Search Results

Search found 9816 results on 393 pages for 'blade servers'.

Page 90/393 | < Previous Page | 86 87 88 89 90 91 92 93 94 95 96 97  | Next Page >

  • Remote EJB lookup issue with WebSphere 6.1

    - by marc dauncey
    I've seen this question asked before, but I've tried various solutions proposed, to no avail. Essentially, I have two EJB enterprise applications, that need to communicate with one another. The first is a web application, the second is a search server - they are located on different development servers, not in the same node, cell, or JVM, although they are on the same physical box. I'm doing the JNDI lookup via IIOP, and the URL I am using is as follows: iiop://searchserver:2819 In my hosts file, I've set searchserver to 127.0.0.1. The ports for my search server are bound to this hostname too. However, when the web app (that uses Spring btw) attempts to lookup the search EJB, it fails with the following error. This is driving me nuts, surely this kind of comms between the servers should be fairly simple to get working. I've checked the ports and they are correct. I note that the exception says the initial context is H00723Node03Cell/nodes/H00723Node03/servers/server1, name: ejb/com/hmv/dataaccess/ejb/hmvsearch/HMVSearchHome. This is the web apps server NOT the search server. Is this correct? How can I get Spring to use the right context? [08/06/10 17:14:28:655 BST] 00000028 SystemErr R org.springframework.remoting.RemoteLookupFailureException: Failed to locate remote EJB [ejb/com/hmv/dataaccess/ejb/hmvsearch/HMVSearchHome]; nested exception is javax.naming.NameNotFoundException: Context: H00723Node03Cell/nodes/H00723Node03/servers/server1, name: ejb/com/hmv/dataaccess/ejb/hmvsearch/HMVSearchHome: First component in name hmvsearch/HMVSearchHome not found. [Root exception is org.omg.CosNaming.NamingContextPackage.NotFound: IDL:omg.org/CosNaming/NamingContext/NotFound:1.0] at org.springframework.ejb.access.SimpleRemoteSlsbInvokerInterceptor.doInvoke(SimpleRemoteSlsbInvokerInterceptor.java:101) at org.springframework.ejb.access.AbstractRemoteSlsbInvokerInterceptor.invoke(AbstractRemoteSlsbInvokerInterceptor.java:140) at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:171) at org.springframework.aop.framework.JdkDynamicAopProxy.invoke(JdkDynamicAopProxy.java:204) at $Proxy7.doSearchByProductKeywordsForKiosk(Unknown Source) at com.hmv.web.usecases.search.SearchUC.execute(SearchUC.java:128) at com.hmv.web.actions.search.SearchAction.executeAction(SearchAction.java:129) at com.hmv.web.actions.search.KioskSearchAction.executeAction(KioskSearchAction.java:37) at com.hmv.web.actions.HMVAbstractAction.execute(HMVAbstractAction.java:123) at org.apache.struts.action.RequestProcessor.processActionPerform(RequestProcessor.java:484) at org.apache.struts.action.RequestProcessor.process(RequestProcessor.java:274) at org.apache.struts.action.ActionServlet.process(ActionServlet.java:1482) at com.hmv.web.controller.HMVActionServlet.process(HMVActionServlet.java:149) at org.apache.struts.action.ActionServlet.doGet(ActionServlet.java:507) at javax.servlet.http.HttpServlet.service(HttpServlet.java:743) at javax.servlet.http.HttpServlet.service(HttpServlet.java:856) at com.ibm.ws.webcontainer.servlet.ServletWrapper.service(ServletWrapper.java:1282) at com.ibm.ws.webcontainer.servlet.ServletWrapper.service(ServletWrapper.java:1239) at com.ibm.ws.webcontainer.filter.WebAppFilterChain.doFilter(WebAppFilterChain.java:136) at com.hmv.web.support.SessionFilter.doFilter(SessionFilter.java:137) at com.ibm.ws.webcontainer.filter.FilterInstanceWrapper.doFilter(FilterInstanceWrapper.java:142) at com.ibm.ws.webcontainer.filter.WebAppFilterChain.doFilter(WebAppFilterChain.java:121) at com.ibm.ws.webcontainer.filter.WebAppFilterChain._doFilter(WebAppFilterChain.java:82) at com.ibm.ws.webcontainer.servlet.ServletWrapper.handleRequest(ServletWrapper.java:670) at com.ibm.ws.webcontainer.webapp.WebApp.handleRequest(WebApp.java:2933) at com.ibm.ws.webcontainer.webapp.WebGroup.handleRequest(WebGroup.java:221) at com.ibm.ws.webcontainer.VirtualHost.handleRequest(VirtualHost.java:210) at com.ibm.ws.webcontainer.WebContainer.handleRequest(WebContainer.java:1912) at com.ibm.ws.webcontainer.channel.WCChannelLink.ready(WCChannelLink.java:84) at com.ibm.ws.http.channel.inbound.impl.HttpInboundLink.handleDiscrimination(HttpInboundLink.java:472) at com.ibm.ws.http.channel.inbound.impl.HttpInboundLink.handleNewInformation(HttpInboundLink.java:411) at com.ibm.ws.http.channel.inbound.impl.HttpICLReadCallback.complete(HttpICLReadCallback.java:101) at com.ibm.ws.tcp.channel.impl.WorkQueueManager.requestComplete(WorkQueueManager.java:566) at com.ibm.ws.tcp.channel.impl.WorkQueueManager.attemptIO(WorkQueueManager.java:619) at com.ibm.ws.tcp.channel.impl.WorkQueueManager.workerRun(WorkQueueManager.java:952) at com.ibm.ws.tcp.channel.impl.WorkQueueManager$Worker.run(WorkQueueManager.java:1039) at com.ibm.ws.util.ThreadPool$Worker.run(ThreadPool.java:1462) Caused by: javax.naming.NameNotFoundException: Context: H00723Node03Cell/nodes/H00723Node03/servers/server1, name: ejb/com/hmv/dataaccess/ejb/hmvsearch/HMVSearchHome: First component in name hmvsearch/HMVSearchHome not found. [Root exception is org.omg.CosNaming.NamingContextPackage.NotFound: IDL:omg.org/CosNaming/NamingContext/NotFound:1.0] at com.ibm.ws.naming.jndicos.CNContextImpl.processNotFoundException(CNContextImpl.java:4392) at com.ibm.ws.naming.jndicos.CNContextImpl.doLookup(CNContextImpl.java:1752) at com.ibm.ws.naming.jndicos.CNContextImpl.doLookup(CNContextImpl.java:1707) at com.ibm.ws.naming.jndicos.CNContextImpl.lookupExt(CNContextImpl.java:1412) at com.ibm.ws.naming.jndicos.CNContextImpl.lookup(CNContextImpl.java:1290) at com.ibm.ws.naming.util.WsnInitCtx.lookup(WsnInitCtx.java:145) at javax.naming.InitialContext.lookup(InitialContext.java:361) at org.springframework.jndi.JndiTemplate$1.doInContext(JndiTemplate.java:132) at org.springframework.jndi.JndiTemplate.execute(JndiTemplate.java:88) at org.springframework.jndi.JndiTemplate.lookup(JndiTemplate.java:130) at org.springframework.jndi.JndiTemplate.lookup(JndiTemplate.java:155) at org.springframework.jndi.JndiLocatorSupport.lookup(JndiLocatorSupport.java:95) at org.springframework.jndi.JndiObjectLocator.lookup(JndiObjectLocator.java:105) at org.springframework.ejb.access.AbstractRemoteSlsbInvokerInterceptor.lookup(AbstractRemoteSlsbInvokerInterceptor.java:98) at org.springframework.ejb.access.AbstractSlsbInvokerInterceptor.getHome(AbstractSlsbInvokerInterceptor.java:143) at org.springframework.ejb.access.AbstractSlsbInvokerInterceptor.create(AbstractSlsbInvokerInterceptor.java:172) at org.springframework.ejb.access.AbstractRemoteSlsbInvokerInterceptor.newSessionBeanInstance(AbstractRemoteSlsbInvokerInterceptor.java:226) at org.springframework.ejb.access.SimpleRemoteSlsbInvokerInterceptor.getSessionBeanInstance(SimpleRemoteSlsbInvokerInterceptor.java:141) at org.springframework.ejb.access.SimpleRemoteSlsbInvokerInterceptor.doInvoke(SimpleRemoteSlsbInvokerInterceptor.java:97) ... 36 more Many thanks for any assistance! Marc

    Read the article

  • Speaker at the German Visual FoxPro Developer Conference 2004

    The following is an excerpt from the UniversalThread conference coverage of the German Visual FoxPro Developer Conference 2004 written by Hans-Otto Lochmann, Armin Neudert and myself. TRACK Active FoxPro Pages Back in 1996 Peter Herzog invented a FoxPro based solution to provide intranet capabilities for one of his customers. Nearly at the same time Rick Strahl had the same task and created WestWind Web Connection (WWWC). The aspect that developers have to have a full Visual FoxPro development environment to create WWWC solutions was the starting point of a "personal sportive competition" of Peter to write his own solution. But the main aspect has to be that it doesn't rely on a full VFP version in order to run. The VFP runtime should enough and the source code has to be compiled and interpreted on the fly. So, as Microsoft released Active Server Pages a name for Peter's solution was found: Active FoxPro Pages (AFP). During the years many drawbacks, design aspects as well as technological hassles forced ProLib Software to refactor the product. This way many limits like DCOM configuration, file-based information transfer between Web server and AFP, missing features (like upload forms or other Web servers than IIS) and extensibility were eliminated. As a consequence ProLib Software decided to rewrite Active FoxPro Pages in mid of 2002 completely. Christof Wollenhaupt, before his marriage known as Christof Lange, and Jochen Kirstätter had to solve this task. AFP 3.0 was officially released at German Devcon in November 2002. Today AFP has six distributors world-wide and there is a lot more information available online than before version 3.0. Directly after a short welcome speech by Rainer Becker, Jochen Kirstätter - aka JoKi - opened today's AFP track and introduced the basic concepts how Active FoxPro Pages works in general, explained the AFP terminilogy and every single component, and presented a small Walk-Through about how to write an AFP-based Web solution. Actually his presentation slides themselves were an AFP Web application. This way it was easy to integrate accompanying AFP samples on the fly. Additionally it was shown that no Visual FoxPro development environment is needed to create a Web application. A simple text editor like NotePad or any WYSIWYG editor on the market is usable to fullfil customer's requirements.Welcome at least two new speakers - Nina Schwanzer and Bernhard Reiter. Both are working at ProLib Software and this year's conference is their first time as speakers. And they did their job very well. The whole session was kind of a "ping pong" game and those two complemented each other to keep the audience in tension. First, they described typical requirements a modern desktop application should fullfil - online registration and activation, auto-update capabilities, or even frontend to administer a Web application on a remote system via internet, and explained how possible solutions like Web Services (using the SOAP interface), DCOM, and even .NET might solve those requirements. But any of those ways has different drawbacks like complicated installation or configuration, or extraordinary download sizes. Next, they introduced a technology they developed and used in a customer's project: Active FoxPro Pages Remote Procedure Call (AFP RPC). [...]   In the next session JoKi described how to extend Active FoxPro Pages. On the one hand AFP provides a plugin interface, and on the other hand any addon for Visual FoxPro might be usable as well. During the first half he spoke about the plugin interface and wrote live a new AFP extension - the Devcon plugin. Later he questioned any former step and showed that a single AFP document may solve the problem as well. So, developing extensions is only interesting if they are re-usable and generic. At the end he talked about multiple interfaces for the same business logic. For instance plain VFP class, COM server and .NET integration. Currently there are several specialized AFP extensions for sending mail, for using cryptographic routines (ie. based on .NET classes), or enhanced methods to handle HTML/XML strings.Rainer Becker and Peter Herzog introduced a new development for Visual Extend (VFX) - an AFP form builder. With this builder creating an AFP Web form designed with Visual FoxPro's form designer was a matter of seconds. The builder itself is currently in pre-release status and will be part of the VFX framework in the future. It was very impressive to see that the whole design of a form as well as most parts of its functionality were exported to a combination of HTML, JavaScript and Active FoxPro Pages. At half-time Jürgen "wOOdy" Wondzinski and JoKi changed places with Rainer and Peter, and presented some Web solutions in AFP. [...] Visual FoxPro 9.0 und Linux Is Linux still a topic for Visual FoxPro developers based on the activities during this year? In his session Jochen Kirstätter - aka JoKi - went not through the technical steps and requirements on how to setup and run FoxPro on a Linux client. Instead, he explained what Linux actually is, and talked about the high variety of distributions. In fact there are a lot of distributions around but since some several years there are some specialized ones available: Live Distributions (aka LiveCDs).The intension of LiveCDs is to run a full-featured Linux operating system on any personal computer directly from a bootable medium, like CD, DVD, or even USB memory stick, without installation on a hard disk. One of the first Linux LiveCDs was made by Klaus Knopper and is well-known as Knoppix. Today, many other LiveCDs are based on the concepts of Knoppix. During the session Jochen booted Morphix, a very light-weighted LiveCD, on his notebook, and actually showed the attendees that testing and playing around with Linux is absolutely easy. Running a text processing application swept away most of the contrary aspects the audience had. Okay, where is the part about FoxPro? Well, there are several scenarios a customer might require usage of Linux, and actually with all of them FoxPro could deal with. I guess that one of the more common ones is the situation that a customer has a heterogeneous intranet with Windows clients and Linux servers, i.e. Windows XP Professional and any Linux distribution on their servers. Even in this scenario there are two variants hidden! Why? Well, on the one hand there is a software package called Samba, that provides Windows server capabilities to a Linux system, and on the other hand there are several SQL servers for Linux, like PostgreSQL, DB2 and MySQL. Either way, FoxPro is able to deal with these scenarios, but you as developer have to know what you are talking about with your customers. And even if there's no Windows operating system, you are able to provide a FoxPro-based solution. Using the wine library - wine stands for Wine Is Not an Emulator - you are able to run your VFP applications on Linux clients, too; but not without reading VFP's EULA. Licenses were also part the session, and Jochen discussed the meaning of Open Source and its misunderstanding throughout most developers. Open Source does not mean that it's without a fee. Instead, it stands for access to the source code of an application or tool. And, VFP itself is one of the best samples to explain Open Source due to fact that since years, VFP is shipped with the xSource.zip archive. [...]

    Read the article

  • DHCPv6: Provide IPv6 information in your local network

    Even though IPv6 might not be that important within your local network it might be good to get yourself into shape, and be able to provide some details of your infrastructure automatically to your network clients. This is the second article in a series on IPv6 configuration: Configure IPv6 on your Linux system DHCPv6: Provide IPv6 information in your local network Enabling DNS for IPv6 infrastructure Accessing your web server via IPv6 Piece of advice: This is based on my findings on the internet while reading other people's helpful articles and going through a couple of man-pages on my local system. IPv6 addresses for everyone (in your network) Okay, after setting up the configuration of your local system, it might be interesting to enable all your machines in your network to use IPv6. There are two options to solve this kind of requirement... Either you're busy like a bee and you go around to configure each and every system manually, or you're more the lazy and effective type of network administrator and you prefer to work with Dynamic Host Configuration Protocol (DHCP). Obviously, I'm of the second type. Enabling dynamic IPv6 address assignments can be done with a new or an existing instance of a DHCPd. In case of Ubuntu-based installation this might be isc-dhcp-server. The isc-dhcp-server allows address pooling for IP and IPv6 within the same package, you just have to run to independent daemons for each protocol version. First, check whether isc-dhcp-server is already installed and maybe running your machine like so: $ service isc-dhcp-server6 status In case, that the service is unknown, you have to install it like so: $ sudo apt-get install isc-dhcp-server Please bear in mind that there is no designated installation package for IPv6. Okay, next you have to create a separate configuration file for IPv6 address pooling and network parameters called /etc/dhcp/dhcpd6.conf. This file is not automatically provided by the package, compared to IPv4. Again, use your favourite editor and put the following lines: $ sudo nano /etc/dhcp/dhcpd6.conf authoritative;default-lease-time 14400; max-lease-time 86400;log-facility local7;subnet6 2001:db8:bad:a55::/64 {    option dhcp6.name-servers 2001:4860:4860::8888, 2001:4860:4860::8844;    option dhcp6.domain-search "ios.mu";    range6 2001:db8:bad:a55::100 2001:db8:bad:a55::199;    range6 2001:db8:bad:a55::/64 temporary;} Next, save the file and start the daemon as a foreground process to see whether it is going to listen to requests or not, like so: $ sudo /usr/sbin/dhcpd -6 -d -cf /etc/dhcp/dhcpd6.conf eth0 The parameters are explained quickly as -6 we want to run as a DHCPv6 server, -d we are sending log messages to the standard error descriptor (so you should monitor your /var/log/syslog file, too), and we explicitely want to use our newly created configuration file (-cf). You might also use the command switch -t to test the configuration file prior to running the server. In my case, I ended up with a couple of complaints by the server, especially reporting that the necessary lease file wouldn't exist. So, ensure that the lease file for your IPv6 address assignments is present: $ sudo touch /var/lib/dhcp/dhcpd6.leases$ sudo chown dhcpd:dhcpd /var/lib/dhcp/dhcpd6.leases Now, you should be good to go. Stop your foreground process and try to run the DHCPv6 server as a service on your system: $ sudo service isc-dhcp-server6 startisc-dhcp-server6 start/running, process 15883 Check your log file /var/log/syslog for any kind of problems. Refer to the man-pages of isc-dhcp-server and you might check out Chapter 22.6 of Peter Bieringer's IPv6 Howto. The instructions regarding DHCPv6 on the Ubuntu Wiki are not as complete as expected and it might not be as helpful as this article or Peter's HOWTO. But see for yourself. Does the client get an IPv6 address? Running a DHCPv6 server on your local network surely comes in handy but it has to work properly. The following paragraphs describe briefly how to check the IPv6 configuration of your clients, Linux - ifconfig or ip command First, you have enable IPv6 on your Linux by specifying the necessary directives in the /etc/network/interfaces file, like so: $ sudo nano /etc/network/interfaces iface eth1 inet6 dhcp Note: Your network device might be eth0 - please don't just copy my configuration lines. Then, either restart your network subsystem, or enable the device manually using the dhclient command with IPv6 switch, like so: $ sudo dhclient -6 You would either use the ifconfig or (if installed) the ip command to check the configuration of your network device like so: $ sudo ifconfig eth1eth1      Link encap:Ethernet  HWaddr 00:1d:09:5d:8d:98            inet addr:192.168.160.147  Bcast:192.168.160.255  Mask:255.255.255.0          inet6 addr: 2001:db8:bad:a55::193/64 Scope:Global          inet6 addr: fe80::21d:9ff:fe5d:8d98/64 Scope:Link          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1 Looks good, the client has an IPv6 assignment. Now, let's see whether DNS information has been provided, too. $ less /etc/resolv.conf # Dynamic resolv.conf(5) file for glibc resolver(3) generated by resolvconf(8)#     DO NOT EDIT THIS FILE BY HAND -- YOUR CHANGES WILL BE OVERWRITTENnameserver 2001:4860:4860::8888nameserver 2001:4860:4860::8844nameserver 192.168.1.2nameserver 127.0.1.1search ios.mu Nicely done. Windows - netsh Per description on TechNet the netsh is defined as following: "Netsh is a command-line scripting utility that allows you to, either locally or remotely, display or modify the network configuration of a computer that is currently running. Netsh also provides a scripting feature that allows you to run a group of commands in batch mode against a specified computer. Netsh can also save a configuration script in a text file for archival purposes or to help you configure other servers." And even though TechNet states that it applies to Windows Server (only), it is also available on Windows client operating systems, like Vista, Windows 7 and Windows 8. In order to get or even set information related to IPv6 protocol, we have to switch the netsh interface context prior to our queries. Open a command prompt in Windows and run the following statements: C:\Users\joki>netshnetsh>interface ipv6netsh interface ipv6>show interfaces Select the device index from the Idx column to get more details about the IPv6 address and DNS server information (here: I'm going to use my WiFi device with device index 11), like so: netsh interface ipv6>show address 11 Okay, address information has been provided. Now, let's check the details about DNS and resolving host names: netsh interface ipv6> show dnsservers 11 Okay, that looks good already. Our Windows client has a valid IPv6 address lease with lifetime information and details about the configured DNS servers. Talking about DNS server... Your clients should be able to connect to your network servers via IPv6 using hostnames instead of IPv6 addresses. Please read on about how to enable a local named with IPv6.

    Read the article

  • How to Achieve OC4J RMI Load Balancing

    - by fip
    This is an old, Oracle SOA and OC4J 10G topic. In fact this is not even a SOA topic per se. Questions of RMI load balancing arise when you developed custom web applications accessing human tasks running off a remote SOA 10G cluster. Having returned from a customer who faced challenges with OC4J RMI load balancing, I felt there is still some confusions in the field how OC4J RMI load balancing work. Hence I decide to dust off an old tech note that I wrote a few years back and share it with the general public. Here is the tech note: Overview A typical use case in Oracle SOA is that you are building web based, custom human tasks UI that will interact with the task services housed in a remote BPEL 10G cluster. Or, in a more generic way, you are just building a web based application in Java that needs to interact with the EJBs in a remote OC4J cluster. In either case, you are talking to an OC4J cluster as RMI client. Then immediately you must ask yourself the following questions: 1. How do I make sure that the web application, as an RMI client, even distribute its load against all the nodes in the remote OC4J cluster? 2. How do I make sure that the web application, as an RMI client, is resilient to the node failures in the remote OC4J cluster, so that in the unlikely case when one of the remote OC4J nodes fail, my web application will continue to function? That is the topic of how to achieve load balancing with OC4J RMI client. Solutions You need to configure and code RMI load balancing in two places: 1. Provider URL can be specified with a comma separated list of URLs, so that the initial lookup will land to one of the available URLs. 2. Choose a proper value for the oracle.j2ee.rmi.loadBalance property, which, along side with the PROVIDER_URL property, is one of the JNDI properties passed to the JNDI lookup.(http://docs.oracle.com/cd/B31017_01/web.1013/b28958/rmi.htm#BABDGFBI) More details below: About the PROVIDER_URL The JNDI property java.name.provider.url's job is, when the client looks up for a new context at the very first time in the client session, to provide a list of RMI context The value of the JNDI property java.name.provider.url goes by the format of a single URL, or a comma separate list of URLs. A single URL. For example: opmn:ormi://host1:6003:oc4j_instance1/appName1 A comma separated list of multiple URLs. For examples:  opmn:ormi://host1:6003:oc4j_instanc1/appName, opmn:ormi://host2:6003:oc4j_instance1/appName, opmn:ormi://host3:6003:oc4j_instance1/appName When the client looks up for a new Context the very first time in the client session, it sends a query against the OPMN referenced by the provider URL. The OPMN host and port specifies the destination of such query, and the OC4J instance name and appName are actually the “where clause” of the query. When the PROVIDER URL reference a single OPMN server Let's consider the case when the provider url only reference a single OPMN server of the destination cluster. In this case, that single OPMN server receives the query and returns a list of the qualified Contexts from all OC4Js within the cluster, even though there is a single OPMN server in the provider URL. A context represent a particular starting point at a particular server for subsequent object lookup. For example, if the URL is opmn:ormi://host1:6003:oc4j_instance1/appName, then, OPMN will return the following contexts: appName on oc4j_instance1 on host1 appName on oc4j_instance1 on host2, appName on oc4j_instance1 on host3,  (provided that host1, host2, host3 are all in the same cluster) Please note that One OPMN will be sufficient to find the list of all contexts from the entire cluster that satisfy the JNDI lookup query. You can do an experiment by shutting down appName on host1, and observe that OPMN on host1 will still be able to return you appname on host2 and appName on host3. When the PROVIDER URL reference a comma separated list of multiple OPMN servers When the JNDI propery java.naming.provider.url references a comma separated list of multiple URLs, the lookup will return the exact same things as with the single OPMN server: a list of qualified Contexts from the cluster. The purpose of having multiple OPMN servers is to provide high availability in the initial context creation, such that if OPMN at host1 is unavailable, client will try the lookup via OPMN on host2, and so on. After the initial lookup returns and cache a list of contexts, the JNDI URL(s) are no longer used in the same client session. That explains why removing the 3rd URL from the list of JNDI URLs will not stop the client from getting the EJB on the 3rd server. About the oracle.j2ee.rmi.loadBalance Property After the client acquires the list of contexts, it will cache it at the client side as “list of available RMI contexts”.  This list includes all the servers in the destination cluster. This list will stay in the cache until the client session (JVM) ends. The RMI load balancing against the destination cluster is happening at the client side, as the client is switching between the members of the list. Whether and how often the client will fresh the Context from the list of Context is based on the value of the  oracle.j2ee.rmi.loadBalance. The documentation at http://docs.oracle.com/cd/B31017_01/web.1013/b28958/rmi.htm#BABDGFBI list all the available values for the oracle.j2ee.rmi.loadBalance. Value Description client If specified, the client interacts with the OC4J process that was initially chosen at the first lookup for the entire conversation. context Used for a Web client (servlet or JSP) that will access EJBs in a clustered OC4J environment. If specified, a new Context object for a randomly-selected OC4J instance will be returned each time InitialContext() is invoked. lookup Used for a standalone client that will access EJBs in a clustered OC4J environment. If specified, a new Context object for a randomly-selected OC4J instance will be created each time the client calls Context.lookup(). Please note the regardless of the setting of oracle.j2ee.rmi.loadBalance property, the “refresh” only occurs at the client. The client can only choose from the "list of available context" that was returned and cached from the very first lookup. That is, the client will merely get a new Context object from the “list of available RMI contexts” from the cache at the client side. The client will NOT go to the OPMN server again to get the list. That also implies that if you are adding a node to the server cluster AFTER the client’s initial lookup, the client would not know it because neither the server nor the client will initiate a refresh of the “list of available servers” to reflect the new node. About High Availability (i.e. Resilience Against Node Failure of Remote OC4J Cluster) What we have discussed above is about load balancing. Let's also discuss high availability. This is how the High Availability works in RMI: when the client use the context but get an exception such as socket is closed, it knows that the server referenced by that Context is problematic and will try to get another unused Context from the “list of available contexts”. Again, this list is the list that was returned and cached at the very first lookup in the entire client session.

    Read the article

  • The SPARC SuperCluster

    - by Karoly Vegh
    Oracle has been providing a lead in the Engineered Systems business for quite a while now, in accordance with the motto "Hardware and Software Engineered to Work Together." Indeed it is hard to find a better definition of these systems.  Allow me to summarize the idea. It is:  Build a compute platform optimized to run your technologies Develop application aware, intelligently caching storage components Take an impressively fast network technology interconnecting it with the compute nodes Tune the application to scale with the nodes to yet unseen performance Reduce the amount of data moving via compression Provide this all in a pre-integrated single product with a single-pane management interface All these ideas have been around in IT for quite some time now. The real Oracle advantage is adding the last one to put these all together. Oracle has built quite a portfolio of Engineered Systems, to run its technologies - and run those like they never ran before. In this post I'll focus on one of them that serves as a consolidation demigod, a multi-purpose engineered system.  As you probably have guessed, I am talking about the SPARC SuperCluster. It has many great features inherited from its predecessors, and it adds several new ones. Allow me to pick out and elaborate about some of the most interesting ones from a technological point of view.  I. It is the SPARC SuperCluster T4-4. That is, as compute nodes, it includes SPARC T4-4 servers that we learned to appreciate and respect for their features: The SPARC T4 CPUs: Each CPU has 8 cores, each core runs 8 threads. The SPARC T4-4 servers have 4 sockets. That is, a single compute node can in parallel, simultaneously  execute 256 threads. Now, a full-rack SPARC SuperCluster has 4 of these servers on board. Remember the keyword demigod.  While retaining the forerunner SPARC T3's exceptional throughput, the SPARC T4 CPUs raise the bar with single performance too - a humble 5x better one than their ancestors.  actually, the SPARC T4 CPU cores run in both single-threaded and multi-threaded mode, and switch between these two on-the-fly, fulfilling not only single-threaded OR multi-threaded applications' needs, but even mixed requirements (like in database workloads!). Data security, anyone? Every SPARC T4 CPU core has a built-in encryption engine, that is, encryption algorithms cast into silicon.  A PCI controller right on the chip for customers who need I/O performance.  Built-in, no-cost Virtualization:  Oracle VM for SPARC (the former LDoms or Logical Domains) is not a server-emulation virtualization technology but rather a serverpartitioning one, the hypervisor runs in the server firmware, and all the VMs' HW resources (I/O, CPU, memory) are accessed natively, without performance overhead.  This enables customers to run a number of Solaris 10 and Solaris 11 VMs separated, independent of each other within a physical server II. For Database performance, it includes Exadata Storage Cells - one of the main reasons why the Exadata Database Machine performs at diabolic speed. What makes them important? They provide DB backend storage for your Oracle Databases to run on the SPARC SuperCluster, that is what they are built and tuned for DB performance.  These storage cells are SQL-aware.  That is, if a SPARC T4 database compute node executes a query, it doesn't simply request tons of raw datablocks from the storage, filters the received data, and throws away most of it where the statement doesn't apply, but provides the SQL query to the storage node too. The storage cell software speaks SQL, that is, it is able to prefilter and through that transfer only the relevant data. With this, the traffic between database nodes and storage cells is reduced immensely. Less I/O is a good thing - as they say, all the CPUs of the world do one thing just as fast as any other - and that is waiting for I/O.  They don't only pre-filter, but also provide data preprocessing features - e.g. if a DB-node requests an aggregate of data, they can calculate it, and handover only the results, not the whole set. Again, less data to transfer.  They support the magical HCC, (Hybrid Columnar Compression). That is, data can be stored in a precompressed form on the storage. Less data to transfer.  Of course one can't simply rely on disks for performance, there is Flash Storage included there for caching.  III. The low latency, high-speed backbone network: InfiniBand, that interconnects all the members with: Real High Speed: 40 Gbit/s. Full Duplex, of course. Oh, and a really low latency.  RDMA. Remote Direct Memory Access. This technology allows the DB nodes to do exactly that. Remotely, directly placing SQL commands into the Memory of the storage cells. Dodging all the network-stack bottlenecks, avoiding overhead, placing requests directly into the process queue.  You can also run IP over InfiniBand if you please - that's the way the compute nodes can communicate with each other.  IV. Including a general-purpose storage too: the ZFSSA, which is a unified storage, providing NAS and SAN access too, with the following features:  NFS over RDMA over InfiniBand. Nothing is faster network-filesystem-wise.  All the ZFS features onboard, hybrid storage pools, compression, deduplication, snapshot, replication, NFS and CIFS shares Storageheads in a HA-Cluster configuration providing availability of the data  DTrace Live Analytics in a web-based Administration UI Being a general purpose application data storage for your non-database applications running on the SPARC SuperCluster over whichever protocol they prefer, easily replicating, snapshotting, cloning data for them.  There's a lot of great technology included in Oracle's SPARC SuperCluster, we have talked its interior through. As for external scalability: you can start with a half- of full- rack SPARC SuperCluster, and scale out to several racks - that is, stacking not separate full-rack SPARC SuperClusters, but extending always one large instance of the size of several full-racks. Yes, over InfiniBand network. Add racks as you grow.  What technologies shall run on it? SPARC SuperCluster is a general purpose scaleout consolidation/cloud environment. You can run Oracle Databases with RAC scaling, or Oracle Weblogic (end enjoy the SPARC T4's advantages to run Java). Remember, Oracle technologies have been integrated with the Oracle Engineered Systems - this is the Oracle on Oracle advantage. But you can run other software environments such as SAP if you please too. Run any application that runs on Oracle Solaris 10 or Solaris 11. Separate them in Virtual Machines, or even Oracle Solaris Zones, monitor and manage those from a central UI. Here the key takeaways once again: The SPARC SuperCluster: Is a pre-integrated Engineered System Contains SPARC T4-4 servers with built-in virtualization, cryptography, dynamic threading Contains the Exadata storage cells that intelligently offload the burden of the DB-nodes  Contains a highly available ZFS Storage Appliance, that provides SAN/NAS storage in a unified way Combines all these elements over a high-speed, low-latency backbone network implemented with InfiniBand Can grow from a single half-rack to several full-rack size Supports the consolidation of hundreds of applications To summarize: All these technologies are great by themselves, but the real value is like in every other Oracle Engineered System: Integration. All these technologies are tuned to perform together. Together they are way more than the sum of all - and a careful and actually very time consuming integration process is necessary to orchestrate all these for performance. The SPARC SuperCluster's goal is to enable infrastructure operations and offer a pre-integrated solution that can be architected and delivered in hours instead of months of evaluations and tests. The tedious and most importantly time and resource consuming part of the work - testing and evaluating - has been done.  Now go, provide services.   -- charlie  

    Read the article

  • When I mix JSTL 1.0 and JSTL 1.1 taglib declarations, it causes a ParseException on some of my serve

    - by sangfroid
    Hello all, When I mix JSTL 1.0 and JSTL 1.1 taglib declarations, it causes a ParseException on some of my servers, but not all of them. Here is the block of code that's giving me trouble : <%@ taglib prefix="c" uri="http://java.sun.com/jstl/core"%> <%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions"%> <c:set var="TEXTVARIABLE">|STRINGOFTEXT|</c:set> <c:set var="OTHERTEXTVARIABLE">${fn:contains(TEXTVARIABLE, '|STRINGOFTEXT|')}</c:set> And here is the exception : javax.servlet.jsp.JspException: com.caucho.jsp.JspLineParseException: /WEB-INF/jsp/online/system/modules/com.MYCOMPANY.marketing/templates/common/MY_JSP_PAGE.jsp:1: tag = 'out' / attribute = 'value': An error occurred while parsing custom action attribute "value" with value "${fn:contains(TEXTVARIABLE, '|STRINGOFTEXT|')}": org.apache.taglibs.standard.lang.jstl.parser.ParseException: EL functions are not supported. However, everything works fine if I change the URI for the core declaration to http://java.sun.com/jsp/jstl/core So here's the really weird part : for some reason, mixing 1.0 and 1.1 taglib declarations only causes an exception on two of my servers -- my staging server and my production server. It causes no problems at all on my local machine or my development server. Why is this? What could possibly be causing this difference in behavior? The three servers are extremely similar in setup and configuration. The JSP page is being served up by OpenCMS, and I'm using the Caucho's Resin webserver. I understand that you don't know how my servers or CMS are set up, but really, what I'm looking for is ideas. Any ideas at all would help -- this problem has been driving me absolutely batty. Even if you don't know what could be causing the problem, if you have any suggestions at all for how I could approach the problem, that would be extremely helpful. I just don't understand what could cause this difference in behavior between my servers. For reference, here's the full stack trace : javax.servlet.jsp.JspException: com.caucho.jsp.JspLineParseException: /WEB-INF/jsp/online/system/modules/com.MYCOMPANY.marketing/templates/common/MY_JSP_PAGE.jsp:1: tag = 'out' / attribute = 'value': An error occurred while parsing custom action attribute "value" with value "${fn:contains(TEXTVARIABLE, '|STRINGOFTEXT|')}": org.apache.taglibs.standard.lang.jstl.parser.ParseException: EL functions are not supported. at org.opencms.jsp.CmsJspTagInclude.includeActionWithCache(CmsJspTagInclude.java:369) at org.opencms.jsp.CmsJspTagInclude.includeTagAction(CmsJspTagInclude.java:241) at org.opencms.jsp.CmsJspTagInclude.doEndTag(CmsJspTagInclude.java:472) at _jsp._WEB_22dINF._jsp._online._system._modules.com_MYCOMPANY__marketing._templates._MAIN_0PAGE__jsp._jspService(_MAIN_0PAGE__jsp.java:153) at com.caucho.jsp.JavaPage.service(JavaPage.java:60) at com.caucho.jsp.Page.pageservice(Page.java:579) at com.caucho.server.dispatch.PageFilterChain.doFilter(PageFilterChain.java:179) at shared.filter.RemoteAddrFilterBase.doFilter(RemoteAddrFilterBase.java:57) at com.caucho.server.dispatch.FilterFilterChain.doFilter(FilterFilterChain.java:70) at com.caucho.server.webapp.DispatchFilterChain.doFilter(DispatchFilterChain.java:115) at com.caucho.server.cache.CacheFilterChain.doFilter(CacheFilterChain.java:175) at com.caucho.server.dispatch.ServletInvocation.service(ServletInvocation.java:229) at com.caucho.server.webapp.RequestDispatcherImpl.include(RequestDispatcherImpl.java:485) at com.caucho.server.webapp.RequestDispatcherImpl.include(RequestDispatcherImpl.java:350) at org.opencms.flex.CmsFlexRequestDispatcher.includeExternal(CmsFlexRequestDispatcher.java:194) at org.opencms.flex.CmsFlexRequestDispatcher.include(CmsFlexRequestDispatcher.java:169) at org.opencms.loader.CmsJspLoader.service(CmsJspLoader.java:1193) at org.opencms.flex.CmsFlexRequestDispatcher.includeInternalWithCache(CmsFlexRequestDispatcher.java:423) at org.opencms.flex.CmsFlexRequestDispatcher.include(CmsFlexRequestDispatcher.java:173) at org.opencms.loader.CmsJspLoader.dispatchJsp(CmsJspLoader.java:1227) at org.opencms.loader.CmsJspLoader.load(CmsJspLoader.java:1171) at org.opencms.loader.A_CmsXmlDocumentLoader.load(A_CmsXmlDocumentLoader.java:232) at org.opencms.loader.CmsXmlContentLoader.load(CmsXmlContentLoader.java:52) at org.opencms.loader.CmsResourceManager.loadResource(CmsResourceManager.java:964) at org.opencms.main.OpenCmsCore.showResource(OpenCmsCore.java:1498) at org.opencms.main.OpenCmsServlet.doGet(OpenCmsServlet.java:152) at javax.servlet.http.HttpServlet.service(HttpServlet.java:115) at javax.servlet.http.HttpServlet.service(HttpServlet.java:92) at com.caucho.server.dispatch.ServletFilterChain.doFilter(ServletFilterChain.java:106) at com.caucho.filters.CmsGzipFilter.doFilter(CmsGzipFilter.java:177) at com.caucho.server.dispatch.FilterFilterChain.doFilter(FilterFilterChain.java:70) at shared.filter.RemoteAddrFilterBase.doFilter(RemoteAddrFilterBase.java:57) at com.caucho.server.dispatch.FilterFilterChain.doFilter(FilterFilterChain.java:70) at com.caucho.server.webapp.DispatchFilterChain.doFilter(DispatchFilterChain.java:115) at com.caucho.server.dispatch.ServletInvocation.service(ServletInvocation.java:229) at com.caucho.server.webapp.RequestDispatcherImpl.forward(RequestDispatcherImpl.java:277) at com.caucho.server.webapp.RequestDispatcherImpl.forward(RequestDispatcherImpl.java:106) at com.caucho.server.dispatch.ForwardFilterChain.doFilter(ForwardFilterChain.java:80) at com.caucho.server.cache.CacheFilterChain.doFilter(CacheFilterChain.java:207) at com.caucho.server.webapp.WebAppFilterChain.doFilter(WebAppFilterChain.java:173) at com.caucho.server.dispatch.ServletInvocation.service(ServletInvocation.java:229) at com.caucho.server.http.HttpRequest.handleRequest(HttpRequest.java:274) at com.caucho.server.port.TcpConnection.run(TcpConnection.java:514) at com.caucho.util.ThreadPool.runTasks(ThreadPool.java:520) at com.caucho.util.ThreadPool.run(ThreadPool.java:442) at java.lang.Thread.run(Thread.java:595) Caused by: com.caucho.jsp.JspLineParseException: /WEB-INF/jsp/online/system/modules/com.MYCOMPANY.marketing/templates/common/MY_JSP_PAGE.jsp:1: tag = 'out' / attribute = 'value': An error occurred while parsing custom action attribute "value" with value "${fn:contains(TEXTVARIABLE, '|STRINGOFTEXT|')}": org.apache.taglibs.standard.lang.jstl.parser.ParseException: EL functions are not supported. at com.caucho.jsp.java.JspNode.error(JspNode.java:1489) at com.caucho.jsp.java.JspNode.error(JspNode.java:1480) at com.caucho.jsp.java.JavaJspGenerator.validate(JavaJspGenerator.java:466) at com.caucho.jsp.JspCompilerInstance.generate(JspCompilerInstance.java:475) at com.caucho.jsp.JspCompilerInstance.compile(JspCompilerInstance.java:373) at com.caucho.jsp.JspManager.compile(JspManager.java:233) at com.caucho.jsp.JspManager.createPage(JspManager.java:177) at com.caucho.jsp.JspManager.createPage(JspManager.java:157) at com.caucho.jsp.PageManager.getPage(PageManager.java:248) at com.caucho.jsp.PageManager.getPage(PageManager.java:166) at com.caucho.jsp.QServlet.getSubPage(QServlet.java:292) at com.caucho.jsp.QServlet.getPage(QServlet.java:210) at com.caucho.server.dispatch.PageFilterChain.compilePage(PageFilterChain.java:206) at com.caucho.server.dispatch.PageFilterChain.doFilter(PageFilterChain.java:133) at shared.filter.RemoteAddrFilterBase.doFilter(RemoteAddrFilterBase.java:57) at com.caucho.server.dispatch.FilterFilterChain.doFilter(FilterFilterChain.java:70) at com.caucho.server.webapp.DispatchFilterChain.doFilter(DispatchFilterChain.java:115) at com.caucho.server.cache.CacheFilterChain.doFilter(CacheFilterChain.java:175) at com.caucho.server.dispatch.ServletInvocation.service(ServletInvocation.java:229) at com.caucho.server.webapp.RequestDispatcherImpl.include(RequestDispatcherImpl.java:485) at com.caucho.server.webapp.RequestDispatcherImpl.include(RequestDispatcherImpl.java:350) at org.opencms.flex.CmsFlexRequestDispatcher.includeExternal(CmsFlexRequestDispatcher.java:194) at org.opencms.flex.CmsFlexRequestDispatcher.include(CmsFlexRequestDispatcher.java:169) at org.opencms.loader.CmsJspLoader.service(CmsJspLoader.java:1193) at org.opencms.flex.CmsFlexRequestDispatcher.includeInternalWithCache(CmsFlexRequestDispatcher.java:423) at org.opencms.flex.CmsFlexRequestDispatcher.include(CmsFlexRequestDispatcher.java:173) at org.opencms.jsp.CmsJspTagInclude.includeActionWithCache(CmsJspTagInclude.java:364) ... 45 more Thanks for the help!

    Read the article

  • Configuring Oracle HTTP Server 12c for WebLogic Server Domain

    - by Emin Askerov
    Oracle HTTP Server (OHS) 12c 12.1.2 which was released in July 2013 as a part of Oracle Web Tier 12c is the web server component of Oracle Fusion Middleware. In essence this is Apache HTTP Server 2.2.22 (with critical bug fixes from higher versions) which includes modules developed specifically by Oracle. It provides a listener functionality for Oracle WebLogic Server and the framework for hosting static pages, dynamic pages, and applications over the Web. OHS can be easily managed by Weblogic Management Framework, a set of tools which provides administrative capabilities (start, stop, lifecycle operations, etc.) for Oracle Fusion Middleware products. In other words all tools which are familiar to us (Node Manager, WLST, Administration Console, Fusion Middleware Control etc.) presented as a part of Weblogic Management Framework and using for managing Java and System Components both for Weblogic Server and Standalone Domain types. You can familiarize yourself with these terms using related documentation: 1. Introduction to Oracle HTTP Server: http://docs.oracle.com/middleware/1212/webtier/index.html 2. Weblogic Management Framework: http://docs.oracle.com/middleware/1212/core/ASCON/terminology.htm#ASCON11260 In the given post I would like to cover rather simple use case how to configure OHS as web proxy in Weblogic Cluster environment. For example, we have existing Weblogic Domain where some managed servers have been joined to cluster and host business applications. We need to configure web proxy component which will act as entry point, load balancer for our cluster for user requests. Of course, we could install old good Apache HTTP Server and configure mod_wl plugin. However this solution not optimal from manageability perspective: we need to install Apache, install additional plugin then configure it by editing configuration file which is not really convenient for FMW Administrators and often increase time of performing of simple administrative task. Alternatively, we could use OHS as System Component within Weblogic Domain and use full power of Weblogic Management Framework in order to configure, manage and monitor it! I like this idea! What about you? I hope after reading this post you will agree with me. First of all it is necessary to download OHS binaries. You can use this link for downloading: http://www.oracle.com/technetwork/java/webtier/downloads/index2-303202.html As we will use Fusion Middleware Control for managing OHS instances it is necessary to extend your domain with Enterprise Manager and Oracle ADF and JRF templates. This is not topic for focusing in this post, but you could get more information from documentation or one of my previous posts: http://docs.oracle.com/middleware/1212/wls/WLDTR/fmw_templates.htm#sthref64 https://blogs.oracle.com/imc/entry/the_specifics_of_adf_12c Note: you should have properly configured Node Manager utility for managing OHS instances Let’s consider configuration process step by step: 1. Shut down all Weblogic instances of existing domain including Admin Server; 2. Install Oracle HTTP Server. You should use your Fusion Middleware Home Path (e.g. /u01/Oracle/FMW12) for Installation Location and select Colocated HTTP Server option as Installation Type. I will not focus on this topic in this post. All information related to OHS installation you could find here: http://docs.oracle.com/middleware/1212/webtier/WTINS/install_gui.htm#i1082009 3. Next we need to extend our existing domain with OHS component. In order to do this you should do the following: a. Run Fusion Middleware Configuration Wizard (ORACLE_HOME/oracle_common/common/bin/config.sh); b. On the step 1 select Update an existing domain option and point your Fusion Middleware Home Path; c. On the step 2 check Oracle HTTP Server, Oracle Enterprise Manager Plugin for WEBTIER templates; d. Go through other steps without any changes and finish configuration process. 4. Start Admin Server and all managed servers related to your cluster 5. Log in to Enterprise Manager FMW Control using http://<hostname>:<port>/em URL 6. Now we will create OHS instance within our Weblogic Domain Infrastructure. Navigate to Weblogic Domain -> Administration -> Create/Delete OHS menu item; 7. Enter to edit mode, clicking Changes -> Lock&Edit menu item; 8. Create new OHS instance clicking Create button; 9. Define Instance Name (e.g. DevOSH) and Machine parameters; 10. Now we need to define listen port. By default OHS will use 7777 port number for income HTTP requests. We could change it to any free port number we would like to use. In order to do it, right click on our created OHS instance (left hand panel) and navigate to Administration -> Port Configuration; 11. Click on record with port number 7777 and then click Edit button; 12. Change port number value (in our case this will be 8080) and then click OK button; 13. Now we need to edit mod_wl_ohs configuration in order to enable OHS to act as proxy for WebLogic Server Instances/Cluster; 14. In order to do it right click on our created OHS instance (left panel) and navigate to Administration -> mod_wl_ohs Configuration; a. In Weblogic Cluster you should enter cluster address (define <host:port> for all managed servers which participated in cluster), e.g: 192.168.56.2:7004,192.168.56.2:7005 b. Define Weblogic Port parameter at which the Oracle WebLogic Server host is listening for connection requests from the module (or from other servers); c. Check Dynamic Server List option. This will dynamically update cluster list for every request; d. In the Location table define list of endpoint locations which you would like to process. In order to do this click Add Row button and define Location, Weblogic Cluster, Path Trim and Path Prefix parameters (if required); e. Click Apply button in order to save changes. 15. Activate changes clicking Changes ? Activate Changes menu item; 16. Finally we will start configured OHS instance. Right click on OHS instance tree item under Web Tier folder, select Control -> Start Up menu item; 17. Ensure that OHS instance up and running and then test your environment. Run deployed application to your Weblogic Cluster accessing via OHS web proxy; Normal 0 false false false RU X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-fareast-language:EN-US;}

    Read the article

  • Spacewalk 2.0 provided to manage Oracle Linux systems

    - by wcoekaer
    Oracle Linux customers have a few options to manage and provision their servers. We provide a license to use Oracle Enterprise Manager's Linux OS management, monitoring and provisioning features without additional cost for every server that has an Oracle Linux support subscription. So there is no additional pack to license and no additional per server cost, it's all included in our Basic, Premier and Systems support subscriptions. The nice thing with Oracle Enterprise Manager is that you end up with a single management product that can manage all aspects of your software stack. You have complete insight into the applications running, you have roles and responsibilities, you have third party connectors for storage or other products and it makes it very easy and convenient to correlate data and events when something happens. If you use Oracle VM as well, you end up with a complete cloud portal with selfservice, chargeback, etc... Another, much simpler option, is just using yum. It is very easy to take a server and create directories and expose these through apache as repositories. You can have a simple yum config on each server pointing to a few specific repositories. It requires some manual effort in terms of creating directories, downloading packages and creating local repo files but it's easy to do and for many people a preferred solution. There are also a good number of customers that just connect their servers directly to ULN or to our free update server public-yum. Just to re-iterate, our public-yum servers have all the errata and updates available for free. Now we added another option. Many of our customers have switched from a competing Linux vendor and they had familiarity with their management tools. Switching to Oracle for support is very easy since we don't require changes to the installed servers but we also want to make sure there is a very easy and almost transparent switch for the management tools as well. While Oracle Enterprise Manager is our preferred way of managing systems, we now are offering Spacewalk 2.0 to our customers. The community project can be found here. We have made a few changes to ensure easy and complete support for Oracle Linux, tested it with public-yum, etc.. You can find the rpms in our public-yum repos at http://public-yum.oracle.com/repo/OracleLinux/OL6/. There are repositories for spacewalk server and then for each version (OL5,OL6) and architecture (x86 and x86-64) we have the client repositories as well. Spacewalk itself is only made available for OL6 x86-64. Documentation can be found here. I set it up myself and here are some quick steps on how you can get going in just a matter of minutes: Spacewalk Server Installation : 1) Installing an Oracle Database Use an existing Oracle Database or install a new Oracle Database (Standard or Enterprise Edition) [at this time use 11g, we will add support for 12c in the near future]. This database can be installed on the spacewalk server or on a separate remote server. While Oracle XE might work to create a small sample POC, we do not support the use of Oracle XE, spacewalk repositories can become large and create a significant database workload. Customers can use their existing database licenses, they can download the database with a trial licence from http://edelivery.oracle.com or Oracle Linux subscribers (customers) will be allowed to use the Oracle Database as a spacewalk repository as part of their Oracle Linux subscription at no additional cost. |NOTE : spacewalk requires the database to be configured with the UTF8 characterset. |Installation will fail if your database does not use UTF8. |To verify if your database is configured correctly, run the following command in sqlplus: | |select value from nls_database_parameters where parameter='NLS_CHARACTERSET'; |This should return 'AL32UTF8' 2) Configure the database schema for spacewalk Ideally, create a tablespace in the database to hold the spacewalk schema tables/data; create tablespace spacewalk datafile '/u01/app/oracle/oradata/orcl/spacewalk.dbf' size 10G autoextend on; Create the database user spacewalk (or use some other schema name) in sqlplus. example : create user spacewalk identified by spacewalk; grant connect, resource to spacewalk; grant create table, create trigger, create synonym, create view, alter session to spacewalk; grant unlimited tablespace to spacewalk; alter user spacewalk default tablespace spacewalk; 4) Spacewalk installation and configuration Spacewalk server requires an Oracle Linux 6 x86-64 system. Clients can be Oracle Linux 5 or 6, both 32- and 64bit. The server is only supported on OL6/64bit. The easiest way to get started is to do a 'Minimal' install of Oracle Linux on a server and configure the yum repository to include the spacewalk repo from public-yum. Once you have a system with a minimal install, modify your yum repo to include the spacewalk repo. Example : edit /etc/yum.repos.d/public-yum-ol.repo and add the following lines at the end of the file : [spacewalk] name=spacewalk baseurl=http://public-yum.oracle.com/repo/OracleLinux/OL6/spacewalk20/server/$basearch/ gpgkey=http://public-yum.oracle.com/RPM-GPG-KEY-oracle-ol6 gpgcheck=1 enabled=1 Install the following pre-requisite packages on your spacewalk server : oracle-instantclient11.2-basic-11.2.0.3.0-1.x86_64 oracle-instantclient11.2-sqlplus-11.2.0.3.0-1.x86_64 rpm -ivh oracle-instantclient11.2-basic-11.2.0.3.0-1.x86_64 rpm -ivh oracle-instantclient11.2-sqlplus-11.2.0.3.0-1.x86_64 The above RPMs can be found on the Oracle Technology Network website : http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html As the root user, configure the library path to include the Oracle Instant Client libraries : cd /etc/ld.so.conf.d echo /usr/lib/oracle/11.2/client64/lib oracle-instantclient11.2.conf ldconfig Install spacewalk : # yum install spacewalk-oracle The above yum command should download and install all required packages to run spacewalk on your local server. | NOTE : if you did a full, desktop or workstation installation, | you have to remove the JTA package | BEFORE installing spacewalk-oracle (rpm -e --nodeps jta) Once the installation completes, simply run the spacewalk configuration tool and you are all set. (make sure to run the command with the 2 arguments) spacewalk-setup --disconnected --external-db Answer the questions during the setup, ensure you provide the current database user (example : spacewalk) and password (example : spacewalk) and database server hostname (the standard hostname of the server on which you have deployed the Oracle database) At the end of the setup script, your spacewalk server should be fully configured and you can log into the web portal. Use your favorite browser to connect to the website : http://[spacewalkserverhostname] The very first action will be to create the main admin account.

    Read the article

  • Best Practices - which domain types should be used to run applications

    - by jsavit
    This post is one of a series of "best practices" notes for Oracle VM Server for SPARC (formerly named Logical Domains) One question that frequently comes up is "which types of domain should I use to run applications?" There used to be a simple answer in most cases: "only run applications in guest domains", but enhancements to T-series servers, Oracle VM Server for SPARC and the advent of SPARC SuperCluster have made this question more interesting and worth qualifying differently. This article reviews the relevant concepts and provides suggestions on where to deploy applications in a logical domains environment. Review: division of labor and types of domain Oracle VM Server for SPARC offloads many functions from the hypervisor to domains (also called virtual machines). This is a modern alternative to using a "thick" hypervisor that provides all virtualization functions, as in traditional VM designs, This permits a simpler hypervisor design, which enhances reliability, and security. It also reduces single points of failure by assigning responsibilities to multiple system components, which further improves reliability and security. In this architecture, management and I/O functionality are provided within domains. Oracle VM Server for SPARC does this by defining the following types of domain, each with their own roles: Control domain - management control point for the server, used to configure domains and manage resources. It is the first domain to boot on a power-up, is an I/O domain, and is usually a service domain as well. I/O domain - has been assigned physical I/O devices: a PCIe root complex, a PCI device, or a SR-IOV (single-root I/O Virtualization) function. It has native performance and functionality for the devices it owns, unmediated by any virtualization layer. Service domain - provides virtual network and disk devices to guest domains. Guest domain - a domain whose devices are all virtual rather than physical: virtual network and disk devices provided by one or more service domains. In common practice, this is where applications are run. Typical deployment A service domain is generally also an I/O domain: otherwise it wouldn't have access to physical device "backends" to offer to its clients. Similarly, an I/O domain is also typically a service domain in order to leverage the available PCI busses. Control domains must be I/O domains, because they boot up first on the server and require physical I/O. It's typical for the control domain to also be a service domain too so it doesn't "waste" the I/O resources it uses. A simple configuration consists of a control domain, which is also the one I/O and service domain, and some number of guest domains using virtual I/O. In production, customers typically use multiple domains with I/O and service roles to eliminate single points of failure: guest domains have virtual disk and virtual devices provisioned from more than one service domain, so failure of a service domain or I/O path or device doesn't result in an application outage. This is also used for "rolling upgrades" in which service domains are upgraded one at a time while their guests continue to operate without disruption. (It should be noted that resiliency to I/O device failures can also be provided by the single control domain, using multi-path I/O) In this type of deployment, control, I/O, and service domains are used for virtualization infrastructure, while applications run in guest domains. Changing application deployment patterns The above model has been widely and successfully used, but more configuration options are available now. Servers got bigger than the original T2000 class machines with 2 I/O busses, so there is more I/O capacity that can be used for applications. Increased T-series server capacity made it attractive to run more vertical applications, such as databases, with higher resource requirements than the "light" applications originally seen. This made it attractive to run applications in I/O domains so they could get bare-metal native I/O performance. This is leveraged by the SPARC SuperCluster engineered system, announced a year ago at Oracle OpenWorld. In SPARC SuperCluster, I/O domains are used for high performance applications, with native I/O performance for disk and network and optimized access to the Infiniband fabric. Another technical enhancement is the introduction of Direct I/O (DIO) and Single Root I/O Virtualization (SR-IOV), which make it possible to give domains direct connections and native I/O performance for selected I/O devices. A domain with either a DIO or SR-IOV device is an I/O domain. In summary: not all I/O domains own PCI complexes, and there are increasingly more I/O domains that are not service domains. They use their I/O connectivity for performance for their own applications. However, there are some limitations and considerations: at this time, a domain using physical I/O cannot be live-migrated to another server. There is also a need to plan for security and introducing unneeded dependencies: if an I/O domain is also a service domain providing virtual I/O go guests, it has the ability to affect the correct operation of its client guest domains. This is even more relevant for the control domain. where the ldm has to be protected from unauthorized (or even mistaken) use that would affect other domains. As a general rule, running applications in the service domain or the control domain should be avoided. To recap: Guest domains with virtual I/O still provide the greatest operational flexibility, including features like live migration. I/O domains can be used for applications with high performance requirements. This is used to great effect in SPARC SuperCluster and in general T4 deployments. Direct I/O (DIO) and Single Root I/O Virtualization (SR-IOV) make this more attractive by giving direct I/O access to more domains. Service domains should in general not be used for applications, because compromised security in the domain, or an outage, can affect other domains that depend on it. This concern can be mitigated by providing guests' their virtual I/O from more than one service domain, so an interruption of service in the service domain does not cause an application outage. The control domain should in general not be used to run applications, for the same reason. SPARC SuperCluster use the control domain for applications, but it is an exception: it's not a general purpose environment; it's an engineered system with specifically configured applications and optimization for optimal performance. These are recommended "best practices" based on conversations with a number of Oracle architects. Keep in mind that "one size does not fit all", so you should evaluate these practices in the context of your own requirements. Summary Higher capacity T-series servers have made it more attractive to use them for applications with high resource requirements. New deployment models permit native I/O performance for demanding applications by running them in I/O domains with direct access to their devices. This is leveraged in SPARC SuperCluster, and can be leveraged in T-series servers to provision high-performance applications running in domains. Carefully planned, this can be used to provide higher performance for critical applications.

    Read the article

  • Clouds Everywhere But not a Drop of Rain – Part 3

    - by sxkumar
    I was sharing with you how a broad-based transformation such as cloud will increase agility and efficiency of an organization if process re-engineering is part of the plan.  I have also stressed on the key enterprise requirements such as “broad and deep solutions, “running your mission critical applications” and “automated and integrated set of capabilities”. Let me walk you through some key cloud attributes such as “elasticity” and “self-service” and what they mean for an enterprise class cloud. I will also talk about how we at Oracle have taken a very enterprise centric view to developing cloud solutions and how our products have been specifically engineered to address enterprise cloud needs. Cloud Elasticity and Enterprise Applications Requirements Easy and quick scalability for a short-period of time is the signature of cloud based solutions. It is this elasticity that allows you to dynamically redistribute your resources according to business priorities, helps increase your overall resource utilization, and reduces operational costs by allowing you to get the most out of your existing investment. Most public clouds are offering a instant provisioning mechanism of compute power (CPU, RAM, Disk), customer pay for the instance-hours(and bandwidth) they use, adding computing resources at peak times and removing them when they are no longer needed. This type of “just-in-time” serving of compute resources is well known for mid-tiers “state less” servers such as web application servers and web servers that just need another machine to start and run on it but what does it really mean for an enterprise application and its underlying data? Most enterprise applications are not as quite as “state less” and justifiably so. As such, how do you take advantage of cloud elasticity and make it relevant for your enterprise apps? This is where Cloud meets Grid Computing. At Oracle, we have invested enormous amount of time, energy and resources in creating enterprise grid solutions. All our technology products offer built-in elasticity via clustering and dynamic scaling. With products like Real Application Clusters (RAC), Automatic Storage Management, WebLogic Clustering, and Coherence In-Memory Grid, we allow all your enterprise applications to benefit from Cloud elasticity –both vertically and horizontally - without requiring any application changes. A number of technology vendors take a rather simplistic route of starting up additional or removing unneeded VM as the "Cloud Scale-Out" solution. While this may work for stateless mid-tier servers where load balancers can handle the addition and remove of instances transparently but following a similar approach for the database tier - often called as "database sharding" - requires significant application modification and typically does not work with off the shelf packaged applications. Technologies like Oracle Database Real Application Clusters, Automatic Storage Management, etc. on the other hand bring the benefits of incremental scalability and on-demand elasticity to ANY application by providing a simplified abstraction layers where the application does not need deal with data spread over multiple database instances. Rather they just talk to a single database and the database software takes care of aggregating resources across multiple hardware components. It is the technologies like these that truly make a cloud solution relevant for enterprises.  For customers who are looking for a next generation hardware consolidation platform, our engineered systems (e.g. Exadata, Exalogic) not only provide incredible amount of performance and capacity, they also reduce the data center complexity and simplify operations. Assemble, Deploy and Manage Enterprise Applications for Cloud Products like Oracle Virtual assembly builder (OVAB) resolve the complex problem of bringing the cloud speed to complex multi-tier applications. With assemblies, you can not only provision all components of a multi-tier application and wire them together by push of a button, other aspects of application lifecycle, such as real-time application testing, scale-up/scale-down, performance and availability monitoring, etc., are also automated using Oracle Enterprise Manager.  An essential criteria for an enterprise cloud to succeed is the ability to ensure business service levels especially when business users have either full visibility on the usage cost with a “show back” or a “charge back”. With Oracle Enterprise Manager 12c, we have created the most comprehensive cloud management solution in the industry that is capable of managing business service levels “applications-to-disk” in a enterprise private cloud – all from a single console. It is the only cloud management platform in the industry that allows you to deliver infrastructure, platform and application cloud services out of the box. Moreover, it offers integrated and complete lifecycle management of the cloud - including planning and set up, service delivery, operations management, metering and chargeback, etc .  Sounds unbelievable? Well, just watch this space for more details on how Oracle Enterprise Manager 12c is the nerve center of Oracle Cloud! Our cloud solution portfolio is also the broadest and most deep in the industry  - covering public, private, hybrid, Infrastructure, platform and applications clouds. It is no coincidence therefore that the Oracle Cloud today offers the most comprehensive set of public cloud services in the industry.  And to a large part, this has been made possible thanks to our years on investment in creating cloud enabling technologies.  Summary  But the intent of this blog post isn't to dwell on how great our solutions are (these are just some examples to illustrate how we at Oracle have approached this problem space). Rather it is to help you ask the right questions before you embark on your cloud journey.  So to summarize, here are the key takeaways.       It is critical that you are clear on why you are building the cloud. Successful organizations keep business benefits as the first and foremost cloud objective. On the other hand, those who approach this purely as a technology project are more likely to fail. Think about where you want to be in 3-5 years before you get started. Your long terms objectives should determine what your first step ought to be. As obvious as it may seem, more people than not make the first move without knowing where they are headed.  Don’t make the mistake of equating cloud to virtualization and Infrastructure-as-a-Service (IaaS). Spinning a VM on-demand will give some short term relief to your IT staff but is unlikely to solve your larger business problems. As such, even if IaaS is your first step towards a more comprehensive cloud, plan the roadmap around those higher level services before you begin. And ask your vendors on how they are going to be your partners in this journey. Capabilities like self-service access and chargeback/showback are absolutely critical if you really expect your cloud to be transformational. Your business won't see the full benefits of the cloud until it empowers them with same kind of control and transparency that they are used to while using a public cloud service.  Evaluate the benefits of integration, as opposed to blindly following the best-of-breed strategy. Integration is a huge challenge and more so in a cloud environment. There are enormous costs associated with stitching a solution out of disparate components and even more in maintaining it. Hope you found these ideas helpful. Looking forward to hearing your thoughts and experiences.

    Read the article

  • WebLogic Server 12c????????????????????????????????????/???????WebLogic Server 12c Forum 2012?????

    - by ???02
    2012?1??????WebLogic Server 12c???200??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????2012?8????????WebLogic Server 12c Forum 2012????????·??????????????????????????/?????????????????(???) ????????????WebLogic Server 12c????????? ??WebLogic Server???????·???????WebLogic Server?????????????????????????????????????WebLogic Server 12c Forum 2012?????????????????·????????????????????????????????????????????????????·?????????????WebLogic Server 12c??????????????/????????????? ???????????????????????????? ????????????????????????????????????? ?????? ??????????????????????????????????? ??????????????????????????????????????????????????????????????????????????“??????????????????????????”????????????????????????WebLogic Server 11g?????????????????? (1)????????????????????! = ??ID????????? WebLogic Server??????????????????????????????????????????????????????????????????????? ????????????????? ?????????·??????????????????? ??????init.d???????????? ???????????????ID????(boot.properties)??????????????????????WebLogic Server?????????????????????????????????? ???ID????????? <DOMAIN_HOME>/servers//security???????????·?????boot.properties????????????2??????? username= password= ???????????????????WebLogic Server?????????????????????????????????????????????????????????????????? (2)WLST???????????????????! = WLST????????? WebLogic Server???????????????????????????????????????????????????????????????/?????????????WLST(WebLogic Scripting Tool)????????????????????????????????????????????????????????????????????/????????????WLST?????????? ?????????????WLST???????????????????????Python?Java?????Jython?????????????WebLogic Server?????????????MBean???????????????????????????????????WLST?????????????Excel????????????????????????????????????????????????????????????????????????????WLST?????????????????????????????????? ?WLST???????????? ????????[????·????]-[???????]?????????????????[??]???????? ???????????????????????????[?????]????????py?????WLST???????????????????????????[??]??????????????????? ???????????????WLST?????????????????????WLST???????????????????????????????????????????????????????????????????? (3)????SQL?WebLogic Server???????! = ????·????? ??????????WebLogic Server??????????????????????????????SQL??????????????????????????????????·????????????????????????????????????????·???????????WebLogic Server????????·???????·???????????????WebLogic Server????/?????????????????????????????????????JDBC????????????????????????????SQL?ResultSet?????????????·????????? ????·????????????? ?????·??????? ????????[??]-[????]-[?????]-?????????????WebLogic Server?????/?????????????????????????????????????????[weblogic]-[jdbc]-[sql]-[DebugJDBCSQL]?????????[???]???????? ??????JDBC?????·???????·????????? ????/???????????????????????/???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? (4)[??]??????????????! = [??????????]????? ?[??]????????????????????????????????????????????????????????????????????????????[??]?????????????????????????????????2??????????????????????????????????????????????????????????????????????????????????????????????????????[??????????]?????????2?????????????????????????? ?????????2????????????? ????????[??????]-[???]-[???????????????]??????[???·???????]?????[??????????]?????????[??]???????? ??????????????????????????? (5)????????????????????????????! = ?V$SESSION.PROGRAM?????????????? ???Oracle Database?????????????????????????? WebLogic Server?????????????????????????????????????????????????????????????????????????????1??WebLogic Server????????????????????????????????????????????????????????????????????????????????????????????????????????????????? ???????????????V$SESSION.PROGRAM?????????????Oracle Database?????????·?????????????????????????????????V$SESSION????????????????PROGRAM????????????????????????????WebLogic Server???????????????????????????JDBC Thin Client???JDBC????????????????????????????????????????PROGRAM???????????????????????·?????????????????????? V$SESSION.PROGRAM???????????????????????????? ?V$SESSION.PROGRAM??????????????? ???????????([???JDBC?????????]??)?[?????]?????1??????? v$session.program= (6)???·???????·????????! = ????·????·????????? WebLogic Server?????????????????????????????????(???·??)????????????????·???????1??????????????????????????????????????????WebLogic Server?????????????????????????????????? ??????????????????·????·?????????????????????????WebLogic Server?????????????????????????????????????? ???????????JDK???????Log4j????????????????WebLogic Server???????????????? WebLogic Server????????JDK?Log4j??????????????????JDK?????????? ????·????·???????????????? ?????·????·????????? JDK???Log4j?????????????????????/?????????????? ?JDK???:weblogic.logging.ServerLoggingHandler ?Log4j???:weblogic.logging.log4j.ServerLoggingAppender ??????Log4j?????????????(????)? <appender name="file" class="org.apache.log4j.FileAppender"> <param name="File" value=“applog.log" /> <param name="Append" value="true" /> <layout class="org.apache.log4j.PatternLayout"> <param name="ConversionPattern" value="%d %5p %c{1} - %m%n" /> </layout> </appender> <appender name="server" class="weblogic.logging.log4j.ServerLoggingAppender"/> ?????????????????????????????????????????WebLogic Server?????????????????????????????????????? ?JDK???:-Djava.util.loggin.config.file=<PATH> ?Log4j???:-Dlog4j.configuration=<PATH> ???????????WAR??????????????????????·????·??????????WebLogic Server??????????????????????????????????????WebLogic Server???????????????????? (7)BEA??????????????????????! = GetMessage??????? WebLogic Server????????·??????????????(?BEA-XXXXXX??????????????????BEA?????)????WebLogic Server?HTML??????????????????Web????????????????????????????????????????????? ????????????GetMessage?????????????BEA?????????????????????????????????????????? ?GetMessage????????? java?????WebLogic Server?GetMessage???????????? java weblogic.GetMessage ?????????? ?-id XXXX:???????????? ?-verbose:????????? ?-lang XX:???????(?????????????????????????????????????) ????BEA-000337?????????????????????????????? java weblogic.GetMessage -verbose -id 000337 -lang ja 000337: ?????"{2}"?????{0}?"{1}"??????????????????????????(StuckThreadMaxTime)"{3}"?????????????·????: {4} L10n?????: weblogic.kernel I18n?????: weblogic.kernel ??????: WebLogicServer ???: ??? ????·????: false ????????: ???????????????????????????????? ??: ???????????????????????????????????? ?????: ??????????????????????????????????????????????????????????????·???(weblogic.Admin THREAD_DUMP)????????? ?????????BEA?????????????????????????????????????????????????????????????????????????????????? ????????“WebLogic??”!? WebLogic Server 12c????/??? ????????????? ???????????? ????????????????? ?????????????? ???????????? ????????????WebLogic Server???????????????????????????????????????????????WebLogic Server 12c?????????????????????????????????????????????????????????WebLogic Server 11g(10.3.6)???????????? ?????????Mac OS X???(???????)?IE 6?7??????????????? ??OTN??????????????????System Requirements and Supported Platforms for WebLogic Server 12c (12.1.1.x)?????????????Mac OS?????????????2012?8?2?????Mac OS X Snow Leopard????Java SE 7?????????? ???Internet Explorer(IE) 6.x??7.x???????????????????IE????????IE 8.x???????????? ????Web?????WebLogic Server?????????Web???·??????64?????????????(WebLogic Server??????????64?????)?????????WebLogic Server????????????????????????????????????????? ?RESTful????????? Java EE 6?JAX-RS????????????WebLogic Server 12c???????????????????????????????????? ?RESTful??????????? [????]-[??]-[??]?[RESTful??????????]?????????WebLogic Server??????????????????URL?????????????????????????? http(s)://:/management/tenant-monitoring/servers ???????servers??????clusters???applications???datasources??????????????????????????????????????????????? ????HTML??????JSON?XML???????????????????????????????????????????????????????????????????? ?JDBC????????(1):??????·???? ???????????????????????WebLogic Server??????????????????????????????????12c??Active GridLink for RAC???????????????????????????????????? 1??????????·?????????????????????[????]?????????[??????]????????????????????????????????????????????????????????????????????? <DOMAIN_HOME>/servers//logs/datasource.log ?????????????????????????????????????? ??????????????????????WLDF????????????????WebLogic Server 12c?????????????????????? ?JDBC????????(2):?????????? ????????????????[??]-[?????]???[????]?????????????????????????????????????????????????????????????????WebLogic Server 12c?????????????????????????????????????? ??????????????????????????????????WebLogic Server 11g(10.3.1)???1??????????????????????????????????????? ?JDBC????????(3):????????? WebLogic Server 12c??[??]-[?????]????????????????????[?????????]???1???????????????????????????????????????????????????????????????????????????????????????????????????????????????Oracle Database?????????????????????????? ErrorCode ????? 3113 ???????end-of-file???????? 3114 Oracle?????????? 1033 Oracle??????????????? 1034 Oracle??????? 1089 ?????????? - ?????????? 1090 ???????? - ?????????? 17002 I/O?? ?????????(1):?????/?????????????????? ??????????2?????? 1???WebLogic Server????????????????????????????????????????? -Dweblogic.management.username= -Dweblogic.management.password= ????????????ID???????????????? ?????????(2):SSL????Certicom?????? SSL?????Certicom(?????10.3.3?????)???????JSSE(Java Secure Socket Extension)????????????????????????????????????????? ??????????????????????????????? ????????????WebLogic Server?????????????????????????????????Java?????????·????2??????????Java????????????????nodemanager.properties?????????????StartScriptEnabled?????????false??true?????? ?????????????false?????????????WebLogic Server??????????????????true??????????????startWebLogic???????????????WebLogic Server??????????????startWebLogic???????????????????????????????????????????????????????????????? ???/???????(1):setDomainEnv???????????????? ??/?????????????“?????·???”????????????????????????????2???? 1??setDomainEnv?????????????????????????????32???JDK????????Perm????????????? ?WebLogic Server 11g(10.3.5) MEM_PERM_SIZE_64BIT="-XX:PermSize=128m" MEM_PERM_SIZE_32BIT="-XX:PermSize=48m" ... MEM_MAX_PERM_SIZE_64BIT="-XX:MaxPermSize=256m" MEM_MAX_PERM_SIZE_32BIT="-XX:MaxPermSize=128m" ?WebLogic Server 12c(12.1.1) MEM_PERM_SIZE_64BIT="-XX:PermSize=128m" MEM_PERM_SIZE_32BIT="-XX:PermSize=128m" ... MEM_MAX_PERM_SIZE_64BIT="-XX:MaxPermSize=256m" MEM_MAX_PERM_SIZE_32BIT="-XX:MaxPermSize=256m" ???/???????(2):stopWebLogic??????shutdown.py????????? ??/???????????2????stopWebLogic??????????????shutdown.py??????????????????????????????ID/????????????????????????shutdown.py??????????????WebLogic Server 11g(10.3.3)?????????????ID????????????????????WebLogic Server 12c???????? ????????????? ?????????????/??? ???????????/?????????????? ???KernelMBean????UseConcurrentQueueForRequestManager?????????????????????????????[????]--[??????]-[??]?[?????·???????????????]??????????????????????????????????????????MBean???????????????????????????????????????????????????????????????????????????????????????????(???)? ??1???Windows?????????beasvc.exe????wlsvc.exe????????????????????????wlsvc _???????BEA????????????????(???)? ????WLST???????Jython???????????????????2.1??2.2.1????????(???11g??2.2.1???????)???????????????……?(???)? ???????WebLogic Server 12c???????????????????????/????????????????????????????????????????WebLogic Server?????????WebLogic Server????????????Facebook?????????WebLogic!??????????????

    Read the article

  • ndd on Solaris 10

    - by user12620111
    This is mostly a repost of LaoTsao's Weblog with some tweaks. Last time that I tried to cut & paste directly off of his page, some of the XML was messed up. I run this from my MacBook. It should also work from your windows laptop if you use cygwin. ================If not already present, create a ssh key on you laptop================ # ssh-keygen -t rsa ================ Enable passwordless ssh from my laptop. Need to type in the root password for the remote machines. Then, I no longer need to type in the password when I ssh or scp from my laptop to servers. ================ #!/usr/bin/env bash for server in `cat servers.txt` do   echo root@$server   cat ~/.ssh/id_rsa.pub | ssh root@$server "cat >> .ssh/authorized_keys" done ================ servers.txt ================ testhost1testhost2 ================ etc_system_addins ================ set rpcmod:clnt_max_conns=8 set zfs:zfs_arc_max=0x1000000000 set nfs:nfs3_bsize=131072 set nfs:nfs4_bsize=131072 ================ ndd-nettune.txt ================ #!/sbin/sh # # ident   "@(#)ndd-nettune.xml    1.0     01/08/06 SMI" . /lib/svc/share/smf_include.sh . /lib/svc/share/net_include.sh # Make sure that the libraries essential to this stage of booting  can be found. LD_LIBRARY_PATH=/lib; export LD_LIBRARY_PATH echo "Performing Directory Server Tuning..." >> /tmp/smf.out # # Standard SuperCluster Tunables # /usr/sbin/ndd -set /dev/tcp tcp_max_buf 2097152 /usr/sbin/ndd -set /dev/tcp tcp_xmit_hiwat 1048576 /usr/sbin/ndd -set /dev/tcp tcp_recv_hiwat 1048576 # Reset the library path now that we are past the critical stage unset LD_LIBRARY_PATH ================ ndd-nettune.xml ================ <?xml version="1.0"?> <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <!-- ident "@(#)ndd-nettune.xml 1.0 04/09/21 SMI" --> <service_bundle type='manifest' name='SUNWcsr:ndd'>   <service name='network/ndd-nettune' type='service' version='1'>     <create_default_instance enabled='true' />     <single_instance />     <dependency name='fs-minimal' type='service' grouping='require_all' restart_on='none'>       <service_fmri value='svc:/system/filesystem/minimal' />     </dependency>     <dependency name='loopback-network' grouping='require_any' restart_on='none' type='service'>       <service_fmri value='svc:/network/loopback' />     </dependency>     <dependency name='physical-network' grouping='optional_all' restart_on='none' type='service'>       <service_fmri value='svc:/network/physical' />     </dependency>     <exec_method type='method' name='start' exec='/lib/svc/method/ndd-nettune' timeout_seconds='3' > </exec_method>     <exec_method type='method' name='stop'  exec=':true'                       timeout_seconds='3' > </exec_method>     <property_group name='startd' type='framework'>       <propval name='duration' type='astring' value='transient' />     </property_group>     <stability value='Unstable' />     <template>       <common_name>     <loctext xml:lang='C'> ndd network tuning </loctext>       </common_name>       <documentation>     <manpage title='ndd' section='1M' manpath='/usr/share/man' />       </documentation>     </template>   </service> </service_bundle> ================ system_tuning.sh ================ #!/usr/bin/env bash for server in `cat servers.txt` do   cat etc_system_addins | ssh root@$server "cat >> /etc/system"   scp ndd-nettune.xml root@${server}:/var/svc/manifest/site/ndd-nettune.xml   scp ndd-nettune.txt root@${server}:/lib/svc/method/ndd-nettune   ssh root@$server chmod +x /lib/svc/method/ndd-nettune   ssh root@$server svccfg validate /var/svc/manifest/site/ndd-nettune.xml   ssh root@$server svccfg import /var/svc/manifest/site/ndd-nettune.xml done

    Read the article

  • Romanian parter Omnilogic Delivers “No Limits” Scalability, Performance, Security, and Affordability through Next-Generation, Enterprise-Grade Engineered Systems

    - by swalker
    Omnilogic SRL is a leading technology and information systems provider in Romania and central and Eastern Europe. An Oracle Value-Added Distributor Partner, Omnilogic resells Oracle software, hardware, and engineered systems to Oracle Partner Network members and provides specialized training, support, and testing facilities. Independent software vendors (ISVs) also use Omnilogic’s demonstration and testing facilities to upgrade the performance and efficiency of their solutions and those of their customers by migrating them from competitor technologies to Oracle platforms. Omnilogic also has a dedicated offering for ISV solutions, based on Oracle technology in a hosting service provider model. Omnilogic wanted to help Oracle Partners and ISVs migrate solutions to Oracle Exadata and sell Oracle Exadata to end-customers. It installed Oracle Exadata Database Machine X2-2 Quarter Rack at its data center to create a demonstration and testing environment. Demonstrations proved that Oracle Exadata achieved processing speeds up to 100 times faster than competitor systems, cut typical back-up times from 6 hours to 20 minutes, and stored 10 times more data. Oracle Partners and ISVs learned that migrating solutions to Oracle Exadata’s preconfigured, pre-integrated hardware and software can be completed rapidly, at low cost, without business disruption, and with reduced ongoing operating costs. Challenges A word from Omnilogic “Oracle Exadata is the new killer application—the smartest solution on the market. There is no competition.” – Sorin Dragomir, Chief Operating Officer, Omnilogic SRL Enable Oracle Partners in Romania and central and eastern Europe to achieve Oracle Exadata Ready status by providing facilities to test and optimize existing applications and build real-life proofs of concept (POCs) for new solutions on Oracle Exadata Database Machine Provide technical support and demonstration facilities for ISVs migrating their customers’ solutions from competitor technologies to Oracle Exadata to maximize performance, scalability, and security; optimize hardware and datacenter space; cut maintenance costs; and improve return on investment Demonstrate power of Oracle Exadata’s high-performance, high-capacity engineered systems for customer-facing businesses, such as government organizations, telecommunications, banking and insurance, and utility companies, which typically require continuous availability to support very large data volumes Showcase Oracle Exadata’s unchallenged online transaction processing (OLTP) capabilities that cut application run times to provide unrivalled query turnaround and user response speeds while significantly reducing back-up times and eliminating risk of unplanned outages Capitalize on providing a world-class training and demonstration environment for Oracle Exadata to accelerate sales with Oracle Partners Solutions Created a testing environment to enable Oracle Partners and ISVs to test their own solutions and those of their customers on Oracle Exadata running on Oracle Enterprise Linux or Oracle Solaris Express to benchmark performance prior to migration Leveraged expertise on Oracle Exadata to offer Oracle Exadata training, migration, support seminars and to showcase live demonstrations for Oracle Partners Proved how Oracle Exadata’s pre-engineered systems, that come assembled, configured, and ready to run, reduce deployment time and cost, minimize risk, and help customers achieve the full performance potential immediately after go live Increased processing speeds 10-fold and with zero data loss for a telecommunications provider’s client-facing customer relationship management solution Achieved performance improvements of between 6 and 100 times faster for financial and utility company applications currently running on IBM, Microsoft, or SAP HANA platforms Showed how daily closure procedures carried out overnight by banks, insurance companies, and other financial institutions to analyze each day’s business, can typically be cut from around six hours to 20 minutes, some 18 times faster, when running on Oracle Exadata Simulated concurrent back-ups while running applications under normal working conditions to prove that Oracle Exadata-based solutions can be backed up during business hours without causing bottlenecks or impacting the end-user experience Demonstrated that Oracle Exadata’s built-in analytics, data mining and OLTP capabilities make it the highest-performance, lowest-cost choice for large data warehousing operations Showed how Oracle Exadata’s columnar compression and intelligent storage architecture allows 10 times more data to be stored than on competitor platforms Demonstrated how Oracle Exadata cuts hardware requirements significantly by consolidating workloads on to fewer servers which delivers greater power efficiency and lower operating costs that competing systems from IBM and other manufacturers Proved to ISVs that migrating solutions to Oracle Exadata’s preconfigured, pre-integrated hardware and software can be completed rapidly, at low cost, and with minimal business disruption Demonstrated how storage servers, database servers, and network switches can be added incrementally and inexpensively to the Oracle Exadata platform to support business expansion On track to grow revenues by 10% in year one and by 15% annually thereafter through increased business generated from Oracle Partners and ISVs

    Read the article

  • Java Script – Content delivery networks (CDN) can bit you in the butt.

    - by Ryan Ternier
    As much as I love the new CDN’s that Google, Microsoft and a few others have publically released, there are some strong gotchas that could come up and bite you in the ass if you’re not careful. But before we jump into that, for those that are not 100% sure what a CDN is (besides Canadian).   Content Delivery Network. A way of distributing your static content across various servers in different physical locations.  Because this static content is stored on many servers around the world, whenever a user needs to access this content, they are given the closest server to their location for this data. Already you can probably see the immediate bonuses to a system like this: Lower bandwidth Even small script files downloaded thousands of times will start to take a noticeable hit on your bandwidth meter. Less connections/hits to your web server which gives better latency If you manage many servers, you don’t need to manually update each server with scripts. A user will download a script for each website they visit. If a user is redirected to many domains/sub-domains within your web site, they might download many copies of the same file. When a system sees multiple requests from the same  domain, they will ignore the download   Those are just a handful of the many bonuses a CDN will give you. And for the average website, a CDN is great choice. Check out the following CDN links for their solutions: Google AJAX Library: http://code.google.com/apis/ajaxlibs/ Microsoft Ajax library: http://www.asp.net/ajaxlibrary/cdn.ashx The Gotcha There is always a catch. Here are some issues I found with using CDN’s that hopefully can help you make your decision. HTTP / HTTPS If you are running a website behind SSL, make sure that when you reference your CDN data that you use https:// vs. http://. If you forget this users will get a very nice message telling them that their secure connection is trying to access unsecure data. For a developer this is fairly simple, but general users will get a bit anxious when seeing this. Trusted Sites Internet Explorer has this really nifty feature that allows users to specify what sites they trust, and by some defaults IE7 only allows trusted sites to be viewed.  No problem, they set your website as trusted. But what about your CDN? If a user sets your websites to trusted, but not the CDN, they will not download those static files. This has the potential to totally break your web site. Pedantic Network Admins This alone is sometimes the killer of projects. However, always be careful when you are going to use a CDN for a professional project. If a network / security admin sees that you’re referencing an outside source, or that a call from a website might hit an outside domain.. panties will be bunched, emails will be spewed out and well, no one wants that.

    Read the article

  • Closer look at the SOA 12c Feature: Oracle Managed File Transfer

    - by Tshepo Madigage-Oracle
    The rapid growth of cloud-based applications in the enterprise, combined with organizations' desire to integrate applications with mobile technologies, is dramatically increasing application integration complexity. To meet this challenge, Oracle introduced Oracle SOA Suite 12c, the latest version of the industry's most complete and unified application integration and SOA solution. With simplified cloud, mobile, on-premises, and Internet of Things (IoT) integration capabilities, all within a single platform, Oracle SOA Suite 12c helps organizations speed time to integration, improve productivity, and lower TCO. To extend its B2B solution capabilities with Oracle SOA Suite 12c, Oracle unveiled Oracle Managed File Transfer, an integrated solution that enables organizations to virtually eliminate file transfer complexities. This allows customers to load data securely into Oracle Cloud applications as well as third-party cloud or partner applications. Oracle Managed File Transfer (Oracle MFT) enables secure file exchange and management with internal departments and external partners. It protects against inadvertent access to unsecured files at every step in the end-to-end transfer of files. It is easy to use especially for non technical staff so you can leverage more resources to manage the transfer of files. The extensive reporting capabilities allow you to get quick status of a file transfer and resubmit it as required. You can protect data in your DMZ by using the SSH/FTP reverse proxy. Oracle Managed File Transfer can help integrate applications by transferring files between them in complex use case patterns. Standalone: Transferring files on its own using embedded FTP and sFTP servers and the file systems to which it has access. SOA Integration: a SOA application can be the source or target of a transfer. A SOA application can also be the common endpoint for the target of one transfer and the source of another. B2B Integration: B2B application can be the source or target of a transfer. A B2B application can also be the common endpoint for the target of one transfer and the source of another. Healthcare Integration:  Healthcare application can be the source or target of a transfer. A Healthcare application can also be the common endpoint for the target of one transfer and the source of another. Oracle Service Bus (OSB) integration: OMT can integrate with Oracle Service Bus web service interfaces. OSB interface can be the source or target of a transfer. An Oracle Service Bus interface can also be the common endpoint for the target of one transfer and the source of another. Hybrid Integration: can be one participant in a web of data transfers that includes multiple application types. Oracle Managed File Transfers has four user roles: file handlers, designers, monitors, and administrators. File Handlers: - Copy files to file transfer staging areas, which are called sources. - Retrieve files from file transfer destinations, which are called targets. Designers: - Create, read, update and delete file transfer sources. - Create, read, update and delete file transfer targets. - Create, read, update and delete transfers, which link sources and targets in complete file delivery flows. - Deploy and test transfers. Monitors: - Use the Dashboard and reports to ensure that transfer instances are successful. - Pause and resume lengthy transfers. - Troubleshoot errors and resubmit transfers. - View artifact deployment details and history. - View artifact dependence relationships. - Enable and disable sources, targets, and transfers. - Undeploy sources, targets, and transfers. - Start and stop embedded FTP and sFTP servers. Administrators: - All file handler tasks - All designer tasks - All monitor tasks - Add other users and determine their roles - Configure user directory permissions - Configure the Oracle Managed File Transfer server - Configure embedded FTP and sFTP servers, including security - Configure B2B and Healthcare domains - Back up and restore the Oracle Managed File Transfer configuration - Purge transferred files and instance data - Archive and restore instance data and payloads - Import and export metadata You will find all the related information about SOA 12.1.3. Oracle Manages File Transfer OMT in the documentation: Using Oracle Manages File Transfer Resources and links: Oracle Unveils Oracle SOA Suite 12c Oracle Managed Files Transfer Oracle Managed Files Transfer SOA 12c White Paper For further enquiries don't hesitate to contact us at [email protected] and join our Partner Webcast on Oracle SOA Suite 12c

    Read the article

  • Oracle TimesTen In-Memory Database Performance on SPARC T4-2

    - by Brian
    The Oracle TimesTen In-Memory Database is optimized to run on Oracle's SPARC T4 processor platforms running Oracle Solaris 11 providing unsurpassed scalability, performance, upgradability, protection of investment and return on investment. The following demonstrate the value of combining Oracle TimesTen In-Memory Database with SPARC T4 servers and Oracle Solaris 11: On a Mobile Call Processing test, the 2-socket SPARC T4-2 server outperforms: Oracle's SPARC Enterprise M4000 server (4 x 2.66 GHz SPARC64 VII+) by 34%. Oracle's SPARC T3-4 (4 x 1.65 GHz SPARC T3) by 2.7x, or 5.4x per processor. Utilizing the TimesTen Performance Throughput Benchmark (TPTBM), the SPARC T4-2 server protects investments with: 2.1x the overall performance of a 4-socket SPARC Enterprise M4000 server in read-only mode and 1.5x the performance in update-only testing. This is 4.2x more performance per processor than the SPARC64 VII+ 2.66 GHz based system. 10x more performance per processor than the SPARC T2+ 1.4 GHz server. 1.6x better performance per processor than the SPARC T3 1.65 GHz based server. In replication testing, the two socket SPARC T4-2 server is over 3x faster than the performance of a four socket SPARC Enterprise T5440 server in both asynchronous replication environment and the highly available 2-Safe replication. This testing emphasizes parallel replication between systems. Performance Landscape Mobile Call Processing Test Performance System Processor Sockets/Cores/Threads Tps SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 218,400 M4000 SPARC64 VII+, 2.66 GHz 4 16 32 162,900 SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 80,400 TimesTen Performance Throughput Benchmark (TPTBM) Read-Only System Processor Sockets/Cores/Threads Tps SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 7.9M SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 6.5M M4000 SPARC64 VII+, 2.66 GHz 4 16 32 3.1M T5440 SPARC T2+, 1.4 GHz 4 32 256 3.1M TimesTen Performance Throughput Benchmark (TPTBM) Update-Only System Processor Sockets/Cores/Threads Tps SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 547,800 M4000 SPARC64 VII+, 2.66 GHz 4 16 32 363,800 SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 240,500 TimesTen Replication Tests System Processor Sockets/Cores/Threads Asynchronous 2-Safe SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 38,024 13,701 SPARC T5440 SPARC T2+, 1.4 GHz 4 32 256 11,621 4,615 Configuration Summary Hardware Configurations: SPARC T4-2 server 2 x SPARC T4 processors, 2.85 GHz 256 GB memory 1 x 8 Gbs FC Qlogic HBA 1 x 6 Gbs SAS HBA 4 x 300 GB internal disks Sun Storage F5100 Flash Array (40 x 24 GB flash modules) 1 x Sun Fire X4275 server configured as COMSTAR head SPARC T3-4 server 4 x SPARC T3 processors, 1.6 GHz 512 GB memory 1 x 8 Gbs FC Qlogic HBA 8 x 146 GB internal disks 1 x Sun Fire X4275 server configured as COMSTAR head SPARC Enterprise M4000 server 4 x SPARC64 VII+ processors, 2.66 GHz 128 GB memory 1 x 8 Gbs FC Qlogic HBA 1 x 6 Gbs SAS HBA 2 x 146 GB internal disks Sun Storage F5100 Flash Array (40 x 24 GB flash modules) 1 x Sun Fire X4275 server configured as COMSTAR head Software Configuration: Oracle Solaris 11 11/11 Oracle TimesTen 11.2.2.4 Benchmark Descriptions TimesTen Performance Throughput BenchMark (TPTBM) is shipped with TimesTen and measures the total throughput of the system. The workload can test read-only, update-only, delete and insert operations as required. Mobile Call Processing is a customer-based workload for processing calls made by mobile phone subscribers. The workload has a mixture of read-only, update, and insert-only transactions. The peak throughput performance is measured from multiple concurrent processes executing the transactions until a peak performance is reached via saturation of the available resources. Parallel Replication tests using both asynchronous and 2-Safe replication methods. For asynchronous replication, transactions are processed in batches to maximize the throughput capabilities of the replication server and network. In 2-Safe replication, also known as no data-loss or high availability, transactions are replicated between servers immediately emphasizing low latency. For both environments, performance is measured in the number of parallel replication servers and the maximum transactions-per-second for all concurrent processes. See Also SPARC T4-2 Server oracle.com OTN Oracle TimesTen In-Memory Database oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 1 October 2012.

    Read the article

  • SQL SERVER – Another lesser known feature of SQL Server Management Studio 2012 – Guest Post by Balmukund Lakhani

    - by Pinal Dave
    This is a fantastic blog post from my dear friend Balmukund ( blog | twitter | facebook ). He had presented a fantastic session in our last UG and there were lots of requests from attendees that he blogs about it. Well, here is the blog post about the same very popular UG session. Let us read the entire blog post in the voice of the Balmukund himself. In one of my previous guest blog on SQL Authority, I wrote about “Additional Connection Parameter” tab of login screen in SQL Server Management Studio (a.k.a. SSMS). On the similar lines, this blog is going to show little less known new feature of login main screen (“Connect to Server”) of SSMS 2012. You might have seen below screen countless times and you might wonder what is there is blog about in this simple screen. Well, continue reading and you would get the answer. Many times, DBA have to login to production server from non-regular machine, may be a developer’s workstation. Once you login to SQL, do your work and close the management studio. Do you know that your server name is saved in management studio? Of course, very useful feature because you may not like to type server name/IP address every time. Whatever servers you have connected, it would be stored by management studio. But sometime, it’s annoying! What you would do if you want SQL Server Management Studio to forget “all” the servers listed in drop down of Server name? To do that, you need to know how and where it’s stored. You can use one of my favorite tool from sysinternals called Process Monitor (also known as ProcMon) and easily figure out that this is stored in a file under your windows user profile. Below is the file in SQL 2008 R2 Management Studio. %appdata%\Microsoft\Microsoft SQL Server\100\Tools\Shell\SqlStudio.bin For SQL Server 2012, here is what we can see in ProcMon So, the path is %appdata%\Microsoft\Microsoft SQL Server\110\Tools\Shell\SqlStudio.bin So far, you might wonder, where is the new feature? I have been asked by many users to delete entries from SSMS “Connect to Server” server name list. Well, unofficially, you can delete the file directly which we found via ProcMon. Note that delete file to get rid of server list is not officially supported by Microsoft. Better way to achieve this is provided in SSMS 2012. To delete the servers from the list, highlight the name we want to delete (via keyboard or mouse) and then press delete key via keyboard. We can’t be multi-select and has to be done one by one. We can delete as many entries we want. I have delete few from first screenshot taken and here is the modified version. This is not available in SQL 2008 R2 and its previous version. This came from feedback given to SQL Server Product group. Hope you have learned something new today! Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • A quick look at: sys.dm_os_buffer_descriptors

    - by Jonathan Allen
    SQL Server places data into cache as it reads it from disk so as to speed up future queries. This dmv lets you see how much data is cached at any given time and knowing how this changes over time can help you ensure your servers run smoothly and are adequately resourced to run your systems. This dmv gives the number of cached pages in the buffer pool along with the database id that they relate to: USE [tempdb] GO SELECT COUNT(*) AS cached_pages_count , CASE database_id WHEN 32767 THEN 'ResourceDb' ELSE DB_NAME(database_id) END AS Database_name FROM sys.dm_os_buffer_descriptors GROUP BY DB_NAME(database_id) , database_id ORDER BY cached_pages_count DESC; This gives you results which are quite useful, but if you add a new column with the code: …to convert the pages value to show a MB value then they become more relevant and meaningful. To see how your server reacts to queries, start up SSMS and connect to a test server and database – mine is called AdventureWorks2008. Make sure you start from a know position by running: -- Only run this on a test server otherwise your production server's-- performance may drop off a cliff and your phone will start ringing. DBCC DROPCLEANBUFFERS GO Now we can run a query that would normally turn a DBA’s hair white: USE [AdventureWorks2008] go SELECT * FROM [Sales].[SalesOrderDetail] AS sod INNER JOIN [Sales].[SalesOrderHeader] AS soh ON [sod].[SalesOrderID] = [soh].[SalesOrderID] …and then check our cache situation: A nice low figure – not! Almost 2000 pages of data in cache equating to approximately 15MB. Luckily these tables are quite narrow; if this had been on a table with more columns then this could be even more dramatic. So, let’s make our query more efficient. After resetting the cache with the DROPCLEANBUFFERS and FREEPROCCACHE code above, we’ll only select the columns we want and implement a WHERE predicate to limit the rows to a specific customer. SELECT [sod].[OrderQty] , [sod].[ProductID] , [soh].[OrderDate] , [soh].[CustomerID] FROM [Sales].[SalesOrderDetail] AS sod INNER JOIN [Sales].[SalesOrderHeader] AS soh ON [sod].[SalesOrderID] = [soh].[SalesOrderID] WHERE [soh].[CustomerID] = 29722 …and check our effect cache: Now that is more sympathetic to our server and the other systems sharing its resources. I can hear you asking: “What has this got to do with logging, Jonathan?” Well, a smart DBA will keep an eye on this metric on their servers so they know how their hardware is coping and be ready to investigate anomalies so that no ‘disruptive’ code starts to unsettle things. Capturing this information over a period of time can lead you to build a picture of how a database relies on the cache and how it interacts with other databases. This might allow you to decide on appropriate schedules for over night jobs or otherwise balance the work of your server. You could schedule this job to run with a SQL Agent job and store the data in your DBA’s database by creating a table with: IF OBJECT_ID('CachedPages') IS NOT NULL DROP TABLE CachedPages CREATE TABLE CachedPages ( cached_pages_count INT , MB INT , Database_Name VARCHAR(256) , CollectedOn DATETIME DEFAULT GETDATE() ) …and then filling it with: INSERT INTO [dbo].[CachedPages] ( [cached_pages_count] , [MB] , [Database_Name] ) SELECT COUNT(*) AS cached_pages_count , ( COUNT(*) * 8.0 ) / 1024 AS MB , CASE database_id WHEN 32767 THEN 'ResourceDb' ELSE DB_NAME(database_id) END AS Database_name FROM sys.dm_os_buffer_descriptors GROUP BY database_id After this has been left logging your system metrics for a while you can easily see how your databases use the cache over time and may see some spikes that warrant your attention. This sort of logging can be applied to all sorts of server statistics so that you can gather information that will give you baseline data on how your servers are performing. This means that when you get a problem you can see what statistics are out of their normal range and target you efforts to resolve the issue more rapidly.

    Read the article

  • Best of OTN - Week of Oct 21st

    - by CassandraClark-OTN
    This week's Best of OTN, for you, the best devs, dba's, sysadmins and architects out there!  In these weekly posts the OTN team will highlight the top content from each community; Architect, Database, Systems and Java.  Since we'll be publishing this on Fridays, we'll also mix in a little fun! Architect Community Top Content- The Road Ahead for WebLogic 12c | Edwin BiemondOracle ACE Edwin Biemond shares his thoughts on announced new features in Oracle WebLogic 12.1.3 & 12.1.4 and compares those upcoming releases to Oracle WebLogic 12.1.2. A Roadmap for SOA Development and Delivery | Mark NelsonDo you know the way to S-O-A? Mark Nelson does. His latest blog post, part of an ongoing series, will help to keep you from getting lost along the way. Updated ODI Statement of Direction | Robert SchweighardtHeads up Oracle Data Integrator fans! A new statement of product direction document is available, offering an overview of the strategic product plans for Oracle’s data integration products for bulk data movement and transformation, specifically Oracle Data Integrator (ODI) and Oracle Warehouse Builder (OWB). Bob Rhubart, Architect Community Manager Friday Funny - "Some people approach every problem with an open mouth." — Adlai E. Stevenson (October 23, 1835 – June 14, 1914) 23rd Vice President of the United States Database Community Top Content - Pre-Built Developer VMs (for Oracle VM VirtualBox)Heard all the chatter about Oracle VirtualBox? Over 1 million downloads per week and look: pre-built virtual appliances designed specifically for developers. Video: Big Data, or BIG DATA?Oracle Ace Director Ben Prusinski explains the differences.?? Webcast Series - Developing Applications in Oracle's Public CloudTime to get started on developing and deploying cloud applications by moving to the cloud. Good friend Gene Eun from Oracle's Cloud team posted this two-part Webcast series that has an overview and demonstration of the Oracle Database Cloud Service. Check out the demos on how to migrate your data to the cloud, extend your application with interactive reporting, and create and access RESTful Web services. Registration required, but so worth it! Laura Ramsey, Database Community Manager Friday Funny - Systems Community Top Content - Video: What Kind of Scalability is Better, Horizontal or Vertical?Rick Ramsey asks the question "Is Oracle's approach to large vertically scaled servers at odds with today's trend of combining lots and lots of small, low-cost servers systems with networking to build a cloud, or is it a better approach?" Michael Palmeter, Director of Solaris Product Management, and Renato Ribeiro, Director Product Management for SPARC Servers, discuss.Video: An Engineer Takes a Minute to Explain CloudBart Smaalders, long-time Oracle Solaris core engineer, takes a minute to explain cloud from a sysadmin point of view. ?Hands-On Lab: How to Deploy and Manage a Private IaaS Cloud Soup to nuts. This lab shows you how to set up and manage a private cloud with Oracle Enterprise Manager Cloud Control 12c in an Infrastructure as a service (IaaS) model. You will first configure the IaaS cloud as the cloud administrator and then deploy guest virtual machines (VMs) as a self-service user. Rick Ramsey, Systems Community Manager Friday Funny - Video: Drunk Airline Pilot - Dean Martin - Foster Brooks Java Community Top Content - Video: NightHacking Interview with James GoslingJames Gosling, the Father of Java, discusses robotics, Java and how to keep his autonomous WaveGliders in the ocean for weeks at a time. Live from Hawaii.  Video: Raspberry Pi Developer Challenge: Remote Controller A developer who knew nothing about Java Embedded or Raspberry Pi shows how he can now control a robot with his phone. The project was built during the Java Embedded Challenge for Raspberry Pi at JavaOne 2013.Java EE 7 Certification Survey - Participants NeededHelp us define how to server your training and certification needs for Java EE 7. Tori Wieldt, Java Community Manager Friday Funny - Programmers have a strong sensitivity to Yak's pheromone. Causes irresistible desire to shave said Yak. Thanks, @rickasaurus! To follow and take part in the conversation follow/like etc. at one or all of the resources below -  OTN TechBlog The Java Source Blog The OTN Garage Blog The OTN ArchBeat Blog @oracletechnet @java @OTN_Garage @OTNArchBeat @OracleDBDev OTN I Love Java OTN Garage OTN ArchBeat Oracle DB Dev OTN Java

    Read the article

  • Friday Tips #6, Part 1

    - by Chris Kawalek
    We have a two parter this week, with this post focusing on desktop virtualization and the next one on server virtualization. Question: Why would I use the Oracle Secure Global Desktop Secure Gateway? Answer by Rick Butland, Principal Sales Consultant, Oracle Desktop Virtualization: Well, for the benefit of those who might not be familiar with client connections in Oracle Secure Global Desktop (SGD), let me back up and briefly explain. An SGD client connects to an SGD server using two distinct protocols, which, by default, require two distinct TCP ports. The first is the HTTP protocol, used by the web browser to connect to the SGD webserver on TCP port 80, or if secure connections are enabled (SSL/TLS), then TCP port 443, commonly identified as the "HTTPS" port, that is, "SSL encrypted HTTP." The second protocol from the client to the server is the Adaptive Internet Protocol, or AIP, which is used for displaying applications, transferring drive mapping data, print jobs, and so on. By default, AIP uses the TCP port 3104, or port 5307 when SSL is enabled. When SGD clients need to access SGD over a firewall, the ports that AIP requires are typically "closed"; and most administrators are reluctant, to put it mildly, to change their firewall configurations to allow AIP traffic on 3144/5307.   To avoid this problem, SGD introduced "Firewall Forwarding", a technique where, in effect, both http and AIP traffic are "multiplexed" onto a single "well-known" TCP port, that is port 443, the https port.  This is also known as single-port firewall traversal.  This technique takes advantage of the fact that, as a "well-known service", port 443 is usually "open",   allowing (encrypted) traffic to pass. At the target SGD server, the two protocols are de-multiplexed and routed appropriately. The Secure Gateway was developed in response to requirements from customers for SGD to support multi-stage DMZ's, and to avoid exposing SGD servers and the information they contain directly to connections from the Internet. The Secure Gateway acts as a reverse-proxy in the first-tier of the DMZ, accepting, authenticating, and terminating incoming client connections, and then re-encrypting the connections, and proxying them, routing them on to SGD servers, deeper in the network. The client no longer needs to know the name/IP address of the SGD servers in their network, they connect to the gateway, only. The gateway takes care of those internal network details.     The Secure Gateway supports the same "single-port firewall" capability as does "Firewall Forwarding", but offers the additional advantage of load-balancing incoming client connections amongst SGD array members, which could be cumbersome without a forward-deployed secure gateway. Load-balancing weights and policies can be monitored and tuned using the "Balancer Manager" application, and Apache mod_proxy_balancer directives.   Going forward, our architects recommend the use of the Secure Gateway over "Firewall Forwarding" for single-port firewall traversal, due to its architectural advantages, its greater flexibility and enhanced features.  Finally, it should be noted that the Secure Gateway is not separately priced; any licensed SGD customer may use the Secure Gateway component at no additional cost.   For more information, see the "Secure Gateway Administrator's Guide".

    Read the article

  • Utility to Script SQL Server Configuration

    - by Bill Graziano
    I wrote a small utility to script some key SQL Server configuration information. I had two goals for this utility: Assist with disaster recovery preparation Identify configuration changes I’ve released the application as open source through CodePlex. You can download it from CodePlex at the Script SQL Server Configuration project page. The application is a .NET 2.0 console application that uses SMO. It writes its output to a directory that you specify.  Disaster Planning ScriptSqlConfig generates scripts for logins, jobs and linked servers.  It writes the properties and configuration from the instance to text files. The scripts are designed so they can be run against a DR server in the case of a disaster. The properties and configuration will need to be manually compared. Each job is scripted to its own file. Each linked server is scripted to its own file. The linked servers don’t include the password if you use a SQL Server account to connect to the linked server. You’ll need to store those somewhere secure. All the logins are scripted to a single file. This file includes windows logins, SQL Server logins and any server role membership.  The SQL Server logins are scripted with the correct SID and hashed passwords. This means that when you create the login it will automatically match up to the users in the database and have the correct password. This is the only script that I programmatically generate rather than using SMO. The SQL Server configuration and properties are scripted to text files. These will need to be manually reviewed in the event of a disaster. Or you could DIFF them with the configuration on the new server. Configuration Changes These scripts and files are all designed to be checked into a version control system.  The scripts themselves don’t include any date specific information. In my environments I run this every night and check in the changes. I call the application once for each server and script each server to its own directory.  The process will delete any existing files before writing new ones. This solved the problem I had where the scripts for deleted jobs and linked servers would continue to show up.  To see any changes I just need to query the version control system to show many any changes to the files. Database Scripting Utilities that script database objects are plentiful.  CodePlex has at least a dozen of them including one I wrote years ago. The code is so easy to write it’s hard not to include that functionality. This functionality wasn’t high on my list because it’s included in a database backup.  Unless you specify the /nodb option, the utility will script out many user database objects. It will script one object per file. It will script tables, stored procedures, user-defined data types, views, triggers, table types and user-defined functions. I know there are more I need to add but haven’t gotten around it yet. If there’s something you need, please log an issue and get it added. Since it scripts one object per file these really aren’t appropriate to recreate an empty database. They are really good for checking into source control every night and then seeing what changed. I know everyone tells me all their database objects are in source control but a little extra insurance never hurts. Conclusion I hope this utility will help a few of you out there. My goal is to have it script all server objects that aren’t contained in user databases. This should help with configuration changes and especially disaster recovery.

    Read the article

  • Rotating WebLogic Server logs to avoid large files using WLST.

    - by adejuanc
    By default, when WebLogic Server instances are started in development mode, the server automatically renames (rotates) its local server log file as SERVER_NAME.log.n.  For the remainder of the server session, log messages accumulate in SERVER_NAME.log until the file grows to a size of 500 kilobytes.Each time the server log file reaches this size, the server renames the log file and creates a new SERVER_NAME.log to store new messages. By default, the rotated log files are numbered in order of creation filenamennnnn, where filename is the name configured for the log file. You can configure a server instance to include a time and date stamp in the file name of rotated log files; for example, server-name-%yyyy%-%mm%-%dd%-%hh%-%mm%.log.By default, when server instances are started in production mode, the server rotates its server log file whenever the file grows to 5000 kilobytes in size. It does not rotate the local server log file when the server is started. For more information about changing the mode in which a server starts, see Change to production mode in the Administration Console Online Help.You can change these default settings for log file rotation. For example, you can change the file size at which the server rotates the log file or you can configure a server to rotate log files based on a time interval. You can also specify the maximum number of rotated files that can accumulate. After the number of log files reaches this number, subsequent file rotations delete the oldest log file and create a new log file with the latest suffix.  Note: WebLogic Server sets a threshold size limit of 500 MB before it forces a hard rotation to prevent excessive log file growth. To Rotate via WLST : #invoke WLSTC:\>java weblogic.WLST#connect WLST to an Administration Serverawls:/offline> connect('username','password')#navigate to the ServerRuntime MBean hierarchywls:/mydomain/serverConfig> serverRuntime()wls:/mydomain/serverRuntime>ls()#navigate to the server LogRuntimeMBeanwls:/mydomain/serverRuntime> cd('LogRuntime/myserver')wls:/mydomain/serverRuntime/LogRuntime/myserver> ls()-r-- Name myserver-r-- Type LogRuntime-r-x forceLogRotation java.lang.Void :#force the immediate rotation of the server log filewls:/mydomain/serverRuntime/LogRuntime/myserver> cmo.forceLogRotation()wls:/mydomain/serverRuntime/LogRuntime/myserver> The server immediately rotates the file and prints the following message: <Mar 2, 2012 3:23:01 PM EST> <Info> <Log Management> <BEA-170017> <The log file C:\diablodomain\servers\myserver\logs\myserver.log will be rotated. Reopen the log file if tailing has stopped. This can happen on some platforms like Windows.><Mar 2, 2012 3:23:01 PM EST> <Info> <Log Management> <BEA-170018> <The log file has been rotated to C:\diablodomain\servers\myserver\logs\myserver.log00001. Log messages will continue to be logged in C:\diablodomain\servers\myserver\logs\myserver.log.> To specify the Location of the archived Log Files The following command specifies the directory location for the archived log files using the -Dweblogic.log.LogFileRotationDir Java startup option: java -Dweblogic.log.LogFileRotationDir=c:\foo-Dweblogic.management.username=installadministrator-Dweblogic.management.password=installadministrator weblogic.Server For more information read the following documentation ; Using the WebLogic Scripting Tool http://download.oracle.com/docs/cd/E13222_01/wls/docs103/config_scripting/using_WLST.html Configuring WebLogic Logging Services http://download.oracle.com/docs/cd/E12840_01/wls/docs103/logging/config_logs.html

    Read the article

  • Security Access Control With Solaris Virtualization

    - by Thierry Manfe-Oracle
    Numerous Solaris customers consolidate multiple applications or servers on a single platform. The resulting configuration consists of many environments hosted on a single infrastructure and security constraints sometimes exist between these environments. Recently, a customer consolidated many virtual machines belonging to both their Intranet and Extranet on a pair of SPARC Solaris servers interconnected through Infiniband. Virtual Machines were mapped to Solaris Zones and one security constraint was to prevent SSH connections between the Intranet and the Extranet. This case study gives us the opportunity to understand how the Oracle Solaris Network Virtualization Technology —a.k.a. Project Crossbow— can be used to control outbound traffic from Solaris Zones. Solaris Zones from both the Intranet and Extranet use an Infiniband network to access a ZFS Storage Appliance that exports NFS shares. Solaris global zones on both SPARC servers mount iSCSI LU exported by the Storage Appliance.  Non-global zones are installed on these iSCSI LU. With no security hardening, if an Extranet zone gets compromised, the attacker could try to use the Storage Appliance as a gateway to the Intranet zones, or even worse, to the global zones as all the zones are reachable from this node. One solution consists in using Solaris Network Virtualization Technology to stop outbound SSH traffic from the Solaris Zones. The virtualized network stack provides per-network link flows. A flow classifies network traffic on a specific link. As an example, on the network link used by a Solaris Zone to connect to the Infiniband, a flow can be created for TCP traffic on port 22, thereby a flow for the ssh traffic. A bandwidth can be specified for that flow and, if set to zero, the traffic is blocked. Last but not least, flows are created from the global zone, which means that even with root privileges in a Solaris zone an attacker cannot disable or delete a flow. With the flow approach, the outbound traffic of a Solaris zone is controlled from outside the zone. Schema 1 describes the new network setting once the security has been put in place. Here are the instructions to create a Crossbow flow as used in Schema 1 : (GZ)# zoneadm -z zonename halt ...halts the Solaris Zone. (GZ)# flowadm add-flow -l iblink -a transport=TCP,remote_port=22 -p maxbw=0 sshFilter  ...creates a flow on the IB partition "iblink" used by the zone to connect to the Infiniband.  This IB partition can be identified by intersecting the output of the commands 'zonecfg -z zonename info net' and 'dladm show-part'.  The flow is created on port 22, for the TCP traffic with a zero maximum bandwidth.  The name given to the flow is "sshFilter". (GZ)# zoneadm -z zonename boot  ...restarts the Solaris zone now that the flow is in place.Solaris Zones and Solaris Network Virtualization enable SSH access control on Infiniband (and on Ethernet) without the extra cost of a firewall. With this approach, no change is required on the Infiniband switch. All the security enforcements are put in place at the Solaris level, minimizing the impact on the overall infrastructure. The Crossbow flows come in addition to many other security controls available with Oracle Solaris such as IPFilter and Role Based Access Control, and that can be used to tackle security challenges.

    Read the article

  • The Growing Importance of Network Virtualization

    - by user12608550
    The Growing Importance of Network Virtualization We often focus on server virtualization when we discuss cloud computing, but just as often we neglect to consider some of the critical implications of that technology. The ability to create virtual environments (or VEs [1]) means that we can create, destroy, activate and deactivate, and more importantly, MOVE them around within the cloud infrastructure. This elasticity and mobility has profound implications for how network services are defined, managed, and used to provide cloud services. It's not just servers that benefit from virtualization, it's the network as well. Network virtualization is becoming a hot topic, and not just for discussion but for companies like Oracle and others who have recently acquired net virtualization companies [2,3]. But even before this topic became so prominent, Solaris engineers were working on technologies in Solaris 11 to virtualize network services, known as Project Crossbow [4]. And why is network virtualization so important? Because old assumptions about network devices, topology, and management must be re-examined in light of the self-service, elasticity, and resource sharing requirements of cloud computing infrastructures. Static, hierarchical network designs, and inter-system traffic flows, need to be reconsidered and quite likely re-architected to take advantage of new features like virtual NICs and switches, bandwidth control, load balancing, and traffic isolation. For example, traditional multi-tier Web services (Web server, App server, DB server) that share net traffic over Ethernet wires can now be virtualized and hosted on shared-resource systems that communicate within a larger server at system bus speeds, increasing performance and reducing wired network traffic. And virtualized traffic flows can be monitored and adjusted as needed to optimize network performance for dynamically changing cloud workloads. Additionally, as VEs come and go and move around in the cloud, static network configuration methods cannot easily accommodate the routing and addressing flexibility that VE mobility implies; virtualizing the network itself is a requirement. Oracle Solaris 11 [5] includes key network virtualization technologies needed to implement cloud computing infrastructures. It includes features for the creation and management of virtual NICs and switches, and for the allocation and control of the traffic flows among VEs [6]. Additionally it allows for both sharing and dedication of hardware components to network tasks, such as allocating specific CPUs and vNICs to VEs, and even protocol-specific management of traffic. So, have a look at your current network topology and management practices in view of evolving cloud computing technologies. And don't simply duplicate the physical architecture of servers and connections in a virtualized environment…rethink the traffic flows among VEs and how they can be optimized using Oracle Solaris 11 and other Oracle products and services. [1] I use the term "virtual environment" or VE here instead of the more commonly used "virtual machine" or VM, because not all virtualized operating system environments are full OS kernels under the control of a hypervisor…in other words, not all VEs are VMs. In particular, VEs include Oracle Solaris zones, as well as SPARC VMs (previously called LDoms), and x86-based Solaris and Linux VMs running under hypervisors such as OEL, Xen, KVM, or VMware. [2] Oracle follows VMware into network virtualization space with Xsigo purchase; http://www.mercurynews.com/business/ci_21191001/oracle-follows-vmware-into-network-virtualization-space-xsigo [3] Oracle Buys Xsigo; http://www.oracle.com/us/corporate/press/1721421 [4] Oracle Solaris 11 Networking Virtualization Technology, http://www.oracle.com/technetwork/server-storage/solaris11/technologies/networkvirtualization-312278.html [5] Oracle Solaris 11; http://www.oracle.com/us/products/servers-storage/solaris/solaris11/overview/index.html [6] For example, the Solaris 11 'dladm' command can be used to limit the bandwidth of a virtual NIC, as follows: dladm create-vnic -l net0 -p maxbw=100M vnic0

    Read the article

  • Using WKA in Large Coherence Clusters (Disabling Multicast)

    - by jpurdy
    Disabling hardware multicast (by configuring well-known addresses aka WKA) will place significant stress on the network. For messages that must be sent to multiple servers, rather than having a server send a single packet to the switch and having the switch broadcast that packet to the rest of the cluster, the server must send a packet to each of the other servers. While hardware varies significantly, consider that a server with a single gigabit connection can send at most ~70,000 packets per second. To continue with some concrete numbers, in a cluster with 500 members, that means that each server can send at most 140 cluster-wide messages per second. And if there are 10 cluster members on each physical machine, that number shrinks to 14 cluster-wide messages per second (or with only mild hyperbole, roughly zero). It is also important to keep in mind that network I/O is not only expensive in terms of the network itself, but also the consumption of CPU required to send (or receive) a message (due to things like copying the packet bytes, processing a interrupt, etc). Fortunately, Coherence is designed to rely primarily on point-to-point messages, but there are some features that are inherently one-to-many: Announcing the arrival or departure of a member Updating partition assignment maps across the cluster Creating or destroying a NamedCache Invalidating a cache entry from a large number of client-side near caches Distributing a filter-based request across the full set of cache servers (e.g. queries, aggregators and entry processors) Invoking clear() on a NamedCache The first few of these are operations that are primarily routed through a single senior member, and also occur infrequently, so they usually are not a primary consideration. There are cases, however, where the load from introducing new members can be substantial (to the point of destabilizing the cluster). Consider the case where cluster in the first paragraph grows from 500 members to 1000 members (holding the number of physical machines constant). During this period, there will be 500 new member introductions, each of which may consist of several cluster-wide operations (for the cluster membership itself as well as the partitioned cache services, replicated cache services, invocation services, management services, etc). Note that all of these introductions will route through that one senior member, which is sharing its network bandwidth with several other members (which will be communicating to a lesser degree with other members throughout this process). While each service may have a distinct senior member, there's a good chance during initial startup that a single member will be the senior for all services (if those services start on the senior before the second member joins the cluster). It's obvious that this could cause CPU and/or network starvation. In the current release of Coherence (3.7.1.3 as of this writing), the pure unicast code path also has less sophisticated flow-control for cluster-wide messages (compared to the multicast-enabled code path), which may also result in significant heap consumption on the senior member's JVM (from the message backlog). This is almost never a problem in practice, but with sufficient CPU or network starvation, it could become critical. For the non-operational concerns (near caches, queries, etc), the application itself will determine how much load is placed on the cluster. Applications intended for deployment in a pure unicast environment should be careful to avoid excessive dependence on these features. Even in an environment with multicast support, these operations may scale poorly since even with a constant request rate, the underlying workload will increase at roughly the same rate as the underlying resources are added. Unless there is an infrastructural requirement to the contrary, multicast should be enabled. If it can't be enabled, care should be taken to ensure the added overhead doesn't lead to performance or stability issues. This is particularly crucial in large clusters.

    Read the article

< Previous Page | 86 87 88 89 90 91 92 93 94 95 96 97  | Next Page >