap stable broadband, lots of places that provide free wifi, etc.) Low cost of living (rent and food fairly cheap). At least half of the population speak English. Has a local courier agent (DHL, Fedex, any...). The government allows for extended stay of foreigners. I'm thinking of staying for about 6 months at each location and maybe doing it for 3 years. So looking for 5 to 6 locations in total. So if any of you think you're staying in a place that would be great for a visiting developer then please shout out. Include as detailed a description as possible. And include any cons about the place if there are. The only place that pops to mind right now is Bali =). Isle of Skye also seems interesting but I think immigration is tight and cost of living would definitely be higher. Thanks in advance for suggestions =)

    Read the article

  • jQuery validation plugin and .ajax

    - by FALCONSEYE
    So, I have a form where I load divs as I go asking for various user input and displaying some offers. I have the following: $("#calcPrice").click(function() { $("#invPricing").validate({ rules: { ... }, messages: {... } , submitHandler: function(form) { .... $.ajax({ }); $.ajax({ }); return false; } }); My problem is after validation, none of the ajax calls work. If I remove the validation methods (rules, messages, submitHandler), everything works fine. Can somebody tell me what I am missing here? thanks in advance. btw, these are the ajax calls: $.ajax({ dataType: "json", type: "get", url: <cfoutput>"#actURL#"</cfoutput>, data: formData+"&p_type=LOW&returnJSON=true", cache: false, success: function(result) { // fields to populate: $("#rent").val(result.RENT); $("#discount").val(result.DISCOUNT); $("#salesPrice1").val(result.SALESPRICE); $("#cashPrice1").val(result.CASHSALESPRICE); $("#tax1").val(result.SALESTAX); $("#payment1").val(result.PAYMENTS); } , error: function(xmlHttpRequest, status, err) { confirm('Error!' + err); } }); $.ajax({ dataType: "json", type: "get", url: <cfoutput>"#actURL#"</cfoutput>, data: formData+"&p_type=HIGH&returnJSON=true", cache: false, success: function(result) { // fields to populate: $("#rent").val(result.RENT); $("#discount").val(result.DISCOUNT); $("#salesPrice2").val(result.SALESPRICE); $("#cashPrice2").val(result.CASHSALESPRICE); $("#tax2").val(result.SALESTAX); $("#payment2").val(result.PAYMENTS); } , error: function(xmlHttpRequest, status, err) { confirm('Error!' + err); } }); I am basically displaying two offers one Low, one High.

    Read the article

  • WinForms DataGridView - update database

    - by Geo Ego
    I know this is a basic function of the DataGridView, but for some reason, I just can't get it to work. I just want the DataGridView on my Windows form to submit any changes made to it to the database when the user clicks the "Save" button. I populate the DataGridView according to a function triggered by a user selection in a DropDownList as follows: using (SqlConnection con = new SqlConnection(conString)) { con.Open(); SqlDataAdapter ruleTableDA = new SqlDataAdapter("SELECT rule.fldFluteType AS [Flute], rule.fldKnife AS [Knife], rule.fldScore AS [Score], rule.fldLowKnife AS [Low Knife], rule.fldMatrixScore AS [Matrix Score], rule.fldMatrix AS [Matrix] FROM dbo.tblRuleTypes rule WHERE rule.fldMachine_ID = '1003'", con); DataSet ruleTableDS = new DataSet(); ruleTableDA.Fill(ruleTableDS); RuleTable.DataSource = ruleTableDS.Tables[0]; } In my save function, I basically have the following (I've trimmed out some of the code around it to get to the point): using (SqlDataAdapter ruleTableDA = new SqlDataAdapter("SELECT rule.fldFluteType AS [Flute], rule.fldKnife AS [Knife], rule.fldScore AS [Score], rule.fldLowKnife AS [Low Knife], rule.fldMatrixScore AS [Matrix Score], rule.fldMatrix AS [Matrix] FROM dbo.tblRuleTypes rule WHERE rule.fldMachine_ID = '1003'", con)) { SqlCommandBuilder commandBuilder = new SqlCommandBuilder(ruleTableDA); DataTable dt = new DataTable(); dt = RuleTable.DataSource as DataTable; ruleTableDA.Fill(dt); ruleTableDA.Update(dt); } Okay, so I edited the code to do the following: build the commands, create a DataTable based on the DataGridView (RuleTable), fill the DataAdapter with the DataTable, and update the database. Now ruleTableDA.Update(dt) is throwing the exception "Concurrency violation: the UpdateCommand affected 0 of the expected 1 records."

    Read the article

  • process csv in scala

    - by portoalet
    I am using scala 2.7.7, and wanted to parse CSV file and store the data in SQLite database. I ended up using OpenCSV java library to parse the CSV file, and using sqlitejdbc library. Using these java libraries makes my scala code looks almost identical to that of Java code (sans semicolon and with val/var) As I am dealing with java objects, I can't use scala list, map, etc, unless I do scala2java conversion or upgrade to scala 2.8 Is there a way I can simplify my code further using scala bits that I don't know? val filename = "file.csv"; val reader = new CSVReader(new FileReader(filename)) var aLine = new Array[String](10) var lastSymbol = "" while( (aLine = reader.readNext()) != null ) { if( aLine != null ) { val symbol = aLine(0) if( !symbol.equals(lastSymbol)) { try { val rs = stat.executeQuery("select name from sqlite_master where name='" + symbol + "';" ) if( !rs.next() ) { stat.executeUpdate("drop table if exists '" + symbol + "';") stat.executeUpdate("create table '" + symbol + "' (symbol,data,open,high,low,close,vol);") } } catch { case sqle : java.sql.SQLException => println(sqle) } lastSymbol = symbol } val prep = conn.prepareStatement("insert into '" + symbol + "' values (?,?,?,?,?,?,?);") prep.setString(1, aLine(0)) //symbol prep.setString(2, aLine(1)) //date prep.setString(3, aLine(2)) //open prep.setString(4, aLine(3)) //high prep.setString(5, aLine(4)) //low prep.setString(6, aLine(5)) //close prep.setString(7, aLine(6)) //vol prep.addBatch() prep.executeBatch() } } conn.close()

    Read the article

  • HTML.CheckBox persisting state after POST - Refresh ModelState?

    - by Kirschstein
    I have a form that's made up of many items (think order items on an amazon order). Each row has a checkbox associated with them so the user can select many items and click 'remove'. The form is built up a bit like this; <% for (int i = 0; i < Model.OrderItems.Count; i++) { %> <tr> <td><%= Html.Hidden(String.Format("OrderItems[{0}].Id", i), Model.OrderItems[i].Id)%> <%= Html.CheckBox(String.Format("OrderItems[{0}].Checked", i), Model.OrderItems[i].Checked)%></td> <td><%= Html.TextBox(String.Format("OrderItems[{0}].Name", i), Model.OrderItems[i].Name)%></td> <td><%= Html.TextBox(String.Format("OrderItems[{0}].Cost", i), Model.OrderItems[i].Cost)%></td> <td><%= Html.TextBox(String.Format("OrderItems[{0}].Quantity", i), Model.OrderItems[i].Quantity)%></td> </tr> <% } %> The model binder does its magic just fine and the list is correctly populated. However, after I process the request in the action (e.g. remove the appropriate items) and return a new view containing fewer items, the state of the form is 'semi' persisted. Some check boxes remain checked, even though in the edit model all the bools are set to false. I don't have this problem if I return a RedirectToActionResult, but using that as a solution seems a bit of a hacky work around. I think I need to flush/refresh the ModelState, or something similiar, but I'm unsure of the terms to search for to find out how.

    Read the article

  • Best method of achieving bi-directional communication between Apple iPad "clients" and a Windows Ser

    - by user361910
    We are currently starting to build a client-server system which will see 10 or more Apple iPad client devices communicating to a central Windows server over a wireless LAN. We wanted to some existing plumbing (.NET remoting/WCF/web services/etc) that would allow us to implement a reliable, secure solution without having to start at a low level (e.g. sockets) and recreate the wheel. One of the major requirements that complicates this scenario is that unlike a traditional web service, the windows server needs to be able to arbitrarily notify the clients whenever certain events occur -- so it is not a simple request/response scenario like the web. Initially, we were going to use Windows clients, so our plan was to use the full-duplex mode of .NET WCF over HTTP|TCP. But now using the iPad, we don't have any of the WCF infrastructure. So my question is: what is the best way to allow an iPad and a Windows server to (securely) communicate over a LAN, with each device able to initiate communication to the other? Am I stuck writing low-level socket code? Thanks!

    Read the article

  • Could CouchDB benefit significantly from the use of BERT instead of JSON?

    - by Victor Rodrigues
    I appreciate a lot CouchDB attempt to use universal web formats in everything it does: RESTFUL HTTP methods in every interaction, JSON objects, javascript code to customize database and documents. CouchDB seems to scale pretty well, but the individual cost to make a request usually makes 'relational' people afraid of. Many small business applications should deal with only one machine and that's all. In this case the scalability talk doesn't say too much, we need more performance per request, or people will not use it. BERT (Binary ERlang Term http://bert-rpc.org/ ) has proven to be a faster and lighter format than JSON and it is native for Erlang, the language in which CouchDB is written. Could we benefit from that, using BERT documents instead of JSON ones? I'm not saying just for retrieving in views, but for everything CouchDB does, including syncing. And, as a consequence of it, use Erlang functions instead of javascript ones. This would modify some original CouchDB principles, because today it is very web oriented. Considering I imagine few people would make their database API public and usually its data is accessed by the users through an application, it would be a good deal to have the ability to configure CouchDB for working faster. HTTP+JSON calls could still be handled by CouchDB, considering an extra cost in these cases because of parsing.

    Read the article

  • shortest digest of a string

    - by meta
    [Description] Given a string of char type, find a shortest digest, which is defined as: a shortest sub-string which contains all the characters in the original string. [Example] A = "aaabedacd" B = "bedac" is the answer. [My solution] Define an integer table with 256 elements, which is used to record the occurring times for each kind of character in the current sub-string. Scan the whole string, statistic the total kinds of character in the given string by using the above table. Use two pointers, start, end, which are initially pointing to the start and (start + 1) of the given string. The current kinds of character is 1. Expand sub-string[start, end) at the end until it contains all kinds of character. Update the shortest digest if possible. Contract sub-string[start, end] at the start by one character each time, try to restore its digest property if necessary by step 4. The time cost is O(n), and the extra space cost is constant. Any better solution without extra space?

    Read the article

  • ASP.NET Membership

    - by Gary McGill
    I'd like to use the ASP.NET membership provider in the following (low-security) scenario... My company will create and administer user accounts on behalf of our clients. These accounts will likely be shared amongst several people in the client company (is that a problem?). There will be 2 types of users (2 roles): client and administrator. Administrators are the people within my company that will have special privileges to create client user accounts, etc. Clients will not be able to self-register. They also won't get to choose their own password, and they should not be able to change their password either, since that will just create confusion where several people are sharing the same account. My internal users (admins) will set the password for each client. Here's the bit I'm struggling with: if a client phones up and asks to be reminded of their password, how can my admin users find out what the password is? Can I configure the provider to store the password in clear text (or other recoverable form), and if so can I get at the password through the .NET API? As I said at the outset, this is a low-security application, and so I plan simply to show the password in the (internal) web page where I have a list of all users.

    Read the article

< Previous Page | 80 81 82 83 84 85 86 87 88 89 90 91  | Next Page >