Search Results

Search found 3419 results on 137 pages for 'wcf wshttpbinding'.

Page 9/137 | < Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >

  • WCF service hosted in IIS7 with administrator rights?

    - by Allan Baker
    Hello, How do I grant administrator rights to a running WCF service hosted in IIS7? The problem is, my code works fine in a test console application runned as an administrator, but the same code used from WCF service in IIS7 fails. When I run the same console test application without admin rights, code fails. So, how do I grant admin rights to a WCF service hosted in IIS7? Do I grant admin rights to IIS7 service? Can I grant rights to a specific WCF service? How do I do 'Run as an administrator' on IIS7 or specific website? Thanks! (That's the question, here is a more detailed description of a situation: I am trying to capture frames from a webcam into a jpg file using Touchless library, and I can do that from a console application with admin rights. When I run that same console app without admin rights I cannot access a webcam in code. Same thing happens in a WCF service with the same code.)

    Read the article

  • WCF: WTF! Does WCF raise the bar or just the complexity level?

    - by rp
    I understand the value of the three-part service/host/client model offered by WCF. But is it just me or does it seem like WCF took something pretty direct and straightforward (the ASMX model) and made a mess out of it? Is there an alternative to using SvcUtil's command line step back in time to generate the proxy? With ASMX services a test harness was automatically provided; is there a good alternative today with WCF? I appreciate that the WS* stuff is more tightly integrated with WCF and hope to find some payoff for WCF there, but geeze, otherwise I'm perplexed. Also, the state of books available for WCF is abysmal at best. Juval Lowy, a superb author, has written a good O'Reilly reference book "Programming WCF Services" but it doesn't do that much (for me anyway) for learning now to use WCF. That book's precursor (and a little better organized, but not much, as a tutorial) is Michele Leroux Bustamante's Learning WCF. It has good spots but is outdated in place and its corresponding Web site is gone. Do you have good WCF learning references besides just continuing to Google the bejebus out of things? Thanks, rp

    Read the article

  • Calling a REST Based JSON Endpoint with HTTP POST and WCF

    - by Wallym
    Note: I always forget this stuff, so I'm putting it my blog to help me remember it.Calling a JSON REST based service with some params isn't that hard.  I have an endpoint that has this interface:        [WebInvoke(UriTemplate = "/Login",             Method="POST",             BodyStyle = WebMessageBodyStyle.Wrapped,            RequestFormat = WebMessageFormat.Json,            ResponseFormat = WebMessageFormat.Json )]        [OperationContract]        bool Login(LoginData ld); The LoginData class is defined like this:    [DataContract]    public class LoginData    {        [DataMember]        public string UserName { get; set; }        [DataMember]        public string PassWord { get; set; }        [DataMember]        public string AppKey { get; set; }    } Now that you see my method to call to login as well as the class that is passed for the login, the body of the login request looks like this:{ "ld" : {  "UserName":"testuser", "PassWord":"ackkkk", "AppKey":"blah" } } The header (in Fiddler), looks like this:User-Agent: FiddlerHost: hostnameContent-Length: 76Content-Type: application/json And finally, my url to POST against is:http://www.something.com/...../someservice.svc/LoginAnd there you have it, calling a WCF JSON Endpoint thru REST (and HTTP POST)

    Read the article

  • Hierarchy flattening of interfaces in WCF

    - by nmarun
    Alright, so say I have my service contract interface as below: 1: [ServiceContract] 2: public interface ILearnWcfService 3: { 4: [OperationContract(Name = "AddInt")] 5: int Add(int arg1, int arg2); 6: } Say I decided to add another interface with a similar add “feature”. 1: [ServiceContract] 2: public interface ILearnWcfServiceExtend : ILearnWcfService 3: { 4: [OperationContract(Name = "AddDouble")] 5: double Add(double arg1, double arg2); 6: } My class implementing the ILearnWcfServiceExtend ends up as: 1: public class LearnWcfService : ILearnWcfServiceExtend 2: { 3: public int Add(int arg1, int arg2) 4: { 5: return arg1 + arg2; 6: } 7:  8: public double Add(double arg1, double arg2) 9: { 10: return arg1 + arg2; 11: } 12: } Now when I consume this service and look at the proxy that gets generated, here’s what I see: 1: public interface ILearnWcfServiceExtend 2: { 3: [System.ServiceModel.OperationContractAttribute(Action="http://tempuri.org/ILearnWcfService/AddInt", ReplyAction="http://tempuri.org/ILearnWcfService/AddIntResponse")] 4: int AddInt(int arg1, int arg2); 5: 6: [System.ServiceModel.OperationContractAttribute(Action="http://tempuri.org/ILearnWcfServiceExtend/AddDouble", ReplyAction="http://tempuri.org/ILearnWcfServiceExtend/AddDoubleResponse")] 7: double AddDouble(double arg1, double arg2); 8: } Only the ILearnWcfServiceExtend gets ‘listed’ in the proxy class and not the (base interface) ILearnWcfService interface. But then to uniquely identify the operations that the service exposes, the Action and ReplyAction properties are set. So in the above example, the AddInt operation has the Action property set to ‘http://tempuri.org/ILearnWcfService/AddInt’ and the AddDouble operation has the Action property of ‘http://tempuri.org/ILearnWcfServiceExtend/AddDouble’. Similarly the ReplyAction properties are set corresponding to the namespace that they’re declared in. The ‘http://tempuri.org’ is chosen as the default namespace, since the Namespace property on the ServiceContract is not defined. The other thing is the service contract itself – the Add() method. You’ll see that in both interfaces, the method names are the same. As you might know, this is not allowed in WSDL-based environments, even though the arguments are of different types. This is allowed only if the Name attribute of the ServiceContract is set (as done above). This causes a change in the name of the service contract itself in the proxy class. See that their names are changed to AddInt / AddDouble respectively. Lesson learned: The interface hierarchy gets ‘flattened’ when the WCF service proxy class gets generated.

    Read the article

  • Serving up a RSS feed in MVC using WCF Syndication

    - by brian_ritchie
    With .NET 3.5, Microsoft added the SyndicationFeed class to WCF for generating ATOM 1.0 & RSS 2.0 feeds.  In .NET 3.5, it lives in System.ServiceModel.Web but was moved into System.ServiceModel in .NET 4.0. Here's some sample code on constructing a feed: .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: Consolas, "Courier New", Courier, Monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: SyndicationFeed feed = new SyndicationFeed(title, description, new Uri(link)); 2: feed.Categories.Add(new SyndicationCategory(category)); 3: feed.Copyright = new TextSyndicationContent(copyright); 4: feed.Language = "en-us"; 5: feed.Copyright = new TextSyndicationContent(DateTime.Now.Year + " " + ownerName); 6: feed.ImageUrl = new Uri(imageUrl); 7: feed.LastUpdatedTime = DateTime.Now; 8: feed.Authors.Add(new SyndicationPerson() { Name = ownerName, Email = ownerEmail }); 9:   10: var feedItems = new List<SyndicationItem>(); 11: foreach (var item in Items) 12: { 13: var sItem = new SyndicationItem(item.title, null, new Uri(link)); 14: sItem.Summary = new TextSyndicationContent(item.summary); 15: sItem.Id = item.id; 16: if (item.publishedDate != null) 17: sItem.PublishDate = (DateTimeOffset)item.publishedDate; 18: sItem.Links.Add(new SyndicationLink() { Title = item.title, Uri = new Uri(link), Length = item.size, MediaType = item.mediaType }); 19: feedItems.Add(sItem); 20: } 21: feed.Items = feedItems;   Then, we create a custom ContentResult to serialize the feed & stream it to the client: 1: public class SyndicationFeedResult : ContentResult 2: { 3: public SyndicationFeedResult(SyndicationFeed feed) 4: : base() 5: { 6: using (var memstream = new MemoryStream()) 7: using (var writer = new XmlTextWriter(memstream, System.Text.UTF8Encoding.UTF8)) 8: { 9: feed.SaveAsRss20(writer); 10: writer.Flush(); 11: memstream.Position = 0; 12: Content = new StreamReader(memstream).ReadToEnd(); 13: ContentType = "application/rss+xml" ; 14: } 15: } 16: } Finally, we wire it up through the controller: 1: public class RssController : Controller 2: { 3: public SyndicationFeedResult Feed() 4: { 5: var feed = new SyndicationFeed(); 6: // populate feed... 7: return new SyndicationFeedResult(feed); 8: } 9: }   In the next post, I'll discuss how to add iTunes markup to the feed to publish it on iTunes as a Podcast. 

    Read the article

  • Populate a WCF syndication podcast using MP3 ID3 metadata tags

    - by brian_ritchie
    In the last post, I showed how to create a podcast using WCF syndication.  A podcast is an RSS feed containing a list of audio files to which users can subscribe.  The podcast not only contains links to the audio files, but also metadata about each episode.  A cool approach to building the feed is reading this metadata from the ID3 tags on the MP3 files used for the podcast. One library to do this is TagLib-Sharp.  Here is some sample code: .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: Consolas, "Courier New", Courier, Monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: var taggedFile = TagLib.File.Create(f); 2: var fileInfo = new FileInfo(f); 3: var item = new iTunesPodcastItem() 4: { 5: title = taggedFile.Tag.Title, 6: size = fileInfo.Length, 7: url = feed.baseUrl + fileInfo.Name, 8: duration = taggedFile.Properties.Duration, 9: mediaType = feed.mediaType, 10: summary = taggedFile.Tag.Comment, 11: subTitle = taggedFile.Tag.FirstAlbumArtist, 12: id = fileInfo.Name 13: }; 14: if (!string.IsNullOrEmpty(taggedFile.Tag.Album)) 15: item.publishedDate = DateTimeOffset.Parse(taggedFile.Tag.Album); This reads the ID3 tags into an object for later use in creating the syndication feed.  When the MP3 is created, these tags are set...or they can be set after the fact using the Properties dialog in Windows Explorer.  The only "hack" is that there isn't an easily accessible tag for "subtitle" or "published date" so I used other tags in this example. Feel free to change this to meet your purposes.  You could remove the subtitle & use the file modified data for example. That takes care of the episodes, for the feed level settings we'll load those from an XML file: .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: Consolas, "Courier New", Courier, Monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: <?xml version="1.0" encoding="utf-8" ?> 2: <iTunesPodcastFeed 3: baseUrl ="" 4: title="" 5: subTitle="" 6: description="" 7: copyright="" 8: category="" 9: ownerName="" 10: ownerEmail="" 11: mediaType="audio/mp3" 12: mediaFiles="*.mp3" 13: imageUrl="" 14: link="" 15: /> Here is the full code put together. Read the feed XML file and deserialize it into an iTunesPodcastFeed classLoop over the files in a directory reading the ID3 tags from the audio files .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: Consolas, "Courier New", Courier, Monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: public static iTunesPodcastFeed CreateFeedFromFiles(string podcastDirectory, string podcastFeedFile) 2: { 3: XmlSerializer serializer = new XmlSerializer(typeof(iTunesPodcastFeed)); 4: iTunesPodcastFeed feed; 5: using (var fs = File.OpenRead(Path.Combine(podcastDirectory, podcastFeedFile))) 6: { 7: feed = (iTunesPodcastFeed)serializer.Deserialize(fs); 8: } 9: foreach (var f in Directory.GetFiles(podcastDirectory, feed.mediaFiles)) 10: { 11: try 12: { 13: var taggedFile = TagLib.File.Create(f); 14: var fileInfo = new FileInfo(f); 15: var item = new iTunesPodcastItem() 16: { 17: title = taggedFile.Tag.Title, 18: size = fileInfo.Length, 19: url = feed.baseUrl + fileInfo.Name, 20: duration = taggedFile.Properties.Duration, 21: mediaType = feed.mediaType, 22: summary = taggedFile.Tag.Comment, 23: subTitle = taggedFile.Tag.FirstAlbumArtist, 24: id = fileInfo.Name 25: }; 26: if (!string.IsNullOrEmpty(taggedFile.Tag.Album)) 27: item.publishedDate = DateTimeOffset.Parse(taggedFile.Tag.Album); 28: feed.Items.Add(item); 29: } 30: catch 31: { 32: // ignore files that can't be accessed successfully 33: } 34: } 35: return feed; 36: } Usually putting a "try...catch" like this is bad, but in this case I'm just skipping over files that are locked while they are being uploaded to the web site.Here is the code from the last couple of posts.  

    Read the article

  • JQuery + WCF + HTTP 404 Error

    - by hangar18
    HI All, I've searched high and low and finally decided to post a query here. I'm writing a very basic HTML page from which I'm trying to call a WCF service using jQuery and parse it using JSON. Service: IMyDemo.cs [ServiceContract] public interface IMyDemo { [WebInvoke(Method = "POST", BodyStyle = WebMessageBodyStyle.WrappedRequest, ResponseFormat = WebMessageFormat.Json)] Employee DoWork(); [OperationContract] [WebInvoke(Method = "POST", BodyStyle = WebMessageBodyStyle.WrappedRequest, ResponseFormat = WebMessageFormat.Json)] Employee GetEmp(int age, string name); } [DataContract] public class Employee { [DataMember] public int EmpId { get; set; } [DataMember] public string EmpName { get; set; } [DataMember] public int EmpSalary { get; set; } } MyDemo.svc.cs public Employee DoWork() { // Add your operation implementation here Employee obj = new Employee() { EmpSalary = 12, EmpName = "SomeName" }; return obj; } public Employee GetEmp(int age, string name) { Employee emp = new Employee(); if (age > 0) emp.EmpSalary = 12 + age; if (!string.IsNullOrEmpty(name)) emp.EmpName = "Server" + name; return emp; } WEb.Config <system.serviceModel> <services> <service behaviorConfiguration="EmployeesBehavior" name="MySample.MyDemo"> <endpoint address="" binding="webHttpBinding" contract="MySample.IMyDemo" behaviorConfiguration="EmployeesBehavior"/> </service> </services> <behaviors> <serviceBehaviors> <behavior name="EmployeesBehavior"> <serviceMetadata httpGetEnabled="true" /> <serviceDebug includeExceptionDetailInFaults="true" /> </behavior> </serviceBehaviors> <endpointBehaviors> <behavior name="EmployeesBehavior"> <webHttp/> </behavior> </endpointBehaviors> </behaviors> <serviceHostingEnvironment multipleSiteBindingsEnabled="true" /> </system.serviceModel> MyDemo.htm <head> <title></title> <script type="text/javascript" language="javascript" src="Scripts/jquery-1.4.1.js"></script> <script type="text/javascript" language="javascript" src="Scripts/json.js"></script> <script type="text/javascript"> //create a global javascript object for the AJAX defaults. debugger; var ajaxDefaults = {}; ajaxDefaults.base = { type: "POST", timeout : 1000, dataFilter: function (data) { //see http://encosia.com/2009/06/29/never-worry-about-asp-net-ajaxs-d-again/ data = JSON.parse(data); //use the JSON2 library if you aren’t using FF3+, IE8, Safari 3/Google Chrome return data.hasOwnProperty("d") ? data.d : data; }, error: function (xhr) { //see if (!xhr) return; if (xhr.responseText) { var response = JSON.parse(xhr.responseText); //console.log works in FF + Firebug only, replace this code if (response) alert(response); else alert("Unknown server error"); } } }; ajaxDefaults.json = $.extend(ajaxDefaults.base, { //see http://encosia.com/2008/03/27/using-jquery-to-consume-aspnet-json-web-services/ contentType: "application/json; charset=utf-8", dataType: "json" }); var ops = { baseUrl: "/MyService/MySample/MyDemo.svc/", doWork: function () { //see http://api.jquery.com/jQuery.extend/ var ajaxOptions = $.extend(ajaxDefaults.json, { url: ops.baseUrl + "DoWork", data: "{}", success: function (msg) { console.log("success"); console.log(typeof msg); if (typeof msg !== "undefined") { console.log(msg); } } }); $.ajax(ajaxOptions); return false; }, getEmp: function () { var ajaxOpts = $.extend(ajaxDefaults.json, { url: ops.baseUrl + "GetEmp", data: JSON.stringify({ age: 12, name: "NameName" }), success: function (msg) { $("span#lbl").html("age: " + msg.Age + "name:" + msg.Name); } }); $.ajax(ajaxOpts); return false; } } </script> </head> <body> <span id="lbl">abc</span> <br /><br /> <input type="button" value="GetEmployee" id="btnGetEmployee" onclick="javascript:ops.getEmp();" /> </body> I'm just not able to get this running. When I debug, I see the error being returned from the call is " Server Error in '/jQuerySample' Application. <h2> <i>HTTP Error 404 - Not Found.</i> </h2></span> " Looks like I'm missing something basic here. My sample is based on this I've been trying to fix the code for sometime now so I'd like you to take a look and see if you can figure out what is it that I'm doing wrong here. I'm able to see that the service is created when I browse the service in IE. I've also tried changing the setting as mentioned here Appreciate your help. I'm gonna blog about this as soon as the issue is resolved for the benefit of other devs Thanks -Soni

    Read the article

  • Compiling examples for consuming the REST Endpoints for WCF Service using Agatha

    - by REA_ANDREW
    I recently made two contributions to the Agatha Project by Davy Brion over on Google Code, and one of the things I wanted to follow up with was a post showing examples and some, seemingly required tid bits.  The contributions which I made where: To support StructureMap To include REST (JSON and XML) support for the service contract The examples which I have made, I want to format them so they fit in with the current format of examples over on Agatha and hopefully create and submit a third patch which will include these examples to help others who wish to use these additions. Whilst building these examples for both XML and JSON I have learnt a couple of things which I feel are not really well documented, but are extremely good practice and once known make perfect sense.  I have chosen a real basic e-commerce context for my example Requests and Responses, and have also made use of the excellent tool AutoMapper, again on Google Code. Setting the scene I have followed the Pipes and Filters Pattern with the IQueryable interface on my Repository and exposed the following methods to query Products: IQueryable<Product> GetProducts(); IQueryable<Product> ByCategoryName(this IQueryable<Product> products, string categoryName) Product ByProductCode(this IQueryable<Product> products, String productCode) I have an interface for the IProductRepository but for the concrete implementation I have simply created a protected getter which populates a private List<Product> with 100 test products with random data.  Another good reason for following an interface based approach is that it will demonstrate usage of my first contribution which is the StructureMap support.  Finally the two Domain Objects I have made are Product and Category as shown below: public class Product { public String ProductCode { get; set; } public String Name { get; set; } public Decimal Price { get; set; } public Decimal Rrp { get; set; } public Category Category { get; set; } }   public class Category { public String Name { get; set; } }   Requirements for the REST Support One of the things which you will notice with Agatha is that you do not have to decorate your Request and Response objects with the WCF Service Model Attributes like DataContract, DataMember etc… Unfortunately from what I have seen, these are required if you want the same types to work with your REST endpoint.  I have not tried but I assume the same result can be achieved by simply decorating the same classes with the Serializable Attribute.  Without this the operation will fail. Another surprising thing I have found is that it did not work until I used the following Attribute parameters: Name Namespace e.g. [DataContract(Name = "GetProductsRequest", Namespace = "AgathaRestExample.Service.Requests")] public class GetProductsRequest : Request { }   Although I was surprised by this, things kind of explained themselves when I got round to figuring out the exact construct required for both the XML and the REST.  One of the things which you already know and are then reminded of is that each of your Requests and Responses ultimately inherit from an abstract base class respectively. This information needs to be represented in a way native to the format being used.  I have seen this in XML but I have not seen the format which is required for the JSON. JSON Consumer Example I have used JQuery to create the example and I simply want to make two requests to the server which as you will know with Agatha are transmitted inside an array to reduce the service calls.  I have also used a tool called json2 which is again over at Google Code simply to convert my JSON expression into its string format for transmission.  You will notice that I specify the type of Request I am using and the relevant Namespace it belongs to.  Also notice that the second request has a parameter so each of these two object are representing an abstract Request and the parameters of the object describe it. <script type="text/javascript"> var bodyContent = $.ajax({ url: "http://localhost:50348/service.svc/json/processjsonrequests", global: false, contentType: "application/json; charset=utf-8", type: "POST", processData: true, data: JSON.stringify([ { __type: "GetProductsRequest:AgathaRestExample.Service.Requests" }, { __type: "GetProductsByCategoryRequest:AgathaRestExample.Service.Requests", CategoryName: "Category1" } ]), dataType: "json", success: function(msg) { alert(msg); } }).responseText; </script>   XML Consumer Example For the XML Consumer example I have chosen to use a simple Console Application and make a WebRequest to the service using the XML as a request.  I have made a crude static method which simply reads from an XML File, replaces some value with a parameter and returns the formatted XML.  I say crude but it simply shows how XML Templates for each type of Request could be made and then have a wrapper utility in whatever language you use to combine the requests which are required.  The following XML is the same Request array as shown above but simply in the XML Format. <?xml version="1.0" encoding="utf-8" ?> <ArrayOfRequest xmlns="http://schemas.datacontract.org/2004/07/Agatha.Common" xmlns:i="http://www.w3.org/2001/XMLSchema-instance"> <Request i:type="a:GetProductsRequest" xmlns:a="AgathaRestExample.Service.Requests"/> <Request i:type="a:GetProductsByCategoryRequest" xmlns:a="AgathaRestExample.Service.Requests"> <a:CategoryName>{CategoryName}</a:CategoryName> </Request> </ArrayOfRequest>   It is funny because I remember submitting a question to StackOverflow asking whether there was a REST Client Generation tool similar to what Microsoft used for their RestStarterKit but which could be applied to existing services which have REST endpoints attached.  I could not find any but this is now definitely something which I am going to build, as I think it is extremely useful to have but also it should not be too difficult based on the information I now know about the above.  Finally I thought that the Strategy Pattern would lend itself really well to this type of thing so it can accommodate for different languages. I think that is about it, I have included the code for the example Console app which I made below incase anyone wants to have a mooch at the code.  As I said above I want to reformat these to fit in with the current examples over on the Agatha project, but also now thinking about it, make a Documentation Web method…{brain ticking} :-) Cheers for now and here is the final bit of code: static void Main(string[] args) { var request = WebRequest.Create("http://localhost:50348/service.svc/xml/processxmlrequests"); request.Method = "POST"; request.ContentType = "text/xml"; using(var writer = new StreamWriter(request.GetRequestStream())) { writer.WriteLine(GetExampleRequestsString("Category1")); } var response = request.GetResponse(); using(var reader = new StreamReader(response.GetResponseStream())) { Console.WriteLine(reader.ReadToEnd()); } Console.ReadLine(); } static string GetExampleRequestsString(string categoryName) { var data = File.ReadAllText(Path.Combine(Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location), "ExampleRequests.xml")); data = data.Replace("{CategoryName}", categoryName); return data; } }

    Read the article

  • WCF – interchangeable data-contract types

    - by nmarun
    In a WSDL based environment, unlike a CLR-world, we pass around the ‘state’ of an object and not the reference of an object. Well firstly, what does ‘state’ mean and does this also mean that we can send a struct where a class is expected (or vice-versa) as long as their ‘state’ is one and the same? Let’s see. So I have an operation contract defined as below: 1: [ServiceContract] 2: public interface ILearnWcfServiceExtend : ILearnWcfService 3: { 4: [OperationContract] 5: Employee SaveEmployee(Employee employee); 6: } 7:  8: [ServiceBehavior] 9: public class LearnWcfService : ILearnWcfServiceExtend 10: { 11: public Employee SaveEmployee(Employee employee) 12: { 13: employee.EmployeeId = 123; 14: return employee; 15: } 16: } Quite simplistic operation there (which translates to ‘absolutely no business value’). Now, the data contract Employee mentioned above is a struct. 1: public struct Employee 2: { 3: public int EmployeeId { get; set; } 4:  5: public string FName { get; set; } 6: } After compilation and consumption of this service, my proxy (in the Reference.cs file) looks like below (I’ve ignored the rest of the details just to avoid unwanted confusion): 1: public partial struct Employee : System.Runtime.Serialization.IExtensibleDataObject, System.ComponentModel.INotifyPropertyChanged I call the service with the code below: 1: private static void CallWcfService() 2: { 3: Employee employee = new Employee { FName = "A" }; 4: Console.WriteLine("IsValueType: {0}", employee.GetType().IsValueType); 5: Console.WriteLine("IsClass: {0}", employee.GetType().IsClass); 6: Console.WriteLine("Before calling the service: {0} - {1}", employee.EmployeeId, employee.FName); 7: employee = LearnWcfServiceClient.SaveEmployee(employee); 8: Console.WriteLine("Return from the service: {0} - {1}", employee.EmployeeId, employee.FName); 9: } The output is: I now change my Employee type from a struct to a class in the proxy class and run the application: 1: public partial class Employee : System.Runtime.Serialization.IExtensibleDataObject, System.ComponentModel.INotifyPropertyChanged { The output this time is: The state of an object implies towards its composition, the properties and the values of these properties and not based on whether it is a reference type (class) or a value type (struct). And as shown above, we’re actually passing an object by its state and not by reference. Continuing on the same topic of ‘type-interchangeability’, WCF treats two data contracts as equivalent if they have the same ‘wire-representation’. We can do so using the DataContract and DataMember attributes’ Name property. 1: [DataContract] 2: public struct Person 3: { 4: [DataMember] 5: public int Id { get; set; } 6:  7: [DataMember] 8: public string FirstName { get; set; } 9: } 10:  11: [DataContract(Name="Person")] 12: public class Employee 13: { 14: [DataMember(Name = "Id")] 15: public int EmployeeId { get; set; } 16:  17: [DataMember(Name="FirstName")] 18: public string FName { get; set; } 19: } I’ve created two data contracts with the exact same wire-representation. Just remember that the names and the types of data members need to match to be considered equivalent. The question then arises as to what gets generated in the proxy class. Despite us declaring two data contracts (Person and Employee), only one gets emitted – Person. This is because we’re saying that the Employee type has the same wire-representation as the Person type. Also that the signature of the SaveEmployee operation gets changed on the proxy side: 1: [System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel", "4.0.0.0")] 2: [System.ServiceModel.ServiceContractAttribute(ConfigurationName="ServiceProxy.ILearnWcfServiceExtend")] 3: public interface ILearnWcfServiceExtend 4: { 5: [System.ServiceModel.OperationContractAttribute(Action="http://tempuri.org/ILearnWcfServiceExtend/SaveEmployee", ReplyAction="http://tempuri.org/ILearnWcfServiceExtend/SaveEmployeeResponse")] 6: ClientApplication.ServiceProxy.Person SaveEmployee(ClientApplication.ServiceProxy.Person employee); 7: } But, on the service side, the SaveEmployee still accepts and returns an Employee data contract. 1: [ServiceBehavior] 2: public class LearnWcfService : ILearnWcfServiceExtend 3: { 4: public Employee SaveEmployee(Employee employee) 5: { 6: employee.EmployeeId = 123; 7: return employee; 8: } 9: } Despite all these changes, our output remains the same as the last one: This is type-interchangeability at work! Here’s one more thing to ponder about. Our Person type is a struct and Employee type is a class. Then how is it that the Person type got emitted as a ‘class’ in the proxy? It’s worth mentioning that WSDL describes a type called Employee and does not say whether it is a class or a struct (see the SOAP message below): 1: <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 2: xmlns:tem="http://tempuri.org/" 3: xmlns:ser="http://schemas.datacontract.org/2004/07/ServiceApplication"> 4: <soapenv:Header/> 5: <soapenv:Body> 6: <tem:SaveEmployee> 7: <!--Optional:--> 8: <tem:employee> 9: <!--Optional:--> 10: <ser:EmployeeId>?</ser:EmployeeId> 11: <!--Optional:--> 12: <ser:FName>?</ser:FName> 13: </tem:employee> 14: </tem:SaveEmployee> 15: </soapenv:Body> 16: </soapenv:Envelope> There are some differences between how ‘Add Service Reference’ and the svcutil.exe generate the proxy class, but turns out both do some kind of reflection and determine the type of the data contract and emit the code accordingly. So since the Employee type is a class, the proxy ‘Person’ type gets generated as a class. In fact, reflecting on svcutil.exe application, you’ll see that there are a couple of places wherein a flag actually determines a type as a class or a struct. One example is in the ExportISerializableDataContract method in the System.Runtime.Serialization.CodeExporter class. Seems like these flags have a say in deciding whether the type gets emitted as a struct or a class. This behavior is different if you use the WSDL tool though. WSDL tool does not do any kind of reflection of the data contract / serialized type, it emits the type as a class by default. You can check this using the two command lines below:   Note to self: Remember ‘state’ and type-interchangeability when traversing through the WSDL planet!

    Read the article

  • Creating a podcast feed for iTunes & BlackBerry users using WCF Syndication

    - by brian_ritchie
     In my previous post, I showed how to create a RSS feed using WCF Syndication.  Next, I'll show how to add the additional tags needed to turn a RSS feed into an iTunes podcast.   A podcast is merely a RSS feed with some special characteristics: iTunes RSS tags.  These are additional tags beyond the standard RSS spec.  Apple has a good page on the requirements. Audio file enclosure.  This is a link to the audio file (such as mp3) hosted by your site.  Apple doesn't host the audio, they just read the meta-data from the RSS feed into their system. The SyndicationFeed class supports both AttributeExtensions & ElementExtensions to add custom tags to the RSS feeds. A couple of points of interest in the code below: The imageUrl below provides the album cover for iTunes (170px × 170px) Each SyndicationItem corresponds to an audio episode in your podcast So, here's the code: .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: Consolas, "Courier New", Courier, Monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: XNamespace itunesNS = "http://www.itunes.com/dtds/podcast-1.0.dtd"; 2: string prefix = "itunes"; 3:   4: var feed = new SyndicationFeed(title, description, new Uri(link)); 5: feed.Categories.Add(new SyndicationCategory(category)); 6: feed.AttributeExtensions.Add(new XmlQualifiedName(prefix, 7: "http://www.w3.org/2000/xmlns/"), itunesNS.NamespaceName); 8: feed.Copyright = new TextSyndicationContent(copyright); 9: feed.Language = "en-us"; 10: feed.Copyright = new TextSyndicationContent(DateTime.Now.Year + " " + ownerName); 11: feed.ImageUrl = new Uri(imageUrl); 12: feed.LastUpdatedTime = DateTime.Now; 13: feed.Authors.Add(new SyndicationPerson() {Name=ownerName, Email=ownerEmail }); 14: var extensions = feed.ElementExtensions; 15: extensions.Add(new XElement(itunesNS + "subtitle", subTitle).CreateReader()); 16: extensions.Add(new XElement(itunesNS + "image", 17: new XAttribute("href", imageUrl)).CreateReader()); 18: extensions.Add(new XElement(itunesNS + "author", ownerName).CreateReader()); 19: extensions.Add(new XElement(itunesNS + "summary", description).CreateReader()); 20: extensions.Add(new XElement(itunesNS + "category", 21: new XAttribute("text", category), 22: new XElement(itunesNS + "category", 23: new XAttribute("text", subCategory))).CreateReader()); 24: extensions.Add(new XElement(itunesNS + "explicit", "no").CreateReader()); 25: extensions.Add(new XDocument( 26: new XElement(itunesNS + "owner", 27: new XElement(itunesNS + "name", ownerName), 28: new XElement(itunesNS + "email", ownerEmail))).CreateReader()); 29:   30: var feedItems = new List<SyndicationItem>(); 31: foreach (var i in Items) 32: { 33: var item = new SyndicationItem(i.title, null, new Uri(link)); 34: item.Summary = new TextSyndicationContent(i.summary); 35: item.Id = i.id; 36: if (i.publishedDate != null) 37: item.PublishDate = (DateTimeOffset)i.publishedDate; 38: item.Links.Add(new SyndicationLink() { 39: Title = i.title, Uri = new Uri(link), 40: Length = i.size, MediaType = i.mediaType }); 41: var itemExt = item.ElementExtensions; 42: itemExt.Add(new XElement(itunesNS + "subtitle", i.subTitle).CreateReader()); 43: itemExt.Add(new XElement(itunesNS + "summary", i.summary).CreateReader()); 44: itemExt.Add(new XElement(itunesNS + "duration", 45: string.Format("{0}:{1:00}:{2:00}", 46: i.duration.Hours, i.duration.Minutes, i.duration.Seconds) 47: ).CreateReader()); 48: itemExt.Add(new XElement(itunesNS + "keywords", i.keywords).CreateReader()); 49: itemExt.Add(new XElement(itunesNS + "explicit", "no").CreateReader()); 50: itemExt.Add(new XElement("enclosure", new XAttribute("url", i.url), 51: new XAttribute("length", i.size), new XAttribute("type", i.mediaType))); 52: feedItems.Add(item); 53: } 54:   55: feed.Items = feedItems; If you're hosting your podcast feed within a MVC project, you can use the code from my previous post to stream it. Once you have created your feed, you can use the Feed Validator tool to make sure it is up to spec.  Or you can use iTunes: Launch iTunes. In the Advanced menu, select Subscribe to Podcast. Enter your feed URL in the text box and click OK. After you've verified your feed is solid & good to go, you can submit it to iTunes.  Launch iTunes. In the left navigation column, click on iTunes Store to open the store. Once the store loads, click on Podcasts along the top navigation bar to go to the Podcasts page. In the right column of the Podcasts page, click on the Submit a Podcast link. Follow the instructions on the Submit a Podcast page. Here are the full instructions.  Once they have approved your podcast, it will be available within iTunes. RIM has also gotten into the podcasting business...which is great for BlackBerry users.  They accept the same enhanced-RSS feed that iTunes uses, so just create an account with them & submit the feed's URL.  It goes through a similar approval process to iTunes.  BlackBerry users must be on BlackBerry 6 OS or download the Podcast App from App World. In my next post, I'll show how to build the podcast feed dynamically from the ID3 tags within the MP3 files.

    Read the article

  • WCF on Windows Phone 7 (Silverlight 4)

    - by Igor Zevaka
    Has anyone been able to communicate using WCF on Windows Phone Series 7 emulator? I've been trying for the past two days and it's just happening for me. I can get a normal Silverlight control to work in both Silverlight 3 and Silverlight 4, but not the phone version. Here are two versions that I've tried: Version 1 - Using Async Pattern BasicHttpBinding basicHttpBinding = new BasicHttpBinding(); EndpointAddress endpointAddress = new EndpointAddress("http://localhost/wcf/Authentication.svc"); Wcf.IAuthentication auth1 = new ChannelFactory<Wcf.IAuthentication>(basicHttpBinding, endpointAddress).CreateChannel(endpointAddress); AsyncCallback callback = (result) => { Action<string> write = (str) => { this.Dispatcher.BeginInvoke(delegate { //Display something }); }; try { Wcf.IAuthentication auth = result.AsyncState as Wcf.IAuthentication; Wcf.AuthenticationResponse response = auth.EndLogin(result); write(response.Success.ToString()); } catch (Exception ex) { write(ex.Message); System.Diagnostics.Debug.WriteLine(ex.Message); } }; auth1.BeginLogin("user0", "test0", callback, auth1); This version breaks on this line: Wcf.IAuthentication auth1 = new ChannelFactory<Wcf.IAuthentication>(basicHttpBinding, endpointAddress).CreateChannel(endpointAddress); Throwing System.NotSupportedException. The exception is not very descriptive and the callstack is equally not very helpful: at System.ServiceModel.DiagnosticUtility.ExceptionUtility.BuildMessage(Exception x) at System.ServiceModel.DiagnosticUtility.ExceptionUtility.LogException(Exception x) at System.ServiceModel.DiagnosticUtility.ExceptionUtility.ThrowHelperError(Exception e) at System.ServiceModel.ChannelFactory`1.CreateChannel(EndpointAddress address) at WindowsPhoneApplication2.MainPage.DoLogin() .... Version 2 - Blocking WCF call Here is the version that doesn't use the async pattern. [System.ServiceModel.ServiceContract] public interface IAuthentication { [System.ServiceModel.OperationContract] AuthenticationResponse Login(string user, string password); } public class WcfClientBase<TChannel> : System.ServiceModel.ClientBase<TChannel> where TChannel : class { public WcfClientBase(string name, bool streaming) : base(GetBinding(streaming), GetEndpoint(name)) { ClientCredentials.UserName.UserName = WcfConfig.UserName; ClientCredentials.UserName.Password = WcfConfig.Password; } public WcfClientBase(string name) : this(name, false) {} private static System.ServiceModel.Channels.Binding GetBinding(bool streaming) { System.ServiceModel.BasicHttpBinding binding = new System.ServiceModel.BasicHttpBinding(); binding.MaxReceivedMessageSize = 1073741824; if(streaming) { //binding.TransferMode = System.ServiceModel.TransferMode.Streamed; } /*if(XXXURLXXX.StartsWith("https")) { binding.Security.Mode = BasicHttpSecurityMode.Transport; binding.Security.Transport.ClientCredentialType = HttpClientCredentialType.None; }*/ return binding; } private static System.ServiceModel.EndpointAddress GetEndpoint(string name) { return new System.ServiceModel.EndpointAddress(WcfConfig.Endpoint + name + ".svc"); } protected override TChannel CreateChannel() { throw new System.NotImplementedException(); } } auth.Login("test0", "password0"); This version crashes in System.ServiceModel.ClientBase<TChannel> constructor. The call stack is a bit different: at System.Reflection.MethodInfo.get_ReturnParameter() at System.ServiceModel.Description.ServiceReflector.HasNoDisposableParameters(MethodInfo methodInfo) at System.ServiceModel.Description.TypeLoader.CreateOperationDescription(ContractDescription contractDescription, MethodInfo methodInfo, MessageDirection direction, ContractReflectionInfo reflectionInfo, ContractDescription declaringContract) at System.ServiceModel.Description.TypeLoader.CreateOperationDescriptions(ContractDescription contractDescription, ContractReflectionInfo reflectionInfo, Type contractToGetMethodsFrom, ContractDescription declaringContract, MessageDirection direction) at System.ServiceModel.Description.TypeLoader.CreateContractDescription(ServiceContractAttribute contractAttr, Type contractType, Type serviceType, ContractReflectionInfo& reflectionInfo, Object serviceImplementation) at System.ServiceModel.Description.TypeLoader.LoadContractDescriptionHelper(Type contractType, Type serviceType, Object serviceImplementation) at System.ServiceModel.Description.TypeLoader.LoadContractDescription(Type contractType) at System.ServiceModel.ChannelFactory1.CreateDescription() at System.ServiceModel.ChannelFactory.InitializeEndpoint(Binding binding, EndpointAddress address) at System.ServiceModel.ChannelFactory1..ctor(Binding binding, EndpointAddress remoteAddress) at System.ServiceModel.ClientBase1..ctor(Binding binding, EndpointAddress remoteAddress) at Wcf.WcfClientBase1..ctor(String name, Boolean streaming) at Wcf.WcfClientBase`1..ctor(String name) at Wcf.AuthenticationClient..ctor() at WindowsPhoneApplication2.MainPage.DoLogin() ... Any ideas?

    Read the article

  • Stumped by "The remote server returned an error: (403) Forbidden" with WCF Service in https

    - by RJ
    I have a WCF Service that I have boiled down to next to nothing because of this error. It is driving me up the wall. Here's what I have now. A very simple WCF service with one method that returns a string with the value, "test". A very simple Web app that uses the service and puts the value of the string into a label. A web server running IIS 6 on Win 2003 with a SSL certificate. Other WCF services on the same server that work. I publish the WCF service to it's https location I run the web app in debug mode in VS and it works perfectly. I publish the web app to it's https location on the same server the WCF service resides under the same SSL certificate I get, "The remote server returned an error: (403) Forbidden" I have changed almost every setting in IIS as well as the WCF and Web apps to no avail. I have compared setting in the WCF services that work and everything is the same. Below are the setting in the web.config for the WCF Service and the WEB app: It appears the problem has to do with the Web app but I am out of ideas. Any ideas: WCF Service: <system.serviceModel> <bindings> <client /> <services> <service behaviorConfiguration="Ucf.Smtp.Wcf.SmtpServiceBehavior" name="Ucf.Smtp.Wcf.SmtpService"> <host> <baseAddresses> <add baseAddress="https://test.net.ucf.edu/webservices/Smtp/" /> </baseAddresses> </host> <endpoint address="" binding="wsHttpBinding" contract="Ucf.Smtp.Wcf.ISmtpService" bindingConfiguration="SSLBinding"> <identity> <dns value="localhost"/> </identity> </endpoint> <endpoint address="mex" binding="mexHttpsBinding" contract="IMetadataExchange"/> </service> </services> <behaviors> <serviceBehaviors> <behavior name="Ucf.Smtp.Wcf.SmtpServiceBehavior"> <serviceMetadata httpsGetEnabled="true" /> <serviceDebug includeExceptionDetailInFaults="true" httpsHelpPageEnabled="True"/> </behavior> </serviceBehaviors> </behaviors> Web App: <system.serviceModel> <bindings><wsHttpBinding> <binding name="WSHttpBinding_ISmtpService" closeTimeout="00:01:00" openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00" bypassProxyOnLocal="false" transactionFlow="false" hostNameComparisonMode="StrongWildcard" maxBufferPoolSize="524288" maxReceivedMessageSize="65536" messageEncoding="Text" textEncoding="utf-8" useDefaultWebProxy="true" allowCookies="false"> <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384" maxBytesPerRead="4096" maxNameTableCharCount="16384" /> <reliableSession ordered="true" inactivityTimeout="00:10:00" enabled="false" /> <security mode="Transport"> <transport clientCredentialType="None" proxyCredentialType="None" realm="" /> <message clientCredentialType="Windows" negotiateServiceCredential="true" establishSecurityContext="true" /> </security> </binding> <client> <endpoint address="https://net228.net.ucf.edu/webservices/smtp/SmtpService.svc" binding="wsHttpBinding" bindingConfiguration="WSHttpBinding_ISmtpService" contract="SmtpService.ISmtpService" name="WSHttpBinding_ISmtpService"> <identity> <dns value="localhost" /> </identity> </client> </system.serviceModel>

    Read the article

  • System.UnsupportedException using WCF on Windows Phone 7

    - by Igor Zevaka
    Has anyone been able to communicate using WCF on Windows Phone Series 7 emulator? I've been trying for the past two days and it's just happening for me. I can get a normal Silverlight control to work in both Silverlight 3 and Silverlight 4, but not the phone version. Here are two versions that I've tried: Version 1 - Using Async Pattern BasicHttpBinding basicHttpBinding = new BasicHttpBinding(); EndpointAddress endpointAddress = new EndpointAddress("http://localhost/wcf/Authentication.svc"); Wcf.IAuthentication auth1 = new ChannelFactory<Wcf.IAuthentication>(basicHttpBinding, endpointAddress).CreateChannel(endpointAddress); AsyncCallback callback = (result) => { Action<string> write = (str) => { this.Dispatcher.BeginInvoke(delegate { //Display something }); }; try { Wcf.IAuthentication auth = result.AsyncState as Wcf.IAuthentication; Wcf.AuthenticationResponse response = auth.EndLogin(result); write(response.Success.ToString()); } catch (Exception ex) { write(ex.Message); System.Diagnostics.Debug.WriteLine(ex.Message); } }; auth1.BeginLogin("user0", "test0", callback, auth1); This version breaks on this line: Wcf.IAuthentication auth1 = new ChannelFactory<Wcf.IAuthentication>(basicHttpBinding, endpointAddress).CreateChannel(endpointAddress); Throwing System.NotSupportedException. The exception is not very descriptive and the callstack is equally not very helpful: at System.ServiceModel.DiagnosticUtility.ExceptionUtility.BuildMessage(Exception x) at System.ServiceModel.DiagnosticUtility.ExceptionUtility.LogException(Exception x) at System.ServiceModel.DiagnosticUtility.ExceptionUtility.ThrowHelperError(Exception e) at System.ServiceModel.ChannelFactory`1.CreateChannel(EndpointAddress address) at WindowsPhoneApplication2.MainPage.DoLogin() .... Version 2 - Blocking WCF call Here is the version that doesn't use the async pattern. [System.ServiceModel.ServiceContract] public interface IAuthentication { [System.ServiceModel.OperationContract] AuthenticationResponse Login(string user, string password); } public class WcfClientBase<TChannel> : System.ServiceModel.ClientBase<TChannel> where TChannel : class { public WcfClientBase(string name, bool streaming) : base(GetBinding(streaming), GetEndpoint(name)) { ClientCredentials.UserName.UserName = WcfConfig.UserName; ClientCredentials.UserName.Password = WcfConfig.Password; } public WcfClientBase(string name) : this(name, false) {} private static System.ServiceModel.Channels.Binding GetBinding(bool streaming) { System.ServiceModel.BasicHttpBinding binding = new System.ServiceModel.BasicHttpBinding(); binding.MaxReceivedMessageSize = 1073741824; if(streaming) { //binding.TransferMode = System.ServiceModel.TransferMode.Streamed; } /*if(XXXURLXXX.StartsWith("https")) { binding.Security.Mode = BasicHttpSecurityMode.Transport; binding.Security.Transport.ClientCredentialType = HttpClientCredentialType.None; }*/ return binding; } private static System.ServiceModel.EndpointAddress GetEndpoint(string name) { return new System.ServiceModel.EndpointAddress(WcfConfig.Endpoint + name + ".svc"); } protected override TChannel CreateChannel() { throw new System.NotImplementedException(); } } auth.Login("test0", "password0"); This version crashes in System.ServiceModel.ClientBase<TChannel> constructor. The call stack is a bit different: at System.Reflection.MethodInfo.get_ReturnParameter() at System.ServiceModel.Description.ServiceReflector.HasNoDisposableParameters(MethodInfo methodInfo) at System.ServiceModel.Description.TypeLoader.CreateOperationDescription(ContractDescription contractDescription, MethodInfo methodInfo, MessageDirection direction, ContractReflectionInfo reflectionInfo, ContractDescription declaringContract) at System.ServiceModel.Description.TypeLoader.CreateOperationDescriptions(ContractDescription contractDescription, ContractReflectionInfo reflectionInfo, Type contractToGetMethodsFrom, ContractDescription declaringContract, MessageDirection direction) at System.ServiceModel.Description.TypeLoader.CreateContractDescription(ServiceContractAttribute contractAttr, Type contractType, Type serviceType, ContractReflectionInfo& reflectionInfo, Object serviceImplementation) at System.ServiceModel.Description.TypeLoader.LoadContractDescriptionHelper(Type contractType, Type serviceType, Object serviceImplementation) at System.ServiceModel.Description.TypeLoader.LoadContractDescription(Type contractType) at System.ServiceModel.ChannelFactory1.CreateDescription() at System.ServiceModel.ChannelFactory.InitializeEndpoint(Binding binding, EndpointAddress address) at System.ServiceModel.ChannelFactory1..ctor(Binding binding, EndpointAddress remoteAddress) at System.ServiceModel.ClientBase1..ctor(Binding binding, EndpointAddress remoteAddress) at Wcf.WcfClientBase1..ctor(String name, Boolean streaming) at Wcf.WcfClientBase`1..ctor(String name) at Wcf.AuthenticationClient..ctor() at WindowsPhoneApplication2.MainPage.DoLogin() ... Any ideas?

    Read the article

  • Using a service registry that doesn’t suck part I: UDDI is dead

    - by gsusx
    This is the first of a series of posts on which I am hoping to detail some of the most common SOA governance scenarios in the real world, their challenges and the approach we’ve taken to address them in SO-Aware. This series does not intend to be a marketing pitch about SO-Aware. Instead, I would like to use this to foment an honest dialog between SOA governance technologists. For the starting post I decided to focus on the aspect that was once considered the keystone of SOA governance: service discovery...(read more)

    Read the article

  • Tellago && Tellago Studios 2010

    - by gsusx
    With 2011 around the corner we, at Tellago and Tellago Studios , we have been spending a lot of times evaluating our successes and failures (yes those too ;)) of 2010 and delineating some of our goals and strategies for 2011. When I look at 2010 here are some of the things that quickly jump off the page: Growing Tellago by 300% Launching a brand new company: Tellago Studios Expanding our customer base Establishing our business intelligence practice http://tellago.com/what-we-say/events/business-intelligence...(read more)

    Read the article

  • endpoint.tv - Troubleshooting with AppFabric

    - by The Official Microsoft IIS Site
    Troubleshooting applications in production is always a challenge. With AppFabric monitoring your workflows and services, you get great information about exactly what is happening, including notices about unhandled exceptions. In this episode, Michael McKeown will show you more about how you can use these features to troubleshoot problems with your applications. Be sure to check out the AppFabric Wiki for more great tips, and to share yours as well....( read more ) Read More......(read more)

    Read the article

  • My Speaking Engagements in the Last Two Months

    - by gsusx
    I’ve been so busy lately with the activities around Moesion that I haven’t had time to blog about a couple of great conferences I had the opportunity to speak at in the last two months. Software Architect Conference, UK ( http://www.software-architect.co.uk/ ) This conference is becoming one of my favorite events of the year. As always Nick Payne and his team did a remarkable job lining up an all-star group of speakers that covered some of the hottest topics in today’s software industry. The first...(read more)

    Read the article

  • Windows Server AppFabric Beta 2 Refresh for Visual Studio 2010/.NET 4 RTM

    - by The Official Microsoft IIS Site
    Today we are pleased to announce a Beta 2 Refresh for Windows Server AppFabric. This build supports the recently released .NET Framework 4 and Visual Studio 2010 RTM versions—a request we’ve had from a number of you. Organizations wanting to use Windows Server AppFabric with the final RTM versions of .NET 4 and Visual Studio 2010 are encouraged to download the Beta 2 Refresh today. Please click here for an installation guide on installing the Beta 2 Refresh. We encourage developers and IT professionals...(read more)

    Read the article

  • Bringing true agility to enterprise .NET: Tellago Studios announces TeleSharp

    - by gsusx
    We are happy to announce the latest addition to Tellago Studios’ product family: TeleSharp . After the success of SO-Aware and the SO-Aware Test Workbench , we decided to tackle on a bigger challenge by taking the initial steps towards simplifying enterprise .NET application development. After months of discussion with customers we decided to focus on the following challenges: Cataloging Applications What if you could keep a central catalog of the .NET applications exist on your enterprise? What...(read more)

    Read the article

  • Is it Possible to Query Multiple Databases with WCF Data Services?

    - by Mas
    I have data being inserted into multiple databases with the same schema. The multiple databases exist for performance reasons. I need to create a WCF service that a client can use to query the databases. However from the client's point of view, there is only 1 database. By this I mean when a client performs a query, it should query all databases and return the combined results. I also need to provide the flexibility for the client to define its own queries. Therefore I am looking into WCF Data Services, which provides the very nice functionality for client specified queries. So far, it seems that a DataService can only make a query to a single database. I found no override that would allow me to dispatch queries to multiple databases. Does anyone know if it is possible for a WCF Data Service to query against multiple databases with the same schema?

    Read the article

  • Threading Issue with WCF Service

    - by helixed
    I'm new to both WCF and threading, so please bear with me. I have a WCF service set up. The service has multiple threads, all of which act upon a single array. This works without a problem so far. However, this service has a method, which, when called, will return the array. My questions: The array is serialized when it is transferred to the client by WCF. Is this a thread safe operation? In other words, can I count on WCF to block all threads from accessing this array while it's being serialized? If I can't count on WCF to do this, then how can I implement it manually? I don't really understand how WCF would facilitate this since the serialization happens after I return from my method call. How can I guarantee a thread will not modify the array after it's been returned by my method but before WCF serializes it?

    Read the article

  • Debugging Visual Studio 2010 Unit Test and WCF Service in one IDE instance

    - by Dr.HappyPants
    I have created a WCF service in Visual Studio 2010 along with some supporting assemblies. I have also created a test project which contains multiple unit tests for the service and the supporting assemblies. Right now I have them all in one solution with the Test project having a service reference (http) to the WCF service. If I debug the WCF service and select "Run checked tests" in a Test List I created, I can debug the WCF service without a problem. Note: I cannot select Debug Checked Tests while debugging the WCF service. (Because the IDE is already debugging?) If I open the Test project in another instance of VS 2010, debug the WCF service and then select "Debug Checked Tests" - I can debug both my tests and the WCF service. However - I would like to (and my question is) be able to debug my tests and my service in a single IDE. Is this possible?

    Read the article

  • Making WCF Output a single WSDL file for interop purposes.

    - by Glav
    By default, when WCF emits a WSDL definition for your services, it can often contain many links to others related schemas that need to be imported. For the most part, this is fine. WCF clients understand this type of schema without issue, and it conforms to the requisite standards as far as WSDL definitions go. However, some non Microsoft stacks will only work with a single WSDL file and require that all definitions for the service(s) (port types, messages, operation etc…) are contained within that single file. In other words, no external imports are supported. Some Java clients (to my working knowledge) have this limitation. This obviously presents a problem when trying to create services exposed for consumption and interop by these clients. Note: You can download the full source code for this sample from here To illustrate this point, lets say we have a simple service that looks like: Service Contract public interface IService1 { [OperationContract] [FaultContract(typeof(DataFault))] string GetData(DataModel1 model); [OperationContract] [FaultContract(typeof(DataFault))] string GetMoreData(DataModel2 model); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Service Implementation/Behaviour public class Service1 : IService1 { public string GetData(DataModel1 model) { return string.Format("Some Field was: {0} and another field was {1}", model.SomeField,model.AnotherField); } public string GetMoreData(DataModel2 model) { return string.Format("Name: {0}, age: {1}", model.Name, model.Age); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Configuration File <system.serviceModel> <services> <service name="SingleWSDL_WcfService.Service1" behaviorConfiguration="SingleWSDL_WcfService.Service1Behavior"> <!-- ...std/default data omitted for brevity..... --> <endpoint address ="" binding="wsHttpBinding" contract="SingleWSDL_WcfService.IService1" > ....... </services> <behaviors> <serviceBehaviors> <behavior name="SingleWSDL_WcfService.Service1Behavior"> ........ </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } When WCF is asked to produce a WSDL for this service, it will produce a file that looks something like this (note: some sections omitted for brevity): <?xml version="1.0" encoding="utf-8" ?> - <wsdl:definitions name="Service1" targetNamespace="http://tempuri.org/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" ...... namespace definitions omitted for brevity + &lt;wsp:Policy wsu:Id="WSHttpBinding_IService1_policy"> ... multiple policy items omitted for brevity </wsp:Policy> - <wsdl:types> - <xsd:schema targetNamespace="http://tempuri.org/Imports"> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd0" namespace="http://tempuri.org/" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd3" namespace="Http://SingleWSDL/Fault" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd1" namespace="http://schemas.microsoft.com/2003/10/Serialization/" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd2" namespace="http://SingleWSDL/Model1" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd4" namespace="http://SingleWSDL/Model2" /> </xsd:schema> </wsdl:types> + <wsdl:message name="IService1_GetData_InputMessage"> .... </wsdl:message> - <wsdl:operation name="GetData"> ..... </wsdl:operation> - <wsdl:service name="Service1"> ....... </wsdl:service> </wsdl:definitions> The above snippet from the WSDL shows the external links and references that are generated by WCF for a relatively simple service. Note the xsd:import statements that reference external XSD definitions which are also generated by WCF. In order to get WCF to produce a single WSDL file, we first need to follow some good practices when it comes to WCF service definitions. Step 1: Define a namespace for your service contract. [ServiceContract(Namespace="http://SingleWSDL/Service1")] public interface IService1 { ...... } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Normally you would not use a literal string and may instead define a constant to use in your own application for the namespace. When this is applied and we generate the WSDL, we get the following statement inserted into the document: <wsdl:import namespace="http://SingleWSDL/Service1" location="http://localhost:2370/HostingSite/Service-default.svc?wsdl=wsdl0" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } All the previous imports have gone. If we follow this link, we will see that the XSD imports are now in this external WSDL file. Not really any benefit for our purposes. Step 2: Define a namespace for your service behaviour [ServiceBehavior(Namespace = "http://SingleWSDL/Service1")] public class Service1 : IService1 { ...... } As you can see, the namespace of the service behaviour should be the same as the service contract interface to which it implements. Failure to do these tasks will cause WCF to emit its default http://tempuri.org namespace all over the place and cause WCF to still generate import statements. This is also true if the namespace of the contract and behaviour differ. If you define one and not the other, defaults kick in, and you’ll find extra imports generated. While each of the previous 2 steps wont cause any less import statements to be generated, you will notice that namespace definitions within the WSDL have identical, well defined names. Step 3: Define a binding namespace In the configuration file, modify the endpoint configuration line item to iunclude a bindingNamespace attribute which is the same as that defined on the service behaviour and service contract <endpoint address="" binding="wsHttpBinding" contract="SingleWSDL_WcfService.IService1" bindingNamespace="http://SingleWSDL/Service1"> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } However, this does not completely solve the issue. What this will do is remove the WSDL import statements like this one: <wsdl:import namespace="http://SingleWSDL/Service1" location="http://localhost:2370/HostingSite/Service-default.svc?wsdl" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } from the generated WSDL. Finally…. the magic…. Step 4: Use a custom endpoint behaviour to read in external imports and include in the main WSDL output. In order to force WCF to output a single WSDL with all the required definitions, we need to define a custom WSDL Export extension that can be applied to any endpoints. This requires implementing the IWsdlExportExtension and IEndpointBehavior interfaces and then reading in any imported schemas, and adding that output to the main, flattened WSDL to be output. Sounds like fun right…..? Hmmm well maybe not. This step sounds a little hairy, but its actually quite easy thanks to some kind individuals who have already done this for us. As far as I know, there are 2 available implementations that we can easily use to perform the import and “WSDL flattening”.  WCFExtras which is on codeplex and FlatWsdl by Thinktecture. Both implementations actually do exactly the same thing with the imports and provide an endpoint behaviour, however FlatWsdl does a little more work for us by providing a ServiceHostFactory that we can use which automatically attaches the requisite behaviour to our endpoints for us. To use this in an IIS hosted service, we can modify the .SVC file to specify this ne factory to use like so: <%@ ServiceHost Language="C#" Debug="true" Service="SingleWSDL_WcfService.Service1" Factory="Thinktecture.ServiceModel.Extensions.Description.FlatWsdlServiceHostFactory" %> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Within a service application or another form of executable such as a console app, we can simply create an instance of the custom service host and open it as we normally would as shown here: FlatWsdlServiceHost host = new FlatWsdlServiceHost(typeof(Service1)); host.Open(); And we are done. WCF will now generate one single WSDL file that contains all he WSDL imports and data/XSD imports. You can download the full source code for this sample from here Hope this has helped you. Note: Please note that I have not extensively tested this in a number of different scenarios so no guarantees there.

    Read the article

  • Hosting StreamInsight applications using WCF

    - by gsusx
    One of the fundamental differentiators of Microsoft's StreamInsight compared to other Complex Event Processing (CEP) technologies is its flexible deployment model. In that sense, a StreamInsight solution can be hosted within an application or as a server component. This duality contrasts with most of the popular CEP frameworks in the current market which are almost exclusively server based. Whether it's undoubtedly that the ability of embedding a CEP engine in your applications opens new possibilities...(read more)

    Read the article

< Previous Page | 5 6 7 8 9 10 11 12 13 14 15 16  | Next Page >