Search Results

Search found 10384 results on 416 pages for 'plan cache'.

Page 85/416 | < Previous Page | 81 82 83 84 85 86 87 88 89 90 91 92  | Next Page >

  • Extract information from a Func<bool, T> or alike lambda

    - by Syska
    I''m trying to build a generic cache layer. ICacheRepository Say I have the following: public class Person { public int PersonId { get; set; } public string Firstname { get; set; } public string Lastname { get; set; } public DateTime Added { get; set; } } And I have something like this: list.Where(x => x.Firstname == "Syska"); Here I want to extract the above information, to see if the query supplied the "PersonId" which it did not, so I dont want to cache it. But lets say I run a query like this: list.Where(x => x.PersonId == 10); Since PersonId is my key ... I want to cache it. with the key like "Person_10" and I later can fetch it from the cache. I know its possible to extract the information with Expression<Func<>> but there seems to be a big overhead of doing this (when running compile and extract the Constant values etc. and a bunch of cache to be sure to parse right) Are there a framework for this? Or some smart/golden way of doing this ?

    Read the article

  • Caching in Ruby Gem, possibly not using Rails

    - by corprew
    I am rewriting an existing Ruby Gem to include caching. This is for a gem that is relatively commonly used, and accesses a large amount of static data on a web service. Currently, I have a small number of gem users doing a large number of accesses to the service that under normal conditions would be swamping / downing the service, and we're going to put the gem up on github for general consumption. Right now, users can choose between using the rails cache mechanism, a simple disk cache, or no cache. What is best practice for letting people choose what cache to use like this (being able to use this outside of rails is a priority so i can't just bail to the underlying caching mechanism)? I'm looking for suggestions/examples for configuration and interface, especially. Thanks for your suggestions

    Read the article

  • php mp3 headers in google chrome

    - by David
    I have this in a php to show a mp3 file, it code works fine on firefox and explorer but in chrome it not work. The chrome player appears but no sound and not increases time $ext = strtolower(substr(strrchr($filename,"."),1)); $ctype="audio/mpeg"; header( 'Expires: Sat, 26 Jul 1997 05:00:00 GMT' ); header( 'Last-Modified: ' . gmdate( 'D, d M Y H:i:s' ) . ' GMT' ); header( 'Cache-Control: no-store, no-cache, must-revalidate' ); header( 'Cache-Control: post-check=0, pre-check=0', false ); header( 'Pragma: no-cache' ); header("Content-Type: $ctype"); header("Content-Length: ".$len);

    Read the article

  • Magento get loaded collection

    - by Zertalx
    Hey guys I got an issue in magento when listing products. $_productCollection = array(); $key = 'product_collection_'.Mage::app()->getRequest()->getRequestUri(); $_productCollection = Mage::helper('cache')->getDataInCache($key); if (empty($_productCollection)) { $_productCollection=$this->getLoadedProductCollection(); Mage::helper('cache')->setDataInCache($key,$_productCollection,'front_end_collection'); } That's my code, i'm loading the collection and saved in cache, the problem is that I added new products from the admin panel but they are not showing up in the listing. I have refreshed cache, reindex all the data and checke that the products were in stock. Also check the visibility because i understand that the collection gets just the visible products, am i correct? I'm using magento enterprise 1.9 I'm new in magento and i'm having troubles understanding how the Collections works, i hope somebody can help me. Thanks

    Read the article

  • Virtualmin domain name registration php

    - by David Maitland
    in a PHP web page i need to run this following command to create a new domain: virtualmin create-domain --domain DOMAIN --pass PASS --plan 'Standard Package' --limits-from-plan --features-from-plan This is usually executed in a shell but i don't know how to do it from a web page and also i need to take the domain string and pass string from a web form. Can anyone help with the PHP code as my skills are basic and i have already tried a few things that just don't work. Thanks.

    Read the article

  • Want to disable flash caching ?

    - by Mina Samy
    Hi all I have a .swf flash gallery that loads pics from a XML file the probelm is when I modify the XML the modifications do not reflect on the flash till I delete the browsing cache from the browser I tried to disable caching using code like this Response.Cache.SetCacheability(HttpCacheability.NoCache); Response.AddHeader("Pragma","no-cache"); Response.Expires = -1; but not working is there any workaround for this ? thanks

    Read the article

  • SQL SERVER – Repair a SQL Server Database Using a Transaction Log Explorer

    - by Pinal Dave
    In this blog, I’ll show how to use ApexSQL Log, a SQL Server transaction log viewer. You can download it for free, install, and play along. But first, let’s describe some disaster recovery scenarios where it’s useful. About SQL Server disaster recovery Along with database development and administration, you must work on a good recovery plan. Disasters do happen and no one’s immune. What you can do is take all actions needed to be ready for a disaster and go through it with minimal data loss and downtime. Besides creating a recovery plan, it’s necessary to have a list of steps that will be executed when a disaster occurs and to test them before a disaster. This way, you’ll know that the plan is good and viable. Testing can also be used as training for all team members, so they can all understand and execute it when the time comes. It will show how much time is needed to have your servers fully functional again and how much data you can lose in a real-life situation. If these don’t meet recovery-time and recovery-point objectives, the plan needs to be improved. Keep in mind that all major changes in environment configuration, business strategy, and recovery objectives require a new recovery plan testing, as these changes most probably induce a recovery plan changing and tweaking. What is a good SQL Server disaster recovery plan? A good SQL Server disaster recovery strategy starts with planning SQL Server database backups. An efficient strategy is to create a full database backup periodically. Between two successive full database backups, you can create differential database backups. It is essential is to create transaction log backups regularly between full database backups. Keep in mind that transaction log backups can be created only on databases in the full recovery model. In other words, a simple, but efficient backup strategy would be a full database backup every night, a transaction log backup every hour, or every 15 minutes. The frequency depends on how much data you can afford to lose and how busy the database is. Another option, instead of creating a full database backup every night, is to create a full database backup once a week (e.g. on Friday at midnight) and differential database backup every night until next Friday when you will create a full database backup again. Once you create your SQL Server database backup strategy, schedule the backups. You can do that easily using SQL Server maintenance plans. Why are transaction logs important? Transaction log backups contain transactions executed on a SQL Server database. They provide enough information to undo and redo the transactions and roll back or forward the database to a point in time. In SQL Server disaster recovery situations, transaction logs enable to repair a SQL Server database and bring it to the state before the disaster. Be aware that even with regular backups, there will be some data missing. These are the transactions made between the last transaction log backup and the time of the disaster. In some situations, to repair your SQL Server database it’s not necessary to re-create the database from its last backup. The database might still be online and all you need to do is roll back several transactions, such as wrong update, insert, or delete. The restore to a point in time feature is available in SQL Server, but for large databases, it is very time-consuming, as SQL Server first restores a full database backup, and then restores transaction log backups, one after another, up to the recovery point. During that time, the database is unavailable. This is where a SQL Server transaction log viewer can help. For optimal recovery, besides having a database in the full recovery model, it’s important that you haven’t manually truncated the online transaction log. This ensures that all transactions made after the last transaction log backup are still in the online transaction log. All you have to do is read and replay them. How to read a SQL Server transaction log? SQL Server doesn’t provide an option to read transaction logs. There are several SQL Server commands and functions that read the content of a transaction log file (fn_dblog, fn_dump_dblog, and DBCC PAGE), but they are undocumented. They require T-SQL knowledge, return a large number of not easy to read and understand columns, sometimes in binary or hexadecimal format. Another challenge is reading UPDATE statements, as it’s necessary to match it to a value in the MDF file. When you finally read the transactions executed, you have to create a script for it. How to easily repair a SQL database? The easiest solution is to use a transaction log reader that will not only read the transactions in the transaction log files, but also automatically create scripts for the read transactions. In the following example, I will show how to use ApexSQL Log to repair a SQL database after a crash. If a database has crashed and both MDF and LDF files are lost, you have to rely on the full database backup and all subsequent transaction log backups. In another scenario, the MDF file is lost, but the LDF file is available. First, restore the last full database backup on SQL Server using SQL Server Management Studio. I’ll name it Restored_AW2014. Then, start ApexSQL Log It will automatically detect all local servers. If not, click the icon right to the Server drop-down list, or just type in the SQL Server instance name. Select the Windows or SQL Server authentication type and select the Restored_AW2014 database from the database drop-down list. When all options are set, click Next. ApexSQL Log will show the online transaction log file. Now, click Add and add all transaction log backups created after the full database backup I used to restore the database. In case you don’t have transaction log backups, but the LDF file hasn’t been lost during the SQL Server disaster, add it using Add.   To repair a SQL database to a point in time, ApexSQL Log needs to read and replay all the transactions in the transaction log backups (or the LDF file saved after the disaster). That’s why I selected the Whole transaction log option in the Filter setup. ApexSQL Log offers a range of various filters, which are useful when you need to read just specific transactions. You can filter transactions by the time of the transactions, operation type (e.g. to read only data inserts), table name, SQL Server login that made the transaction, etc. In this scenario, to repair a SQL database, I’ll check all filters and make sure that all transactions are included. In the Operations tab, select all schema operations (DDL). If you omit these, only the data changes will be read so if there were any schema changes, such as a new function created, or an existing table modified, they will be ignored and database will not be properly repaired. The data repair for modified tables will fail. In the Tables tab, I’ll make sure all tables are selected. I will uncheck the Show operations on dropped tables option, to reduce the number of transactions. Click Next. ApexSQL Log offers three options. Select Open results in grid, to get a user-friendly presentation of the transactions. As you can see, details are shown for every transaction, including the old and new values for updated columns, which are clearly highlighted. Now, select them all and then create a redo script by clicking the Create redo script icon in the menu.   For a large number of transactions and in a critical situation, when acting fast is a must, I recommend using the Export results to file option. It will save some time, as the transactions will be directly scripted into a redo file, without showing them in the grid first. Select Generate reconstruction (REDO) script , change the output path if you want, and click Finish. After the redo T-SQL script is created, ApexSQL Log shows the redo script summary: The third option will create a command line statement for a batch file that you can use to schedule execution, which is not really applicable when you repair a SQL database, but quite useful in daily auditing scenarios. To repair your SQL database, all you have to do is execute the generated redo script using an integrated developer environment tool such as SQL Server Management Studio or any other, against the restored database. You can find more information about how to read SQL Server transaction logs and repair a SQL database on ApexSQL Solution center. There are solutions for various situations when data needs to be recovered, restored, or transactions rolled back. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Get Started using Build-Deploy-Test Workflow with TFS 2012

    - by Jakob Ehn
    TFS 2012 introduces a new type of Lab environment called Standard Environment. This allows you to setup a full Build Deploy Test (BDT) workflow that will build your application, deploy it to your target machine(s) and then run a set of tests on that server to verify the deployment. In TFS 2010, you had to use System Center Virtual Machine Manager and involve half of your IT department to get going. Now all you need is a server (virtual or physical) where you want to deploy and test your application. You don’t even have to install a test agent on the machine, TFS 2012 will do this for you! Although each step is rather simple, the entire process of setting it up consists of a bunch of steps. So I thought that it could be useful to run through a typical setup.I will also link to some good guidance from MSDN on each topic. High Level Steps Install and configure Visual Studio 2012 Test Controller on Target Server Create Standard Environment Create Test Plan with Test Case Run Test Case Create Coded UI Test from Test Case Associate Coded UI Test with Test Case Create Build Definition using LabDefaultTemplate 1. Install and Configure Visual Studio 2012 Test Controller on Target Server First of all, note that you do not have to have the Test Controller running on the target server. It can be running on another server, as long as the Test Agent can communicate with the test controller and the test controller can communicate with the TFS server. If you have several machines in your environment (web server, database server etc..), the test controller can be installed either on one of those machines or on a dedicated machine. To install the test controller, simply mount the Visual Studio Agents media on the server and browse to the vstf_controller.exe file located in the TestController folder. Run through the installation, you might need to reboot the server since it installs .NET 4.5. When the test controller is installed, the Test Controller configuration tool will launch automatically (if it doesn’t, you can start it from the Start menu). Here you will supply the credentials of the account running the test controller service. Note that this account will be given the necessary permissions in TFS during the configuration. Make sure that you have entered a valid account by pressing the Test link. Also, you have to register the test controller with the TFS collection where your test plan is located (and usually the code base of course) When you press Apply Settings, all the configuration will be done. You might get some warnings at the end, that might or might not cause a problem later. Be sure to read them carefully.   For more information about configuring your test controllers, see Setting Up Test Controllers and Test Agents to Manage Tests with Visual Studio 2. Create Standard Environment Now you need to create a Lab environment in Microsoft Test Manager. Since we are using an existing physical or virtual machine we will create a Standard Environment. Open MTM and go to Lab Center. Click New to create a new environment Enter a name for the environment. Since this environment will only contain one machine, we will use the machine name for the environment (TargetServer in this case) On the next page, click Add to add a machine to the environment. Enter the name of the machine (TargetServer.Domain.Com), and give it the Web Server role. The name must be reachable both from your machine during configuration and from the TFS app tier server. You also need to supply an account that is a local administration on the target server. This is needed in order to automatically install a test agent later on the machine. On the next page, you can add tags to the machine. This is not needed in this scenario so go to the next page. Here you will specify which test controller to use and that you want to run UI tests on this environment. This will in result in a Test Agent being automatically installed and configured on the target server. The name of the machine where you installed the test controller should be available on the drop down list (TargetServer in this sample). If you can’t see it, you might have selected a different TFS project collection. Press Next twice and then Verify to verify all the settings: Press finish. This will now create and prepare the environment, which means that it will remote install a test agent on the machine. As part of this installation, the remote server will be restarted. 3-5. Create Test Plan, Run Test Case, Create Coded UI Test I will not cover step 3-5 here, there are plenty of information on how you create test plans and test cases and automate them using Coded UI Tests. In this example I have a test plan called My Application and it contains among other things a test suite called Automated Tests where I plan to put test cases that should be automated and executed as part of the BDT workflow. For more information about Coded UI Tests, see Verifying Code by Using Coded User Interface Tests   6. Associate Coded UI Test with Test Case OK, so now we want to automate our Coded UI Test and have it run as part of the BDT workflow. You might think that you coded UI test already is automated, but the meaning of the term here is that you link your coded UI Test to an existing Test Case, thereby making the Test Case automated. And the test case should be part of the test suite that we will run during the BDT. Open the solution that contains the coded UI test method. Open the Test Case work item that you want to automate. Go to the Associated Automation tab and click on the “…” button. Select the coded UI test that you corresponds to the test case: Press OK and the save the test case For more information about associating an automated test case with a test case, see How to: Associate an Automated Test with a Test Case 7. Create Build Definition using LabDefaultTemplate Now we are ready to create a build definition that will implement the full BDT workflow. For this purpose we will use the LabDefaultTemplate.11.xaml that comes out of the box in TFS 2012. This build process template lets you take the output of another build and deploy it to each target machine. Since the deployment process will be running on the target server, you will have less problem with permissions and firewalls than if you were to remote deploy your solution. So, before creating a BDT workflow build definition, make sure that you have an existing build definition that produces a release build of your application. Go to the Builds hub in Team Explorer and select New Build Definition Give the build definition a meaningful name, here I called it MyApplication.Deploy Set the trigger to Manual Define a workspace for the build definition. Note that a BDT build doesn’t really need a workspace, since all it does is to launch another build definition and deploy the output of that build. But TFS doesn’t allow you to save a build definition without adding at least one mapping. On Build Defaults, select the build controller. Since this build actually won’t produce any output, you can select the “This build does not copy output files to a drop folder” option. On the process tab, select the LabDefaultTemplate.11.xaml. This is usually located at $/TeamProject/BuildProcessTemplates/LabDefaultTemplate.11.xaml. To configure it, press the … button on the Lab Process Settings property First, select the environment that you created before: Select which build that you want to deploy and test. The “Select an existing build” option is very useful when developing the BDT workflow, because you do not have to run through the target build every time, instead it will basically just run through the deployment and test steps which speeds up the process. Here I have selected to queue a new build of the MyApplication.Test build definition On the deploy tab, you need to specify how the application should be installed on the target server. You can supply a list of deployment scripts with arguments that will be executed on the target server. In this example I execute the generated web deploy command file to deploy the solution. If you for example have databases you can use sqlpackage.exe to deploy the database. If you are producing MSI installers in your build, you can run them using msiexec.exe and so on. A good practice is to create a batch file that contain the entire deployment that you can run both locally and on the target server. Then you would just execute the deployment batch file here in one single step. The workflow defines some variables that are useful when running the deployments. These variables are: $(BuildLocation) The full path to where your build files are located $(InternalComputerName_<VM Name>) The computer name for a virtual machine in a SCVMM environment $(ComputerName_<VM Name>) The fully qualified domain name of the virtual machine As you can see, I specify the path to the myapplication.deploy.cmd file using the $(BuildLocation) variable, which is the drop folder of the MyApplication.Test build. Note: The test agent account must have read permission in this drop location. You can find more information here on Building your Deployment Scripts On the last tab, we specify which tests to run after deployment. Here I select the test plan and the Automated Tests test suite that we saw before: Note that I also selected the automated test settings (called TargetServer in this case) that I have defined for my test plan. In here I define what data that should be collected as part of the test run. For more information about test settings, see Specifying Test Settings for Microsoft Test Manager Tests We are done! Queue your BDT build and wait for it to finish. If the build succeeds, your build summary should look something like this:

    Read the article

  • Squid w/ SquidGuard fails w/ "Too few redirector processes are running"

    - by DKNUCKLES
    I'm trying to implement a Squid proxy in a quick and easy fashion and I'm receiving some errors I have been unable to resolve. The box is a pre-made appliance, however it seems to fail on launch.The following is the cache.log file when I attempt to launch the squid service. 2012/11/18 22:14:29| Starting Squid Cache version 3.0.STABLE20-20091201 for i686 -pc-linux-gnu... 2012/11/18 22:14:29| Process ID 12647 2012/11/18 22:14:29| With 1024 file descriptors available 2012/11/18 22:14:29| Performing DNS Tests... 2012/11/18 22:14:29| Successful DNS name lookup tests... 2012/11/18 22:14:29| DNS Socket created at 0.0.0.0, port 40513, FD 8 2012/11/18 22:14:29| Adding nameserver 192.168.0.78 from /etc/resolv.conf 2012/11/18 22:14:29| Adding nameserver 8.8.8.8 from /etc/resolv.conf 2012/11/18 22:14:29| helperOpenServers: Starting 5/5 'bin' processes 2012/11/18 22:14:29| ipcCreate: /opt/squidguard/bin: (13) Permission denied 2012/11/18 22:14:29| ipcCreate: /opt/squidguard/bin: (13) Permission denied 2012/11/18 22:14:29| ipcCreate: /opt/squidguard/bin: (13) Permission denied 2012/11/18 22:14:29| ipcCreate: /opt/squidguard/bin: (13) Permission denied 2012/11/18 22:14:29| ipcCreate: /opt/squidguard/bin: (13) Permission denied 2012/11/18 22:14:29| helperOpenServers: Starting 5/5 'squid-auth.pl' processes 2012/11/18 22:14:29| User-Agent logging is disabled. 2012/11/18 22:14:29| Referer logging is disabled. 2012/11/18 22:14:29| Unlinkd pipe opened on FD 23 2012/11/18 22:14:29| Swap maxSize 10240000 + 8192 KB, estimated 788322 objects 2012/11/18 22:14:29| Target number of buckets: 39416 2012/11/18 22:14:29| Using 65536 Store buckets 2012/11/18 22:14:29| Max Mem size: 8192 KB 2012/11/18 22:14:29| Max Swap size: 10240000 KB 2012/11/18 22:14:29| Version 1 of swap file with LFS support detected... 2012/11/18 22:14:29| Rebuilding storage in /opt/squid3/var/cache (DIRTY) 2012/11/18 22:14:29| Using Least Load store dir selection 2012/11/18 22:14:29| Set Current Directory to /opt/squid3/var/cache 2012/11/18 22:14:29| Loaded Icons. 2012/11/18 22:14:29| Accepting HTTP connections at 10.0.0.6, port 3128, FD 25. 2012/11/18 22:14:29| Accepting ICP messages at 0.0.0.0, port 3130, FD 26. 2012/11/18 22:14:29| HTCP Disabled. 2012/11/18 22:14:29| Ready to serve requests. 2012/11/18 22:14:29| Done reading /opt/squid3/var/cache swaplog (0 entries) 2012/11/18 22:14:29| Finished rebuilding storage from disk. 2012/11/18 22:14:29| 0 Entries scanned 2012/11/18 22:14:29| 0 Invalid entries. 2012/11/18 22:14:29| 0 With invalid flags. 2012/11/18 22:14:29| 0 Objects loaded. 2012/11/18 22:14:29| 0 Objects expired. 2012/11/18 22:14:29| 0 Objects cancelled. 2012/11/18 22:14:29| 0 Duplicate URLs purged. 2012/11/18 22:14:29| 0 Swapfile clashes avoided. 2012/11/18 22:14:29| Took 0.02 seconds ( 0.00 objects/sec). 2012/11/18 22:14:29| Beginning Validation Procedure 2012/11/18 22:14:29| WARNING: redirector #1 (FD 9) exited 2012/11/18 22:14:29| WARNING: redirector #2 (FD 10) exited 2012/11/18 22:14:29| WARNING: redirector #3 (FD 11) exited 2012/11/18 22:14:29| WARNING: redirector #4 (FD 12) exited 2012/11/18 22:14:29| Too few redirector processes are running FATAL: The redirector helpers are crashing too rapidly, need help! Squid Cache (Version 3.0.STABLE20-20091201): Terminated abnormally. CPU Usage: 0.112 seconds = 0.032 user + 0.080 sys Maximum Resident Size: 0 KB Page faults with physical i/o: 0 Memory usage for squid via mallinfo(): total space in arena: 2944 KB Ordinary blocks: 2857 KB 6 blks Small blocks: 0 KB 0 blks Holding blocks: 1772 KB 8 blks Free Small blocks: 0 KB Free Ordinary blocks: 86 KB Total in use: 4629 KB 157% Total free: 86 KB 3% The "permission denied" area is where I have been focusing my attention with no luck. The following is what I've tried. Chmod'ing the /opt/squidguard/bin folder to 777 Changing the user that squidguard runs under to root / nobody / www-data / squid3 Tried changing ownership of the /opt/squidguard/bin folder to all names listed above after assigning that user to run with squid. Any help with this would be greatly appreciated.

    Read the article

  • Why do we get a sudden spike in response times?

    - by Christian Hagelid
    We have an API that is implemented using ServiceStack which is hosted in IIS. While performing load testing of the API we discovered that the response times are good but that they deteriorate rapidly as soon as we hit about 3,500 concurrent users per server. We have two servers and when hitting them with 7,000 users the average response times sit below 500ms for all endpoints. The boxes are behind a load balancer so we get 3,500 concurrents per server. However as soon as we increase the number of total concurrent users we see a significant increase in response times. Increasing the concurrent users to 5,000 per server gives us an average response time per endpoint of around 7 seconds. The memory and CPU on the servers are quite low, both while the response times are good and when after they deteriorate. At peak with 10,000 concurrent users the CPU averages just below 50% and the RAM sits around 3-4 GB out of 16. This leaves us thinking that we are hitting some kind of limit somewhere. The below screenshot shows some key counters in perfmon during a load test with a total of 10,000 concurrent users. The highlighted counter is requests/second. To the right of the screenshot you can see the requests per second graph becoming really erratic. This is the main indicator for slow response times. As soon as we see this pattern we notice slow response times in the load test. How do we go about troubleshooting this performance issue? We are trying to identify if this is a coding issue or a configuration issue. Are there any settings in web.config or IIS that could explain this behaviour? The application pool is running .NET v4.0 and the IIS version is 7.5. The only change we have made from the default settings is to update the application pool Queue Length value from 1,000 to 5,000. We have also added the following config settings to the Aspnet.config file: <system.web> <applicationPool maxConcurrentRequestsPerCPU="5000" maxConcurrentThreadsPerCPU="0" requestQueueLimit="5000" /> </system.web> More details: The purpose of the API is to combine data from various external sources and return as JSON. It is currently using an InMemory cache implementation to cache individual external calls at the data layer. The first request to a resource will fetch all data required and any subsequent requests for the same resource will get results from the cache. We have a 'cache runner' that is implemented as a background process that updates the information in the cache at certain set intervals. We have added locking around the code that fetches data from the external resources. We have also implemented the services to fetch the data from the external sources in an asynchronous fashion so that the endpoint should only be as slow as the slowest external call (unless we have data in the cache of course). This is done using the System.Threading.Tasks.Task class. Could we be hitting a limitation in terms of number of threads available to the process?

    Read the article

  • Prevent auto mounting Android sdcard under Linux Mint

    - by BullShark
    I recently obtained an older Android phone, so that I could test Android Apps on it. I've needed it because I have a Nexus 7 but not older Android versions, hardware, etc. to test on. I'm having a problem with it under Linux Mint with Cinnamon. When I plug the phone in, or remove and plug the sdcard from the phone back to it while the phone is plugged in, Linux automatically mounts the sdcard. This is a problem because once it is mounted under Linux, it dismounts from the phone running Android 2.3.5, and I can no longer test Android Apps I write that require the sdcard to be present, writable. I went to Menu System Tools System Settings System Details Removable Media, and it brings up this window. I have changed the settings to always "Ask what to do" on "Select how media should be handled". However, the sdcard still gets mounted and then I am asked how I want to open these files (media players, photo importers, file browser, etc.). If I click the checkbox for "Never prompt or start programs on media insertion", then the sdcard is mounted, and I am not asked how to open these files. Eject is just a noob word for Ubuntu users that means umount (unmount) like "Adminstrator" is another ubuntu noob word for the root user. And if I unmount the sdcard, the phone doesn't recognize it again until I take the sdcard out and plug it back in. The phone sees it for a brief moment until Linux Mint takes it over. There are 2 possible solutions and maybe more: 1) Prevent Linux from automounting sdcards some how 2) Tell Android not to allow the computer it is plugged into to take over the sdcard, HOW? Edit: I found out how to prevent the sdcard from being automatically mounted: Now it gets recognized by Linux: bullshark@beastlinux ~ $ dmesg | tail -n 25 [597212.218323] sd 21:0:0:0: [sde] Attached SCSI removable disk [597212.218639] sr 21:0:0:1: Attached scsi CD-ROM sr2 [597212.218910] sr 21:0:0:1: Attached scsi generic sg7 type 5 [597217.139373] sd 21:0:0:0: [sde] 3862528 512-byte logical blocks: (1.97 GB/1.84 GiB) [597217.140726] sd 21:0:0:0: [sde] No Caching mode page present [597217.140735] sd 21:0:0:0: [sde] Assuming drive cache: write through [597217.143595] sd 21:0:0:0: [sde] No Caching mode page present [597217.143602] sd 21:0:0:0: [sde] Assuming drive cache: write through [597217.152240] sde: sde1 [597389.751008] 4:2:1: cannot get freq at ep 0x84 [597390.238742] 4:2:1: cannot get freq at ep 0x84 [597624.903132] sde: detected capacity change from 1977614336 to 0 [597637.677763] sd 21:0:0:0: [sde] 3862528 512-byte logical blocks: (1.97 GB/1.84 GiB) [597637.679616] sd 21:0:0:0: [sde] No Caching mode page present [597637.679626] sd 21:0:0:0: [sde] Assuming drive cache: write through [597637.682508] sd 21:0:0:0: [sde] No Caching mode page present [597637.682515] sd 21:0:0:0: [sde] Assuming drive cache: write through [597637.692758] sde: sde1 [597661.857979] sde: detected capacity change from 1977614336 to 0 [597688.775455] sd 21:0:0:0: [sde] 3862528 512-byte logical blocks: (1.97 GB/1.84 GiB) [597688.776814] sd 21:0:0:0: [sde] No Caching mode page present [597688.776823] sd 21:0:0:0: [sde] Assuming drive cache: write through [597688.780055] sd 21:0:0:0: [sde] No Caching mode page present [597688.780062] sd 21:0:0:0: [sde] Assuming drive cache: write through [597688.788639] sde: sde1 bullshark@beastlinux ~ $ However, the phone still unmounts the sdcard upon being detected by Linux. Linux detects but does not mount, and a few seconds later: Edit #2 (Solution): I solved this one by changing the usb connection type (was usb mass storage) :

    Read the article

  • XFS disk becomes unavailable after a while

    - by Guard
    Ubuntu 12.04 (but the same was on 11.10 before upgrading) WD MyBook, 2TB, no RAID (or RAID0, not completely sure, anyway no mirroring, both 1TB disks are in use, mounted as a single device). Formatted to XFS, normally used for big movie files. Connected to Firewire 800. At some point the LED started going up and down as when constantly reading/writing. The device gives access error. When unplugged (cable, then holding the power button for a while, then unplugging the power) and re-connected becomes available. xfs_check with no results. xfs_repair did something, but looks like didn't fix any error. Then after a massive read (checking 1.5GB torrent file for integrity) becomes unavailable again. Any ideas what's wrong? Drives? Cables? Motherboard? OS? UPD: not sure how relevant this is, but here are dmesg output [14380.632816] SGI XFS with ACLs, security attributes, realtime, large block/inode numbers, no debug enabled [14380.633356] SGI XFS Quota Management subsystem [14421.812220] firewire_core: phy config: card 0, new root=ffc1, gap_count=5 [14441.890596] firewire_core: phy config: card 0, new root=ffc1, gap_count=5 [14441.896858] firewire_core: phy config: card 0, new root=ffc1, gap_count=5 [14453.895347] firewire_core: created device fw1: GUID 0090a99500a35518, S400, 9 config ROM retries [14453.904818] scsi6 : SBP-2 IEEE-1394 [14453.905014] scsi7 : SBP-2 IEEE-1394 [14454.139993] firewire_sbp2: fw1.0: logged in to LUN 0000 (0 retries) [14454.158769] scsi 6:0:0:0: Direct-Access WD My Book 1015 PQ: 0 ANSI: 4 [14454.159251] sd 6:0:0:0: Attached scsi generic sg3 type 0 [14454.162391] firewire_sbp2: fw1.1: logged in to LUN 0001 (0 retries) [14454.167453] sd 6:0:0:0: [sdc] 3907017568 512-byte logical blocks: (2.00 TB/1.81 TiB) [14454.178822] sd 6:0:0:0: [sdc] Write Protect is off [14454.178826] sd 6:0:0:0: [sdc] Mode Sense: 10 00 00 00 [14454.186830] scsi 7:0:0:1: Enclosure WD My Book Device 1015 PQ: 0 ANSI: 4 [14454.186995] scsi 7:0:0:1: Attached scsi generic sg4 type 13 [14454.190078] sd 6:0:0:0: [sdc] Cache data unavailable [14454.190087] sd 6:0:0:0: [sdc] Assuming drive cache: write through [14454.202176] sd 6:0:0:0: [sdc] Cache data unavailable [14454.202185] sd 6:0:0:0: [sdc] Assuming drive cache: write through [14454.239940] sdc: [mac] sdc1 sdc2 sdc3 sdc4 [14454.271262] sd 6:0:0:0: [sdc] Cache data unavailable [14454.271270] sd 6:0:0:0: [sdc] Assuming drive cache: write through [14454.271354] sd 6:0:0:0: [sdc] Attached SCSI disk [14454.272149] ses 7:0:0:1: Attached Enclosure device [14606.090024] XFS (sdc3): Mounting Filesystem [14612.048343] XFS (sdc3): Starting recovery (logdev: internal) [14620.697636] XFS (sdc3): Ending recovery (logdev: internal) [14748.120957] e1000e: eth0 NIC Link is Up 100 Mbps Full Duplex, Flow Control: Rx/Tx [14748.120963] e1000e 0000:00:19.0: eth0: 10/100 speed: disabling TSO [14752.568382] uhci_hcd 0000:00:1a.0: PCI INT A disabled [14752.568579] uhci_hcd 0000:00:1a.1: PCI INT B disabled [14752.568738] ehci_hcd 0000:00:1a.7: PCI INT C disabled [14752.568779] ehci_hcd 0000:00:1a.7: PME# enabled [14752.584526] uhci_hcd 0000:00:1d.1: PCI INT B disabled [14752.584689] uhci_hcd 0000:00:1d.2: PCI INT C disabled [14752.680079] ehci_hcd 0000:00:1a.7: BAR 0: set to [mem 0xe4641000-0xe46413ff] (PCI address [0xe4641000-0xe46413ff]) [14752.680104] ehci_hcd 0000:00:1a.7: restoring config space at offset 0xf (was 0x300, writing 0x30b) [14752.680136] ehci_hcd 0000:00:1a.7: restoring config space at offset 0x1 (was 0x2900000, writing 0x2900002) [14752.680170] ehci_hcd 0000:00:1a.7: PME# disabled [14752.680182] ehci_hcd 0000:00:1a.7: PCI INT C -> GSI 18 (level, low) -> IRQ 18 [14752.680190] ehci_hcd 0000:00:1a.7: setting latency timer to 64 [14752.710334] uhci_hcd 0000:00:1a.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [14752.710342] uhci_hcd 0000:00:1a.0: setting latency timer to 64 [14752.749186] uhci_hcd 0000:00:1a.1: PCI INT B -> GSI 17 (level, low) -> IRQ 17 [14752.749194] uhci_hcd 0000:00:1a.1: setting latency timer to 64 [14752.790231] uhci_hcd 0000:00:1d.1: PCI INT B -> GSI 22 (level, low) -> IRQ 22 [14752.790239] uhci_hcd 0000:00:1d.1: setting latency timer to 64 [14752.829170] uhci_hcd 0000:00:1d.2: PCI INT C -> GSI 18 (level, low) -> IRQ 18 [14752.829178] uhci_hcd 0000:00:1d.2: setting latency timer to 64

    Read the article

  • .htaccess template, suggestions needed.

    - by purpler
    I compiled myself a .htaccess template and would like to know whether the caching and compressions is set up right, constructive suggestions and critics needed. # Defaults AddDefaultCharset UTF-8 DefaultLanguage en-US FileETag None Header unset ETag ServerSignature Off SetEnv TZ Europe/Belgrade # Rewrites Options +FollowSymLinks RewriteEngine On RewriteBase / # Redirect to WWW RewriteCond %{HTTP_HOST} ^serpentineseo.com RewriteRule (.*) http://www.serpentineseo.com/$1 [R=301,L] # Redirect index to root RewriteCond %{THE_REQUEST} ^[A-Z]{3,9}\ /.*index\.html\ HTTP/ RewriteRule ^(.*)index\.html$ /$1 [R=301,L] # Cache media files: ExpiresActive On ExpiresDefault A0 # Month <filesMatch "\.(gif|jpg|jpeg|png|ico|swf|js)$"> Header set Cache-Control "max-age=2592000, public" </filesMatch> # Week <FilesMatch "\.(css|pdf)$"> Header set Cache-Control "max-age=604800" </FilesMatch> # 10 Min <FilesMatch "\.(html|htm|txt)$"> Header set Cache-Control "max-age=600" </FilesMatch> # Do not cache <FilesMatch "\.(pl|php|cgi|spl|scgi|fcgi)$"> Header unset Cache-Control </FilesMatch> # Compress output <IfModule mod_deflate.c> <FilesMatch "\.(html|js|css)$"> SetOutputFilter DEFLATE </FilesMatch> </IfModule> # Error Documents ErrorDocument 206 /error/206.html ErrorDocument 401 /error/401.html ErrorDocument 403 /error/403.html ErrorDocument 404 /error/404.html ErrorDocument 500 /error/500.html # Prevent hotlinking RewriteCond %{HTTP_REFERER} !^$ RewriteCond %{HTTP_REFERER} !^http://(www\.)?serpentineseo.com/.*$ [NC] RewriteRule \.(gif|jpg|png)$ http://www.serpentineseo.com/images/angryman.png [R,L] # Prevent offline browsers RewriteCond %{HTTP_USER_AGENT} ^BlackWidow [OR] RewriteCond %{HTTP_USER_AGENT} ^Bot\ mailto:[email protected] [OR] RewriteCond %{HTTP_USER_AGENT} ^ChinaClaw [OR] RewriteCond %{HTTP_USER_AGENT} ^Custo [OR] RewriteCond %{HTTP_USER_AGENT} ^DISCo [OR] RewriteCond %{HTTP_USER_AGENT} ^Download\ Demon [OR] RewriteCond %{HTTP_USER_AGENT} ^eCatch [OR] RewriteCond %{HTTP_USER_AGENT} ^EirGrabber [OR] RewriteCond %{HTTP_USER_AGENT} ^EmailSiphon [OR] RewriteCond %{HTTP_USER_AGENT} ^EmailWolf [OR] RewriteCond %{HTTP_USER_AGENT} ^Express\ WebPictures [OR] RewriteCond %{HTTP_USER_AGENT} ^ExtractorPro [OR] RewriteCond %{HTTP_USER_AGENT} ^EyeNetIE [OR] RewriteCond %{HTTP_USER_AGENT} ^FlashGet [OR] RewriteCond %{HTTP_USER_AGENT} ^GetRight [OR] RewriteCond %{HTTP_USER_AGENT} ^GetWeb! [OR] RewriteCond %{HTTP_USER_AGENT} ^Go!Zilla [OR] RewriteCond %{HTTP_USER_AGENT} ^Go-Ahead-Got-It [OR] RewriteCond %{HTTP_USER_AGENT} ^GrabNet [OR] RewriteCond %{HTTP_USER_AGENT} ^Grafula [OR] RewriteCond %{HTTP_USER_AGENT} ^HMView [OR] RewriteCond %{HTTP_USER_AGENT} HTTrack [NC,OR] RewriteCond %{HTTP_USER_AGENT} ^Image\ Stripper [OR] RewriteCond %{HTTP_USER_AGENT} ^Image\ Sucker [OR] RewriteCond %{HTTP_USER_AGENT} Indy\ Library [NC,OR] RewriteCond %{HTTP_USER_AGENT} ^InterGET [OR] RewriteCond %{HTTP_USER_AGENT} ^Internet\ Ninja [OR] RewriteCond %{HTTP_USER_AGENT} ^JetCar [OR] RewriteCond %{HTTP_USER_AGENT} ^JOC\ Web\ Spider [OR] RewriteCond %{HTTP_USER_AGENT} ^larbin [OR] RewriteCond %{HTTP_USER_AGENT} ^LeechFTP [OR] RewriteCond %{HTTP_USER_AGENT} ^Mass\ Downloader [OR] RewriteCond %{HTTP_USER_AGENT} ^MIDown\ tool [OR] RewriteCond %{HTTP_USER_AGENT} ^Mister\ PiX [OR] RewriteCond %{HTTP_USER_AGENT} ^Navroad [OR] RewriteCond %{HTTP_USER_AGENT} ^NearSite [OR] RewriteCond %{HTTP_USER_AGENT} ^NetAnts [OR] RewriteCond %{HTTP_USER_AGENT} ^NetSpider [OR] RewriteCond %{HTTP_USER_AGENT} ^Net\ Vampire [OR] RewriteCond %{HTTP_USER_AGENT} ^NetZIP [OR] RewriteCond %{HTTP_USER_AGENT} ^Octopus [OR] RewriteCond %{HTTP_USER_AGENT} ^Offline\ Explorer [OR] RewriteCond %{HTTP_USER_AGENT} ^Offline\ Navigator [OR] RewriteCond %{HTTP_USER_AGENT} ^PageGrabber [OR] RewriteCond %{HTTP_USER_AGENT} ^Papa\ Foto [OR] RewriteCond %{HTTP_USER_AGENT} ^pavuk [OR] RewriteCond %{HTTP_USER_AGENT} ^pcBrowser [OR] RewriteCond %{HTTP_USER_AGENT} ^RealDownload [OR] RewriteCond %{HTTP_USER_AGENT} ^ReGet [OR] RewriteCond %{HTTP_USER_AGENT} ^SiteSnagger [OR] RewriteCond %{HTTP_USER_AGENT} ^SmartDownload [OR] RewriteCond %{HTTP_USER_AGENT} ^SuperBot [OR] RewriteCond %{HTTP_USER_AGENT} ^SuperHTTP [OR] RewriteCond %{HTTP_USER_AGENT} ^Surfbot [OR] RewriteCond %{HTTP_USER_AGENT} ^tAkeOut [OR] RewriteCond %{HTTP_USER_AGENT} ^Teleport\ Pro [OR] RewriteCond %{HTTP_USER_AGENT} ^VoidEYE [OR] RewriteCond %{HTTP_USER_AGENT} ^Web\ Image\ Collector [OR] RewriteCond %{HTTP_USER_AGENT} ^Web\ Sucker [OR] RewriteCond %{HTTP_USER_AGENT} ^WebAuto [OR] RewriteCond %{HTTP_USER_AGENT} ^WebCopier [OR] RewriteCond %{HTTP_USER_AGENT} ^WebFetch [OR] RewriteCond %{HTTP_USER_AGENT} ^WebGo\ IS [OR] RewriteCond %{HTTP_USER_AGENT} ^WebLeacher [OR] RewriteCond %{HTTP_USER_AGENT} ^WebReaper [OR] RewriteCond %{HTTP_USER_AGENT} ^WebSauger [OR] RewriteCond %{HTTP_USER_AGENT} ^Website\ eXtractor [OR] RewriteCond %{HTTP_USER_AGENT} ^Website\ Quester [OR] RewriteCond %{HTTP_USER_AGENT} ^WebStripper [OR] RewriteCond %{HTTP_USER_AGENT} ^WebWhacker [OR] RewriteCond %{HTTP_USER_AGENT} ^WebZIP [OR] RewriteCond %{HTTP_USER_AGENT} ^Wget [OR] RewriteCond %{HTTP_USER_AGENT} ^Widow [OR] RewriteCond %{HTTP_USER_AGENT} ^WWWOFFLE [OR] RewriteCond %{HTTP_USER_AGENT} ^Xaldon\ WebSpider [OR] RewriteCond %{HTTP_USER_AGENT} ^Zeus RewriteRule ^.*$ http://www.google.com [R,L] # Protect against DOS attacks by limiting file upload size LimitRequestBody 10240000 # Deny access to sensitive files <FilesMatch "\.(htaccess|psd|log)$"> Order Allow,Deny Deny from all </FilesMatch>

    Read the article

  • Oracle Virtual Server OEL vm fails to start - kernel panic on cpu identify

    - by Towndrunk
    I am in the process of following a guide to setup various oracle vm templates, so far I have installed OVS 2. 2 and got the OVM Manager working, imported the template for OEL5U5 and created a vm from it.. the problem comes when starting that vm. The log in the OVMM console shows the following; Update VM Status - Running Configure CPU Cap Set CPU Cap: failed:<Exception: failed:<Exception: ['xm', 'sched-credit', '-d', '32_EM11g_OVM', '-c', '0'] => Error: Domain '32_EM11g_OVM' does not exist. StackTrace: File "/opt/ovs-agent-2.3/OVSXXenVMConfig.py", line 2531, in xen_set_cpu_cap run_cmd(args=['xm', File "/opt/ovs-agent-2.3/OVSCommons.py", line 92, in run_cmd raise Exception('%s => %s' % (args, err)) The xend.log shows; [2012-11-12 16:42:01 7581] DEBUG (DevController:139) Waiting for devices vtpm [2012-11-12 16:42:01 7581] INFO (XendDomain:1180) Domain 32_EM11g_OVM (3) unpaused. [2012-11-12 16:42:03 7581] WARNING (XendDomainInfo:1907) Domain has crashed: name=32_EM11g_OVM id=3. [2012-11-12 16:42:03 7581] ERROR (XendDomainInfo:2041) VM 32_EM11g_OVM restarting too fast (Elapsed time: 11.377262 seconds). Refusing to restart to avoid loops .> [2012-11-12 16:42:03 7581] DEBUG (XendDomainInfo:2757) XendDomainInfo.destroy: domid=3 [2012-11-12 16:42:12 7581] DEBUG (XendDomainInfo:2230) Destroying device model [2012-11-12 16:42:12 7581] INFO (image:553) 32_EM11g_OVM device model terminated I have set_on_crash="preserve" in the vm.cfg and have then run xm create -c to get the console screen while booting and this is the log of what happens.. Started domain 32_EM11g_OVM (id=4) Bootdata ok (command line is ro root=LABEL=/ ) Linux version 2.6.18-194.0.0.0.3.el5xen ([email protected]) (gcc version 4.1.2 20080704 (Red Hat 4.1.2-48)) #1 SMP Mon Mar 29 18:27:00 EDT 2010 BIOS-provided physical RAM map: Xen: 0000000000000000 - 0000000180800000 (usable)> No mptable found. Built 1 zonelists. Total pages: 1574912 Kernel command line: ro root=LABEL=/ Initializing CPU#0 PID hash table entries: 4096 (order: 12, 32768 bytes) Xen reported: 1600.008 MHz processor. Console: colour dummy device 80x25 Dentry cache hash table entries: 1048576 (order: 11, 8388608 bytes) Inode-cache hash table entries: 524288 (order: 10, 4194304 bytes) Software IO TLB disabled Memory: 6155256k/6299648k available (2514k kernel code, 135548k reserved, 1394k data, 184k init) Calibrating delay using timer specific routine.. 4006.42 BogoMIPS (lpj=8012858) Security Framework v1.0.0 initialized SELinux: Initializing. selinux_register_security: Registering secondary module capability Capability LSM initialized as secondary Mount-cache hash table entries: 256 CPU: L1 I Cache: 64K (64 bytes/line), D cache 16K (64 bytes/line) CPU: L2 Cache: 2048K (64 bytes/line) general protection fault: 0000 [1] SMP last sysfs file: CPU 0 Modules linked in: Pid: 0, comm: swapper Not tainted 2.6.18-194.0.0.0.3.el5xen #1 RIP: e030:[ffffffff80271280] [ffffffff80271280] identify_cpu+0x210/0x494 RSP: e02b:ffffffff80643f70 EFLAGS: 00010212 RAX: 0040401000810008 RBX: 0000000000000000 RCX: 00000000c001001f RDX: 0000000000404010 RSI: 0000000000000001 RDI: 0000000000000005 RBP: ffffffff8063e980 R08: 0000000000000025 R09: ffff8800019d1000 R10: 0000000000000026 R11: ffff88000102c400 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffffffff805d2000(0000) knlGS:0000000000000000 CS: e033 DS: 0000 ES: 0000 Process swapper (pid: 0, threadinfo ffffffff80642000, task ffffffff804f4b80) Stack: 0000000000000000 ffffffff802d09bb ffffffff804f4b80 0000000000000000 0000000021100800 0000000000000000 0000000000000000 ffffffff8064cb00 0000000000000000 0000000000000000 Call Trace: [ffffffff802d09bb] kmem_cache_zalloc+0x62/0x80 [ffffffff8064cb00] start_kernel+0x210/0x224 [ffffffff8064c1e5] _sinittext+0x1e5/0x1eb Code: 0f 30 b8 73 00 00 00 f0 0f ab 45 08 e9 f0 00 00 00 48 89 ef RIP [ffffffff80271280] identify_cpu+0x210/0x494 RSP ffffffff80643f70 0 Kernel panic - not syncing: Fatal exception clear as mud to me. are there any other logs that will help me? I have now deployed another vm from the same template and used the default vm settings rather than adding more memory etc - I get exactly the same error.

    Read the article

  • CPU Utilization LAMP stack

    - by Max
    We've got an ec2 m2.4xlarge running Magento (centos 5.6, httpd 2.2, php 5.2.17 with eaccelerator 0.9.5.3, mysql 5.1.52). Right now we're getting a large traffic spike, and our top looks like this: top - 09:41:29 up 31 days, 1:12, 1 user, load average: 120.01, 129.03, 113.23 Tasks: 1190 total, 18 running, 1172 sleeping, 0 stopped, 0 zombie Cpu(s): 97.3%us, 1.8%sy, 0.0%ni, 0.5%id, 0.0%wa, 0.0%hi, 0.0%si, 0.4%st Mem: 71687720k total, 36898928k used, 34788792k free, 49692k buffers Swap: 880737784k total, 0k used, 880737784k free, 1586524k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 2433 mysql 15 0 23.6g 4.5g 7112 S 564.7 6.6 33607:34 mysqld 24046 apache 16 0 411m 65m 28m S 26.4 0.1 0:09.05 httpd 24360 apache 15 0 410m 60m 25m S 26.4 0.1 0:03.65 httpd 24993 apache 16 0 410m 57m 21m S 26.1 0.1 0:01.41 httpd 24838 apache 16 0 428m 74m 20m S 24.8 0.1 0:02.37 httpd 24359 apache 16 0 411m 62m 26m R 22.3 0.1 0:08.12 httpd 23850 apache 15 0 411m 64m 27m S 16.8 0.1 0:14.54 httpd 25229 apache 16 0 404m 46m 17m R 10.2 0.1 0:00.71 httpd 14594 apache 15 0 404m 63m 34m S 8.4 0.1 1:10.26 httpd 24955 apache 16 0 404m 50m 21m R 8.4 0.1 0:01.66 httpd 24313 apache 16 0 399m 46m 22m R 8.1 0.1 0:02.30 httpd 25119 apache 16 0 411m 59m 23m S 6.8 0.1 0:01.45 httpd Questions: Would giving msyqld more memory help it cache queries and react faster? If so, how? Other than splitting mysql and php to separate servers (which we're about to do) is there anything else we could/should be doing? Thanks! UPDATE: Here's our my.cnf along with the output of mysqltuner. It looks like a cache problem. Thanks again! # cat /etc/my.cnf [client] port = **** socket = /var/lib/mysql/mysql.sock [mysqld] datadir=/mnt/persistent/mysql port=**** socket=/var/lib/mysql/mysql.sock key_buffer = 512M max_allowed_packet = 64M table_cache = 1024 sort_buffer_size = 8M read_buffer_size = 4M read_rnd_buffer_size = 2M myisam_sort_buffer_size = 64M thread_cache_size = 128M tmp_table_size = 128M join_buffer_size = 1M query_cache_limit = 2M query_cache_size= 64M query_cache_type = 1 max_connections = 1000 thread_stack = 128K thread_concurrency = 48 log-bin=mysql-bin server-id = 1 wait_timeout = 300 innodb_data_home_dir = /mnt/persistent/mysql/ innodb_data_file_path = ibdata1:10M:autoextend innodb_buffer_pool_size = 20G innodb_additional_mem_pool_size = 20M innodb_log_file_size = 64M innodb_log_buffer_size = 8M innodb_flush_log_at_trx_commit = 1 innodb_lock_wait_timeout = 50 innodb_thread_concurrency = 48 ft_min_word_len=3 [myisamchk] ft_min_word_len=3 key_buffer = 128M sort_buffer_size = 128M read_buffer = 2M write_buffer = 2M # ./mysqltuner.pl >> MySQLTuner 1.2.0 - Major Hayden <[email protected]> >> Bug reports, feature requests, and downloads at http://mysqltuner.com/ >> Run with '--help' for additional options and output filtering -------- General Statistics -------------------------------------------------- [--] Skipped version check for MySQLTuner script [OK] Currently running supported MySQL version 5.1.52-log [OK] Operating on 64-bit architecture -------- Storage Engine Statistics ------------------------------------------- [--] Status: +Archive -BDB +Federated +InnoDB -ISAM -NDBCluster [--] Data in MyISAM tables: 2G (Tables: 26) [--] Data in InnoDB tables: 749M (Tables: 250) [!!] Total fragmented tables: 262 -------- Security Recommendations ------------------------------------------- -------- Performance Metrics ------------------------------------------------- [--] Up for: 31d 2h 30m 38s (680M q [253.371 qps], 2M conn, TX: 4825B, RX: 236B) [--] Reads / Writes: 89% / 11% [--] Total buffers: 20.6G global + 15.1M per thread (1000 max threads) [OK] Maximum possible memory usage: 35.4G (51% of installed RAM) [OK] Slow queries: 0% (35K/680M) [OK] Highest usage of available connections: 53% (537/1000) [OK] Key buffer size / total MyISAM indexes: 512.0M/457.2M [OK] Key buffer hit rate: 100.0% (9B cached / 264K reads) [OK] Query cache efficiency: 42.3% (260M cached / 615M selects) [!!] Query cache prunes per day: 4384652 [OK] Sorts requiring temporary tables: 0% (1K temp sorts / 38M sorts) [!!] Joins performed without indexes: 100404 [OK] Temporary tables created on disk: 17% (7M on disk / 45M total) [OK] Thread cache hit rate: 99% (537 created / 2M connections) [!!] Table cache hit rate: 0% (1K open / 946K opened) [OK] Open file limit used: 9% (453/5K) [OK] Table locks acquired immediately: 99% (758M immediate / 758M locks) [OK] InnoDB data size / buffer pool: 749.3M/20.0G -------- Recommendations ----------------------------------------------------- General recommendations: Run OPTIMIZE TABLE to defragment tables for better performance Enable the slow query log to troubleshoot bad queries Adjust your join queries to always utilize indexes Increase table_cache gradually to avoid file descriptor limits Variables to adjust: query_cache_size (> 64M) join_buffer_size (> 1.0M, or always use indexes with joins) table_cache (> 1024)

    Read the article

  • Tuning Linux IP routing parameters -- secret_interval and tcp_mem

    - by Jeff Atwood
    We had a little failover problem with one of our HAProxy VMs today. When we dug into it, we found this: Jan 26 07:41:45 haproxy2 kernel: [226818.070059] __ratelimit: 10 callbacks suppressed Jan 26 07:41:45 haproxy2 kernel: [226818.070064] Out of socket memory Jan 26 07:41:47 haproxy2 kernel: [226819.560048] Out of socket memory Jan 26 07:41:49 haproxy2 kernel: [226822.030044] Out of socket memory Which, per this link, apparently has to do with low default settings for net.ipv4.tcp_mem. So we increased them by 4x from their defaults (this is Ubuntu Server, not sure if the Linux flavor matters): current values are: 45984 61312 91968 new values are: 183936 245248 367872 After that, we started seeing a bizarre error message: Jan 26 08:18:49 haproxy1 kernel: [ 2291.579726] Route hash chain too long! Jan 26 08:18:49 haproxy1 kernel: [ 2291.579732] Adjust your secret_interval! Shh.. it's a secret!! This apparently has to do with /proc/sys/net/ipv4/route/secret_interval which defaults to 600 and controls periodic flushing of the route cache The secret_interval instructs the kernel how often to blow away ALL route hash entries regardless of how new/old they are. In our environment this is generally bad. The CPU will be busy rebuilding thousands of entries per second every time the cache is cleared. However we set this to run once a day to keep memory leaks at bay (though we've never had one). While we are happy to reduce this, it seems odd to recommend dropping the entire route cache at regular intervals, rather than simply pushing old values out of the route cache faster. After some investigation, we found /proc/sys/net/ipv4/route/gc_elasticity which seems to be a better option for keeping the route table size in check: gc_elasticity can best be described as the average bucket depth the kernel will accept before it starts expiring route hash entries. This will help maintain the upper limit of active routes. We adjusted elasticity from 8 to 4, in the hopes of the route cache pruning itself more aggressively. The secret_interval does not feel correct to us. But there are a bunch of settings and it's unclear which are really the right way to go here. /proc/sys/net/ipv4/route/gc_elasticity (8) /proc/sys/net/ipv4/route/gc_interval (60) /proc/sys/net/ipv4/route/gc_min_interval (0) /proc/sys/net/ipv4/route/gc_timeout (300) /proc/sys/net/ipv4/route/secret_interval (600) /proc/sys/net/ipv4/route/gc_thresh (?) rhash_entries (kernel parameter, default unknown?) We don't want to make the Linux routing worse, so we're kind of afraid to mess with some of these settings. Can anyone advise which routing parameters are best to tune, for a high traffic HAProxy instance?

    Read the article

  • Unusual Apache->Tomcat caching issue.

    - by iftrue
    Right now, I have an Apache setup sitting in front of Tomcat to handle caching. This setup has been given to an external service to manage, and since the transition, I've noticed odd behavior. Specifically, when I request a swf file from the web server, I hit the Apache cache (good), but occasionally I'll receive a truncated file. Once I receive this truncated file, the cache will NOT refresh until I manually delete the cache and let the swf pull down from tomcat again. The external service claims that the configuration is fine, but I don't see any way this could be happening aside from improper configuration. Now, there are two apache and two tomcat servers under a load balancer, and occasionally one apache cache will break while another does not (leading to 50% of all requests getting bad, truncated data). Where should I start looking to debug this issue? What could POSSIBLY be causing this odd behavior? Edit: Inspecting the logs, tomcat throws this: java.io.IOException: Bad file number at java.io.FileInputStream.readBytes(Native Method) at java.io.FileInputStream.read(FileInputStream.java:199) at java.io.BufferedInputStream.read1(BufferedInputStream.java:256) at java.io.BufferedInputStream.read(BufferedInputStream.java:317) at java.io.FilterInputStream.read(FilterInputStream.java:90) at org.apache.catalina.servlets.DefaultServlet.copyRange(DefaultServlet.java:1968) at org.apache.catalina.servlets.DefaultServlet.copy(DefaultServlet.java:1714) at org.apache.catalina.servlets.DefaultServlet.serveResource(DefaultServlet.java:809) at org.apache.catalina.servlets.DefaultServlet.doGet(DefaultServlet.java:325) at javax.servlet.http.HttpServlet.service(HttpServlet.java:690) at javax.servlet.http.HttpServlet.service(HttpServlet.java:803) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:290) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:233) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:175) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:128) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:102) at org.apache.catalina.valves.AccessLogValve.invoke(AccessLogValve.java:568) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:109) at org.apache.catalina.ha.session.JvmRouteBinderValve.invoke(JvmRouteBinderValve.java:209) at org.apache.catalina.ha.tcp.ReplicationValve.invoke(ReplicationValve.java:347) at org.terracotta.modules.tomcat.tomcat_5_5.SessionValve55.invoke(SessionValve55.java:57) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:286) at org.apache.jk.server.JkCoyoteHandler.invoke(JkCoyoteHandler.java:190) at org.apache.jk.common.HandlerRequest.invoke(HandlerRequest.java:283) at org.apache.jk.common.ChannelSocket.invoke(ChannelSocket.java:767) at org.apache.jk.common.ChannelSocket.processConnection(ChannelSocket.java:697) at org.apache.jk.common.ChannelSocket$SocketConnection.runIt(ChannelSocket.java:889) at org.apache.tomcat.util.threads.ThreadPool$ControlRunnable.run(ThreadPool.java:690) at java.lang.Thread.run(Thread.java:619) followed by access_log.2009-12-14.txt:1.2.3.4 - - [14/Dec/2009:00:27:32 -0500] "GET /myApp/mySwf.swf HTTP/1.1" 304 - access_log.2009-12-14.txt:1.2.3.4 - - [14/Dec/2009:01:27:33 -0500] "GET /myApp/mySwf.swf HTTP/1.1" 304 - access_log.2009-12-14.txt:1.2.3.4 - - [14/Dec/2009:01:39:53 -0500] "GET /myApp/mySwf.swf HTTP/1.1" 304 - access_log.2009-12-14.txt:1.2.3.4 - - [14/Dec/2009:02:27:38 -0500] "GET /myApp/mySwf.swf HTTP/1.1" 304 - So apache is caching the bad file size. What could possibly be causing this, and possibly separate, how do I ensure that this exception does not get written to cache?

    Read the article

  • Linux: find out what process is using all the RAM?

    - by Timur
    Before actually asking, just to be clear: yes, I know about disk cache, and no, it is not my case :) Sorry, for this preamble :) I'm using CentOS 5. Every application in the system is swapping heavily, and the system is very slow. When I do free -m, here is what I got: total used free shared buffers cached Mem: 3952 3929 22 0 1 18 -/+ buffers/cache: 3909 42 Swap: 16383 46 16337 So, I actually have only 42 Mb to use! As far as I understand, -/+ buffers/cache actually doesn't count the disk cache, so I indeed only have 42 Mb, right? I thought, I might be wrong, so I tried to switch off the disk caching and it had no effect - the picture remained the same. So, I decided to find out who is using all my RAM, and I used top for that. But, apparently, it reports that no process is using my RAM. The only process in my top is MySQL, but it is using 0.1% of RAM and 400Mb of swap. Same picture when I try to run other services or applications - all go in swap, top shows that MEM is not used (0.1% maximum for any process). top - 15:09:00 up 2:09, 2 users, load average: 0.02, 0.16, 0.11 Tasks: 112 total, 1 running, 111 sleeping, 0 stopped, 0 zombie Cpu(s): 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 4046868k total, 4001368k used, 45500k free, 748k buffers Swap: 16777208k total, 68840k used, 16708368k free, 16632k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ SWAP COMMAND 3214 ntp 15 0 23412 5044 3916 S 0.0 0.1 0:00.00 17m ntpd 2319 root 5 -10 12648 4460 3184 S 0.0 0.1 0:00.00 8188 iscsid 2168 root RT 0 22120 3692 2848 S 0.0 0.1 0:00.00 17m multipathd 5113 mysql 18 0 474m 2356 856 S 0.0 0.1 0:00.11 472m mysqld 4106 root 34 19 251m 1944 1360 S 0.0 0.0 0:00.11 249m yum-updatesd 4109 root 15 0 90152 1904 1772 S 0.0 0.0 0:00.18 86m sshd 5175 root 15 0 90156 1896 1772 S 0.0 0.0 0:00.02 86m sshd Restart doesn't help, and, by they way is very slow, which I wouldn't normally expect on this machine (4 cores, 4Gb RAM, RAID1). So, with that - I'm pretty sure that this is not a disk cache, who is using the RAM, because normally it should have been reduced and let other processes to use RAM, rather then go to swap. So, finally, the question is - if someone has any ideas how to find out what process is actually using the memory so heavily?

    Read the article

  • phablet-flash aborting while installing Ubuntu Touch on Nexus 4

    - by Till B
    I have a Nexus 4 with Android 4.3 installed and I want to flash it to Ubuntu Touch. My system is Ubuntu 12.04, running inside a virtual machine on Mac OS 10.5.8. To use the VM, I opened an NAT bridge and forwarded port 5037 for adb, I can see the Nexus with adb and e.g. use the adb shell into it. USB ports are also forwarded to the VM. I follow these instructions to the letter. My bootloader is unlocked, just as it was described in the instructions. Now I encounter different issues, when executing sudo phablet-flash ubuntu-system --no-backup. On the first run, it got stuck in this state: INFO:phablet-flash:Decompressing partitions/recovery.img from /home/till/Downloads/phablet-flash/imageupdates/pool/device-5ba3031cb0d6fc624848266edba781e3e821b6e1e8dd21105725f0ab26077d0a.tar.xz INFO:phablet-flash:Restarting device... wait INFO:phablet-flash:Restarting device... wait complete INFO:phablet-flash:Booting /tmp/tmpMSN8bm/partitions/recovery.img < waiting for device > downloading 'boot.img'... OKAY [ 1.772s] booting... OKAY [ 0.005s] finished. total time: 1.779s INFO:phablet-flash:Waiting for recovery image to boot The following happened: around the line "INFO:phablet-flash: Restarting...", it rebooted into the bootloader. The bootloader shows only for two seconds, then the screen goes off and the phone stays off. But I do notice, that the screen is not off - it is just black, but the background light is on. If I wait long enough, phablet-flash aborts with ERROR:phablet-flash:Wait for recovery expired On the second try, I wanted to manually start the bootloader and choose "Recovery mode". Pressing "volume down+power" at first did nothing. Releasing the buttons and then pressing them again brought me into the bootloder. After choosing "Recovery mode", phablet-flash continued and after a while aborted with the following output: INFO:phablet-flash:Wait for recovery image to boot complete INFO:phablet-flash:Clearing /data and /cache INFO:phablet-flash:Pushing /home/till/Downloads/phablet-flash/imageupdates/pool/ubuntu-2b5345658b58e55207c4a4e7b6b3d8cd4f3d9a3187d2448fc9020c884234bac0.tar.xz to /cache/recovery/ failed to copy '/home/till/Downloads/phablet-flash/imageupdates/pool/ubuntu-2b5345658b58e55207c4a4e7b6b3d8cd4f3d9a3187d2448fc9020c884234bac0.tar.xz' to '/cache/recovery/': Permission denied ERROR:phablet-flash:Command 'adb push /home/till/Downloads/phablet-flash/imageupdates/pool/ubuntu-2b5345658b58e55207c4a4e7b6b3d8cd4f3d9a3187d2448fc9020c884234bac0.tar.xz /cache/recovery/' returned non-zero exit status 1 Removing directory /tmp/tmpDnbz6N Removing directory /tmp/tmpth4L6w What can I do to properly flash my phone with Ubuntu Touch? I noticed that adb does not show the phone in recovery mode: Typing adb devices, when the Nexus 4 is in recovery mode, shows the serial number and the state device, where it should show recovery. Should the phone be rooted? This is not mentioned in the instructions.

    Read the article

  • Integrating Flickr with ASP.Net application

    - by sreejukg
    Flickr is the popular photo management and sharing application offered by yahoo. The services from flicker allow you to store and share photos and videos online. Flicker offers strong API support for almost all services they provide. Using this API, developers can integrate photos to their public website. Since 2005, developers have collaborated on top of Flickr's APIs to build fun, creative, and gorgeous experiences around photos that extend beyond Flickr. In this article I am going to demonstrate how easily you can bring the photos stored on flicker to your website. Let me explain the scenario this article is trying to address. I have a flicker account where I upload photos and share in many ways offered by Flickr. Now I have a public website, instead of re-upload the photos again to public website, I want to show this from Flickr. Also I need complete control over what photo to display. So I went and referred the Flickr documentation and there is API support ready to address my scenario (and more… ). FlickerAPI for ASP.Net To Integrate Flicker with ASP.Net applications, there is a library available in CodePlex. You can find it here http://flickrnet.codeplex.com/ Visit the URL and download the latest version. The download includes a Zip file, when you unzip you will get a number of dlls. Since I am going to use ASP.Net application, I need FlickrNet.dll. See the screenshot of all the dlls, and there is a help file available in the download (.chm) for your reference. Once you have the dll, you need to use Flickr API from your website. I assume you have a flicker account and you are familiar with Flicker services. Arrange your photos using Sets in Flickr In flicker, you can define sets and add your uploaded photos to sets. You can compare set to photo album. A set is a logical collection of photos, which is an excellent option for you to categorize your photos. Typically you will have a number of sets each set having few photos. You can write application that brings photos from sets to your website. For the purpose of this article I already created a set Flickr and added some photos to it. Once you logged in to Flickr, you can see the Sets under the Menu. In the Sets page, you will see all the sets you have created. As you notice, you can see certain sample images I have uploaded just to test the functionality. Though I wish I couldn’t create good photos so please bear with me. I have created 2 photo sets named Blue Album and Red Album. Click on the image for the set, will take you to the corresponding set page. In the set “Red Album” there are 4 photos and the set has a unique ID (highlighted in the URL). You can simply retrieve the photos with the set id from your application. In this article I am going to retrieve the images from Red album in my ASP.Net page. For that First I need to setup FlickrAPI for my usage. Configure Flickr API Key As I mentioned, we are going to use Flickr API to retrieve the photos stored in Flickr. In order to get access to Flickr API, you need an API key. To create an API key, navigate to the URL http://www.flickr.com/services/apps/create/ Click on Request an API key link, now you need to tell Flickr whether your application in commercial or non-commercial. I have selected a non-commercial key. Now you need to enter certain information about your application. Once you enter the details, Click on the submit button. Now Flickr will create the API key for your application. Generating non-commercial API key is very easy, in couple of steps the key will be generated and you can use the key in your application immediately. ASP.Net application for retrieving photos Now we need write an ASP.Net application that display pictures from Flickr. Create an empty web application (I named this as FlickerIntegration) and add a reference to FlickerNet.dll. Add a web form page to the application where you will retrieve and display photos(I have named this as Gallery.aspx). After doing all these, the solution explorer will look similar to following. I have used the below code in the Gallery.aspx page. The output for the above code is as follows. I am going to explain the code line by line here. First it is adding a reference to the FlickrNet namespace. using FlickrNet; Then create a Flickr object by using your API key. Flickr f = new Flickr("<yourAPIKey>"); Now when you retrieve photos, you can decide what all fields you need to retrieve from Flickr. Every photo in Flickr contains lots of information. Retrieving all will affect the performance. For the demonstration purpose, I have retrieved all the available fields as follows. PhotoSearchExtras.All But if you want to specify the fields you can use logical OR operator(|). For e.g. the following statement will retrieve owner name and date taken. PhotoSearchExtras extraInfo = PhotoSearchExtras.OwnerName | PhotoSearchExtras.DateTaken; Then retrieve all the photos from a photo set using PhotoSetsGetPhotos method. I have passed the PhotoSearchExtras object created earlier. PhotosetPhotoCollection photos = f.PhotosetsGetPhotos("72157629872940852", extraInfo); The PhotoSetsGetPhotos method will return a collection of Photo objects. You can just navigate through the collection using a foreach statement. foreach (Photo p in photos) {     //access each photo properties } Photo class have lot of properties that map with the properties from Flickr. The chm documentation comes along with the CodePlex download is a great asset for you to understand the fields. In the above code I just used the following p.LargeUrl – retrieves the large image url for the photo. p.ThumbnailUrl – retrieves the thumbnail url for the photo p.Title – retrieves the Title of the photo p.DateUploaded – retrieves the date of upload Visual Studio intellisense will give you all properties, so it is easy, you can just try with Visual Studio intellisense to find the right properties you are looking for. Most of hem are self-explanatory. So you can try retrieving the required properties. In the above code, I just pushed the photos to the page. In real time you can use the retrieved photos along with JQuery libraries to create animated photo galleries, slideshows etc. Configuration and Troubleshooting If you get access denied error while executing the code, you need to disable the caching in Flickr API. FlickrNet cache the photos to your local disk when retrieved. You can specify a cache folder where the application need write permission. You can specify the Cache folder in the code as follows. Flickr.CacheLocation = Server.MapPath("./FlickerCache/"); If the application doesn’t have have write permission to the cache folder, the application will throw access denied error. If you cannot give write permission to the cache folder, then you must disable the caching. You can do this from code as follows. Flickr.CacheDisabled = true; Disabling cache will have an impact on the performance. Take care! Also you can define the Flickr settings in web.config file.You can find the documentation here. http://flickrnet.codeplex.com/wikipage?title=ExampleConfigFile&ProjectName=flickrnet Flickr is a great place for storing and sharing photos. The API access allows developers to do seamless integration with the photos uploaded on Flickr.

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

  • General monitoring for SQL Server Analysis Services using Performance Monitor

    - by Testas
    A recent customer engagement required a setup of a monitoring solution for SSAS, due to the time restrictions placed upon this, native Windows Performance Monitor (Perfmon) and SQL Server Profiler Monitoring Tools was used as using a third party tool would have meant the customer providing an additional monitoring server that was not available.I wanted to outline the performance monitoring counters that was used to monitor the system on which SSAS was running. Due to the slow query performance that was occurring during certain scenarios, perfmon was used to establish if any pressure was being placed on the Disk, CPU or Memory subsystem when concurrent connections access the same query, and Profiler to pinpoint how the query was being managed within SSAS, profiler I will leave for another blogThis guide is not designed to provide a definitive list of what should be used when monitoring SSAS, different situations may require the addition or removal of counters as presented by the situation. However I hope that it serves as a good basis for starting your monitoring of SSAS. I would also like to acknowledge Chris Webb’s awesome chapters from “Expert Cube Development” that also helped shape my monitoring strategy:http://cwebbbi.spaces.live.com/blog/cns!7B84B0F2C239489A!6657.entrySimulating ConnectionsTo simulate the additional connections to the SSAS server whilst monitoring, I used ascmd to simulate multiple connections to the typical and worse performing queries that were identified by the customer. A similar sript can be downloaded from codeplex at http://www.codeplex.com/SQLSrvAnalysisSrvcs.     File name: ASCMD_StressTestingScripts.zip. Performance MonitorWithin performance monitor,  a counter log was created that contained the list of counters below. The important point to note when running the counter log is that the RUN AS property within the counter log properties should be changed to an account that has rights to the SSAS instance when monitoring MSAS counters. Failure to do so means that the counter log runs under the system account, no errors or warning are given while running the counter log, and it is not until you need to view the MSAS counters that they will not be displayed if run under the default account that has no right to SSAS. If your connection simulation takes hours, this could prove quite frustrating if not done beforehand JThe counters used……  Object Counter Instance Justification System Processor Queue legnth N/A Indicates how many threads are waiting for execution against the processor. If this counter is consistently higher than around 5 when processor utilization approaches 100%, then this is a good indication that there is more work (active threads) available (ready for execution) than the machine's processors are able to handle. System Context Switches/sec N/A Measures how frequently the processor has to switch from user- to kernel-mode to handle a request from a thread running in user mode. The heavier the workload running on your machine, the higher this counter will generally be, but over long term the value of this counter should remain fairly constant. If this counter suddenly starts increasing however, it may be an indicating of a malfunctioning device, especially if the Processor\Interrupts/sec\(_Total) counter on your machine shows a similar unexplained increase Process % Processor Time sqlservr Definately should be used if Processor\% Processor Time\(_Total) is maxing at 100% to assess the effect of the SQL Server process on the processor Process % Processor Time msmdsrv Definately should be used if Processor\% Processor Time\(_Total) is maxing at 100% to assess the effect of the SQL Server process on the processor Process Working Set sqlservr If the Memory\Available bytes counter is decreaing this counter can be run to indicate if the process is consuming larger and larger amounts of RAM. Process(instance)\Working Set measures the size of the working set for each process, which indicates the number of allocated pages the process can address without generating a page fault. Process Working Set msmdsrv If the Memory\Available bytes counter is decreaing this counter can be run to indicate if the process is consuming larger and larger amounts of RAM. Process(instance)\Working Set measures the size of the working set for each process, which indicates the number of allocated pages the process can address without generating a page fault. Processor % Processor Time _Total and individual cores measures the total utilization of your processor by all running processes. If multi-proc then be mindful only an average is provided Processor % Privileged Time _Total To see how the OS is handling basic IO requests. If kernel mode utilization is high, your machine is likely underpowered as it's too busy handling basic OS housekeeping functions to be able to effectively run other applications. Processor % User Time _Total To see how the applications is interacting from a processor perspective, a high percentage utilisation determine that the server is dealing with too many apps and may require increasing thje hardware or scaling out Processor Interrupts/sec _Total  The average rate, in incidents per second, at which the processor received and serviced hardware interrupts. Shoulr be consistant over time but a sudden unexplained increase could indicate a device malfunction which can be confirmed using the System\Context Switches/sec counter Memory Pages/sec N/A Indicates the rate at which pages are read from or written to disk to resolve hard page faults. This counter is a primary indicator of the kinds of faults that cause system-wide delays, this is the primary counter to watch for indication of possible insufficient RAM to meet your server's needs. A good idea here is to configure a perfmon alert that triggers when the number of pages per second exceeds 50 per paging disk on your system. May also want to see the configuration of the page file on the Server Memory Available Mbytes N/A is the amount of physical memory, in bytes, available to processes running on the computer. if this counter is greater than 10% of the actual RAM in your machine then you probably have more than enough RAM. monitor it regularly to see if any downward trend develops, and set an alert to trigger if it drops below 2% of the installed RAM. Physical Disk Disk Transfers/sec for each physical disk If it goes above 10 disk I/Os per second then you've got poor response time for your disk. Physical Disk Idle Time _total If Disk Transfers/sec is above  25 disk I/Os per second use this counter. which measures the percent time that your hard disk is idle during the measurement interval, and if you see this counter fall below 20% then you've likely got read/write requests queuing up for your disk which is unable to service these requests in a timely fashion. Physical Disk Disk queue legnth For the OLAP and SQL physical disk A value that is consistently less than 2 means that the disk system is handling the IO requests against the physical disk Network Interface Bytes Total/sec For the NIC Should be monitored over a period of time to see if there is anb increase/decrease in network utilisation Network Interface Current Bandwidth For the NIC is an estimate of the current bandwidth of the network interface in bits per second (BPS). MSAS 2005: Memory Memory Limit High KB N/A Shows (as a percentage) the high memory limit configured for SSAS in C:\Program Files\Microsoft SQL Server\MSAS10.MSSQLSERVER\OLAP\Config\msmdsrv.ini MSAS 2005: Memory Memory Limit Low KB N/A Shows (as a percentage) the low memory limit configured for SSAS in C:\Program Files\Microsoft SQL Server\MSAS10.MSSQLSERVER\OLAP\Config\msmdsrv.ini MSAS 2005: Memory Memory Usage KB N/A Displays the memory usage of the server process. MSAS 2005: Memory File Store KB N/A Displays the amount of memory that is reserved for the Cache. Note if total memory limit in the msmdsrv.ini is set to 0, no memory is reserved for the cache MSAS 2005: Storage Engine Query Queries from Cache Direct / sec N/A Displays the rate of queries answered from the cache directly MSAS 2005: Storage Engine Query Queries from Cache Filtered / Sec N/A Displays the Rate of queries answered by filtering existing cache entry. MSAS 2005: Storage Engine Query Queries from File / Sec N/A Displays the Rate of queries answered from files. MSAS 2005: Storage Engine Query Average time /query N/A Displays the average time of a query MSAS 2005: Connection Current connections N/A Displays the number of connections against the SSAS instance MSAS 2005: Connection Requests / sec N/A Displays the rate of query requests per second MSAS 2005: Locks Current Lock Waits N/A Displays thhe number of connections waiting on a lock MSAS 2005: Threads Query Pool job queue Length N/A The number of queries in the job queue MSAS 2005:Proc Aggregations Temp file bytes written/sec N/A Shows the number of bytes of data processed in a temporary file MSAS 2005:Proc Aggregations Temp file rows written/sec N/A Shows the number of bytes of data processed in a temporary file 

    Read the article

  • SQLCruise Alaska was Amazing

    - by AllenMWhite
    You'd think that providing in-depth SQL Server training on a cruise ship would be an excuse for a vacation disguised as a business trip, but you'd be wrong. This past week I traveled with the founders of SQLCruise, Tim Ford and Brent Ozar , along with other top professionals in the SQL Server world - Jeremiah Peschka , Kendra Little , Kevin Kline and Robert Davis - and me. The week began with Brent presenting a session on Plan Cache Analysis, which I plan to start using very soon. After Brent, Kevin...(read more)

    Read the article

  • SQLCruise Alaska was Amazing

    - by AllenMWhite
    You'd think that providing in-depth SQL Server training on a cruise ship would be an excuse for a vacation disguised as a business trip, but you'd be wrong. This past week I traveled with the founders of SQLCruise, Tim Ford and Brent Ozar , along with other top professionals in the SQL Server world - Jeremiah Peschka , Kendra Little , Kevin Kline and Robert Davis - and me. The week began with Brent presenting a session on Plan Cache Analysis, which I plan to start using very soon. After Brent, Kevin...(read more)

    Read the article

  • There once was in Dublin a query

    - by Paul Nielsen
    For 6 months I’ve have been planning a secret trip to London in May as a surprise for my wife (of Irish heritage and accent) (I love how she says, "Aye laddie, kiss me I'm Irish." but that's for another blog.) The plan was to spend a week in London and then top if off with a visit to Dublin to see the Book of Kells (on my bucket list) and stay at Markree Castle at Sligo, Ireland (on her bucket list). The original plan was to have her boss assign mandatory vacation a few days before the trip (her...(read more)

    Read the article

< Previous Page | 81 82 83 84 85 86 87 88 89 90 91 92  | Next Page >