Search Results

Search found 85833 results on 3434 pages for 'general log file'.

Page 9/3434 | < Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >

  • Unix/Linux simple log parser (since, until)

    - by dpb
    Has anyone ever used/created a simple unix/linux log parser that can parse logs like the following: timestamp log_message \n Order the messages, parse the timestamp, and return: All messages Messages after a certain date (--since) Messages before a certain date (--until) Combination of --since, --until I could write something like this, but wasn't sure if there was something canned. It would fit well in some automated reporting I'm planning on doing.

    Read the article

  • How do I show a log analysis in Splunk?

    - by Vinod K
    I have made my ubuntu server a centralized log server...I have splunk installed in the /opt directory of the ubuntu server. I have one of the another machines sending logs to this ubuntu server..In the splunk interface i have added in the network ports as UDP port 514...and also have added in the "file and directory" /var/log. The client has also been configured properly...How do I show analysis of the logs??

    Read the article

  • How to remove file association in windows 8?

    - by Chesnokov Yuriy
    I have Chrome associated with .xlsx file on windows 8.1 machine In Control Panel\Programs\Default Programs\Set Associations it is not possible to remove association only to change it to another program. In Control Panel\Programs\Default Programs\Set Default Programs\Set Program Associations , .xlsx is not present in Chrome. I removed all keys from HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\FileExts\.xlsx Still Chrome remains associated with that extension in Control Panel\Programs\Default Programs\Set Associations, Windows Explorer shows the Chrome icon with the .xlsx file.

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • How to understand these lines in apache.log

    - by chefnelone
    I just get 19000 lines like these in the apache.log file for my site example.com. My hosting provider shut down the hosting and notified me that I need to avoid to activate my hosting again. I understand that I got a big amount of visits but I don't know how to avoid this. 88.190.47.233 - - [27/Jun/2013:09:51:34 +0200] "GET / HTTP/1.0" 403 389 "http://example.com/" "Opera/9.80 (Windows NT 6.1; U; ru) Presto/2.10.289 Version/12.02" 417 88.190.47.233 - - [27/Jun/2013:09:51:34 +0200] "GET / HTTP/1.0" 403 389 "http://example.com/" "Opera/9.80 (Windows NT 6.1; U; ru) Presto/2.10.289 Version/12.02" 417 175.44.28.155 - - [27/Jun/2013:09:51:44 +0200] "GET /en/user/register HTTP/1.1" 403 503 "http://example.com/en/" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;)" 248 175.44.29.140 - - [27/Jun/2013:09:53:19 +0200] "GET /en/node/1557?page=2 HTTP/1.0" 403 517 "http://example.com/en/node/1557?page=2" "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.12 Safari/535.11" 491 These are the lines from apache-error.log. There are more than 35000 lines like this. [Thu Jun 27 09:50:58 2013] [error] [client 5.39.19.183] (13)Permission denied: access to /index.php denied, referer: http://example.com/ [Thu Jun 27 09:51:03 2013] [error] [client 125.112.29.105] (13)Permission denied: access to /index.php denied, referer: http://example.com/en/ [Thu Jun 27 09:51:34 2013] [error] [client 88.190.47.233] (13)Permission denied: access to /index.php denied, referer: http://example.com/en/node/1557?page=1#comment-701 [Thu Jun 27 09:51:34 2013] [error] [client 88.190.47.233] (13)Permission denied: access to /index.php denied, referer: http://example.com/en/node/1557?page=1#comment-701 [Thu Jun 27 09:51:34 2013] [error] [client 88.190.47.233] (13)Permission denied: access to /index.html denied, referer: http://example.com/en/node/1557?page=1#comment-701 [Thu Jun 27 09:51:34 2013] [error] [client 88.190.47.233] (13)Permission denied: access to /index.htm denied, referer: http://example.com/en/node/1557?page=1#comment-701 [Thu Jun 27 09:51:34 2013] [error] [client 88.190.47.233] (13)Permission denied: access to /index.php denied, referer: http://example.com/ [Thu Jun 27 09:51:34 2013] [error] [client 88.190.47.233] (13)Permission denied: access to /index.html denied, referer: http://example.com/ [Thu Jun 27 09:51:34 2013] [error] [client 88.190.47.233] (13)Permission denied: access to /index.htm denied, referer: http://example.com/ [Thu Jun 27 09:51:34 2013] [error] [client 88.190.47.233] (13)Permission denied: access to /index.php denied, referer: http://example.com/ [Thu Jun 27 09:51:34 2013] [error] [client 88.190.47.233] (13)Permission denied: access to /index.html denied, referer: http://example.com/ [Thu Jun 27 09:51:34 2013] [error] [client 88.190.47.233] (13)Permission denied: access to /index.htm denied, referer: http://example.com/ [Thu Jun 27 09:51:44 2013] [error] [client 175.44.28.155] (13)Permission denied: access to /index.php denied, referer: http://example.com/en/ [Thu Jun 27 09:53:19 2013] [error] [client 175.44.29.140] (13)Permission denied: access to /index.php denied, referer: http://example.com/en/node/1557?page=2 [Thu Jun 27 09:53:20 2013] [error] [client 175.44.29.140] (13)Permission denied: access to /index.php denied, referer: http://example.com/en/node/1557?page=2 [Thu Jun 27 09:53:20 2013] [error] [client 175.44.29.140] (13)Permission denied: access to /index.html denied, referer: http://example.com/en/node/1557?page=2 [Thu Jun 27 09:53:20 2013] [error] [client 175.44.29.140] (13)Permission denied: access to /index.htm denied, referer: http://example.com/en/node/1557?page=2 [Thu Jun 27 09:53:21 2013] [error] [client 175.44.29.140] (13)Permission denied: access to /index.php denied, referer: http://example.com/ [Thu Jun 27 09:53:21 2013] [error] [client 175.44.29.140] (13)Permission denied: access to /index.html denied, referer: http://example.com/ [Thu Jun 27 09:53:21 2013] [error] [client 175.44.29.140] (13)Permission denied: access to /index.htm denied, referer: http://example.com/ [Thu Jun 27 09:53:22 2013] [error] [client 175.44.29.140] (13)Permission denied: access to /index.php denied, referer: http://example.com/ [Thu Jun 27 09:53:22 2013] [error] [client 175.44.29.140] (13)Permission denied: access to /index.html denied, referer: http://example.com/ [Thu Jun 27 09:53:22 2013] [error] [client 175.44.29.140] (13)Permission denied: access to /index.htm denied, referer: http://example.com/ [Thu Jun 27 09:56:53 2013] [error] [client 113.246.6.147] (13)Permission denied: access to /index.php denied, referer: http://example.com/en/ [Thu Jun 27 09:58:58 2013] [error] [client 108.62.71.180] (13)Permission denied: access to /index.php denied, referer: http://example.com/

    Read the article

  • Windows 7 CHKDSK log - What is "Internal Info"?

    - by Ron Klein
    If I run Disk Scan (CHKDSK) on Windows 7, I get the log in the event viewer. If I look inside it, I can see some kind of a binary dump: Internal Info: 00 4f 05 00 53 4a 05 00 ec 46 09 00 00 00 00 00 .O..SJ...F...... fa 03 00 00 5c 00 00 00 00 00 00 00 00 00 00 00 ....\........... 48 93 42 00 50 01 41 00 f8 1f 41 00 00 00 41 00 H.B.P.A...A...A. Is there any meaningful information in that field, other than debug info for the programmers who developed this tool?

    Read the article

  • Best Practice: Apache File Upload

    - by matnagel
    I am looking for a soultion for trusted users to upload pdf files via html forms (with maybe php involved). This is quite a standard ubuntu linux server with apache 2.x and php 5. I am wonderiung what are the benefits of the apache file upload module. There were no updates for some time, is it actively maintained? What are the advantages over traditional php upload with apache 2 without this module? http://commons.apache.org/fileupload I remember traditional php file upload is difficult with some pitfalls, will the apache file upload module improve the situation? The solution I am looking for will be part of an existing website and be integrated into the admin web frontend. Things I am not considering are webdav, ssh, ftp, ftps, ftp over ssh. Should work with a browser and without installing special client software, so I am asking about a browser based upload without special client side requirements. I can request a modern browser like firefox = 3.5 or modern webkit broser like chrome or safari from the users.

    Read the article

  • SQL log shipping for reporting

    - by Patrick J Collins
    I would like to create a read-only copy of my SQL Server 2008 database on a secondary server for reporting and analysis. I've been testing log shipping, configured to run every 5 minutes or so. Alas, there appears to be a stumbling block, for exclusive access is required on the target database during the restore, which in turn requires killing all active connections. This is far from ideal, especially if a user is in the middle of running a report. Any better suggestions? Edit : I'm doing this on the Express edition.

    Read the article

  • transaction log shipping sql server 2005 to 2008

    - by Andrew Jahn
    I have a reporting setup with SSRS on our sql server 2005 database. Because sql server 2008 is not supported by the main program which populates our database we are stuck with 2005 on our prod database. Unfortunately when I run our weekly check reports the web interface constantly times out because the server cant do the conversion to PDF. I've read that sql server 2008's SSRS is ALOT better with memory management. I was wondering if I can do some kind transact log shipping subscription publication from 2005 to 2008? Am I chasing a dream here. Currently I have to open up the ssrs project in visual studio and run the reports inside because it doesn't ever time out when doing the pdf conversion, only times out if I try to run it through the ssis web interface.

    Read the article

  • Iterating through folders and files in batch file?

    - by Will Marcouiller
    Here's my situation. A project has as objective to migrate some attachments to another system. These attachments will be located to a parent folder, let's say "Folder 0" (see this question's diagram for better understanding), and they will be zipped/compressed. I want my batch script to be called like so: BatchScript.bat "c:\temp\usd\Folder 0" I'm using 7za.exe as the command line extraction tool. What I want my batch script to do is to iterate through the "Folder 0"'s subfolders, and extract all of the containing ZIP files into their respective folder. It is obligatory that the files extracted are in the same folder as their respective ZIP files. So, files contained in "File 1.zip" are needed in "Folder 1" and so forth. I have read about the FOR...DO command on Windows XP Professional Product Documentation - Using Batch Files. Here's my script: @ECHO OFF FOR /D %folder IN (%%rootFolderCmdLnParam) DO FOR %zippedFile IN (*.zip) DO 7za.exe e %zippedFile I guess that I would also need to change the actual directory before calling 7za.exe e %zippedFile for file extraction, but I can't figure out how in this batch file (through I know how in command line, and even if I know it is the same instruction "cd"). Anyone's help is gratefully appreciated.

    Read the article

  • Why are there unknown URLs in router log?

    - by Martin
    I recently looked at my router log. Why are a lot of requests that I don't send originated from a computer in my home network? They do not look like 3rd-party advertisements / images embedded in a page. The request have patterns, such as: top-visitor.com/look.php www.dottip.com/search/result.php?aff=8755&req=nickelodeon+games www.placeca.com/search/result.php?aff=3778&req=wireless+cell+phone www.bb5a.com/search.php?username=3348&keywords=flights www.blazerbox.com/search.php?username=2341&keywords=colorado+springs+real+estate www.freeautosource.com/search.php?username=sun100&keywords=vehicle www.1sp2.com/search.php?username=20190&keywords=las+the+hotel+vegas www.loadgeo.com/search/result.php?aff=10357&req=winamp www.exalt123.com/portal.php?ref=seo2007 www.7catalogs.com/search.php?username=la24&keywords=shutter www.theloaninstitute.com/search.php?username=kevin&keywords=webcam www.grammt.com/search.php?username=2530&keywords=bob And there are hundreds of these requests send within a second. So what's happening?

    Read the article

  • Strange stuff in apache log

    - by aL3xa
    Hi lads, I'm building some kind of webapp, and currently the whole thing runs on my machine. I was combing down my logs, and found several "strange" log entries that made me a bit paranoid. Here goes: ***.***.***.** - - [19/Dec/2010:19:47:47 +0100] "\x99\x91g\xca\xa8" 501 1054 **.***.***.** - - [19/Dec/2010:20:14:58 +0100] "<}\xdbe\x86E\x18\xe7\x8b" 501 1054 **.**.***.*** - - [21/Dec/2010:15:28:14 +0100] "J\xaa\x9f\xa3\xdd\x9c\x81\\\xbd\xb3\xbe\xf7\xa6A\x92g'\x039\x97\xac,vC\x8d\x12\xec\x80\x06\x10\x8e\xab7e\xa9\x98\x10\xa7" 501 1054 Bloody hell... what is this?!

    Read the article

  • Windows file association for README, INSTALL, LICENSE and the like [closed]

    - by Lumi
    Possible Duplicate: How to set the default program for opening files without an extension in Windows? Many files originating in the UNIX world come without file extension. Popular examples include README, INSTALL, LICENSE. We know for a fact that these are text files. It is therefore a bit disappointing not to be able to just double-click them open in Explorer and see them in Notepad (actually, Notepad2 because of the UNIX line endings which silly Microsoft Notepad doesn't render correctly). Does anyone know of a way to create a file association for, say, README files without extension? This could then be replicated to cover the most frequently occurring file types, and then double-clicking them open would work. Update (Sort of in response to all your comments.) Thanks, folks, your comments and answers have helped me. @Indrek, yes, I was under the assumption that you could somehow create an association for just README or Makefile, and couldn't do so for files without extension. Turns out the contrary is true, and yes, that is a workaround that neatly solves the issue. Ultimately, I just want to be able to double-click to open a README or Makefile, that's all. @Sampo, the SendMe trick is also useful, although usability is not as great as a straight double-click. (I'm really lazy sometimes.) Turns out the following trick using ftype and ftype from an Administrator prompt does the double-click enabling job: assoc .=no_ext ftype no_ext=%SystemRoot%\system32\NOTEPAD.EXE %1 :: You can see it created some entries in the registry: reg query hkcr\no_ext /s reg query hkcr\. /s

    Read the article

  • how can i use apache log files to recreate usage scenario

    - by daigorocub
    Recently i installed a website that had too many requests and it was too slow. Many improvements have been made to the web site code and we've also bought a new server. I want to test the new server with exactly the same requests that made the old server slow. After that, i will double the requests, make new tests and so on. These requests are logged in the apache log files. So, I can parse those files and make some kind of script to make the same requests. Of course, in this case, the requests will be made only by my computer against the server, but hey, better than nothing. Questions: - is there some app that does this already? - would you use wget? ab? python script? Thanks!

    Read the article

  • Sharepoint 2007 - Transaction log full

    - by Kenny Bones
    So I have this SharePoint 2007 site that is basically trash. I'm supposed to just toss it, but I'm in need of copying all of the data in form of traditional files and folders from certain projects. And since the transaction log is full, it's so damn slow. Even opening SharePoint takes up to 15 minutes, or it won't open at all. Copying of files is extremely slow. So I'm in need of a quick fix here. Just to be able to copy out some files and folders. I don't need to fix the problem per se. What can I do to fix it temporarily to be able to copy out the data?

    Read the article

  • Moving hidden files/folders with the command-line or batch-file

    - by Synetech
    Question Does anyone know of a way to move files and folders that have the hidden, system, or read-only attribute set from the command-line or a batch file? (No, stripping the attributes first is not an option since there is no practical way to know which attributes were set in order to re-set them after the move.) (Failed) Attempts Using the basic move command does not work with items with the hidden or system attribute set and for some reason, it does not have switches to specify attributes like the dir and del commands do. I tried using a utility I wrote that uses the shell’s file operation function, but that requires using start /w to prevent the batch file from running on ahead, and it complains about long-filename support for some reason. I tried using robocopy, but it first copies the files and then deletes the originals instead of simply moving the source (which results in a frustrating delay, even with the excessive output redirected to nul). (Surprisingly it seems that few people have ever needed to move hidden files from the command-line. All I could find was this one person who abandoned the attempt.)

    Read the article

  • Windows network: deny file access to another user if file is currently open

    - by Steve
    Some users on my network are having difficulties saving files, because the file is open elsewhere. Let's say Lemuel wants to edit a file, but Bernice in the next office over is working on it. Lemuel opens, edits, and tries to save, but then gets a "no write access" error. Bernice chortles with glee (since earlier that week Lemuel stole her sandwich). Unfortunately, various softwares will not warn the user that they have opened a read-only file. Is there a way (in Windows) to limit file access to ONE user only, i.e. 777 for the first user to open the file, and 000 for all users after that? (Sorry for the Linux terminology but it gets my point across).

    Read the article

  • To File Share or to not File Share, that is the Question.

    To file share or to not file share, that is the question. The concept of the internet was developed in the 1960’s as a revolutionary idea to share information and data amongst a group of computers. The original concept was to allow universities and the United States Military share data for research and field operations. This network of computers was designed to provide redundant data storage and communications in case one or more locations were destroyed. Since the inception of the internet, people have attempted to use it for sharing data. As the Internet has evolved so did the users and the information they wanted to share. In today’s modern internet people can share information through various avenues, for example: websites, social networks, email, documents, executable files, data files and much more.  Unfortunately, as the internet and its users have grown, some industries have not paid attention. Currently, there are several industries that have really fallen behind in keeping up with current trends, and are severely paying the price for their lack of action. A current example of this is with the Recording Industry Association of America (RIAA) and file sharing. RIAA contends that customers who purchase music can only listen to the music and cannot share it with others. This can be seen when the RIAA sued Napster for distributing copyrighted music through a technology called file sharing. File sharing as defined by the Media Awareness Network is downloadable software that permits users to share music, video, image or book files directly with peers. Users of file sharing networks simply had to extract the music from a CD into a music compatible format. Typically most music files at that time where saved as MPEG file format. Once the users got music in this format it was very easy share their music with others. The big question now is who actually owns the music, does the music industry still retain the rights of the music regarding who has access to listen to it, or is it up to the owner of the music CD.  According to the First – Sale Doctrine, it is the right of the purchaser of the CD to decide who can access the information on the CD. In addition, the original owner looses all rights to the music once it has been sold.  The importance of defining who actually owns the music has a great impact on the future of the industry. If the industry is determined to be the actual owner of the music then anyone who has shared at least 1 fine with another is guilty of violating the copyright. However, if the owners of the CD are determined to be the owners of the music then the music industry will have to figure out some other way to protect their music so that it is more lucrative for them or they will go out of business. References: http://www.walthowe.com/navnet/history.html http://www.media-awareness.ca/english/resources/special_initiatives/wa_resources/wa_shared/backgrounders/internet_glossary.cfm#F

    Read the article

  • strange Postfix logwatch log summary on my ubuntu vps

    - by DannyRe
    Hi I would be very thankful if someone could help me on explaining this logwatch summary of my postfix installation on my ubuntu 10.04 vps. I dont really know if this might be a normal log file because of the many authentication failed entries and foreign IP addresses. Any advise for a novice? Thx! ****** Summary ************************************************************************************* 113 SASL authentication failed 195 Miscellaneous warnings 8.419K Bytes accepted 8,621 8.419K Bytes delivered 8,621 ======== ================================================== 3 Accepted 60.00% 2 Rejected 40.00% -------- -------------------------------------------------- 5 Total 100.00% ======== ================================================== 2 5xx Reject relay denied 100.00% -------- -------------------------------------------------- 2 Total 5xx Rejects 100.00% ======== ================================================== 116 Connections 1 Connections lost (inbound) 116 Disconnections 3 Removed from queue 3 Delivered 1 Hostname verification errors ****** Detail (10) ********************************************************************************* 113 SASL authentication failed -------------------------------------------------------------- 113 92.24.80.207 host-92-24-80-207.ppp.as43234.net 113 LOGIN 113 generic failure 195 Miscellaneous warnings ------------------------------------------------------------------ 113 SASL authentication failure: cannot connect to saslauthd server: Permission denied 41 inet_protocols: IPv6 support is disabled: Address family not supported by protocol 41 inet_protocols: configuring for IPv4 support only 2 5xx Reject relay denied ----------------------------------------------------------------- 1 46.242.103.110 unknown 1 [email protected] 1 114.42.142.103 114-42-142-103.dynamic.hinet.net 1 [email protected] 1 Connections lost (inbound) -------------------------------------------------------------- 1 After RCPT 3 Delivered ------------------------------------------------------------------------------- 3 myhost.xx 1 Hostname verification errors ------------------------------------------------------------ 1 Name or service not known 1 46.242.103.110 broadband-46-242-103-110.nationalcablenetworks.ru === Delivery Delays Percentiles ============================================================ 0% 25% 50% 75% 90% 95% 98% 100%

    Read the article

  • mac osX file recovery

    - by Daniel
    I thought that all operating systems would merge folder content when being moved to the same location. Imagine my surprise when that didn't happen and I have hundreds, if not thousands of files that have gone missing and are nowhere to be found. Because they were not "deleted" they are not in the trash bin. I've tried to do some recovery using a program called stellarPheonix but after about a 24hour scan, it didn't recognize any of the raw files (.dng,.arw) as image files and so I couldn't see if they could be recovered. It also didn't show the directory structure, which would be handy. I tried a quick scan, but all it showed was files that were still on the HD, not sure what the point of that is. I've used recover 2000 on Win and it does a good job, does anyone know of anything that works quickly and reliably for this kind of file recovery. (I don't think I should have to do a sector-by=sector for this kind of file loss)

    Read the article

  • Mac OS X file recovery

    - by Daniel
    I thought that all operating systems would merge folder content when being moved to the same location. Imagine my surprise when that didn't happen and I have hundreds, if not thousands of files that have gone missing and are nowhere to be found. Because they were not "deleted" they are not in the trash bin. I've tried to do some recovery using a program called stellarPheonix but after about a 24hour scan, it didn't recognize any of the raw files (.dng,.arw) as image files and so I couldn't see if they could be recovered. It also didn't show the directory structure, which would be handy. I tried a quick scan, but all it showed was files that were still on the HD, not sure what the point of that is. I've used recover 2000 on Win and it does a good job, does anyone know of anything that works quickly and reliably for this kind of file recovery. (I don't think I should have to do a sector-by=sector for this kind of file loss)

    Read the article

< Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >