Search Results

Search found 13039 results on 522 pages for 'enterprise apps'.

Page 9/522 | < Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >

  • Custom Domain for Google App Engine and Google Apps

    - by Kevin
    I have set up and configured Google App Engine and Google Apps to use my custom domain with a cname 'www'. I have configured my DNS (via fasthosts.co.uk) with the cname and pointed it to ghs.google.com. I can access the website using the google app engine domain at capel-y-crwys.appspot.com but I can't access it via my custom domain www.capelycrwys.org.uk. I have allowed several days for propagation of the DNS etc. The really strange this is I can access the app via my custom domain when I use the web browser on my Android mobile phone. I can't access the app via my custom domain from my home internet connection, my work internet connection or a friends internet connection. I tried a few online web proxies and I can access the app via the custom domain. I posted this question on the google forums code.google.com/appengine/forum/?place=topic%2Fgoogle-appengine%2FfUP-G_0FKE4%2Fdiscussion and a commentor has said he could access the app via the custom domain. So why can't I access it direct via my home internet connection etc? I've tried loads of google searching and even found a similar sounding post here on serverfault serverfault.com/questions/208461/custom-domain-name-server-not-found-google-app-engine-and-google-apps but it doesn't have an answer that helps me.

    Read the article

  • Google Apps Domain Level Shared Contacts?

    - by dkirk
    My firm just switched to Google Apps Premiere addition 2 weeks ago and aside from the way Google handles shared contacts, things are going quite well. Previously, on our Exchange server we had numerous shared contact lists set up in the shared folders. We had a separate list for vendors, sales agents, etc.. Is there not a way to set up lists or groups such as this on the domain level in Google Apps? I have found a ton of forums with users asking the same question but no good answers unless you purchase some third party app in the marketplace. I have toyed around with the "google-shared-contacts-client" here: http://code.google.com/p/google-shared-contacts-client/ and this almost does it but it falls short when trying to group contacts on the domain level or when trying to search for a contact by company name. Are either of these things possible? I am now looking to create a Google Doc spreadsheet to share with the domain just to have a separated defined list of contacts that is search-able by various fields... Anyone who could shed some light on domain level contact sharing relating to the points above, I would be most grateful...

    Read the article

  • Google Sites (via Apps) setup questions

    - by Dave
    I thought that it would be a piece of cake to set up a Google site via Google Apps, but perhaps my previous (limited) experience with web development has given me unrealistic expectations. I have actually had a really tough time finding help with the exact question that I have, which is: How do I change the home page contents??? You see, I'm used to having hosting with someone like GoDaddy, where I can just ftp in and drop my HTML files in the www folder. From research I have found that this is simply not possible with any flavor of Google Sites. That's fine, I can live with it. So let's say I have www.mydomain.com. When I hit that URL, it redirects me to a very long URL (unfortunately) like https://sites.google.com/a/mydomain.com/sites/system/app/pages/meta/domainWelcome, which just says: Google Apps Welcome to mydomain.com If you are the domain administrator get started creating your home page with Google Sites Great! I want to do that. So I click on the "If you are the..." link and end up at a screen where I can choose a template, a name, and some visibility options. If I click on My Sites, there isn't a "default" site, i.e. the one that www.mydomain.com displays. I figured that maybe I just have to create a site first, so I went ahead and did that. My first test was to create a site that was publicly accessible. I thought that maybe if I did that, the Google would decide that this must be my home page since it's the only one. But it doesn't, and I still get the "Welcome to" page. Under "More Actions", I didn't see anything interesting except for "Manage site". I went in there and had a peek around, and didn't see anything about using this as the default home page. Am I looking for something that just doesn't exist? I can't believe there isn't a way to modify the "domain welcome to" page...

    Read the article

  • What are the challenges when my enterprise desires to move the processing component of an applicatio

    - by Berkay
    Assume that i have an enterprise accounting application that consists of a front-end interface, a processing tier, and a back-end database. This is an application that contains private business data, and thus is traditionally run in a secure private network environment within the enterprise. What are the challenges that appear when my enterprise desires to move the processing component of this application to a cloud computing data center in order to achieve greater scalability or to reduce IT costs ? Pls note: do i have to make significant changes to my own infrastructure to enable external access to formerly private resources? do i have to modify the application code to handle new network topology ? thanks, if you give your answers in a simple manner, really appreciated.

    Read the article

  • Sending data remotely from iPhone native apps to Rails apps

    - by jpartogi
    Dear all, I have decided to develop a native iPhone apps as a compliment to our webapps. Now I am wondering what are my options to send data remotely from the iPhone apps - since the database is online - to our online database. What I can think of on top of my head - since I come from web dev background - is JSON. My webapps is built using Rails, so I figure it would not be difficult to accept JSON request from the iPhone apps. But the next question is, is it difficult to send JSON data remotely from the iPhone apps? If JSON is not recommendable, what are my other options? Thank you so much for the assistance. Really appreciate it.

    Read the article

  • Windows 2008 Enterprise License can't activate Standard Edition

    - by starchx
    We have downloaded and installed the Windows 2008 Standard R2 edition months ago. Now the server is in production. We signed up the Microsoft Partnership Action Pack subscription last week and get a license for Windows 2008 Enterprise edtion. I am trying to activate the standard edition with Enterprise key as advsied here:http://serverfault.com/questions/318968/upgrade-domain-controller-sku-from-server-2008-r2-standard-to-enterprise , but failed. Is it because windows 2008 we have is different? (downloaded from MS site with eval license). Thanks. tim

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • OCFS2 Now Certified for E-Business Suite Release 12 Application Tiers

    - by sergio.leunissen
    Steven Chan writes that OCFS2 is now certified for use as a clustered filesystem for sharing files between all of your E-Business Suite application tier servers.  OCFS2 (Oracle Cluster File System 2) is a free, open source, general-purpose, extent-based clustered file system which Oracle developed and contributed to the Linux community.  It was accepted into Linux kernel 2.6.16.OCFS2 is included in Oracle Enterprise Linux (OEL) and supported under Unbreakable Linux support.

    Read the article

  • Google Apps Email Question

    - by robihot
    Google Apps Has anyone created (and used) a GROUP email which will email ALL domain users. (e.i. "All users within domainName.com") I have some domain users that are telling me that they are NOT receiving their emails. Please and Thanks !

    Read the article

  • Emails from Google Apps to custom SMTP server delayed by 1 hour consistently

    - by vimalk
    The outgoing mails from Google Apps/Gmail to our own custom SMTP server are getting delayed by 1 hour consistently. mxtoolbox.com diagnostics of our custom SMTP server are looking OK. Our custom SMTP server is receiving emails from other sources (yahoo, hotmail etc.) on time. Looking at the SMTP logs show a delay in a google intermediate SMTP server. Received: by qwi2 with SMTP id 2so1989393qwi.3 for <[email protected]>; Thu, 27 Jan 2011 03:54:23 -0800 (PST) MIME-Version: 1.0 Received: by 10.224.19.203 with SMTP id c11mr1587082qab.170.1296125657457; Thu, 27 Jan 2011 02:54:17 -0800 (PST) This setup has been working fine for a year though our custom email server was missing a reverse DNS entry and SPF records. Thinking that this could be the cause of the issue, we added these entries a week ago. But the issue still persists. Here are are more details: We are using Google Apps to host our primary domain email (say: mydomain.com) The custom SMTP server (say: s1.mydomain.com) hosts our subdomain (say: sub.mydomain.com) This is how the email log looks from [email protected] to [email protected] Return-Path: [email protected] Received: from localhost.localdomain (LHLO s1.mydomain.com) (127.0.0.1) by s1.mydomain.com with LMTP; Thu, 27 Jan 2011 17:24:28 +0530 (IST) Received: from localhost (localhost.localdomain [127.0.0.1]) by s1.mydomain.com (Postfix) with ESMTP id 605116A6565 for <[email protected]>; Thu, 27 Jan 2011 17:24:28 +0530 (IST) X-Virus-Scanned: amavisd-new at sub.mydomain.com X-Spam-Flag: NO X-Spam-Score: 2.984 X-Spam-Level: ** X-Spam-Status: No, score=2.984 tagged_above=-10 required=6.6 t ests=[AWL=-0.337, BAYES_50=0.001, DNS_FROM_OPENWHOIS=1.13, FH_DATE_PAST_20XX=3.188, HTML_MESSAGE=0.001, HTML_OBFUSCATE_05_10=0.001, RCVD_IN_DNSWL_LOW=-1] autolearn=no Received: from s1.mydomain.com ([127.0.0.1]) by localhost (s1.mydomain.com [127.0.0.1]) (amavisd-new, port 10024) with ESMTP id RBjF7Wwr44mP for <[email protected]>; Thu, 27 Jan 2011 17:24:24 +0530 (IST) Received: from mail-qw0-f44.google.com (mail-qw0-f44.google.com [209.85.216.44]) by s1.mydomain.com (Postfix) with ESMTP id BB5DE6A6512 for <[email protected]>; Thu, 27 Jan 2011 17:24:23 +0530 (IST) Received: by qwi2 with SMTP id 2so1989393qwi.3 for <[email protected]>; Thu, 27 Jan 2011 03:54:23 -0800 (PST) MIME-Version: 1.0 Received: by 10.224.19.203 with SMTP id c11mr1587082qab.170.1296125657457; Thu, 27 Jan 2011 02:54:17 -0800 (PST) Received: by 10.220.117.17 with HTTP; Thu, 27 Jan 2011 02:54:17 -0800 (PST) Date: Thu, 27 Jan 2011 16:24:17 +0530 Message-ID: <[email protected]> Subject: test : 16:24 From: X <[email protected]> To: [email protected] Content-Type: multipart/alternative; boundary=0015175cba2865a5fe049ad1c5cd We appreciate any help that could help solve this issue :)

    Read the article

  • Setup Dreamhost + Google Apps

    - by zenstealth
    I registered a domain with Dreamhost. I want to setup Google Apps with the domain I registered. I tried googling instructions and looking at the Dreamhost wiki and Google support, but the instructions are confusing. Can some one create an easy step-by-step guide for me?

    Read the article

  • svn path in google apps script

    - by deepasun
    Hi, I want to write a google apps script in google docs spreadsheet, such that it should update the svn revision of particular component automatically (which is in one cell of that spreadsheet) when i run that script

    Read the article

  • Getting a redirect in gmail/google apps in Google Documents

    - by Lee Carlton
    Good afternoon, For some reason when I try to download documents from google docs in both my standard gmail account and my work's google apps, it goes into a redirect. I've tried opening it on my roommate's computer, and it works just fine. I'm guessing that it has something to do with my particular browser. I get the same error in both chrome and ie though.

    Read the article

  • Set up Gmail with Google apps for own domain

    - by erdomester
    I rent a server from a German company. I have remote access to it as well as WHM and CPanel. I decided to use Google's mail servers for obvious reasons. I am not an admin just an average guy trying to set up what needs to be set up. The problem is I am unable to make the necessary settings. I watched Youtube tutorials, followed written ones as well as Google's help, but there is (at least) one serious problem with my domain settings. The domain console alwasy says Your MX records are incorrect When I check dappwall.com in mxtoolbox.com it says Pref Hostname IP Address TTL 10 mail.dappwall.com 46.4.88.247 24 hrs But this is not the host name. I checked WHM and my hostname is server1.dappwall.com. I can confirm it by typing the hostname command in putty. However, if I do an mx lookup at mxtoolbox.com on server1.dappwall.com or mail.dappwall.com I get Lookup failed after 1 name servers timed out or responded non-authoritatively I ran checks on the google apps toolbox on dappwall.com and two problems emerged: 1.No Google mail exchangers found. Relayhost configuration? 10 mail.dappwall.com In Google Apps > Settings for Gmail > Advanced settings it also says that my current MX records for dappwall.com is Priority Points to 10 MAIL.DAPPWALL.COM. So mail.dappwall.com again. I also have access to a robot provided by the company I rent the server from. Here I see this mail at two places but how should I (if it's necessary) modify this? I set Email routing to Automatically Detect Configuration. 2.There SHOULD be a valid SPF record. "v=spf1 include:_spf.google.com ~all" In the DNS Zone Editor I added this spf record: Name TTL Class Type Record dappwall.com. 1440 IN TXT v=spf1 include:_spf.google.com ~all In the cPanel Email Authentication page it says SPF: Status: Enabled Warning: cPanel is unable to verify that this server is an authoritative nameserver for dappwall.com. [?] Your current raw SPF record is : v=spf1 include:_spf.google.com ~all How can I confirm that my server is an authoritative nameserver for dappwall.com? In WHM Service Configuration Mailserver selection Dovecot was set but I disabled it (i don't know if that's ok). What am I missing here? Where is that mail.dappwall.com coming from?

    Read the article

  • Google Apps Question

    - by Andy
    I was recently hacked by a person I know who I happened to make an account using my hacked email. I was wondering how I can close off Google Apps without logging in. (I have FTP and such, and I deleted the nameservs already)

    Read the article

  • Webinar: MySQL Enterprise Backup - Online "Hot" Backup for MySQL

    - by mike.frank(at)oracle.com
    Online backup has been one of the most requested features for MySQL. With MySQL Enterprise Backup, developers and DBAs have tools they need to safely and rapidly backup and restore their databases. In this webinar we will go into the advantages of Hot "Online" backups. We will show how MySQL Enterprise Backup supports full, incremental, partial, and compressed backups that allow you to perform consistent Point-in-Time Recovery, as well as saving both time and money.In this Free Webinar you will learn:    * Backup Strategies & Methods    * Comparison of backup types for MySQL    * MySQL Enterprise Backup: Features    * MySQL Enterprise Backup  Performance    * MySQL Enterprise Backup: Architecture    * MySQL Enterprise Backup: How it Works    * MySQL Enterprise Backup: Script ExamplesEnglish WebinarWhoMike Frank and Alex Roedling WhenThursday, January 20, 2011: 09:00 Pacific time (English)Italian WebinarLuca Olivari Thursday, January 20, 2011: 10:00 Central European time (Italian)Register now: English, Italian.On demand French and German versions available as well.Related articles    * Introducing our "Hot" MySQL Enterprise Backup (blogs.oracle.com)

    Read the article

  • Oracle Enterprise Manager Ops Center 12c Update 1 is available now

    - by Anand Akela
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Following the announcement of Oracle Enterprise Manager Ops Center 12c on April 4th, we are happy to announce the release of Oracle Enterprise Manager Ops Center 12c update 1. This is a bundled patch release for Oracle Enterprise Manager Ops Center.  Here are the key features of the Oracle Enterprise Manager Ops Center 12c update 1 : Oracle VM SPARC Server Pool HA Policy  Automatically Upgrade from Ops Center 11g update 3 and Ops Center 12c  Oracle Linux 5.8 and 6.x Support  Oracle VM SPARC IaaS (Virtual Datacenters) WANBoot Improvements with OBP Handling Enhancements SPARC SuperCluster Support Stability fixes This new release contains significant enhancements in the update provisioning, bare metal OS provisioning, shared storage management, cloud/virtual datacenter, and networking management sections of the product.  With this update, customers can achieve better handling of ASR faults, add networks and storage to virtual guests more easily, understand IPMP and VLAN configurations better, get a more robust LDAP integration, get  virtualization aware firmware patching, and observe improved product performance across the board.  Customers can now accelerate Oracle VM SPARC and T4 deployments into production . Oracle Enterprise Manager Ops Center 11g and Ops Center 12c customers will now notice the availability of new product update under the Administration tab within the  Browser User Interface (BUI) .  Upgrade process is explained in detail within the Ops Center Administration Guide under “Chapter 10: Upgrading”.  Please be sure to read over that chapter and the Release Notes before upgrading.  During the week of July 9th,  the full download of the product will be available from the Oracle Enterprise Manager Ops Center download website.  Based on the customer feedback, we have changed the updates to include the entire product. Customers no longer need to install Ops Center 12c and then upgrade to the update 1 release.  The can simply install Ops Center 12c update 1 directly.  Here are some of the resources that can help you learn more about the Oracle Enterprise Manager Ops Center and the new update 1. Oracle Enterprise Manager Ops Center OTN site Bi-Monthly Product Demos Oracle Enterprise Manager Ops Center Forum Oracle Enterprise Manager Ops Center MOS Community Watch the recording of Oracle Enterprise Manager 12c launch webcast by clicking the following banner. Stay Connected: Twitter |  Face book |  You Tube |  Linked in |  Newsletter

    Read the article

  • An Actionable Common Approach to Federal Enterprise Architecture

    - by TedMcLaughlan
    The recent “Common Approach to Federal Enterprise Architecture” (US Executive Office of the President, May 2 2012) is extremely timely and well-organized guidance for the Federal IT investment and deployment community, as useful for Federal Departments and Agencies as it is for their stakeholders and integration partners. The guidance not only helps IT Program Planners and Managers, but also informs and prepares constituents who may be the beneficiaries or otherwise impacted by the investment. The FEA Common Approach extends from and builds on the rapidly-maturing Federal Enterprise Architecture Framework (FEAF) and its associated artifacts and standards, already included to a large degree in the annual Federal Portfolio and Investment Management processes – for example the OMB’s Exhibit 300 (i.e. Business Case justification for IT investments).A very interesting element of this Approach includes the very necessary guidance for actually using an Enterprise Architecture (EA) and/or its collateral – good guidance for any organization charged with maintaining a broad portfolio of IT investments. The associated FEA Reference Models (i.e. the BRM, DRM, TRM, etc.) are very helpful frameworks for organizing, understanding, communicating and standardizing across agencies with respect to vocabularies, architecture patterns and technology standards. Determining when, how and to what level of detail to include these reference models in the typically long-running Federal IT acquisition cycles wasn’t always clear, however, particularly during the first interactions of a Program’s technical and functional leadership with the Mission owners and investment planners. This typically occurs as an agency begins the process of describing its strategy and business case for allocation of new Federal funding, reacting to things like new legislation or policy, real or anticipated mission challenges, or straightforward ROI opportunities (for example the introduction of new technologies that deliver significant cost-savings).The early artifacts (i.e. Resource Allocation Plans, Acquisition Plans, Exhibit 300’s or other Business Case materials, etc.) of the intersection between Mission owners, IT and Program Managers are far easier to understand and discuss, when the overlay of an evolved, actionable Enterprise Architecture (such as the FEA) is applied.  “Actionable” is the key word – too many Public Service entity EA’s (including the FEA) have for too long been used simply as a very highly-abstracted standards reference, duly maintained and nominally-enforced by an Enterprise or System Architect’s office. Refreshing elements of this recent FEA Common Approach include one of the first Federally-documented acknowledgements of the “Solution Architect” (the “Problem-Solving” role). This role collaborates with the Enterprise, System and Business Architecture communities primarily on completing actual “EA Roadmap” documents. These are roadmaps grounded in real cost, technical and functional details that are fully aligned with both contextual expectations (for example the new “Digital Government Strategy” and its required roadmap deliverables - and the rapidly increasing complexities of today’s more portable and transparent IT solutions.  We also expect some very critical synergies to develop in early IT investment cycles between this new breed of “Federal Enterprise Solution Architect” and the first waves of the newly-formal “Federal IT Program Manager” roles operating under more standardized “critical competency” expectations (including EA), likely already to be seriously influencing the quality annual CPIC (Capital Planning and Investment Control) processes.  Our Oracle Enterprise Strategy Team (EST) and associated Oracle Enterprise Architecture (OEA) practices are already engaged in promoting and leveraging the visibility of Enterprise Architecture as a key contributor to early IT investment validation, and we look forward in particular to seeing the real, citizen-centric benefits of this FEA Common Approach in particular surface across the entire Public Service CPIC domain - Federal, State, Local, Tribal and otherwise. Read more Enterprise Architecture blog posts for additional EA insight!

    Read the article

  • Google Apps e-mail being rejected from some domains

    - by Paul J. Lucas
    I'm migrating e-mail for my domains to Google Apps' e-mail. Most everything seems to work except e-mail sent to any user at (at least) sonic.net is rejected with a message of the form (where any-address has been substituted for my friend's address): From: Mail Delivery Subsystem <[email protected]> Date: March 11, 2010 10:04:48 AM PST To: [email protected] Subject: Delivery Status Notification (Failure) Delivered-To: [email protected] Received: by 10.229.194.26 with SMTP id dw26cs8717qcb; Thu, 11 Mar 2010 10:04:48 -0800 (PST) Received: by 10.223.68.143 with SMTP id v15mr3841599fai.62.1268330688325; Thu, 11 Mar 2010 10:04:48 -0800 (PST) Received: by 10.223.68.143 with SMTP id v15mr5119424fai.62; Thu, 11 Mar 2010 10:04:48 -0800 (PST) Mime-Version: 1.0 Return-Path: <> X-Failed-Recipients: [email protected] Message-Id: <[email protected]> Content-Type: text/plain; charset=ISO-8859-1 Content-Transfer-Encoding: quoted-printable Delivery to the following recipient failed permanently: [email protected] Technical details of permanent failure: Google tried to deliver your message, but it was rejected by the recipient domain. We recommend contacting the other email provider for further information about the cause of this error. The error that the other server returned was: 550 550 5.1.1 <[email protected]>... No such user here (state 13). And here are the headers from the message it bounces back: Received: by 10.101.90.7 with SMTP id s7mr2515885anl.176.1267979929490; Sun, 07 Mar 2010 08:38:49 -0800 (PST) Return-Path: <[email protected]> Received: from [10.0.1.203] (adsl-76-201-171-194.dsl.pltn13.sbcglobal.net [76.201.171.194]) by mx.google.com with ESMTPS id 4sm1046550yxd.70.2010.03.07.08.38.48 (version=TLSv1/SSLv3 cipher=RC4-MD5); Sun, 07 Mar 2010 08:38:49 -0800 (PST) From: "Paul J. Lucas" <[email protected]> Content-Type: text/plain; charset=us-ascii Content-Transfer-Encoding: quoted-printable Subject: Some fascinating subject Date: Sun, 7 Mar 2010 08:38:46 -0800 References: <[email protected]> To: [email protected] Message-Id: <[email protected]> Mime-Version: 1.0 (Apple Message framework v1077) X-Mailer: Apple Mail (2.1077) However, I am able to send mail to a user at sonic.net using my old e-mail account. Also, my company uses Google Apps for e-mail and I can send e-mail to a user at sonic.net from my company. The differences between my personal e-mail and my company's are: My company's domain has no SPF record whereas mine does. My company's domain has an A record whereas mine does not. My SPF record initially was as prescribed by Google here. However, this guy claims Google is wrong and gives a fix. I've tried it both ways with no difference. My SPF record is currently: v=spf1 mx include:aspmx.googlemail.com include:_spf.google.com ~all As for the lack of an A record, you wouldn't think that a mail host would care about that so long as mx records are defined. However, the funny thing is that if you look at the error message, why does Google state that the recipient's domain stated that there is "No such user here" for my address? That makes no sense. Of course there is no user having my address at sonic.net. Also, I assume that I just discovered that I can't send mail to users at sonic.net by accident and that there are probably other domains I can't send e-mail to. So... anybody have any idea what's going on? And how I can get mail to users at sonic.net?

    Read the article

  • Oracle BI Server Modeling, Part 1- Designing a Query Factory

    - by bob.ertl(at)oracle.com
      Welcome to Oracle BI Development's BI Foundation blog, focused on helping you get the most value from your Oracle Business Intelligence Enterprise Edition (BI EE) platform deployments.  In my first series of posts, I plan to show developers the concepts and best practices for modeling in the Common Enterprise Information Model (CEIM), the semantic layer of Oracle BI EE.  In this segment, I will lay the groundwork for the modeling concepts.  First, I will cover the big picture of how the BI Server fits into the system, and how the CEIM controls the query processing. Oracle BI EE Query Cycle The purpose of the Oracle BI Server is to bridge the gap between the presentation services and the data sources.  There are typically a variety of data sources in a variety of technologies: relational, normalized transaction systems; relational star-schema data warehouses and marts; multidimensional analytic cubes and financial applications; flat files, Excel files, XML files, and so on. Business datasets can reside in a single type of source, or, most of the time, are spread across various types of sources. Presentation services users are generally business people who need to be able to query that set of sources without any knowledge of technologies, schemas, or how sources are organized in their company. They think of business analysis in terms of measures with specific calculations, hierarchical dimensions for breaking those measures down, and detailed reports of the business transactions themselves.  Most of them create queries without knowing it, by picking a dashboard page and some filters.  Others create their own analysis by selecting metrics and dimensional attributes, and possibly creating additional calculations. The BI Server bridges that gap from simple business terms to technical physical queries by exposing just the business focused measures and dimensional attributes that business people can use in their analyses and dashboards.   After they make their selections and start the analysis, the BI Server plans the best way to query the data sources, writes the optimized sequence of physical queries to those sources, post-processes the results, and presents them to the client as a single result set suitable for tables, pivots and charts. The CEIM is a model that controls the processing of the BI Server.  It provides the subject areas that presentation services exposes for business users to select simplified metrics and dimensional attributes for their analysis.  It models the mappings to the physical data access, the calculations and logical transformations, and the data access security rules.  The CEIM consists of metadata stored in the repository, authored by developers using the Administration Tool client.     Presentation services and other query clients create their queries in BI EE's SQL-92 language, called Logical SQL or LSQL.  The API simply uses ODBC or JDBC to pass the query to the BI Server.  Presentation services writes the LSQL query in terms of the simplified objects presented to the users.  The BI Server creates a query plan, and rewrites the LSQL into fully-detailed SQL or other languages suitable for querying the physical sources.  For example, the LSQL on the left below was rewritten into the physical SQL for an Oracle 11g database on the right. Logical SQL   Physical SQL SELECT "D0 Time"."T02 Per Name Month" saw_0, "D4 Product"."P01  Product" saw_1, "F2 Units"."2-01  Billed Qty  (Sum All)" saw_2 FROM "Sample Sales" ORDER BY saw_0, saw_1       WITH SAWITH0 AS ( select T986.Per_Name_Month as c1, T879.Prod_Dsc as c2,      sum(T835.Units) as c3, T879.Prod_Key as c4 from      Product T879 /* A05 Product */ ,      Time_Mth T986 /* A08 Time Mth */ ,      FactsRev T835 /* A11 Revenue (Billed Time Join) */ where ( T835.Prod_Key = T879.Prod_Key and T835.Bill_Mth = T986.Row_Wid) group by T879.Prod_Dsc, T879.Prod_Key, T986.Per_Name_Month ) select SAWITH0.c1 as c1, SAWITH0.c2 as c2, SAWITH0.c3 as c3 from SAWITH0 order by c1, c2   Probably everybody reading this blog can write SQL or MDX.  However, the trick in designing the CEIM is that you are modeling a query-generation factory.  Rather than hand-crafting individual queries, you model behavior and relationships, thus configuring the BI Server machinery to manufacture millions of different queries in response to random user requests.  This mass production requires a different mindset and approach than when you are designing individual SQL statements in tools such as Oracle SQL Developer, Oracle Hyperion Interactive Reporting (formerly Brio), or Oracle BI Publisher.   The Structure of the Common Enterprise Information Model (CEIM) The CEIM has a unique structure specifically for modeling the relationships and behaviors that fill the gap from logical user requests to physical data source queries and back to the result.  The model divides the functionality into three specialized layers, called Presentation, Business Model and Mapping, and Physical, as shown below. Presentation services clients can generally only see the presentation layer, and the objects in the presentation layer are normally the only ones used in the LSQL request.  When a request comes into the BI Server from presentation services or another client, the relationships and objects in the model allow the BI Server to select the appropriate data sources, create a query plan, and generate the physical queries.  That's the left to right flow in the diagram below.  When the results come back from the data source queries, the right to left relationships in the model show how to transform the results and perform any final calculations and functions that could not be pushed down to the databases.   Business Model Think of the business model as the heart of the CEIM you are designing.  This is where you define the analytic behavior seen by the users, and the superset library of metric and dimension objects available to the user community as a whole.  It also provides the baseline business-friendly names and user-readable dictionary.  For these reasons, it is often called the "logical" model--it is a virtual database schema that persists no data, but can be queried as if it is a database. The business model always has a dimensional shape (more on this in future posts), and its simple shape and terminology hides the complexity of the source data models. Besides hiding complexity and normalizing terminology, this layer adds most of the analytic value, as well.  This is where you define the rich, dimensional behavior of the metrics and complex business calculations, as well as the conformed dimensions and hierarchies.  It contributes to the ease of use for business users, since the dimensional metric definitions apply in any context of filters and drill-downs, and the conformed dimensions enable dashboard-wide filters and guided analysis links that bring context along from one page to the next.  The conformed dimensions also provide a key to hiding the complexity of many sources, including federation of different databases, behind the simple business model. Note that the expression language in this layer is LSQL, so that any expression can be rewritten into any data source's query language at run time.  This is important for federation, where a given logical object can map to several different physical objects in different databases.  It is also important to portability of the CEIM to different database brands, which is a key requirement for Oracle's BI Applications products. Your requirements process with your user community will mostly affect the business model.  This is where you will define most of the things they specifically ask for, such as metric definitions.  For this reason, many of the best-practice methodologies of our consulting partners start with the high-level definition of this layer. Physical Model The physical model connects the business model that meets your users' requirements to the reality of the data sources you have available. In the query factory analogy, think of the physical layer as the bill of materials for generating physical queries.  Every schema, table, column, join, cube, hierarchy, etc., that will appear in any physical query manufactured at run time must be modeled here at design time. Each physical data source will have its own physical model, or "database" object in the CEIM.  The shape of each physical model matches the shape of its physical source.  In other words, if the source is normalized relational, the physical model will mimic that normalized shape.  If it is a hypercube, the physical model will have a hypercube shape.  If it is a flat file, it will have a denormalized tabular shape. To aid in query optimization, the physical layer also tracks the specifics of the database brand and release.  This allows the BI Server to make the most of each physical source's distinct capabilities, writing queries in its syntax, and using its specific functions. This allows the BI Server to push processing work as deep as possible into the physical source, which minimizes data movement and takes full advantage of the database's own optimizer.  For most data sources, native APIs are used to further optimize performance and functionality. The value of having a distinct separation between the logical (business) and physical models is encapsulation of the physical characteristics.  This encapsulation is another enabler of packaged BI applications and federation.  It is also key to hiding the complex shapes and relationships in the physical sources from the end users.  Consider a routine drill-down in the business model: physically, it can require a drill-through where the first query is MDX to a multidimensional cube, followed by the drill-down query in SQL to a normalized relational database.  The only difference from the user's point of view is that the 2nd query added a more detailed dimension level column - everything else was the same. Mappings Within the Business Model and Mapping Layer, the mappings provide the binding from each logical column and join in the dimensional business model, to each of the objects that can provide its data in the physical layer.  When there is more than one option for a physical source, rules in the mappings are applied to the query context to determine which of the data sources should be hit, and how to combine their results if more than one is used.  These rules specify aggregate navigation, vertical partitioning (fragmentation), and horizontal partitioning, any of which can be federated across multiple, heterogeneous sources.  These mappings are usually the most sophisticated part of the CEIM. Presentation You might think of the presentation layer as a set of very simple relational-like views into the business model.  Over ODBC/JDBC, they present a relational catalog consisting of databases, tables and columns.  For business users, presentation services interprets these as subject areas, folders and columns, respectively.  (Note that in 10g, subject areas were called presentation catalogs in the CEIM.  In this blog, I will stick to 11g terminology.)  Generally speaking, presentation services and other clients can query only these objects (there are exceptions for certain clients such as BI Publisher and Essbase Studio). The purpose of the presentation layer is to specialize the business model for different categories of users.  Based on a user's role, they will be restricted to specific subject areas, tables and columns for security.  The breakdown of the model into multiple subject areas organizes the content for users, and subjects superfluous to a particular business role can be hidden from that set of users.  Customized names and descriptions can be used to override the business model names for a specific audience.  Variables in the object names can be used for localization. For these reasons, you are better off thinking of the tables in the presentation layer as folders than as strict relational tables.  The real semantics of tables and how they function is in the business model, and any grouping of columns can be included in any table in the presentation layer.  In 11g, an LSQL query can also span multiple presentation subject areas, as long as they map to the same business model. Other Model Objects There are some objects that apply to multiple layers.  These include security-related objects, such as application roles, users, data filters, and query limits (governors).  There are also variables you can use in parameters and expressions, and initialization blocks for loading their initial values on a static or user session basis.  Finally, there are Multi-User Development (MUD) projects for developers to check out units of work, and objects for the marketing feature used by our packaged customer relationship management (CRM) software.   The Query Factory At this point, you should have a grasp on the query factory concept.  When developing the CEIM model, you are configuring the BI Server to automatically manufacture millions of queries in response to random user requests. You do this by defining the analytic behavior in the business model, mapping that to the physical data sources, and exposing it through the presentation layer's role-based subject areas. While configuring mass production requires a different mindset than when you hand-craft individual SQL or MDX statements, it builds on the modeling and query concepts you already understand. The following posts in this series will walk through the CEIM modeling concepts and best practices in detail.  We will initially review dimensional concepts so you can understand the business model, and then present a pattern-based approach to learning the mappings from a variety of physical schema shapes and deployments to the dimensional model.  Along the way, we will also present the dimensional calculation template, and learn how to configure the many additivity patterns.

    Read the article

  • help on developing enterprise level software solutions

    - by wefwgeweg
    there is a specific niche which I would like to target by providing a complete enterprise level software solution.... the problem is, where do i begin ? meaning, i come from writing just desktop software on VB/ASP .net/PHP/mysql and suddenly unfamiliar terms popup like Oracle, SAP Business Information Warehouse, J2EE.... obviously, something is pointing towards Java, is it common for software suites, or solutions to be developed 100% on Java technology and standards? Are there any other platform to build enterprise level software on ? i am still lacking understanding what exactly is "Enterprise level" ? what is sufficient condition to call a software that sells for $199 and then suddenly it's $19,999 for "enterprise" package. I dont understand why there is such a huge discrepancy between "standard" and "enterprise" versions of software. Is it just attempting to bag large corporations on a spending spree ? so why does one choose to develop so called "enterprise" softwares ? is it because of the large inflated price tag you can justify with ? i would also like some more enterpreneural resources on starting your own enterprise software company in a niche.... Thank you for reading, i am still trying to find the right questions.

    Read the article

  • Google Apps email forwarding to a mailbox within the same domain

    - by Anton Gogolev
    It's either me or this feature doesn't work. I have a Google Apps account (non-paid) for example.com set up fine and dandy. Among other addresses, there are support@ and employee@. Now I want to set up Filters such that all mail sent to support@ should be forwarded to employee@. Note that this is not POP3/IMAP forwarding: I really need to do this with filters. The problem is as such: when an email arrives to support@ it is never ever forwarded to an address within the same domain, but is forwarded perfectly fine to some "outside" address (for instance, forwarding to my personal GMail account works flawlessly). How do I set up Filters to forward email propely?

    Read the article

  • Use Modern Apps in Windows 7

    - by soandos
    It seems like a basic question, but is there a way to run windows 8 (Modern Apps) in windows 7 (without a VM, that seems like cheating)? My hunch is that it would be possible with some sort of hack, as the code is written in the same .Net languages as many other programs. The only issue would be intercepting the finger to corner gestures, but I am not sure how much is there really (is it just a location, or a special win API call). Is there software that can do this, or options that need to be changed to make this work?

    Read the article

< Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >