Search Results

Search found 2928 results on 118 pages for 'b dot'.

Page 89/118 | < Previous Page | 85 86 87 88 89 90 91 92 93 94 95 96  | Next Page >

  • Building Extensions Using E-Business Suite SDK for Java

    - by Sara Woodhull
    We’ve just released Version 2.0.1 of Oracle E-Business Suite SDK for Java.  This new version has several great enhancements added after I wrote about the first version of the SDK in 2010.  In addition to the AppsDataSource and Java Authentication and Authorization Service (JAAS) features that are in the first version, the Oracle E-Business Suite SDK for Java now provides: Session management APIs, so you can share session information with Oracle E-Business Suite Setup script for UNIX/Linux for AppsDataSource and JAAS on Oracle WebLogic Server APIs for Message Dictionary, User Profiles, and NLS Javadoc for the APIs (included with the patch) Enhanced documentation included with Note 974949.1 These features can be used with either Release 11i or Release 12.  References AppsDataSource, Java Authentication and Authorization Service, and Utilities for Oracle E-Business Suite (Note 974949.1) FAQ for Integration of Oracle E-Business Suite and Oracle Application Development Framework (ADF) Applications (Doc ID 1296491.1) What's new in those references? Note 974949.1 is the place to look for the latest information as we come out with new versions of the SDK.  The patch number changes for each release.  Version 2.0.1 is contained in Patch 13882058, which is for both Release 11i and Release 12.  Note 974949.1 includes the following topics: Applying the latest patch Using Oracle E-Business Suite Data Sources Oracle E-Business Suite Implementation of Java Authentication and Authorization Service (JAAS) Utilities Error loggingSession management  Message Dictionary User profiles Navigation to External Applications Java EE Session Management Tutorial For those of you using the SDK with Oracle ADF, besides some Oracle ADF-specific documentation in Note 974949.1, we also updated the ADF Integration FAQ as well. EBS SDK for Java Use Cases The uses of the Oracle E-Business Suite SDK for Java fall into two general scenarios for integrating external applications with Oracle E-Business Suite: Application sharing a session with Oracle E-Business Suite Independent application (not shared session) With an independent application, the external application accesses Oracle E-Business  Suite data and server-side APIs, but it has a completely separate user interface. The external application may also launch pages from the Oracle E-Business Suite home page, but after the initial launch there is no further communication with the Oracle E-Business Suite user interface. Shared session integration means that the external application uses an Oracle E-Business Suite session (ICX session), shares session context information with Oracle E-Business Suite, and accesses Oracle E-Business Suite data. The external application may also launch pages from the Oracle E-Business Suite home page, or regions or pages from the external application may be embedded as regions within Oracle Application Framework pages. Both shared session applications and independent applications use the AppsDataSource feature of the Oracle E-Business Suite SDK for Java. Independent applications may also use the Java Authentication and Authorization (JAAS) and logging features of the SDK. Applications that are sharing the Oracle E-Business Suite session use the session management feature (instead of the JAAS feature), and they may also use the logging, profiles, and Message Dictionary features of the SDK.  The session management APIs allow you to create, retrieve, validate and cancel an Oracle E-Business Suite session (ICX session) from your external application.  Session information and context can travel back and forth between Oracle E-Business Suite and your application, allowing you to share session context information across applications. Note: Generally you would use the Java Authentication and Authorization (JAAS) feature of the SDK or the session management feature, but not both together. Send us your feedback Since the Oracle E-Business Suite SDK for Java is still pretty new, we’d like to know about who is using it and what you are trying to do with it.  We’d like to get this type of information: customer name and brief use case configuration and technologies (Oracle WebLogic Server or OC4J, plain Java, ADF, SOA Suite, and so on) project status (proof of concept, development, production) any other feedback you have about the SDK You can send me your feedback directly at Sara dot Woodhull at Oracle dot com, or you can leave it in the comments below.  Please keep in mind that we cannot answer support questions, so if you are having specific issues, please log a service request with Oracle Support. Happy coding! Related Articles New Whitepaper: Extending E-Business Suite 12.1.3 using Oracle Application Express To Customize or Not to Customize? New Whitepaper: Upgrading your Customizations to Oracle E-Business Suite Release 12 ATG Live Webcast: Upgrading your EBS 11i Customizations to Release 12

    Read the article

  • How to raycast select a scaled OBB?

    - by user3254944
    I have the OBB picking code to select an OBB with code inspired from Real time Rendering 3 and opengl-tutorial.org. I can successfully select objects that have been moved or rotated. However, I cant correctly select an object that has been scaled. The bounding box scales right, but the I can only select the object in a thin strip on its center. How do I fix the checkForHits() function to allow it to read the scaling that I passed to it in the raycast matrix? void GLWidget::selectObjRaycast() { glm::vec2 mouse = (glm::vec2(mousePos.x(), mousePos.y()) / glm::vec2(this->width(), this->height())) * 2.0f - 1.0f; mouse.y *= -1; glm::mat4 toWorld = glm::inverse(ProjectionM * ViewM); glm::vec4 from = toWorld * glm::vec4(mouse, -1.0f, 1.0f); glm::vec4 to = toWorld * glm::vec4(mouse, 1.0f, 1.0f); from /= from.w; to /= to.w; fromAABB = glm::vec3(from); toAABB = glm::normalize(glm::vec3(to - from)); checkForHits(); } void GLWidget::checkForHits() { for (int i = 0; i < myWin.myEtc->allObj.size(); ++i) //check for hits on each obj's bb { bool miss = 0; float tMin = 0.0f; float tMax = 100000.0f; glm::vec3 bbPos(myWin.myEtc->allObj[i]->raycastM[3].x, myWin.myEtc->allObj[i]->raycastM[3].y, myWin.myEtc->allObj[i]->raycastM[3].z); glm::vec3 delta = bbPos - fromAABB; for (int j = 0; j < 3; ++j) { glm::vec3 axis(myWin.myEtc->allObj[i]->raycastM[j].x, myWin.myEtc->allObj[i]->raycastM[j].y, myWin.myEtc->allObj[i]->raycastM[j].z); float e = glm::dot(axis, delta); float f = glm::dot(toAABB, axis); if (fabs(f) > 0.001f) { float t1 = (e + myWin.myEtc->allObj[i]->bbMin[j]) / f; float t2 = (e + myWin.myEtc->allObj[i]->bbMax[j]) / f; if (t1 > t2) { float w = t1; t1 = t2; t2 = w; } if (t2 < tMax) tMax = t2; if (t1 > tMin) tMin = t1; if (tMax < tMin) miss = 1; } else { if (-e + myWin.myEtc->allObj[i]->bbMin[j] > 0.0f || -e + myWin.myEtc->allObj[i]->bbMax[j] < 0.0f) miss = 1; } } if (miss == 0) { intersection_distance = tMin; myWin.myEtc->sel.push_back(myWin.myEtc->allObj[i]); myWin.myEtc->allObj[i]->highlight = myWin.myGLHelp->highlight; break; } } } void Object::render(glm::mat4 PV) { scaleM = glm::scale(glm::mat4(), s->val_3); r_quat = glm::quat(glm::radians(r->val_3)); rotationM = glm::toMat4(r_quat); translationM = glm::translate(glm::mat4(), t->val_3); transLocal1M = glm::translate(glm::mat4(), -rsPivot->val_3); transLocal2M = glm::translate(glm::mat4(), rsPivot->val_3); raycastM = translationM * transLocal2M * rotationM * scaleM * transLocal1M; // MVP = PV * translationM * transLocal2M * rotationM * scaleM * transLocal1M; }

    Read the article

  • XNA 4.0 - Normal mapping shader - strange texture artifacts

    - by Taylor
    I recently started using custom shader. Shader can do diffuse and specular lighting and normal mapping. But normal mapping is causing really ugly artifacts (some sort of pixeling noise) for textures in greater distance. It looks like this: Image link This is HLSL code: // Matrix float4x4 World : World; float4x4 View : View; float4x4 Projection : Projection; //Textury texture2D ColorMap; sampler2D ColorMapSampler = sampler_state { Texture = <ColorMap>; MinFilter = Anisotropic; MagFilter = Linear; MipFilter = Linear; MaxAnisotropy = 16; }; texture2D NormalMap; sampler2D NormalMapSampler = sampler_state { Texture = <NormalMap>; MinFilter = Anisotropic; MagFilter = Linear; MipFilter = Linear; MaxAnisotropy = 16; }; // Light float4 AmbientColor : Color; float AmbientIntensity; float3 DiffuseDirection : LightPosition; float4 DiffuseColor : Color; float DiffuseIntensity; float4 SpecularColor : Color; float3 CameraPosition : CameraPosition; float Shininess; // The input for the VertexShader struct VertexShaderInput { float4 Position : POSITION0; float2 TexCoord : TEXCOORD0; float3 Normal : NORMAL0; float3 Binormal : BINORMAL0; float3 Tangent : TANGENT0; }; // The output from the vertex shader, used for later processing struct VertexShaderOutput { float4 Position : POSITION0; float2 TexCoord : TEXCOORD0; float3 View : TEXCOORD1; float3x3 WorldToTangentSpace : TEXCOORD2; }; // The VertexShader. VertexShaderOutput VertexShaderFunction(VertexShaderInput input, float3 Normal : NORMAL) { VertexShaderOutput output; float4 worldPosition = mul(input.Position, World); float4 viewPosition = mul(worldPosition, View); output.Position = mul(viewPosition, Projection); output.TexCoord = input.TexCoord; output.WorldToTangentSpace[0] = mul(normalize(input.Tangent), World); output.WorldToTangentSpace[1] = mul(normalize(input.Binormal), World); output.WorldToTangentSpace[2] = mul(normalize(input.Normal), World); output.View = normalize(float4(CameraPosition,1.0) - worldPosition); return output; } // The Pixel Shader float4 PixelShaderFunction(VertexShaderOutput input) : COLOR0 { float4 color = tex2D(ColorMapSampler, input.TexCoord); float3 normalMap = 2.0 *(tex2D(NormalMapSampler, input.TexCoord)) - 1.0; normalMap = normalize(mul(normalMap, input.WorldToTangentSpace)); float4 normal = float4(normalMap,1.0); float4 diffuse = saturate(dot(-DiffuseDirection,normal)); float4 reflect = normalize(2*diffuse*normal-float4(DiffuseDirection,1.0)); float4 specular = pow(saturate(dot(reflect,input.View)), Shininess); return color * AmbientColor * AmbientIntensity + color * DiffuseIntensity * DiffuseColor * diffuse + color * SpecularColor * specular; } // Techniques technique Lighting { pass Pass1 { VertexShader = compile vs_2_0 VertexShaderFunction(); PixelShader = compile ps_2_0 PixelShaderFunction(); } } Any advice? Thanks!

    Read the article

  • First-Time GLSL Shadow Mapping Problems

    - by Locke
    I'm working on building out a 2.5D engine and having massive problems getting my shadows working. I'm at a point where I'm VERY close. So, let's see a picture to see what I have: As you can see above, the image has lighting -- but the shadow map is displaying incorrectly. The shadow map is shown in the bottom left hand side of the screen as a normal 2D texture, so we can see what it looks like at any given time. If you notice, it appears that the shadows are generating backwards in the wrong direction -- I think. But the problem is a little more deep -- I'm just plotting the shadow onto the screen, which I know is wrong -- I'm ignoring the actual test to see if we NEED to show a shadow. The incoming parameters all appear to be correct -- so there has to be something wrong with my shader code somewhere. Here's what my code looks like: VERTEX: uniform mat4 LightModelViewProjectionMatrix; varying vec3 Normal; // The eye-space normal of the current vertex. varying vec4 LightCoordinate; // The texture coordinate of the light of the current vertex. varying vec3 LightDirection; // The eye-space direction of the light. void main() { Normal = normalize(gl_NormalMatrix * gl_Normal); LightDirection = normalize(gl_NormalMatrix * gl_LightSource[0].position.xyz); LightCoordinate = LightModelViewProjectionMatrix * gl_Vertex; LightCoordinate.xy = ( LightCoordinate.xy * 0.5 ) + 0.5; gl_Position = ftransform(); gl_TexCoord[0] = gl_MultiTexCoord0; } FRAGMENT: uniform sampler2D DiffuseMap; uniform sampler2D ShadowMap; varying vec3 Normal; // The eye-space normal of the current vertex. varying vec4 LightCoordinate; // The texture coordinate of the light of the current vertex. varying vec3 LightDirection; // The eye-space direction of the light. void main() { vec4 Texel = texture2D(DiffuseMap, vec2(gl_TexCoord[0])); // Directional lighting //Build ambient lighting vec4 AmbientElement = gl_LightSource[0].ambient; //Build diffuse lighting float Lambert = max(dot(Normal, LightDirection), 0.0); //max(abs(dot(Normal, LightDirection)), 0.0); vec4 DiffuseElement = ( gl_LightSource[0].diffuse * Lambert ); vec4 LightingColor = ( DiffuseElement + AmbientElement ); LightingColor.r = min(LightingColor.r, 1.0); LightingColor.g = min(LightingColor.g, 1.0); LightingColor.b = min(LightingColor.b, 1.0); LightingColor.a = min(LightingColor.a, 1.0); LightingColor *= Texel; //Everything up to this point is PERFECT // Shadow mapping // ------------------------------ vec4 ShadowCoordinate = LightCoordinate / LightCoordinate.w; float DistanceFromLight = texture2D( ShadowMap, ShadowCoordinate.st ).z; float DepthBias = 0.001; float ShadowFactor = 1.0; if( LightCoordinate.w > 0.0 ) { ShadowFactor = DistanceFromLight < ( ShadowCoordinate.z + DepthBias ) ? 0.5 : 1.0; } LightingColor.rgb *= ShadowFactor; //gl_FragColor = LightingColor; //Yes, I know this is wrong, but the line above (gl_FragColor = LightingColor;) produces the wrong effect gl_FragColor = LightingColor * texture2D( ShadowMap, ShadowCoordinate.st ); } I wanted to make sure the coordinates were correct for the shadow map -- so that's why you see it applied to the image as it is below. But the depth for each point seems to be wrong -- the shadows SHOULD be opposite (look at how the image is -- the shaded areas from normal lighting are facing the opposite direction of the shadows). Maybe my matrices are bad or something going in? They're isolated and appear to be correct -- nothing else is going in unusual. When I view from the light's view and get the MVP matrices for it, they're correct. EDIT: Added an image so you can see what happens when I do the correct command at the end of the GLSL: That's the image when the last line is just glFragColor = LightingColor; Maybe someone has some idea of what I screwed up?

    Read the article

  • What's wrong with this turn to face algorithm?

    - by Chan
    I implement a torpedo object that chases a rotating planet. Specifically, it will turn toward the planet each update. Initially my implement was: void move() { vector3<float> to_target = target - get_position(); to_target.normalize(); position += (to_target * speed); } which works perfectly for torpedo that is a solid sphere. Now my torpedo is actually a model, which has a forward vector, so using this method looks odd because it doesn't actually turn toward but jump toward. So I revised it a bit to get, double get_rotation_angle(vector3<float> u, vector3<float> v) const { u.normalize(); v.normalize(); double cosine_theta = u.dot(v); // domain of arccosine is [-1, 1] if (cosine_theta > 1) { cosine_theta = 1; } if (cosine_theta < -1) { cosine_theta = -1; } return math3d::to_degree(acos(cosine_theta)); } vector3<float> get_rotation_axis(vector3<float> u, vector3<float> v) const { u.normalize(); v.normalize(); // fix linear case if (u == v || u == -v) { v[0] += 0.05; v[1] += 0.0; v[2] += 0.05; v.normalize(); } vector3<float> axis = u.cross(v); return axis.normal(); } void turn_to_face() { vector3<float> to_target = (target - position); vector3<float> axis = get_rotation_axis(get_forward(), to_target); double angle = get_rotation_angle(get_forward(), to_target); double distance = math3d::distance(position, target); gl_matrix_mode(GL_MODELVIEW); gl_push_matrix(); { gl_load_identity(); gl_translate_f(position.get_x(), position.get_y(), position.get_z()); gl_rotate_f(angle, axis.get_x(), axis.get_y(), axis.get_z()); gl_get_float_v(GL_MODELVIEW_MATRIX, OM); } gl_pop_matrix(); move(); } void move() { vector3<float> to_target = target - get_position(); to_target.normalize(); position += (get_forward() * speed); } The logic is simple, I find the rotation axis by cross product, the angle to rotate by dot product, then turn toward the target position each update. Unfortunately, it looks extremely odds since the rotation happens too fast that it always turns back and forth. The forward vector for torpedo is from the ModelView matrix, the third column A: MODELVIEW MATRIX -------------------------------------------------- R U A T -------------------------------------------------- 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 -------------------------------------------------- Any suggestion or idea would be greatly appreciated.

    Read the article

  • Simple OpenGL program major slow down at high resolution

    - by Grieverheart
    I have created a small OpenGL 3.3 (Core) program using freeglut. The whole geometry is two boxes and one plane with some textures. I can move around like in an FPS and that's it. The problem is I face a big slow down of fps when I make my window large (i.e. above 1920x1080). I have monitors GPU usage when in full-screen and it shows GPU load of nearly 100% and Memory Controller load of ~85%. When at 600x600, these numbers are at about 45%, my CPU is also at full load. I use deferred rendering at the moment but even when forward rendering, the slow down was nearly as severe. I can't imagine my GPU is not powerful enough for something this simple when I play many games at 1080p (I have a GeForce GT 120M btw). Below are my shaders, First Pass #VS #version 330 core uniform mat4 ModelViewMatrix; uniform mat3 NormalMatrix; uniform mat4 MVPMatrix; uniform float scale; layout(location = 0) in vec3 in_Position; layout(location = 1) in vec3 in_Normal; layout(location = 2) in vec2 in_TexCoord; smooth out vec3 pass_Normal; smooth out vec3 pass_Position; smooth out vec2 TexCoord; void main(void){ pass_Position = (ModelViewMatrix * vec4(scale * in_Position, 1.0)).xyz; pass_Normal = NormalMatrix * in_Normal; TexCoord = in_TexCoord; gl_Position = MVPMatrix * vec4(scale * in_Position, 1.0); } #FS #version 330 core uniform sampler2D inSampler; smooth in vec3 pass_Normal; smooth in vec3 pass_Position; smooth in vec2 TexCoord; layout(location = 0) out vec3 outPosition; layout(location = 1) out vec3 outDiffuse; layout(location = 2) out vec3 outNormal; void main(void){ outPosition = pass_Position; outDiffuse = texture(inSampler, TexCoord).xyz; outNormal = pass_Normal; } Second Pass #VS #version 330 core uniform float scale; layout(location = 0) in vec3 in_Position; void main(void){ gl_Position = mat4(1.0) * vec4(scale * in_Position, 1.0); } #FS #version 330 core struct Light{ vec3 direction; }; uniform ivec2 ScreenSize; uniform Light light; uniform sampler2D PositionMap; uniform sampler2D ColorMap; uniform sampler2D NormalMap; out vec4 out_Color; vec2 CalcTexCoord(void){ return gl_FragCoord.xy / ScreenSize; } vec4 CalcLight(vec3 position, vec3 normal){ vec4 DiffuseColor = vec4(0.0); vec4 SpecularColor = vec4(0.0); vec3 light_Direction = -normalize(light.direction); float diffuse = max(0.0, dot(normal, light_Direction)); if(diffuse 0.0){ DiffuseColor = diffuse * vec4(1.0); vec3 camera_Direction = normalize(-position); vec3 half_vector = normalize(camera_Direction + light_Direction); float specular = max(0.0, dot(normal, half_vector)); float fspecular = pow(specular, 128.0); SpecularColor = fspecular * vec4(1.0); } return DiffuseColor + SpecularColor + vec4(0.1); } void main(void){ vec2 TexCoord = CalcTexCoord(); vec3 Position = texture(PositionMap, TexCoord).xyz; vec3 Color = texture(ColorMap, TexCoord).xyz; vec3 Normal = normalize(texture(NormalMap, TexCoord).xyz); out_Color = vec4(Color, 1.0) * CalcLight(Position, Normal); } Is it normal for the GPU to be used that much under the described circumstances? Is it due to poor performance of freeglut? I understand that the problem could be specific to my code, but I can't paste the whole code here, if you need more info, please tell me.

    Read the article

  • NSString variable out of scope in sub-class (iPhone/Obj-C)

    - by Rich
    I am following along with an example in a book with the code exactly as it is in the example code as well as from the book, and I'm getting an error at runtime. I'll try to describe the life cycle of this variable as good as I can. I have a controller class with a nested array that is populated with string literals (NSArray of NSArrays, the nested NSArrays initialized with arrayWithObjects: where the objects are all string literals - @"some string"). I access these strings with a helper method added via a category on NSArray (to pull strings out of a nested array). My controller gets a reference to this string and assigns it to a NSString property on a child controller using dot notation. The code looks like this (nestedObjectAtIndexPath is my helper method): NSString *rowKey = [rowKeys nestedObjectAtIndexPath:indexPath]; controller.keypath = rowKey; keypath is a synthesized nonatomic, retain property defined in a based class. When I hit a breakpoint in the controller at the above code, the NSString's value is as expected. When I hit the next breakpoint inside the child controller, the object id of the keypath property is the same as before, but instead of showing me the value of the NSString, XCode says that the variable is "out of scope" which is also the error I see in the console. This also happens in another sub-class of the same parent. I tried googling, and I saw slightly similar cases where people were suggesting this had to do with retain counts. I was under the impression that by using dot notation on a synthesized property, my class would be using an "auto generated accessor" that would be increasing my retain count for me so that I wouldn't have this problem. Could there be any implications because I'm accessing it in a sub-class and the prop is defined in the parent? I don't see anything in the book's errata about this, but the book is relatively new (Apress - More iPhone 3 Dev). I also have double checked that my code matches the example 100 times.

    Read the article

  • ASP.NET MVC, Url Routing: Maximum Path (URL) Length

    - by Martin Aatmaa
    The Scenario I have an application where we took the good old query string URL structure: ?x=1&y=2&z=3&a=4&b=5&c=6 and changed it into a path structure: /x/1/y/2/z/3/a/4/b/5/c/6 We're using ASP.NET MVC and (naturally) ASP.NET routing. The Problem The problem is that our parameters are dynamic, and there is (theoretically) no limit to the amount of parameters that we need to accommodate for. This is all fine until we got hit by the following train: HTTP Error 400.0 - Bad Request ASP.NET detected invalid characters in the URL. IIS would throw this error when our URL got past a certain length. The Nitty Gritty Here's what we found out: This is not an IIS problem IIS does have a max path length limit, but the above error is not this. Learn dot iis dot net How to Use Request Filtering Section "Filter Based on Request Limits" If the path was too long for IIS, it would throw a 404.14, not a 400.0. Besides, the IIS max path (and query) length are configurable: <requestLimits maxAllowedContentLength="30000000" maxUrl="260" maxQueryString="25" /> This is an ASP.NET Problem After some poking around: IIS Forums Thread: ASP.NET 2.0 maximum URL length? http://forums.iis.net/t/1105360.aspx it turns out that this is an ASP.NET (well, .NET really) problem. The shit of the matter is that, as far as I can tell, ASP.NET cannot handle paths longer than 260 characters. The nail in the coffin in that this is confirmed by Phil the Haack himself: Stack Overflow ASP.NET url MAX_PATH limit Question ID 265251 The Question So what's the question? The question is, how big of a limitation is this? For my app, it's a deal killer. For most apps, it's probably a non-issue. What about disclosure? No where where ASP.NET Routing is mentioned have I ever heard a peep about this limitation. The fact that ASP.NET MVC uses ASP.NET routing makes the impact of this even bigger. What do you think?

    Read the article

  • Raytraced Shadows Problem

    - by Mat
    Hey There! I've got a problem with shadowrays in my raytracer. Please have a look at the following two pictures 3D sMax: My Raytracer: The scene is lit by a very bright light, shining from the back. It's so bright that there is no gradient in the shading, just either white or dark (due to the overexposure). both images were rendered using 3DStudioMax and both use the exact same geometry, just in one case the normals are interpolated across the triangles. Now consider the red dot on the surface. In the case of the unsmoothed version, it lies in a dark area. this means that the light source is not visible from this triangle, since it's facing away from it. In the smoothed version however, it lies in the lit area, because the interpolated normal would suggest, that the light would be visible at that point (although the actual geometry of the triangle is facing away from the lightsource). My problem now is when raytraced shadows come in. if a shadowray is shot into the scene, from the red dot, to test whether the light-source is visible or not (to determine shadowing), the shadowray will return an intersection, independent of whether normals are interpolated or not (because intersections only depend on the geometry). Therefore the pixel would be shaded dark. 3dsamx is handling the case correctly - the rendered image was generated with Raytraced shadows turned on. However, my own Raytracer runs exactly into this problem when i turn on raytraced shadows (in my raytracer, the point is dark in both cases, because raytraced shadows determine the point lying in the shadow), and i don't know how to solve it. I hope someone knows this problem and how to deal with it.. thanks!

    Read the article

  • What is the most platform- and Python-version-independent way to make a fast loop for use in Python?

    - by Statto
    I'm writing a scientific application in Python with a very processor-intensive loop at its core. I would like to optimise this as far as possible, at minimum inconvenience to end users, who will probably use it as an uncompiled collection of Python scripts, and will be using Windows, Mac, and (mainly Ubuntu) Linux. It is currently written in Python with a dash of NumPy, and I've included the code below. Is there a solution which would be reasonably fast which would not require compilation? This would seem to be the easiest way to maintain platform-independence. If using something like Pyrex, which does require compilation, is there an easy way to bundle many modules and have Python choose between them depending on detected OS and Python version? Is there an easy way to build the collection of modules without needing access to every system with every version of Python? Does one method lend itself particularly to multi-processor optimisation? (If you're interested, the loop is to calculate the magnetic field at a given point inside a crystal by adding together the contributions of a large number of nearby magnetic ions, treated as tiny bar magnets. Basically, a massive sum of these.) # calculate_dipole # ------------------------- # calculate_dipole works out the dipole field at a given point within the crystal unit cell # --- # INPUT # mu = position at which to calculate the dipole field # r_i = array of atomic positions # mom_i = corresponding array of magnetic moments # --- # OUTPUT # B = the B-field at this point def calculate_dipole(mu, r_i, mom_i): relative = mu - r_i r_unit = unit_vectors(relative) #4pi / mu0 (at the front of the dipole eqn) A = 1e-7 #initalise dipole field B = zeros(3,float) for i in range(len(relative)): #work out the dipole field and add it to the estimate so far B += A*(3*dot(mom_i[i],r_unit[i])*r_unit[i] - mom_i[i]) / sqrt(dot(relative[i],relative[i]))**3 return B

    Read the article

  • jquery Tab group IDs

    - by mare
    I'm having an issue with jQuery UI Tabs script which does not pick up tabs that have a dot "." in their name (ID). For instance like this: <script type="text/javascript"> $(function () { $("#tabgroup\\.services").tabs(); }); </script> <div id="tabgroup.Services"> <ul> <li><a href="#tab.service1"> Service 1 title</a></li> <li><a href="#tab.service2"> Service 2 title</a></li> </ul> <div id="tab.service1"> <p>content</p> </div> <div id="tab.service2"> <p>content</p> </div> </div> The problem is because to select an element with a dot in its name, you need to use escapes (like when I initialize the tabs on my tabgroup). And apparently the Tabs JS implementation does not do that. Although I can do it at the tab group level, I cannot do it lower down because that's implemented in the Tabs JS file and I would not want to modify it (if possible).

    Read the article

  • DIY intellisense on XPath - design approach? (WinForms app)

    - by Cheeso
    I read the DIY Intellisense article on code project, which was referenced from the Mimic Intellisense? question here on SO. I wanna do something similar, DIY intellisense, but for XPath not C#. The design approach used there makes sense to me: maintain a tree of terms, and when the "completion character" is pressed, in the case of C#, a dot, pop up the list of possible completions in a textfield. Then allow the user to select a term from the textfield either through typing, arrow keys, or double-click. How would you apply this to XPath autocompletion? should there be an autocomplete key? In XPath there is no obvious separator key like "dot" in C#. should the popup be triggered explicitly in some other way, let's say ctrl-. ? or should the parser try to autocomplete continuously? If I do the autocomplete continuously, how to scale it properly? There are 93 xpath functions, not counting overloads. I certainly don't want to popup a list of 93 choices. How do I decide when I've narrowed it enough to offer a useful lsit of possible completions? How to populate the tree of possible completions? For C#, it's easy: walk the type space via reflection. At a first level, the "syntax tree" for C# seems like a single tree, and the list of completions at any point depends on the graph of nodes you've traversed to that point. Typing System.Console. traverses to a certain node in that tree, and the list of completions is the set of child nodes available at that node in the tree. On the other hand, the xpath syntax seems like it is a "flatter" tree - function names, axis names, literals. Does this make sense? what have I not considered?

    Read the article

  • Binary files printing and desired precision

    - by yCalleecharan
    Hi, I'm printing a variable say z1 which is a 1-D array containing floating point numbers to a text file so that I can import into Matlab or GNUPlot for plotting. I've heard that binary files (.dat) are smaller than .txt files. The definition that I currently use for printing to a .txt file is: void create_out_file(const char *file_name, const long double *z1, size_t z_size){ FILE *out; size_t i; if((out = _fsopen(file_name, "w+", _SH_DENYWR)) == NULL){ fprintf(stderr, "***> Open error on output file %s", file_name); exit(-1); } for(i = 0; i < z_size; i++) fprintf(out, "%.16Le\n", z1[i]); fclose(out); } I have three questions: Are binary files really more compact than text files?; If yes, I would like to know how to modify the above code so that I can print the values of the array z1 to a binary file. I've read that fprintf has to be replaced with fwrite. My output file say dodo.dat should contain the values of array z1 with one floating number per line. I have %.16Le up in my code but I think that %.15Le is right as I have 15 precision digits with long double. I have put a dot (.) in the width position as I believe that this allows expansion to an arbitrary field to hold the desired number. Am I right? As an example with %.16Le, I can have an output like 1.0047914240730432e-002 which gives me 16 precision digits and the width of the field has the right width to display the number correctly. Is placing a dot (.) in the width position instead of a width value a good practice? Thanks a lot...

    Read the article

  • What most efficient method to find a that triangle which contains the given point?

    - by Christo
    Given the triangle with vertices (a,b,c): c / \ / \ / \ a - - - b Which is then subdivided into four triangles by halving each of the edges: c / \ / \ ca / \ bc /\ - - - /\ / \ / \ / \ / \ a- - - - ab - - - -b Wich results in four triangles (a, ab, ca), (b, bc, ab), (c, ca, bc), (ab, bc, ca). Now given a point p. How do I determine in which triangle p lies, given that p is within the outer triangle (a, b, c)? Currently I intend to use ab as the origin. Check whether it is to the left of right of the line "ca - ab" using the perp of "ca - ab" and checking the sign against the dot product of "ab - a" and the perp vector and the vector "p - ab". If it is the same or the dot product is zero then it must be in (a, ab, ca)... Continue with this procedure with the other outer triangles (b, ba, ab) & (c, ca, ba). In the end if it didn't match with these it must be contained within the inner triangle (ab, bc, ca). Is there a better way to do it?

    Read the article

  • Problem deleting .svn directories on Windows XP

    - by John L
    I don't seem to have this problem on my home laptop with Windows XP, but then I don't do much work there. On my work laptop, with Windows XP, I have a problem deleting directories when it has directories that contain .svn directories. When it does eventually work, I have the same issue emptying the Recycle bin. The pop-up window says "Cannot remove folder text-base: The directory is not empty" or prop-base or other folder under .svn This continued to happen after I changed config of TortoiseSVN to stop the TSVN cache process from running and after a reboot of the system. Multiple tries will eventually get it done. But it is a huge annoyance because there are other issues I'm trying to fix, so I'm hoping it is related. 'Connected Backup PC' also runs on the laptop and the real problem is that cygwin commands don't always work. So I keep thinking the dot files and dot directories have something to do with both problems and/or the backup or other process scanning the directories is doing it. But I've run out of ideas of what to try or how to identify the problem further.

    Read the article

  • How can I programmatically get the connection status of OSX network services?

    - by BigBrainz
    In the OS X System Preferences, when I click on 'Network' I see a green dot by 'Ethernet', and red dots by 'AirPort' and 'FireWire'. This is because I turned off AirPort and FireWire, as I access networks and the Internet via Ethernet. I need to programmatically determine which of these network services displayed in System Preferences have green dots and which have red dots. For Ethernet and FireWire the displayed status is 'Connected' or 'Not Connected', and for AirPort the displayed status is 'On' or 'Off'. Perhaps other network services have other status labels. I have picked through all the plist files in '/Library/Preferences/SystemConfiguration', particularly 'preferences.plist' and 'NetworkInterfaces.plist'. I can get all sorts of information there, such as the Location set, network service order, proxy information (which is also important to my task), but I cannot find how to determine whether a given network service is on or off--the equivalent of having the green dot displayed. I have also tried using System Configuration framework, specifically the SCNetworkConnectionGetStatus function, but all I get are invalid connection statuses. Does anyone know how to actually retrieve this connection status information? Thanks.

    Read the article

  • Show a number with specified number of significant digits

    - by dreeves
    I use the following function to convert a number to a string for display purposes (don't use scientific notation, don't use a trailing dot, round as specified): (* Show Number. Convert to string w/ no trailing dot. Round to the nearest r. *) Unprotect[Round]; Round[x_,0] := x; Protect[Round]; shn[x_, r_:0] := StringReplace[ ToString@NumberForm[Round[N@x,r], ExponentFunction->(Null&)], re@"\\.$"->""] (Note that re is an alias for RegularExpression.) That's been serving me well for years. But sometimes I don't want to specify the number of digits to round to, rather I want to specify a number of significant figures. For example, 123.456 should display as 123.5 but 0.00123456 should display as 0.001235. To get really fancy, I might want to specify significant digits both before and after the decimal point. For example, I might want .789 to display as 0.8 but 789.0 to display as 789 rather than 800. Do you have a handy utility function for this sort of thing, or suggestions for generalizing my function above? Related: Suppressing a trailing "." in numerical output from Mathematica

    Read the article

  • Emacs - nxhtml-mode - memory full

    - by mbutz
    working with nxhtml-mode in emacs, I get problems since a few weeks. While working emacs pauses unexpectingly until showing a message in the mode line "!MEM FULL!"; obviously nxhtml-mode is filling up the memory until emacs stopps to work. I am working with html, php and css files. I have no idea how I could debug this problem in a meaningfull way. Also I seem to be the only one to have this problem, because googling did not deliver any answers to this question. I am using emacs 2.32 on an Linux Mint 11 system. I can not find out the verson of nxhtml, it says revision 829 downloaded from http://bazaar.launchpad.net/~nxhtml/nxhtml/main/revision/829. I set up a test scenario with a minimal dot-emacs just to test the nxhtml-mode. It seemed to be alright, but it does not reflect my productive set up. It would probably take a week or so to gradually include everything I used to use within emacs (e.g. org-mode) while testing whether nxhtml-mode does not like anything, which is called in my dot-emacs file. Is there another way? Can I find out, what causes the memory overload? Does anyone has similar problems using nxhtml-mode? Greetings Martin

    Read the article

  • Simplex Noise Help

    - by Alex Larsen
    Im Making A Minecraft Like Gae In XNA C# And I Need To Generate Land With Caves This Is The Code For Simplex I Have /// <summary> /// 1D simplex noise /// </summary> /// <param name="x"></param> /// <returns></returns> public static float Generate(float x) { int i0 = FastFloor(x); int i1 = i0 + 1; float x0 = x - i0; float x1 = x0 - 1.0f; float n0, n1; float t0 = 1.0f - x0 * x0; t0 *= t0; n0 = t0 * t0 * grad(perm[i0 & 0xff], x0); float t1 = 1.0f - x1 * x1; t1 *= t1; n1 = t1 * t1 * grad(perm[i1 & 0xff], x1); // The maximum value of this noise is 8*(3/4)^4 = 2.53125 // A factor of 0.395 scales to fit exactly within [-1,1] return 0.395f * (n0 + n1); } /// <summary> /// 2D simplex noise /// </summary> /// <param name="x"></param> /// <param name="y"></param> /// <returns></returns> public static float Generate(float x, float y) { const float F2 = 0.366025403f; // F2 = 0.5*(sqrt(3.0)-1.0) const float G2 = 0.211324865f; // G2 = (3.0-Math.sqrt(3.0))/6.0 float n0, n1, n2; // Noise contributions from the three corners // Skew the input space to determine which simplex cell we're in float s = (x + y) * F2; // Hairy factor for 2D float xs = x + s; float ys = y + s; int i = FastFloor(xs); int j = FastFloor(ys); float t = (float)(i + j) * G2; float X0 = i - t; // Unskew the cell origin back to (x,y) space float Y0 = j - t; float x0 = x - X0; // The x,y distances from the cell origin float y0 = y - Y0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1) else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1) // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords float y1 = y0 - j1 + G2; float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords float y2 = y0 - 1.0f + 2.0f * G2; // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds int ii = i % 256; int jj = j % 256; // Calculate the contribution from the three corners float t0 = 0.5f - x0 * x0 - y0 * y0; if (t0 < 0.0f) n0 = 0.0f; else { t0 *= t0; n0 = t0 * t0 * grad(perm[ii + perm[jj]], x0, y0); } float t1 = 0.5f - x1 * x1 - y1 * y1; if (t1 < 0.0f) n1 = 0.0f; else { t1 *= t1; n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1]], x1, y1); } float t2 = 0.5f - x2 * x2 - y2 * y2; if (t2 < 0.0f) n2 = 0.0f; else { t2 *= t2; n2 = t2 * t2 * grad(perm[ii + 1 + perm[jj + 1]], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 40.0f * (n0 + n1 + n2); // TODO: The scale factor is preliminary! } public static float Generate(float x, float y, float z) { // Simple skewing factors for the 3D case const float F3 = 0.333333333f; const float G3 = 0.166666667f; float n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in float s = (x + y + z) * F3; // Very nice and simple skew factor for 3D float xs = x + s; float ys = y + s; float zs = z + s; int i = FastFloor(xs); int j = FastFloor(ys); int k = FastFloor(zs); float t = (float)(i + j + k) * G3; float X0 = i - t; // Unskew the cell origin back to (x,y,z) space float Y0 = j - t; float Z0 = k - t; float x0 = x - X0; // The x,y,z distances from the cell origin float y0 = y - Y0; float z0 = z - Z0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. // Determine which simplex we are in. int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords /* This code would benefit from a backport from the GLSL version! */ if (x0 >= y0) { if (y0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order } else { // x0<y0 if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where // c = 1/6. float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords float y1 = y0 - j1 + G3; float z1 = z0 - k1 + G3; float x2 = x0 - i2 + 2.0f * G3; // Offsets for third corner in (x,y,z) coords float y2 = y0 - j2 + 2.0f * G3; float z2 = z0 - k2 + 2.0f * G3; float x3 = x0 - 1.0f + 3.0f * G3; // Offsets for last corner in (x,y,z) coords float y3 = y0 - 1.0f + 3.0f * G3; float z3 = z0 - 1.0f + 3.0f * G3; // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds int ii = i % 256; int jj = j % 256; int kk = k % 256; // Calculate the contribution from the four corners float t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0; if (t0 < 0.0f) n0 = 0.0f; else { t0 *= t0; n0 = t0 * t0 * grad(perm[ii + perm[jj + perm[kk]]], x0, y0, z0); } float t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1; if (t1 < 0.0f) n1 = 0.0f; else { t1 *= t1; n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]], x1, y1, z1); } float t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2; if (t2 < 0.0f) n2 = 0.0f; else { t2 *= t2; n2 = t2 * t2 * grad(perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]], x2, y2, z2); } float t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3; if (t3 < 0.0f) n3 = 0.0f; else { t3 *= t3; n3 = t3 * t3 * grad(perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]], x3, y3, z3); } // Add contributions from each corner to get the final noise value. // The result is scaled to stay just inside [-1,1] return 32.0f * (n0 + n1 + n2 + n3); // TODO: The scale factor is preliminary! } private static byte[] perm = new byte[512] { 151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180, 151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180 }; private static int FastFloor(float x) { return (x > 0) ? ((int)x) : (((int)x) - 1); } private static float grad(int hash, float x) { int h = hash & 15; float grad = 1.0f + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0 if ((h & 8) != 0) grad = -grad; // Set a random sign for the gradient return (grad * x); // Multiply the gradient with the distance } private static float grad(int hash, float x, float y) { int h = hash & 7; // Convert low 3 bits of hash code float u = h < 4 ? x : y; // into 8 simple gradient directions, float v = h < 4 ? y : x; // and compute the dot product with (x,y). return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -2.0f * v : 2.0f * v); } private static float grad(int hash, float x, float y, float z) { int h = hash & 15; // Convert low 4 bits of hash code into 12 simple float u = h < 8 ? x : y; // gradient directions, and compute dot product. float v = h < 4 ? y : h == 12 || h == 14 ? x : z; // Fix repeats at h = 12 to 15 return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v); } private static float grad(int hash, float x, float y, float z, float t) { int h = hash & 31; // Convert low 5 bits of hash code into 32 simple float u = h < 24 ? x : y; // gradient directions, and compute dot product. float v = h < 16 ? y : z; float w = h < 8 ? z : t; return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v) + ((h & 4) != 0 ? -w : w); } This Is My World Generation Code Block[,] BlocksInMap = new Block[1024, 256]; public bool IsWorldGenerated = false; Random r = new Random(); private void RunThread() { for (int BH = 0; BH <= 256; BH++) { for (int BW = 0; BW <= 1024; BW++) { Block b = new Block(); if (BH >= 192) { } BlocksInMap[BW, BH] = b; } } IsWorldGenerated = true; } public void GenWorld() { new Thread(new ThreadStart(RunThread)).Start(); } And This Is A Example Of How I Set Blocks Block b = new Block(); b.BlockType = = Block.BlockTypes.Air; This Is A Example Of How I Set Models foreach (Block b in MyWorld) { switch(b.BlockType) { case Block.BlockTypes.Dirt: b.Model = DirtModel; break; ect. } } How Would I Use These To Generate To World (The Block Array) And If Possible Thread It More? btw It's 1024 Wide And 256 Tall

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • Need AutoHotkey scripts

    - by Carlos
    I'm looking for someone that knows AutoHotkey that will help me create the following scripts on Windows 7; 1) Minimize window (using control/dot) 2) Closing active window (using control/left arrow) 3) Closing all windows (using control/right arrow) I've looked at their web site but know nothing about programing so I don't understand the symbols or how to use them. Any help would be appreciated. Thanks Carlos

    Read the article

  • Modify Sublime Text 2 whitespace representation?

    - by Mike Grace
    Is there a way to modify the whitespace representation characters so I can change it from dots and dashes to something else? Because I currently have whitespace characters being drawn always, it looks like this. I don't need it turned off, just interested in changing how it's represented. I like how TextMate shows invisible characters but I would be ok with just being able to change the spaces to show a blank space instead of a dot.

    Read the article

< Previous Page | 85 86 87 88 89 90 91 92 93 94 95 96  | Next Page >