Search Results

Search found 9047 results on 362 pages for 'double math'.

Page 9/362 | < Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >

  • How to show that the double-checked-lock pattern with Dictionary's TryGetValue is not threadsafe in

    - by Amir
    Recently I've seen some C# projects that use a double-checked-lock pattern on a Dictionary. Something like this: private static readonly object _lock = new object(); private static volatile IDictionary<string, object> _cache = new Dictionary<string, object>(); public static object Create(string key) { object val; if (!_cache.TryGetValue(key, out val)) { lock (_lock) { if (!_cache.TryGetValue(key, out val)) { val = new object(); // factory construction based on key here. _cache.Add(key, val); } } } return val; } This code is incorrect, since the Dictionary can be "growing" the collection in _cache.Add() while _cache.TryGetValue (outside the lock) is iterating over the collection. It might be extremely unlikely in many situations, but is still wrong. Is there a simple program to demonstrate that this code fails? Does it make sense to incorporate this into a unit test? And if so, how?

    Read the article

  • Double-Escaped Unicode Javascript Issue

    - by Jeffrey Winter
    I am having a problem displaying a Javascript string with embedded Unicode character escape sequences (\uXXXX) where the initial "\" character is itself escaped as "&#92;" What do I need to do to transform the string so that it properly evaluates the escape sequences and produces output with the correct Unicode character? For example, I am dealing with input such as: "this is a &#92;u201ctest&#92;u201d"; attempting to decode the "&#92;" using a regex expression, e.g.: var out = text.replace('/&#92;/g','\'); results in the output text: "this is a \u201ctest\u201d"; that is, the Unicode escape sequences are displayed as actual escape sequences, not the double quote characters I would like.

    Read the article

  • getSelection() by Double Click or manual selection is not the same

    - by sanceray3
    Hi all, I allow me to ask a question, because I have a little probleme with an function which returns me the parent of a selection. $('input[type=button].btn_transform').click(function(){ var selectionObj = getSelected();//Function which gives me selection var theParent=selectionObj.anchorNode.parentNode; alert (theParent); }) For example with this sentence : "the cat is <strong>gray</strong>." If I select manually the word "gray" and click on my button, the function returns me [object HTMLSpanElement]. But if I select the same word by double clicking, the function returns me [object HTMLParagraphElement]. Do you know why ? Thanks a lot.

    Read the article

  • Watir: Need to double click on an element to open custom popup

    - by Namratha
    Hello, I am a newbie in WATIR. The problem I am facing is - The application I am testing has thumbnails (like Windows icons) placed on the page and I need to double click it. On doing that, an custom popup (ajax popup implemented in javascript) will open. The fire_event("ondblclick") is not working for me. I also tried 'click' twice but that too is not helping. Is there any other way of handling this? Your help is highly appreciated.

    Read the article

  • split double in c wihout any libary

    - by DoomStone
    Hello I have a question for a c programmer out there, we have a tast at school to create a soft real time system in an operation system made by our teacher. Well that is all fine and dandy, we have chosen to create a system that calcuate how many unites of medicine a diabetic need based on his or hers blood sugar. It does not need to be correct just that we have the idea of a real time system :D But we have hit a little snag our formula for calculating the units of medicine is [blood sugar] * 1.2 But the only way we can send messages between processes is via a structure that contains 8 longs, but here is where my knowledge of c ends, we need for some way to split this double into 2 longs, example: the whole number in long 0 and the decimals in long 1 and then assemble it on the other side. But I have no idea who to do this, and therefore need a little help. We have tried but we do not have access to c standard libraries

    Read the article

  • Forcing positive sign on double in .Net String.Format

    - by Max Yaffe
    Context: .Net, C# I want to print a complex number made from two doubles. The sign needs to show on the imaginary part. I'd like to use the default double formatting for each part to minimize the number of characters. I tried using String.Format("{0:+G;-G}{1:+G;-G}j", real, imaginary) but this ended up printing: "+G-Gj". Not quite what I wanted. Is there any way to do this using the G specifier or do I need to do a custom format which would sacrifice auto-switching the exponent, e.g. {1:+#.######e###;-#.######e###}j"

    Read the article

  • Loss of precision - int -> float or double

    - by stan
    I have an exam question i am revising for and the question is for 4 marks "In java we can assign a int to a double or a float". Will this ever loose infromation and why? I have put that because ints are normally of fixed length or size - the precision for sotring data is finite, where storing information in floating point can be infinite, essentially we loose infromation because of this Now i am a little sketchy as to whetehr or not i am hitting the right areas here. I very sure it will loose precision but i cant exactly put my finger on why. Can i getsome help please Thanks

    Read the article

  • How do you set a double value to a "non-value"

    - by Ankur
    I have two double data elements in an object. Sometimes they are set with a proper value and sometimes not. When the form field from which they values are received is not filled I want to set them to some value that tells me, during the rest of the code that the form fields were left empty. I can't set the values to null as that gives an error, is there some way I can make them 'Undefined'. PS. Not only am I not sure that this is possible, it might not also make sense. But if there is some best practice for such a situation I would be keen to hear it.

    Read the article

  • Printing double variable contents

    - by Adil
    I tried following code snippet and output is surprising me: #include <stdio.h> #include <math.h> int main() { double num; unsigned char ch; ch = 19; num = 1.0E+20 ; num += ch * 1.0E+18; printf("E18 = %lf \n",num); printf("E18 = %e \n",num); num = 11.0E+21 ; num += ch * 1.0E+19; printf("E19 = %lf <------\n",num); printf("E19 = %e <------\n",num); num = 11.0E+22 ; num += ch * 1.0E+20; printf("E20 = %lf\n",num); printf("E20 = %e\n",num); num = 11.0E+23 ; num += ch * 1.0E+21; printf("E21 = %lf\n",num); printf("E21 = %e\n",num); num = 11.0E+24 ; num += ch * 1.0E+22; printf("E22 = %lf <------\n",num); printf("E22 = %e <------\n",num); return 0; } The output of the program: E18 = 119000000000000000000.000000 E18 = 1.190000e+20 E19 = 11190000000000000524288.000000 <------ E19 = 1.119000e+22 <------ E20 = 111900000000000001048576.000000 E20 = 1.119000e+23 E21 = 1119000000000000044040192.000000 E21 = 1.119000e+24 E22 = 11189999999999999366660096.000000 <------ E22 = 1.119000e+25 <------ Why the data corrupted when printed while in exponent form its OK

    Read the article

  • Point inside Oriented Bounding Box?

    - by Milo
    I have an OBB2D class based on SAT. This is my point in OBB method: public boolean pointInside(float x, float y) { float newy = (float) (Math.sin(angle) * (y - center.y) + Math.cos(angle) * (x - center.x)); float newx = (float) (Math.cos(angle) * (x - center.x) - Math.sin(angle) * (y - center.y)); return (newy > center.y - (getHeight() / 2)) && (newy < center.y + (getHeight() / 2)) && (newx > center.x - (getWidth() / 2)) && (newx < center.x + (getWidth() / 2)); } public boolean pointInside(Vector2D v) { return pointInside(v.x,v.y); } Here is the rest of the class; the parts that pertain: public class OBB2D { private Vector2D projVec = new Vector2D(); private static Vector2D projAVec = new Vector2D(); private static Vector2D projBVec = new Vector2D(); private static Vector2D tempNormal = new Vector2D(); private Vector2D deltaVec = new Vector2D(); private ArrayList<Vector2D> collisionPoints = new ArrayList<Vector2D>(); // Corners of the box, where 0 is the lower left. private Vector2D corner[] = new Vector2D[4]; private Vector2D center = new Vector2D(); private Vector2D extents = new Vector2D(); private RectF boundingRect = new RectF(); private float angle; //Two edges of the box extended away from corner[0]. private Vector2D axis[] = new Vector2D[2]; private double origin[] = new double[2]; public OBB2D(float centerx, float centery, float w, float h, float angle) { for(int i = 0; i < corner.length; ++i) { corner[i] = new Vector2D(); } for(int i = 0; i < axis.length; ++i) { axis[i] = new Vector2D(); } set(centerx,centery,w,h,angle); } public OBB2D(float left, float top, float width, float height) { for(int i = 0; i < corner.length; ++i) { corner[i] = new Vector2D(); } for(int i = 0; i < axis.length; ++i) { axis[i] = new Vector2D(); } set(left + (width / 2), top + (height / 2),width,height,0.0f); } public void set(float centerx,float centery,float w, float h,float angle) { float vxx = (float)Math.cos(angle); float vxy = (float)Math.sin(angle); float vyx = (float)-Math.sin(angle); float vyy = (float)Math.cos(angle); vxx *= w / 2; vxy *= (w / 2); vyx *= (h / 2); vyy *= (h / 2); corner[0].x = centerx - vxx - vyx; corner[0].y = centery - vxy - vyy; corner[1].x = centerx + vxx - vyx; corner[1].y = centery + vxy - vyy; corner[2].x = centerx + vxx + vyx; corner[2].y = centery + vxy + vyy; corner[3].x = centerx - vxx + vyx; corner[3].y = centery - vxy + vyy; this.center.x = centerx; this.center.y = centery; this.angle = angle; computeAxes(); extents.x = w / 2; extents.y = h / 2; computeBoundingRect(); } //Updates the axes after the corners move. Assumes the //corners actually form a rectangle. private void computeAxes() { axis[0].x = corner[1].x - corner[0].x; axis[0].y = corner[1].y - corner[0].y; axis[1].x = corner[3].x - corner[0].x; axis[1].y = corner[3].y - corner[0].y; // Make the length of each axis 1/edge length so we know any // dot product must be less than 1 to fall within the edge. for (int a = 0; a < axis.length; ++a) { float l = axis[a].length(); float ll = l * l; axis[a].x = axis[a].x / ll; axis[a].y = axis[a].y / ll; origin[a] = corner[0].dot(axis[a]); } } public void computeBoundingRect() { boundingRect.left = JMath.min(JMath.min(corner[0].x, corner[3].x), JMath.min(corner[1].x, corner[2].x)); boundingRect.top = JMath.min(JMath.min(corner[0].y, corner[1].y),JMath.min(corner[2].y, corner[3].y)); boundingRect.right = JMath.max(JMath.max(corner[1].x, corner[2].x), JMath.max(corner[0].x, corner[3].x)); boundingRect.bottom = JMath.max(JMath.max(corner[2].y, corner[3].y),JMath.max(corner[0].y, corner[1].y)); } public void set(RectF rect) { set(rect.centerX(),rect.centerY(),rect.width(),rect.height(),0.0f); } // Returns true if other overlaps one dimension of this. private boolean overlaps1Way(OBB2D other) { for (int a = 0; a < axis.length; ++a) { double t = other.corner[0].dot(axis[a]); // Find the extent of box 2 on axis a double tMin = t; double tMax = t; for (int c = 1; c < corner.length; ++c) { t = other.corner[c].dot(axis[a]); if (t < tMin) { tMin = t; } else if (t > tMax) { tMax = t; } } // We have to subtract off the origin // See if [tMin, tMax] intersects [0, 1] if ((tMin > 1 + origin[a]) || (tMax < origin[a])) { // There was no intersection along this dimension; // the boxes cannot possibly overlap. return false; } } // There was no dimension along which there is no intersection. // Therefore the boxes overlap. return true; } public void moveTo(float centerx, float centery) { float cx,cy; cx = center.x; cy = center.y; deltaVec.x = centerx - cx; deltaVec.y = centery - cy; for (int c = 0; c < 4; ++c) { corner[c].x += deltaVec.x; corner[c].y += deltaVec.y; } boundingRect.left += deltaVec.x; boundingRect.top += deltaVec.y; boundingRect.right += deltaVec.x; boundingRect.bottom += deltaVec.y; this.center.x = centerx; this.center.y = centery; computeAxes(); } // Returns true if the intersection of the boxes is non-empty. public boolean overlaps(OBB2D other) { if(right() < other.left()) { return false; } if(bottom() < other.top()) { return false; } if(left() > other.right()) { return false; } if(top() > other.bottom()) { return false; } if(other.getAngle() == 0.0f && getAngle() == 0.0f) { return true; } return overlaps1Way(other) && other.overlaps1Way(this); } public Vector2D getCenter() { return center; } public float getWidth() { return extents.x * 2; } public float getHeight() { return extents.y * 2; } public void setAngle(float angle) { set(center.x,center.y,getWidth(),getHeight(),angle); } public float getAngle() { return angle; } public void setSize(float w,float h) { set(center.x,center.y,w,h,angle); } public float left() { return boundingRect.left; } public float right() { return boundingRect.right; } public float bottom() { return boundingRect.bottom; } public float top() { return boundingRect.top; } public RectF getBoundingRect() { return boundingRect; } public boolean overlaps(float left, float top, float right, float bottom) { if(right() < left) { return false; } if(bottom() < top) { return false; } if(left() > right) { return false; } if(top() > bottom) { return false; } return true; } public static float distance(float ax, float ay,float bx, float by) { if (ax < bx) return bx - ay; else return ax - by; } public Vector2D project(float ax, float ay) { projVec.x = Float.MAX_VALUE; projVec.y = Float.MIN_VALUE; for (int i = 0; i < corner.length; ++i) { float dot = Vector2D.dot(corner[i].x,corner[i].y,ax,ay); projVec.x = JMath.min(dot, projVec.x); projVec.y = JMath.max(dot, projVec.y); } return projVec; } public Vector2D getCorner(int c) { return corner[c]; } public int getNumCorners() { return corner.length; } public boolean pointInside(float x, float y) { float newy = (float) (Math.sin(angle) * (y - center.y) + Math.cos(angle) * (x - center.x)); float newx = (float) (Math.cos(angle) * (x - center.x) - Math.sin(angle) * (y - center.y)); return (newy > center.y - (getHeight() / 2)) && (newy < center.y + (getHeight() / 2)) && (newx > center.x - (getWidth() / 2)) && (newx < center.x + (getWidth() / 2)); } public boolean pointInside(Vector2D v) { return pointInside(v.x,v.y); } public ArrayList<Vector2D> getCollsionPoints(OBB2D b) { collisionPoints.clear(); for(int i = 0; i < corner.length; ++i) { if(b.pointInside(corner[i])) { collisionPoints.add(corner[i]); } } for(int i = 0; i < b.corner.length; ++i) { if(pointInside(b.corner[i])) { collisionPoints.add(b.corner[i]); } } return collisionPoints; } }; What could be wrong? When I getCollisionPoints for 2 OBBs I know are penetrating, it returns no points. Thanks

    Read the article

  • Dangling pointers and double free

    - by user151410
    After some painful experiences, I understand the problem of dangling pointers and double free. I am seeking proper solutions. aStruct has a number of fields including other arrays. aStruct *A=NULL, *B = NULL; A = (aStruct*) calloc(1, sizeof(sStruct)); B = A; free_aStruct(A); ... //bunch of other code in various places. ... free_aStruct(B); Is there any way to write free_aStruct(X) so that free_aStruct(B) exists gracefully?? void free_aStruct(aStruct *X){ if (X ! = NULL){ if (X->a != NULL){free(X->a); x->a = NULL;} free(X); X = NULL; } } Doing above only sets A = NULL when free_aStruct(A); is called. B is now dangling. How can this situation be avoided / remedied? Is reference counting the only viable solution? or, are there other "defensive" free approaches, to prevent free_aStruct(B); from exploding? Thanks, Russ

    Read the article

  • ASP.Net - Help with datagrid/checkboxes/double submit

    - by Gareth D
    We have a simple datagrid. Each row has a checkbox. The checkbox is set to autopostback, and the code-behind has an event handler for the checkbox check-changed event. This all works as expected, nothing complicated. However, we want to disable the checkboxes as soon as one is checked to prevent a double submit i.e. check box checked, all checkboxes are disabled via client side javascript, form submitted. To achieve this I we are injecting some code into the onclick event as follows (note that the alert is just for testing!): Protected Sub DgAccounts_ItemCreated(ByVal sender As System.Object, ByVal e As System.Web.UI.WebControls.DataGridItemEventArgs) Handles DgAccounts.ItemCreated If e.Item.ItemType = ListItemType.Item Or e.Item.ItemType = ListItemType.AlternatingItem Then Dim chk As CheckBox = CType(e.Item.FindControl("chkItemChecked"), CheckBox) chk.Attributes.Add("onclick", "alert('fired ...');DisableAllDataGridCheckBoxes();") End If End Sub When inspecting the source of the rendered page we get the following: <input id="DgAccounts__ctl2_chkItemChecked" type="checkbox" name="DgAccounts:_ctl2:chkItemChecked" onclick="alert('fired ...');DisableAllDataGridCheckBoxes();setTimeout('__doPostBack(\'DgAccounts$_ctl2$chkItemChecked\',\'\')', 0)" language="javascript" /> It all appears in order, however the server side event does not fire – I believe this is due to the checkbox being disabled, as if we just leave the alert in and remove the call to disable the checkbox it all works fine. Can I force the check-changed event to fire even though the check box is disabled?

    Read the article

  • Efficiency of Java "Double Brace Initialization"?

    - by Jim Ferrans
    In Hidden Features of Java the top answer mentions Double Brace Initialization, with a very enticing syntax: Set<String> flavors = new HashSet<String>() {{ add("vanilla"); add("strawberry"); add("chocolate"); add("butter pecan"); }}; This idiom creates an anonymous inner class with just an instance initializer in it, which "can use any [...] methods in the containing scope". Main question: Is this as inefficient as it sounds? Should its use be limited to one-off initializations? (And of course showing off!) Second question: The new HashSet must be the "this" used in the instance initializer ... can anyone shed light on the mechanism? Third question: Is this idiom too obscure to use in production code? Summary: Very, very nice answers, thanks everyone. On question (3), people felt the syntax should be clear (though I'd recommend an occasional comment, especially if your code will pass on to developers who may not be familiar with it). On question (1), The generated code should run quickly. The extra .class files do cause jar file clutter, and slow program startup slightly (thanks to coobird for measuring that). Thilo pointed out that garbage collection can be affected, and the memory cost for the extra loaded classes may be a factor in some cases. Question (2) turned out to be most interesting to me. If I understand the answers, what's happening in DBI is that the anonymous inner class extends the class of the object being constructed by the new operator, and hence has a "this" value referencing the instance being constructed. Very neat. Overall, DBI strikes me as something of an intellectual curiousity. Coobird and others point out you can achieve the same effect with Arrays.asList, varargs methods, Google Collections, and the proposed Java 7 Collection literals. Newer JVM languages like Scala, JRuby, and Groovy also offer concise notations for list construction, and interoperate well with Java. Given that DBI clutters up the classpath, slows down class loading a bit, and makes the code a tad more obscure, I'd probably shy away from it. However, I plan to spring this on a friend who's just gotten his SCJP and loves good natured jousts about Java semantics! ;-) Thanks everyone!

    Read the article

  • More Fun With Math

    - by PointsToShare
    More Fun with Math   The runaway student – three different ways of solving one problem Here is a problem I read in a Russian site: A student is running away. He is moving at 1 mph. Pursuing him are a lion, a tiger and his math teacher. The lion is 40 miles behind and moving at 6 mph. The tiger is 28 miles behind and moving at 4 mph. His math teacher is 30 miles behind and moving at 5 mph. Who will catch him first? Analysis Obviously we have a set of three problems. They are all basically the same, but the details are different. The problems are of the same class. Here is a little excursion into computer science. One of the things we strive to do is to create solutions for classes of problems rather than individual problems. In your daily routine, you call it re-usability. Not all classes of problems have such solutions. If a class has a general (re-usable) solution, it is called computable. Otherwise it is unsolvable. Within unsolvable classes, we may still solve individual (some but not all) problems, albeit with different approaches to each. Luckily the vast majority of our daily problems are computable, and the 3 problems of our runaway student belong to a computable class. So, let’s solve for the catch-up time by the math teacher, after all she is the most frightening. She might even make the poor runaway solve this very problem – perish the thought! Method 1 – numerical analysis. At 30 miles and 5 mph, it’ll take her 6 hours to come to where the student was to begin with. But by then the student has advanced by 6 miles. 6 miles require 6/5 hours, but by then the student advanced by another 6/5 of a mile as well. And so on and so forth. So what are we to do? One way is to write code and iterate it until we have solved it. But this is an infinite process so we’ll end up with an infinite loop. So what to do? We’ll use the principles of numerical analysis. Any calculator – your computer included – has a limited number of digits. A double floating point number is good for about 14 digits. Nothing can be computed at a greater accuracy than that. This means that we will not iterate ad infinidum, but rather to the point where 2 consecutive iterations yield the same result. When we do financial computations, we don’t even have to go that far. We stop at the 10th of a penny.  It behooves us here to stop at a 10th of a second (100 milliseconds) and this will how we will avoid an infinite loop. Interestingly this alludes to the Zeno paradoxes of motion – in particular “Achilles and the Tortoise”. Zeno says exactly the same. To catch the tortoise, Achilles must always first come to where the tortoise was, but the tortoise keeps moving – hence Achilles will never catch the tortoise and our math teacher (or lion, or tiger) will never catch the student, or the policeman the thief. Here is my resolution to the paradox. The distance and time in each step are smaller and smaller, so the student will be caught. The only thing that is infinite is the iterative solution. The race is a convergent geometric process so the steps are diminishing, but each step in the solution takes the same amount of effort and time so with an infinite number of steps, we’ll spend an eternity solving it.  This BTW is an original thought that I have never seen before. But I digress. Let’s simply write the code to solve the problem. To make sure that it runs everywhere, I’ll do it in JavaScript. function LongCatchUpTime(D, PV, FV) // D is Distance; PV is Pursuers Velocity; FV is Fugitive’ Velocity {     var t = 0;     var T = 0;     var d = parseFloat(D);     var pv = parseFloat (PV);     var fv = parseFloat (FV);     t = d / pv;     while (t > 0.000001) //a 10th of a second is 1/36,000 of an hour, I used 1/100,000     {         T = T + t;         d = t * fv;         t = d / pv;     }     return T;     } By and large, the higher the Pursuer’s velocity relative to the fugitive, the faster the calculation. Solving this with the 10th of a second limit yields: 7.499999232000001 Method 2 – Geometric Series. Each step in the iteration above is smaller than the next. As you saw, we stopped iterating when the last step was small enough, small enough not to really matter.  When we have a sequence of numbers in which the ratio of each number to its predecessor is fixed we call the sequence geometric. When we are looking at the sum of sequence, we call the sequence of sums series.  Now let’s look at our student and teacher. The teacher runs 5 times faster than the student, so with each iteration the distance between them shrinks to a fifth of what it was before. This is a fixed ratio so we deal with a geometric series.  We normally designate this ratio as q and when q is less than 1 (0 < q < 1) the sum of  + … +  is  – 1) / (q – 1). When q is less than 1, it is easier to use ) / (1 - q). Now, the steps are 6 hours then 6/5 hours then 6/5*5 and so on, so q = 1/5. And the whole series is multiplied by 6. Also because q is less than 1 , 1/  diminishes to 0. So the sum is just  / (1 - q). or 1/ (1 – 1/5) = 1 / (4/5) = 5/4. This times 6 yields 7.5 hours. We can now continue with some algebra and take it back to a simpler formula. This is arduous and I am not going to do it here. Instead let’s do some simpler algebra. Method 3 – Simple Algebra. If the time to capture the fugitive is T and the fugitive travels at 1 mph, then by the time the pursuer catches him he travelled additional T miles. Time is distance divided by speed, so…. (D + T)/V = T  thus D + T = VT  and D = VT – T = (V – 1)T  and T = D/(V – 1) This “strangely” coincides with the solution we just got from the geometric sequence. This is simpler ad faster. Here is the corresponding code. function ShortCatchUpTime(D, PV, FV) {     var d = parseFloat(D);     var pv = parseFloat (PV);     var fv = parseFloat (FV);     return d / (pv - fv); } The code above, for both the iterative solution and the algebraic solution are actually for a larger class of problems.  In our original problem the student’s velocity (speed) is 1 mph. In the code it may be anything as long as it is less than the pursuer’s velocity. As long as PV > FV, the pursuer will catch up. Here is the really general formula: T = D / (PV – FV) Finally, let’s run the program for each of the pursuers.  It could not be worse. I know he’d rather be eaten alive than suffering through yet another math lesson. See the code run? Select  “Catch Up Time” in www.mgsltns.com/games.htm The host is running on Unix, so the link is case sensitive. That’s All Folks

    Read the article

  • Kalculate = math + fun

    - by Devin A. Rychetnik
    Kalculate is a you vs. the Internet style game for math lovers. The rules are simple: answer as many math problems as you can in 90 seconds. At the end of each round, Kalculate will tally up all the scores and show you where you ranked relative to others currently playing.Tip: answering 3 questions in 10 seconds earns you a score multiplier      If you prefer to just practice and stay out of the competition, there's an offline mode that allows you to play solo.Kalculate is free (ad-supported) and can be downloaded here.

    Read the article

  • Error codes for C++

    - by billy
    #include <iostream> #include <iomanip> using namespace std; //Global constant variable declaration const int MaxRows = 8, MaxCols = 10, SEED = 10325; //Functions Declaration void PrintNameHeader(ostream& out); void Fill2DArray(double ary[][MaxCols]); void Print2DArray(const double ary[][MaxCols]); double GetTotal(const double ary[][MaxCols]); double GetAverage(const double ary[][MaxCols]); double GetRowTotal(const double ary[][MaxCols], int theRow); double GetColumnTotal(const double ary[][MaxCols], int theRow); double GetHighestInRow(const double ary[][MaxCols], int theRow); double GetLowestInRow(const double ary[][MaxCols], int theRow); double GetHighestInCol(const double ary[][MaxCols], int theCol); double GetLowestInCol(const double ary[][MaxCols], int theCol); double GetHighest(const double ary[][MaxCols], int& theRow, int& theCol); double GetLowest(const double ary[][MaxCols], int& theRow, int& theCol); int main() { int theRow; int theCol; PrintNameHeader(cout); cout << fixed << showpoint << setprecision(1); srand(static_cast<unsigned int>(SEED)); double ary[MaxRows][MaxCols]; cout << "The seed value for random number generator is: " << SEED << endl; cout << endl; Fill2DArray(ary); Print2DArray(ary); cout << " The Total for all the elements in this array is: " << setw(7) << GetTotal(ary) << endl; cout << "The Average of all the elements in this array is: " << setw(7) << GetAverage(ary) << endl; cout << endl; cout << "The sum of each row is:" << endl; for(int index = 0; index < MaxRows; index++) { cout << "Row " << (index + 1) << ": " << GetRowTotal(ary, theRow) << endl; } cout << "The highest and lowest of each row is: " << endl; for(int index = 0; index < MaxCols; index++) { cout << "Row " << (index + 1) << ": " << GetHighestInRow(ary, theRow) << " " << GetLowestInRow(ary, theRow) << endl; } cout << "The highest and lowest of each column is: " << endl; for(int index = 0; index < MaxCols; index++) { cout << "Col " << (index + 1) << ": " << GetHighestInCol(ary, theRow) << " " << GetLowestInCol(ary, theRow) << endl; } cout << "The highest value in all the elements in this array is: " << endl; cout << GetHighest(ary, theRow, theCol) << "[" << theRow << "]" << "[" << theCol << "]" << endl; cout << "The lowest value in all the elements in this array is: " << endl; cout << GetLowest(ary, theRow, theCol) << "[" << theRow << "]" << "[" << theCol << "]" << endl; return 0; } //Define Functions void PrintNameHeader(ostream& out) { out << "*******************************" << endl; out << "* *" << endl; out << "* C.S M10A Spring 2010 *" << endl; out << "* Programming Assignment 10 *" << endl; out << "* Due Date: Thurs. Mar. 25 *" << endl; out << "*******************************" << endl; out << endl; } void Fill2DArray(double ary[][MaxCols]) { for(int index1 = 0; index1 < MaxRows; index1++) { for(int index2= 0; index2 < MaxCols; index2++) { ary[index1][index2] = (rand()%1000)/10; } } } void Print2DArray(const double ary[][MaxCols]) { cout << " Column "; for(int index = 0; index < MaxCols; index++) { int column = index + 1; cout << " " << column << " "; } cout << endl; cout << " "; for(int index = 0; index < MaxCols; index++) { int column = index +1; cout << "----- "; } cout << endl; for(int index1 = 0; index1 < MaxRows; index1++) { cout << "Row " << (index1 + 1) << ":"; for(int index2= 0; index2 < MaxCols; index2++) { cout << setw(6) << ary[index1][index2]; } } } double GetTotal(const double ary[][MaxCols]) { double total = 0; for(int theRow = 0; theRow < MaxRows; theRow++) { total = total + GetRowTotal(ary, theRow); } return total; } double GetAverage(const double ary[][MaxCols]) { double total = 0, average = 0; total = GetTotal(ary); average = total / (MaxRows * MaxCols); return average; } double GetRowTotal(const double ary[][MaxCols], int theRow) { double sum = 0; for(int index = 0; index < MaxCols; index++) { sum = sum + ary[theRow][index]; } return sum; } double GetColumTotal(const double ary[][MaxCols], int theCol) { double sum = 0; for(int index = 0; index < theCol; index++) { sum = sum + ary[index][theCol]; } return sum; } double GetHighestInRow(const double ary[][MaxCols], int theRow) { double highest = 0; for(int index = 0; index < MaxCols; index++) { if(ary[theRow][index] > highest) highest = ary[theRow][index]; } return highest; } double GetLowestInRow(const double ary[][MaxCols], int theRow) { double lowest = 0; for(int index = 0; index < MaxCols; index++) { if(ary[theRow][index] < lowest) lowest = ary[theRow][index]; } return lowest; } double GetHighestInCol(const double ary[][MaxCols], int theCol) { double highest = 0; for(int index = 0; index < MaxRows; index++) { if(ary[index][theCol] > highest) highest = ary[index][theCol]; } return highest; } double GetLowestInCol(const double ary[][MaxCols], int theCol) { double lowest = 0; for(int index = 0; index < MaxRows; index++) { if(ary[index][theCol] < lowest) lowest = ary[index][theCol]; } return lowest; } double GetHighest(const double ary[][MaxCols], int& theRow, int& theCol) { theRow = 0; theCol = 0; double highest = ary[theRow][theCol]; for(int index = 0; index < MaxRows; index++) { for(int index1 = 0; index1 < MaxCols; index1++) { double highest = 0; if(ary[index1][theCol] > highest) { highest = ary[index][index1]; theRow = index; theCol = index1; } } } return highest; } double Getlowest(const double ary[][MaxCols], int& theRow, int& theCol) { theRow = 0; theCol = 0; double lowest = ary[theRow][theCol]; for(int index = 0; index < MaxRows; index++) { for(int index1 = 0; index1 < MaxCols; index1++) { double lowest = 0; if(ary[index1][theCol] < lowest) { lowest = ary[index][index1]; theRow = index; theCol = index1; } } } return lowest; } . 1>------ Build started: Project: teddy lab 10, Configuration: Debug Win32 ------ 1>Compiling... 1>lab 10.cpp 1>c:\users\owner\documents\visual studio 2008\projects\teddy lab 10\teddy lab 10\ lab 10.cpp(46) : warning C4700: uninitialized local variable 'theRow' used 1>c:\users\owner\documents\visual studio 2008\projects\teddy lab 10\teddy lab 10\ lab 10.cpp(62) : warning C4700: uninitialized local variable 'theCol' used 1>Linking... 1> lab 10.obj : error LNK2028: unresolved token (0A0002E0) "double __cdecl GetLowest(double const (* const)[10],int &,int &)" (?GetLowest@@$$FYANQAY09$$CBNAAH1@Z) referenced in function "int __cdecl main(void)" (?main@@$$HYAHXZ) 1> lab 10.obj : error LNK2019: unresolved external symbol "double __cdecl GetLowest(double const (* const)[10],int &,int &)" (?GetLowest@@$$FYANQAY09$$CBNAAH1@Z) referenced in function "int __cdecl main(void)" (?main@@$$HYAHXZ) 1>C:\Users\owner\Documents\Visual Studio 2008\Projects\ lab 10\Debug\ lab 10.exe : fatal error LNK1120: 2 unresolved externals 1>Build log was saved at "file://c:\Users\owner\Documents\Visual Studio 2008\Projects\ lab 10\teddy lab 10\Debug\BuildLog.htm" 1>teddy lab 10 - 3 error(s), 2 warning(s) ========== Build: 0 succeeded, 1 failed, 0 up-to-date, 0 skipped ==========

    Read the article

  • Binary files printing and desired precision

    - by yCalleecharan
    Hi, I'm printing a variable say z1 which is a 1-D array containing floating point numbers to a text file so that I can import into Matlab or GNUPlot for plotting. I've heard that binary files (.dat) are smaller than .txt files. The definition that I currently use for printing to a .txt file is: void create_out_file(const char *file_name, const long double *z1, size_t z_size){ FILE *out; size_t i; if((out = _fsopen(file_name, "w+", _SH_DENYWR)) == NULL){ fprintf(stderr, "***> Open error on output file %s", file_name); exit(-1); } for(i = 0; i < z_size; i++) fprintf(out, "%.16Le\n", z1[i]); fclose(out); } I have three questions: Are binary files really more compact than text files?; If yes, I would like to know how to modify the above code so that I can print the values of the array z1 to a binary file. I've read that fprintf has to be replaced with fwrite. My output file say dodo.dat should contain the values of array z1 with one floating number per line. I have %.16Le up in my code but I think that %.15Le is right as I have 15 precision digits with long double. I have put a dot (.) in the width position as I believe that this allows expansion to an arbitrary field to hold the desired number. Am I right? As an example with %.16Le, I can have an output like 1.0047914240730432e-002 which gives me 16 precision digits and the width of the field has the right width to display the number correctly. Is placing a dot (.) in the width position instead of a width value a good practice? Thanks a lot...

    Read the article

  • Advice on learning programming languages and math.

    - by Joris Ooms
    I feel like I'm getting stuck lately when it comes to learning about programming-related things; I thought I'd ask a question here and write it all down in the hope to get some pointers/advice from people. Perhaps writing it down helps me put things in perspective for myself aswell. I study Interactive Multimedia Design. This course is based on two things: graphic design on one hand, and web development on the other hand. I have quite a decent knowledge of web-related languages (the usual HTML/JS/PHP) and I'll be getting a course on ASP.NET next year. In my free time, I have learnt how to work with CodeIgniter, aswell as some diving into Ruby (and Rails) and basic iOS programming. In my first year of college I also did a class on Java (19/20 on the end result). This grade doesn't really mean anything though; I have the basics of OOP down but Java-wise, we learnt next to nothing. Considering the time I have been programming in, for example, PHP.. I can't say I'm bad at it. I'm definitely not good or great at it, but I'm decent. My teachers tell me I have the programming thing down. They just tell me I should keep on learning. So that's what I do, and I try to take in as much as possible; however, sometimes I'm unsure where to start and I have this tendency to always doubt myself. Now, for the 'question'. I want to get into iOS programming. I know iOS programming boils down to programming in Cocoa Touch and Objective-C. I also know Obj-C is a superset of C. I have done a class on C a couple of years ago, but I failed miserably. I got stuck at pointers and never really understood them.. Until like a month ago. I suddenly 'got' it. I have been working through a book on Objective-C for a week or so now, and I understand the basics (I'm at like.. chapter 6 or so). However, I keep running into similar problems as the ones I had when I did the C class: I suck at math. No, really. I come from a Latin-Modern Languages background in high school and I had nearly no math classes back then. I wanted to study Computer Science, but I failed there because of the miserable state of my mathematics knowledge. I can't explain why I'm suddenly talking about math here though, because it isn't directly related to programming.. yet it is. For example, the examples in the book I'm reading now are about programming a fraction-calculator. All good, I can do the programming when I get the formulas down.. but it takes me a full day or more to actually get to that point. I also find it hard to come up with ideas for myself. I made one small iOS app the other day and it's just a button / label kind of thing. When I press the button, it generates a random number. That's really all I could come up with. Can you 'learn' that? It probably comes down to creativity, but evidently, I'm not too great at being creative. Are there any sites or resources out there that provide something like a basic list of things you can program when you're just starting out? Maybe I'm focusing on too many things at once. I want to keep my HTML/CSS at a decent level, while learning PHP and CodeIgniter, while diving into Ruby on Rails and learning Objective-C and the iOS SDK at the same time. I just want to be good at something, I guess. The problem is that I can't seem to be happy with my PHP stuff. I want more, something 'harder'; that's why I decided to pick up the iOS thing. Like I said, I have the basics down of a lot of different languages. I can program something simple in Java, in C, in Objective-C as of this week.. but it ends there. Mostly because I can't come up with ideas for more complex applications, and also because I just doubt myself: 'Oh, that's too complex, I can never do that'. And then it ends there. To conclude my rant, let me basically rephrase my questions into a 'tl;dr' part. A. I want to get into iOS programming and I have basic knowledge of C/Objective-C. However, I struggle to come up with ideas of my own and implement them and I also suck at math which is something that isn't directly related to, yet often needed while programming. What can I do? B. I have an interest in a lot of different programming languages and I can't stop reading/learning. However, I don't feel like I'm good in anything. Should I perhaps focus on just one language for a year or longer, or keep taking it all in at the same time and hope I'll finally get them all down? C. Are there any resources out there that provide basic ideas of things I can program? I'm thinking about 'simple' command-line applications here to help me while studying C/Obj-C away from the whole iPhone SDK. Like I said, the examples in my book are mainly math-based (fraction calculator) and it's kinda hard. :( Thanks a lot for reading my post. I didn't plan it to be this long but oh well. Thanks in advance for any answers.

    Read the article

  • Single and Double Jump with single button.

    - by Asad
    I want to make Single Jump on Single Tap and Double Jump on Double Tap. My problem is that if I make double Tap on ground then it’s fine but if I make first Tap on ground and second Tap in Air then Player gain more height then usual As in image 1. I want to Make my jump like in Image 2, No matter from which point user gives second Tap, player Always get a specific height. I Used both Impulse and Linear velocity to make Jump but my problem did not solved.

    Read the article

  • Decimal data type in Visual Basic 6.0

    - by Appu
    I need to do calculations (division or multiplication) with very large numbers. Currently I am using Double and getting the value round off problems. I can do the same calculations accurately on C# using Decimal type. I am looking for a method to do accurate calculations in VB6.0 and I couldn't find a Decimal type in VB6.0. What is the data type used for doing arithmetic calculations with large values and without getting floating point round off problems? Thanks

    Read the article

  • Flash Double-click an externally loaded SWF

    - by Trist
    OK. I've got a class (which extends MovieClip) that loads in an external SWF (made in pdf2swf). That is added to another class which has declared doubleClickEnabled = true and I'm listening for DOUBLE_CLICK events. Problem is when the SWF is loaded my code picks up no DOUBLE_CLICK events, only CLICK events. I've tried it without adding the SWF to the stage and it does pick up DOUBLE_CLICK events. Anybody come across this before? class ParentClass{ ... public function ParentClass(){ ... mcToLoadSWF = new MovieClip(); addChild(mcToLoadSWF); doubleClickEnabled = true; addEventListener(MouseEvent.DOUBLE_CLICK, doubleClickHandler); ... } } I've also tried adding the event listener to the mcToLoadSWF as well. No dice. Cheers Tristian

    Read the article

< Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >