Search Results

Search found 3602 results on 145 pages for 'jagged arrays'.

Page 90/145 | < Previous Page | 86 87 88 89 90 91 92 93 94 95 96 97  | Next Page >

  • I want to learn to program in SDL C++where do i start? I want to learn only what i need to to start making 2d games [on hold]

    - by user2644399
    Lazyfoo of Lazyfoo.net of the SDL 2d tutorial wrote that in order for me to start game programming in SDL, I need to know these concepts well; Operators, Controls, Loops, Functions, Structures, Arrays, References, Pointers, Classes, Objects how to use a template and Bitwise and/or. I want to know the fastest way to learn as much as I need of basic c++ that would allow me to make 2d games. Thanks in advance.

    Read the article

  • How often do you use data structures (ie Binary Trees, Linked Lists) in your jobs/side projects?

    - by Chris2021
    It seems to me that, for everyday use, more primitive data structures like arrays get the job done just as well as a binary tree would. My question is how common is to use these structures when writing code for projects at work or projects that you pursue in your free time? I understand the better insertion time/deletion time/sorting time for certain structures but would that really matter that much if you were working with a relatively small amount of data?

    Read the article

  • More smaller maps among which player can travel

    - by davidv
    I am developing 2d game, where maps are tile based, small about 20x20 tiles and player can travel between a lot of maps (in my game rooms) like this. The maps are connected sometimes verticaly and sometimes horizontaly and together they make one big cave. Should I create a class where one 2d array holds all the maps (another 2d arrays), or is there any other way? Whats the most efficient way to create them in this class? Thank you for your help.

    Read the article

  • Game State / Screen Management

    - by Ashylnn Mac
    What's the best way to handle game states / screens? My problem is this: PlayGameScreen adds a new InventoryGameScreen to the game during it's update. This immediately adds InventoryGameScreen to the array of GameScreens. That's throwing an exception when iterating over the array that the contents of the array have changed. Should I have two more arrays, like screensToBeAdded and screensToBeRemoved and do all the processing for them at the end of the game loop after drawing all the other screens?

    Read the article

  • Why would you use data structures (ie Binary Trees, Linked Lists) in your jobs/side projects? [closed]

    - by Chris2021
    It seems to me that, for everyday use, more primitive data structures like arrays get the job done just as well as a binary tree would. My question is how common is to use these structures when writing code for projects at work or projects that you pursue in your free time? I understand the better insertion time/deletion time/sorting time for certain structures but would that really matter that much if you were working with a relatively small amount of data?

    Read the article

  • General programming techniques to speed up coding time

    - by mcwise
    I am preparing for a programming contest in C++ where it is all about producing working code in a short time. An example would be to use a macro to get the minimum of two ints(but I was told that you shouldn't use macros as they are not type-safe) or using memsets to initialize arrays (but I was told that you shouldn't use memsets in C++). This leads to the question, what kind of coding techniques exist to use at a real job?

    Read the article

  • Using Unity – Part 5

    - by nmarun
    In the previous article of the series, I talked about constructor and property (setter) injection. I wanted to write about how to work with arrays and generics in Unity in this blog, after seeing how lengthy this one got, I’ve decided to write about generics in the next one. This one will only concentrate on arrays. My Product4 class has the following definition: 1: public interface IProduct 2: { 3: string WriteProductDetails(); 4: } 5:  6: public class Product4 : IProduct 7: { 8: public string Name { get; set; } 9: public ILogger[] Loggers { get; set; } 10:  11: public Product4(string productName, ILogger[] loggers) 12: { 13: Name = productName; 14: Loggers = loggers; 15: } 16:  17: public string WriteProductDetails() 18: { 19: StringBuilder productDetails = new StringBuilder(); 20: productDetails.AppendFormat("{0}<br/>", Name); 21: for (int i = 0; i < Loggers.Count(); i++) 22: { 23: productDetails.AppendFormat("{0}<br/>", Loggers[i].WriteLog()); 24: } 25: 26: return productDetails.ToString(); 27: } 28: } The key parts are line 4 where we declare an array of ILogger and line 5 where-in the constructor passes an instance of an array of ILogger objects. I’ve created another class – FakeLogger: 1: public class FakeLogger : ILogger 2: { 3: public string WriteLog() 4: { 5: return string.Format("Type: {0}", GetType()); 6: } 7: } It’s implementation is the same as what we had for the FileLogger class. Coming to the web.config file, first add the following aliases. The alias for FakeLogger should make sense right away. ILoggerArray defines an array of ILogger objects. I’ll tell why we need an alias for System.String data type. 1: <typeAlias alias="string" type="System.String, mscorlib" /> 2: <typeAlias alias="ILoggerArray" type="ProductModel.ILogger[], ProductModel" /> 3: <typeAlias alias="FakeLogger" type="ProductModel.FakeLogger, ProductModel"/> Next is to create mappings for the FileLogger and FakeLogger classes: 1: <type type="ILogger" mapTo="FileLogger" name="logger1"> 2: <lifetime type="singleton" /> 3: </type> 4: <type type="ILogger" mapTo="FakeLogger" name="logger2"> 5: <lifetime type="singleton" /> 6: </type> Finally, for the real deal: 1: <type type="IProduct" mapTo="Product4" name="ArrayProduct"> 2: <typeConfig extensionType="Microsoft.Practices.Unity.Configuration.TypeInjectionElement,Microsoft.Practices.Unity.Configuration, Version=1.2.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"> 3: <constructor> 4: <param name="productName" parameterType="string" > 5: <value value="Product name from config file" type="string"/> 6: </param> 7: <param name="loggers" parameterType="ILoggerArray"> 8: <array> 9: <dependency name="logger2" /> 10: <dependency name="logger1" /> 11: </array> 12: </param> 13: </constructor> 14: </typeConfig> 15: </type> Here’s where I’m saying, that if a type of IProduct is requested to be resolved, map it to type Product4. Furthermore, the Product4 has two constructor parameters – a string and an array of type ILogger. You might have observed the first parameter of the constructor is named ‘productName’ and that matches the value in the name attribute of the param element. The parameterType of ‘string’ maps to ‘System.String, mscorlib’ and is defined in the type alias above. The set up is similar for the second constructor parameter. The name matches the name of the parameter (loggers) and is of type ILoggerArray, which maps to an array of ILogger objects. We’ve also decided to add two elements to this array when unity resolves it – an instance of FileLogger and one of FakeLogger. The click event of the button does the following: 1: //unityContainer.RegisterType<IProduct, Product4>(); 2: //IProduct product4 = unityContainer.Resolve<IProduct>(); 3: IProduct product4 = unityContainer.Resolve<IProduct>("ArrayConstructor"); 4: productDetailsLabel.Text = product4.WriteProductDetails(); It’s worth mentioning here about the change in the format of resolving the IProduct to create an instance of Product4. You cannot use the regular way (the commented lines) to get an instance of Product4. The reason is due to the behavior of Unity which Alex Ermakov has brilliantly explained here. The corresponding output of the action is: You have a couple of options when it comes to adding dependency elements in the array node. You can: - leave it empty (no dependency elements declared): This will only create an empty array of loggers. This way you can check for non-null condition, in your mock classes. - add multiple dependency elements with the same name 1: <param name="loggers" parameterType="ILoggerArray"> 2: <array> 3: <dependency name="logger2" /> 4: <dependency name="logger2" /> 5: </array> 6: </param> With this you’ll see two instances of FakeLogger in the output. This article shows how Unity allows you to instantiate objects with arrays. Find the code here.

    Read the article

  • Matrix Math in SQL

    Relational Datbases have tables as data structures, not arrays. This makes it tricky and slow to do matrix operations, but it doesn't mean it is impossible to do. Joe gives the Celko Slant on how to go about doing Matrix Math in SQL. 12 essential tools for database professionalsThe SQL Developer Bundle contains 12 tools designed with the SQL Server developer and DBA in mind. Try it now.

    Read the article

  • Why does text look so Horrible in my HD monitor???

    - by Laura
    I just bought a 1080p 22" Samsung HD monitor (connected via HDMI) and the picture and video quality is great but the text quality is absolutely horrible. Even as I type now all the text in this text box as well as in the browser toolbar and start menu, etc looks weird - like it all has a white outline around it that makes it jagged and hard to read. It hurts my eyes just to look at it. I am running my PC in the suggested native resolution of 1920 by 1080, so what's the problem? Is this one of the unavoidable downsides of using a HD monitor? Is there a solution to the problem?

    Read the article

  • How to configure 1080p HDTV as a monitor

    - by Robot
    I've read several posts that almost answer my question, but not quite. I have a Samsung LN32C530 1080p HDTV I'd like to use as a monitor. I was reasonably successful getting the prior 720p model to work ok using SwitchResX, but I think I just got lucky with the parameters (1360x768@60Hz). I tried the expected (1920x1080@60Hz) values and "nearby" ones, with no luck. Older 720p params actually work, but I get the same small real estate as the older model TV. Trying values near 1080p always displays an image that doesn't match the screen size and is very jagged which makes me think interpolation is making things worse. Also, SwitchResX has a bunch of parameters other than H x W ("porch" etc), and I don't know how they all work together. Any help?

    Read the article

  • Anti Aliasing dead

    - by Gazoza
    I have a problem with anti-aliasing. No matter the software settings, it seems to be gone. I tried driver updating and reinstalling, cleaning of the hardware, different monitor with different cablies, OS reinstalling and changing, none of which helped. I decided to change the graphic card, but that didn't work either. Moreover, I have a distinct impression that the jagged edges are worsening as time goes by. I think this is a hardware-related issue, but I don't know exactly what to do. If anyone here had similar troubles, and/or has an idea how to cope with them, I'd be very grateful. My current card is a nVidia GT610.

    Read the article

  • Force Direct3D anti-aliasing in a Direct3D game?

    - by James McLaughlin
    Some old games look really jagged nowadays on large displays without any anti-aliasing, but don't have any option built-in to the game to enable it. On a PC with an NVIDIA graphics card, it's possible to force anti-aliasing in the NVIDIA control panel which can really improve this. But I'm playing the game in Parallels on a Mac, and although the Mac has an NVIDIA graphics card, it's Parallels' emulated card that Windows sees and so obviously there's no NVIDIA control panel. Is there some generic way I can force anti-aliasing for a Direct3D game without using the NVIDIA control panel?

    Read the article

  • How do I make an Illustrator file "higher resolution"?

    - by drewjoh
    I was given an illustrator file, but all the curves on the artwork are jagged. I've tried "rasterizing" and exporting by increasing the size of the image. I don't know what else to do or what I'm doing wrong. My understanding is the beauty of Illustrator is that it's all done mathematically, so I can scale it up to infinity and it will be perfect (more or less). And that lines are drawn that way also, so they should be (or can be) infinitely smooth if they want to be. Here's what I have right now: Here's what I have with the image selected showing the plot lines: And a zoomed in view: *I'm not experienced in Illustrator at all; I only know whatever I can carry over from moderate Photoshop experience.

    Read the article

  • Why does text look so Horrible on my HD monitor?

    - by Laura
    I just bought a 1080p 22" Samsung Syncmaster 2333HD (connected via HDMI) and the picture and video quality is great but the text quality is absolutely horrible. This monitor has a built in HD TV tuner. Even as I type now all the text in this text box as well as in the browser toolbar and start menu, etc looks weird - like it all has a white outline around it that makes it jagged and hard to read. It hurts my eyes just to look at it. I am running my PC in the suggested native resolution of 1920x1080, so what's the problem? Is this one of the unavoidable downsides of using a HD monitor? Is there a solution to the problem?

    Read the article

  • Can I override fonts installed by ttf-mscorefonts-installer, prefer Liberation fonts?

    - by conner_bw
    I had to apt-get install ttf-mscorefonts-installer on Ubuntu 12.04/12.10. The short version is I need to pipe PDF files out of an application that requires these fonts for certain glyphs. The problem, after running this command, is that the fonts in my web browser (and some java apps) are now "ugly." Obviously this is a subjective opinion but it is the one I hold. I want the old fonts back for most cases (Liberation, DejaVu, Ubuntu, ...). I'm not sure how best to describe this but here's an example: Example CSS in Webbrowser font-family: Verdana,Arial,sans-serif; Without ttf-mscorefonts-installer (Case 1): $ fc-match Verdana LiberationSans-Regular.ttf: "Liberation Sans" "Regular" $ fc-match Arial LiberationSans-Regular.ttf: "Liberation Sans" "Regular" $ fc-match sans-serif LiberationSans-Regular.ttf: "Liberation Sans" "Regular"` With ttf-mscorefonts-installer (Case 2): $ fc-match Verdana Verdana.ttf: "Verdana" "Normal" $ fc-match Arial Arial.ttf: "Arial" "Normal" $ fc-match sans-serif LiberationSans-Regular.ttf: "Liberation Sans" "Regular"` I want (Case 1). Optionally, I want the fonts in (Case 2) not to look "ugly" IE. they are more jagged, less smooth than their free alternatives in my web browsers. Is this possible?

    Read the article

  • Error 0x80300001 Installing Windows Server 2008 R2 64bit on FastTrak TX4660 RAID volume

    - by Konstantin Boyandin
    I am trying to install Windows Server 2008 R2 Enterprise 64bit on the following hardware: motherboard Intel DBS1200BTL Promise FastTrak TX4660 RAID controller 4 disks set up in two RAID1 arrays (handled by FastTrak) I am trying to install Windows so it would boot from RAID1 volume created with the FastTrak controller. The installation goes as in the manual, I insert the disk with the driver, select 'Browse' and specify the correct driver, it finds all the RAID arrays but notifies me that error 0x80300001 happened, Windows can't be installed on the mentioned RAID volumes, since they may not be bootable (even though the target RAID volume is the first in boot options list). If I proceed with the installation, Windows copies and unpacks itself, performs other standard actions after that. After the computer is restarted, it won't boot (Windows Boot Manager appears in the boot devices list; however, neither it nor the RAID volume itself does not boot). Is it a known problem? I can attach the boot disks to the motherboard and use its RAID capabilities instead, but I'd prefer FastTrak ones. Driver version is 1.3.0.4. Thanks.

    Read the article

  • raid md device is not remove from memory, how to overcome this problem

    - by santhosha
    i create raid 10 , i removed two arrays form md11 one by one , after that i going to editing the contents those are mounted ( it will be not responding stage), after i try for remove arrays those are left it is shows device or resource busy ( is not removed from memory). i try to terminate process this is also not work, i absorve from 4 days resync will be 8.0% it can not modifying. cat /proc/mdstat Personalities : [raid1] [raid0] [raid6] [raid5] [raid4] [linear] [raid10] md11 : active raid10 sde1[3] sdj14 286743936 blocks 64K chunks 2 near-copies [4/1] [___U] [1:2:3:0] [=...................] resync = 8.0% (23210368/286743936) finish=289392.6min speed=15K/sec mdadm -D /dev/md11 /dev/md11: Version : 00.90.03 Creation Time : Sun Jan 16 16:20:01 2011 Raid Level : raid10 Array Size : 286743936 (273.46 GiB 293.63 GB) Device Size : 143371968 (136.73 GiB 146.81 GB) Raid Devices : 4 Total Devices : 2 Preferred Minor : 11 Persistence : Superblock is persistent Update Time : Sun Jan 16 16:56:07 2011 State : active, degraded, resyncing Active Devices : 1 Working Devices : 1 Failed Devices : 1 Spare Devices : 0 Layout : near=2, far=1 Chunk Size : 64K Rebuild Status : 8% complete UUID : 5e124ea4:79a01181:dc4110d3:a48576ea Events : 0.23 Number Major Minor RaidDevice State 0 0 0 0 removed 1 0 0 1 removed 4 8 145 2 faulty spare rebuilding /dev/sdj1 3 8 65 3 active sync /dev/sde1 umount /dev/md11 umount: /dev/md11: not mounted mdadm -S /dev/md11 mdadm: fail to stop array /dev/md11: Device or resource busy lsof /dev/md11 COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME mount 2128 root 3r BLK 9,11 4058 /dev/md11 mount 5018 root 3r BLK 9,11 4058 /dev/md11 mdadm 27605 root 3r BLK 9,11 4058 /dev/md11 mount 30562 root 3r BLK 9,11 4058 /dev/md11 badblocks 30591 root 3r BLK 9,11 4058 /dev/md11 kill -9 2128 kill -9 5018 kill -9 27605 kill -9 30562 kill -3 30591 mdadm -S /dev/md11 mdadm: fail to stop array /dev/md11: Device or resource busy lsof /dev/md11 COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME mount 2128 root 3r BLK 9,11 4058 /dev/md11 mount 5018 root 3r BLK 9,11 4058 /dev/md11 mdadm 27605 root 3r BLK 9,11 4058 /dev/md11 mount 30562 root 3r BLK 9,11 4058 /dev/md11 badblocks 30591 root 3r BLK 9,11 4058 /dev/md11 cat /proc/mdstat Personalities : [raid1] [raid0] [raid6] [raid5] [raid4] [linear] [raid10] md11 : active raid10 sde1[3] sdj14 286743936 blocks 64K chunks 2 near-copies [4/1] [___U] [1:2:3:0] [=...................] resync = 8.0% (23210368/286743936) finish=289392.6min speed=15K/sec

    Read the article

  • [Ubuntu 10.04] mdadm - Can't get RAID5 Array To Start

    - by Matthew Hodgkins
    Hello, after a power failure my RAID array refuses to start. When I boot I have to sudo mdadm --assemble --force /dev/md0 /dev/sdb1 /dev/sdc1 /dev/sdd1 /dev/sde1 /dev/sdf1 /dev/sdg1 to get mdadm to notice the array. Here are the details (after I force assemble). sudo mdadm --misc --detail /dev/md0: /dev/md0: Version : 00.90 Creation Time : Sun Apr 25 01:39:25 2010 Raid Level : raid5 Used Dev Size : 1465135872 (1397.26 GiB 1500.30 GB) Raid Devices : 6 Total Devices : 6 Preferred Minor : 0 Persistence : Superblock is persistent Update Time : Thu Jun 17 23:02:38 2010 State : active, Not Started Active Devices : 6 Working Devices : 6 Failed Devices : 0 Spare Devices : 0 Layout : left-symmetric Chunk Size : 128K UUID : 44a8f730:b9bea6ea:3a28392c:12b22235 (local to host hodge-fs) Events : 0.1249691 Number Major Minor RaidDevice State 0 8 65 0 active sync /dev/sde1 1 8 81 1 active sync /dev/sdf1 2 8 97 2 active sync /dev/sdg1 3 8 49 3 active sync /dev/sdd1 4 8 33 4 active sync /dev/sdc1 5 8 17 5 active sync /dev/sdb1 mdadm.conf: # by default, scan all partitions (/proc/partitions) for MD superblocks. # alternatively, specify devices to scan, using wildcards if desired. DEVICE partitions /dev/sdb1 /dev/sdb1 # auto-create devices with Debian standard permissions CREATE owner=root group=disk mode=0660 auto=yes # automatically tag new arrays as belonging to the local system HOMEHOST <system> # definitions of existing MD arrays ARRAY /dev/md0 level=raid5 num-devices=6 UUID=44a8f730:b9bea6ea:3a28392c:12b22235 Any help would be appreciated.

    Read the article

  • How to replace the domain name in a Wordpress database?

    - by Cristian
    I have a Wordpress database which was installed in a development environment... thus, all references to the site itself have a fixed IP address (say 192.168.16.2). Now, I have to migrate that database to a new Wordpress installation on a hosting. The problem is that the SQL dump contains a lot of references to the IP address, and I have to replace it with: my_domain.com. I could use sed or some other command to change the that from the command line, the problem is that there are a lot of configuration data which uses JSON. So what? Well, as you know, JSON arrays uses things like: s:4: to know how many chars an element has, and thus, if I just replace the IP with the domain name, the configuration files will get corrupted. I used an app for Windows some years ago that allows to change values in a database and takes care of the JSON arrays. Unfortunately, I forgot the name of the app... so the question is: do you know any app that allows me to do what I want?

    Read the article

  • The Clocks on USACO

    - by philip
    I submitted my code for a question on USACO titled "The Clocks". This is the link to the question: http://ace.delos.com/usacoprob2?a=wj7UqN4l7zk&S=clocks This is the output: Compiling... Compile: OK Executing... Test 1: TEST OK [0.173 secs, 13928 KB] Test 2: TEST OK [0.130 secs, 13928 KB] Test 3: TEST OK [0.583 secs, 13928 KB] Test 4: TEST OK [0.965 secs, 13928 KB] Run 5: Execution error: Your program (`clocks') used more than the allotted runtime of 1 seconds (it ended or was stopped at 1.584 seconds) when presented with test case 5. It used 13928 KB of memory. ------ Data for Run 5 ------ 6 12 12 12 12 12 12 12 12 ---------------------------- Your program printed data to stdout. Here is the data: ------------------- time:_0.40928452 ------------------- Test 5: RUNTIME 1.5841 (13928 KB) I wrote my program so that it will print out the time taken (in seconds) for the program to complete before it exits. As can be seen, it took 0.40928452 seconds before exiting. So how the heck did the runtime end up to be 1.584 seconds? What should I do about it? This is the code if it helps: import java.io.; import java.util.; class clocks { public static void main(String[] args) throws IOException { long start = System.nanoTime(); // Use BufferedReader rather than RandomAccessFile; it's much faster BufferedReader f = new BufferedReader(new FileReader("clocks.in")); // input file name goes above PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("clocks.out"))); // Use StringTokenizer vs. readLine/split -- lots faster int[] clock = new int[9]; for (int i = 0; i < 3; i++) { StringTokenizer st = new StringTokenizer(f.readLine()); // Get line, break into tokens clock[i * 3] = Integer.parseInt(st.nextToken()); clock[i * 3 + 1] = Integer.parseInt(st.nextToken()); clock[i * 3 + 2] = Integer.parseInt(st.nextToken()); } ArrayList validCombination = new ArrayList();; for (int i = 1; true; i++) { ArrayList combination = getPossibleCombinations(i); for (int j = 0; j < combination.size(); j++) { if (tryCombination(clock, (int[]) combination.get(j))) { validCombination.add(combination.get(j)); } } if (validCombination.size() > 0) { break; } } int [] min = (int[])validCombination.get(0); if (validCombination.size() > 1){ String minS = ""; for (int i=0; i<min.length; i++) minS += min[i]; for (int i=1; i<validCombination.size(); i++){ String tempS = ""; int [] temp = (int[])validCombination.get(i); for (int j=0; j<temp.length; j++) tempS += temp[j]; if (tempS.compareTo(minS) < 0){ minS = tempS; min = temp; } } } for (int i=0; i<min.length-1; i++) out.print(min[i] + " "); out.println(min[min.length-1]); out.close(); // close the output file long end = System.nanoTime(); System.out.println("time: " + (end-start)/1000000000.0); System.exit(0); // don't omit this! } static boolean tryCombination(int[] clock, int[] steps) { int[] temp = Arrays.copyOf(clock, clock.length); for (int i = 0; i < steps.length; i++) transform(temp, steps[i]); for (int i=0; i<temp.length; i++) if (temp[i] != 12) return false; return true; } static void transform(int[] clock, int n) { if (n == 1) { int[] clocksToChange = {0, 1, 3, 4}; add3(clock, clocksToChange); } else if (n == 2) { int[] clocksToChange = {0, 1, 2}; add3(clock, clocksToChange); } else if (n == 3) { int[] clocksToChange = {1, 2, 4, 5}; add3(clock, clocksToChange); } else if (n == 4) { int[] clocksToChange = {0, 3, 6}; add3(clock, clocksToChange); } else if (n == 5) { int[] clocksToChange = {1, 3, 4, 5, 7}; add3(clock, clocksToChange); } else if (n == 6) { int[] clocksToChange = {2, 5, 8}; add3(clock, clocksToChange); } else if (n == 7) { int[] clocksToChange = {3, 4, 6, 7}; add3(clock, clocksToChange); } else if (n == 8) { int[] clocksToChange = {6, 7, 8}; add3(clock, clocksToChange); } else if (n == 9) { int[] clocksToChange = {4, 5, 7, 8}; add3(clock, clocksToChange); } } static void add3(int[] clock, int[] position) { for (int i = 0; i < position.length; i++) { if (clock[position[i]] != 12) { clock[position[i]] += 3; } else { clock[position[i]] = 3; } } } static ArrayList getPossibleCombinations(int size) { ArrayList l = new ArrayList(); int[] current = new int[size]; for (int i = 0; i < current.length; i++) { current[i] = 1; } int[] end = new int[size]; for (int i = 0; i < end.length; i++) { end[i] = 9; } l.add(Arrays.copyOf(current, size)); while (!Arrays.equals(current, end)) { incrementWithoutRepetition(current, current.length - 1); l.add(Arrays.copyOf(current, size)); } int [][] combination = new int[l.size()][size]; for (int i=0; i<l.size(); i++) combination[i] = (int[])l.get(i); return l; } static int incrementWithoutRepetition(int[] n, int index) { if (n[index] != 9) { n[index]++; return n[index]; } else { n[index] = incrementWithoutRepetition(n, index - 1); return n[index]; } } static void p(int[] n) { for (int i = 0; i < n.length; i++) { System.out.print(n[i] + " "); } System.out.println(""); } }

    Read the article

  • What sort of loop structure to compare checkbox matrix with Google Maps markers?

    - by Kirkman14
    I'm trying to build a map of trails around my town. I'm using an XML file to hold all the trail data. For each marker, I have categories like "surface," "difficulty," "uses," etc. I have seen many examples of Google Maps that use checkboxes to show markers by category. However these examples are usually very simple: maybe three different checkboxes. What's different on my end is that I have multiple categories, and within each category there are several possible values. So, a particular trail might have "use" values of "hiking," "biking," "jogging," and "equestrian" because all are allowed. I put together one version, which you can see here: http://www.joshrenaud.com/pd/trails_withcheckboxes3.html In this version, any trail that has any value checked by the user will be displayed on the map. This version works. (although I should point out there is a bug where despite only one category being checked on load, all markers display anyway. After your first click on any checkbox, the map will work properly) However I now realize it's not quite what I want. I want to change it so that it will display only markers that match ALL the values that are checked (rather than ANY, which is what the example above does). I took a hack at this. You can see the result online, but I can't type a link to it because I am new user. Change the "3" in the URL above to a "4" to see it. My questions are about this SECOND url. (trails_withcheckboxes4.html) It doesn't work. I am pretty new to Javascript, so I am sure I have done something totally wrong, but I can't figure out what. My specific questions: Does anyone see anything glaringly obvious that is keeping my second example from working? If not, could someone just suggest what sort of loop structure I would need to build to compare the several arrays of checkboxes with the several arrays of values on any given marker? Here is some of the relevant code, although you can just view source on the examples above to see the whole thing: function createMarker(point,surface,difficulty,use,html) { var marker = new GMarker(point,GIcon); marker.mysurface = surface; marker.mydifficulty = difficulty; marker.myuse = use; GEvent.addListener(marker, "click", function() { marker.openInfoWindowHtml(html); }); gmarkers.push(marker); return marker; } function show() { hide(); var surfaceChecked = []; var difficultyChecked = []; var useChecked = []; var j=0; // okay, let's run through the checkbox elements and make arrays to serve as holders of any values the user has checked. for (i=0; i<surfaceArray.length; i++) { if (document.getElementById('surface'+surfaceArray[i]).checked == true) { surfaceChecked[j] = surfaceArray[i]; j++; } } j=0; for (i=0; i<difficultyArray.length; i++) { if (document.getElementById('difficulty'+difficultyArray[i]).checked == true) { difficultyChecked[j] = difficultyArray[i]; j++; } } j=0; for (i=0; i<useArray.length; i++) { if (document.getElementById('use'+useArray[i]).checked == true) { useChecked[j] = useArray[i]; j++; } } //now that we have our 'xxxChecked' holders, it's time to go through all the markers and see which to show. for (var k=0; k<gmarkers.length; k++) { // this loop runs thru all markers var surfaceMatches = []; var difficultyMatches = []; var useMatches = []; var surfaceOK = false; var difficultyOK = false; var useOK = false; for (var l=0; l<surfaceChecked.length; l++) { // this loops runs through all checked Surface categories for (var m=0; m<gmarkers[k].mysurface.length; m++) { // this loops through all surfaces on the marker if (gmarkers[k].mysurface[m].childNodes[0].nodeValue == surfaceChecked[l]) { surfaceMatches[l] = true; } } } for (l=0; l<difficultyChecked.length; l++) { // this loops runs through all checked Difficulty categories for (m=0; m<gmarkers[k].mydifficulty.length; m++) { // this loops through all difficulties on the marker if (gmarkers[k].mydifficulty[m].childNodes[0].nodeValue == difficultyChecked[l]) { difficultyMatches[l] = true; } } } for (l=0; l<useChecked.length; l++) { // this loops runs through all checked Use categories for (m=0; m<gmarkers[k].myuse.length; m++) { // this loops through all uses on the marker if (gmarkers[k].myuse[m].childNodes[0].nodeValue == useChecked[l]) { useMatches[l] = true; } } } // now it's time to loop thru the Match arrays and make sure they are all completely true. for (m=0; m<surfaceMatches.length; m++) { if (surfaceMatches[m] == true) { surfaceOK = true; } else if (surfaceMatches[m] == false) {surfaceOK = false; break; } } for (m=0; m<difficultyMatches.length; m++) { if (difficultyMatches[m] == true) { difficultyOK = true; } else if (difficultyMatches[m] == false) {difficultyOK = false; break; } } for (m=0; m<useMatches.length; m++) { if (useMatches[m] == true) { useOK = true; } else if (useMatches[m] == false) {useOK = false; break; } } // And finally, if each of the three OK's is true, then let's show the marker. if ((surfaceOK == true) && (difficultyOK == true) && (useOK == true)) { gmarkers[i].show(); } } }

    Read the article

  • Problem rendering VBO

    - by Onno
    I'm developing a game engine using OpenTK. I'm trying to get to grips with the use of VBO's. I've run into some trouble because somehow it doesn't render correctly. Thus far I've used immediate mode to render a test object, a test cube with a texture. namespace SharpEngine.Utility.Mesh { using System; using System.Collections.Generic; using OpenTK; using OpenTK.Graphics; using OpenTK.Graphics.OpenGL; using SharpEngine.Utility; using System.Drawing; public class ImmediateFaceBasedCube : IMesh { private IList<Face> faces = new List<Face>(); public ImmediateFaceBasedCube() { IList<Vector3> allVertices = new List<Vector3>(); //rechtsbovenvoor allVertices.Add(new Vector3(1.0f, 1.0f, 1.0f)); //0 //rechtsbovenachter allVertices.Add(new Vector3(1.0f, 1.0f, -1.0f)); //1 //linksbovenachter allVertices.Add(new Vector3(-1.0f, 1.0f, -1.0f)); //2 //linksbovenvoor allVertices.Add(new Vector3(-1.0f, 1.0f, 1.0f)); //3 //rechtsondervoor allVertices.Add(new Vector3(1.0f, -1.0f, 1.0f)); //4 //rechtsonderachter allVertices.Add(new Vector3(1.0f, -1.0f, -1.0f)); //5 //linksonderachter allVertices.Add(new Vector3(-1.0f, -1.0f, -1.0f)); //6 //linksondervoor allVertices.Add(new Vector3(-1.0f, -1.0f, 1.0f)); //7 IList<Vector2> textureCoordinates = new List<Vector2>(); textureCoordinates.Add(new Vector2(0, 0)); //AA - 0 textureCoordinates.Add(new Vector2(0, 0.3333333f)); //AB - 1 textureCoordinates.Add(new Vector2(0, 0.6666666f)); //AC - 2 textureCoordinates.Add(new Vector2(0, 1)); //AD - 3 textureCoordinates.Add(new Vector2(0.3333333f, 0)); //BA - 4 textureCoordinates.Add(new Vector2(0.3333333f, 0.3333333f)); //BB - 5 textureCoordinates.Add(new Vector2(0.3333333f, 0.6666666f)); //BC - 6 textureCoordinates.Add(new Vector2(0.3333333f, 1)); //BD - 7 textureCoordinates.Add(new Vector2(0.6666666f, 0)); //CA - 8 textureCoordinates.Add(new Vector2(0.6666666f, 0.3333333f)); //CB - 9 textureCoordinates.Add(new Vector2(0.6666666f, 0.6666666f)); //CC -10 textureCoordinates.Add(new Vector2(0.6666666f, 1)); //CD -11 textureCoordinates.Add(new Vector2(1, 0)); //DA -12 textureCoordinates.Add(new Vector2(1, 0.3333333f)); //DB -13 textureCoordinates.Add(new Vector2(1, 0.6666666f)); //DC -14 textureCoordinates.Add(new Vector2(1, 1)); //DD -15 Vector3 copy1 = new Vector3(-2.0f, -2.5f, -3.5f); IList<Vector3> normals = new List<Vector3>(); normals.Add(new Vector3(0, 1.0f, 0)); //0 normals.Add(new Vector3(0, 0, 1.0f)); //1 normals.Add(new Vector3(1.0f, 0, 0)); //2 normals.Add(new Vector3(0, 0, -1.0f)); //3 normals.Add(new Vector3(-1.0f, 0, 0)); //4 normals.Add(new Vector3(0, -1.0f, 0)); //5 //todo: move vertex normal and texture data to datastructure //todo: VBO based rendering //top face //1 IList<VertexData> verticesT1 = new List<VertexData>(); VertexData T1a = new VertexData(); T1a.Normal = normals[0]; T1a.TexCoord = textureCoordinates[5]; T1a.Position = allVertices[3]; verticesT1.Add(T1a); VertexData T1b = new VertexData(); T1b.Normal = normals[0]; T1b.TexCoord = textureCoordinates[9]; T1b.Position = allVertices[0]; verticesT1.Add(T1b); VertexData T1c = new VertexData(); T1c.Normal = normals[0]; T1c.TexCoord = textureCoordinates[10]; T1c.Position = allVertices[1]; verticesT1.Add(T1c); Face F1 = new Face(verticesT1); faces.Add(F1); //2 IList<VertexData> verticesT2 = new List<VertexData>(); VertexData T2a = new VertexData(); T2a.Normal = normals[0]; T2a.TexCoord = textureCoordinates[10]; T2a.Position = allVertices[1]; verticesT2.Add(T2a); VertexData T2b = new VertexData(); T2b.Normal = normals[0]; T2b.TexCoord = textureCoordinates[6]; T2b.Position = allVertices[2]; verticesT2.Add(T2b); VertexData T2c = new VertexData(); T2c.Normal = normals[0]; T2c.TexCoord = textureCoordinates[5]; T2c.Position = allVertices[3]; verticesT2.Add(T2c); Face F2 = new Face(verticesT2); faces.Add(F2); //front face //3 IList<VertexData> verticesT3 = new List<VertexData>(); VertexData T3a = new VertexData(); T3a.Normal = normals[1]; T3a.TexCoord = textureCoordinates[1]; T3a.Position = allVertices[3]; verticesT3.Add(T3a); VertexData T3b = new VertexData(); T3b.Normal = normals[1]; T3b.TexCoord = textureCoordinates[0]; T3b.Position = allVertices[7]; verticesT3.Add(T3b); VertexData T3c = new VertexData(); T3c.Normal = normals[1]; T3c.TexCoord = textureCoordinates[5]; T3c.Position = allVertices[0]; verticesT3.Add(T3c); Face F3 = new Face(verticesT3); faces.Add(F3); //4 IList<VertexData> verticesT4 = new List<VertexData>(); VertexData T4a = new VertexData(); T4a.Normal = normals[1]; T4a.TexCoord = textureCoordinates[5]; T4a.Position = allVertices[0]; verticesT4.Add(T4a); VertexData T4b = new VertexData(); T4b.Normal = normals[1]; T4b.TexCoord = textureCoordinates[0]; T4b.Position = allVertices[7]; verticesT4.Add(T4b); VertexData T4c = new VertexData(); T4c.Normal = normals[1]; T4c.TexCoord = textureCoordinates[4]; T4c.Position = allVertices[4]; verticesT4.Add(T4c); Face F4 = new Face(verticesT4); faces.Add(F4); //right face //5 IList<VertexData> verticesT5 = new List<VertexData>(); VertexData T5a = new VertexData(); T5a.Normal = normals[2]; T5a.TexCoord = textureCoordinates[2]; T5a.Position = allVertices[0]; verticesT5.Add(T5a); VertexData T5b = new VertexData(); T5b.Normal = normals[2]; T5b.TexCoord = textureCoordinates[1]; T5b.Position = allVertices[4]; verticesT5.Add(T5b); VertexData T5c = new VertexData(); T5c.Normal = normals[2]; T5c.TexCoord = textureCoordinates[6]; T5c.Position = allVertices[1]; verticesT5.Add(T5c); Face F5 = new Face(verticesT5); faces.Add(F5); //6 IList<VertexData> verticesT6 = new List<VertexData>(); VertexData T6a = new VertexData(); T6a.Normal = normals[2]; T6a.TexCoord = textureCoordinates[1]; T6a.Position = allVertices[4]; verticesT6.Add(T6a); VertexData T6b = new VertexData(); T6b.Normal = normals[2]; T6b.TexCoord = textureCoordinates[5]; T6b.Position = allVertices[5]; verticesT6.Add(T6b); VertexData T6c = new VertexData(); T6c.Normal = normals[2]; T6c.TexCoord = textureCoordinates[6]; T6c.Position = allVertices[1]; verticesT6.Add(T6c); Face F6 = new Face(verticesT6); faces.Add(F6); //back face //7 IList<VertexData> verticesT7 = new List<VertexData>(); VertexData T7a = new VertexData(); T7a.Normal = normals[3]; T7a.TexCoord = textureCoordinates[4]; T7a.Position = allVertices[5]; verticesT7.Add(T7a); VertexData T7b = new VertexData(); T7b.Normal = normals[3]; T7b.TexCoord = textureCoordinates[9]; T7b.Position = allVertices[2]; verticesT7.Add(T7b); VertexData T7c = new VertexData(); T7c.Normal = normals[3]; T7c.TexCoord = textureCoordinates[5]; T7c.Position = allVertices[1]; verticesT7.Add(T7c); Face F7 = new Face(verticesT7); faces.Add(F7); //8 IList<VertexData> verticesT8 = new List<VertexData>(); VertexData T8a = new VertexData(); T8a.Normal = normals[3]; T8a.TexCoord = textureCoordinates[9]; T8a.Position = allVertices[2]; verticesT8.Add(T8a); VertexData T8b = new VertexData(); T8b.Normal = normals[3]; T8b.TexCoord = textureCoordinates[4]; T8b.Position = allVertices[5]; verticesT8.Add(T8b); VertexData T8c = new VertexData(); T8c.Normal = normals[3]; T8c.TexCoord = textureCoordinates[8]; T8c.Position = allVertices[6]; verticesT8.Add(T8c); Face F8 = new Face(verticesT8); faces.Add(F8); //left face //9 IList<VertexData> verticesT9 = new List<VertexData>(); VertexData T9a = new VertexData(); T9a.Normal = normals[4]; T9a.TexCoord = textureCoordinates[8]; T9a.Position = allVertices[6]; verticesT9.Add(T9a); VertexData T9b = new VertexData(); T9b.Normal = normals[4]; T9b.TexCoord = textureCoordinates[13]; T9b.Position = allVertices[3]; verticesT9.Add(T9b); VertexData T9c = new VertexData(); T9c.Normal = normals[4]; T9c.TexCoord = textureCoordinates[9]; T9c.Position = allVertices[2]; verticesT9.Add(T9c); Face F9 = new Face(verticesT9); faces.Add(F9); //10 IList<VertexData> verticesT10 = new List<VertexData>(); VertexData T10a = new VertexData(); T10a.Normal = normals[4]; T10a.TexCoord = textureCoordinates[8]; T10a.Position = allVertices[6]; verticesT10.Add(T10a); VertexData T10b = new VertexData(); T10b.Normal = normals[4]; T10b.TexCoord = textureCoordinates[12]; T10b.Position = allVertices[7]; verticesT10.Add(T10b); VertexData T10c = new VertexData(); T10c.Normal = normals[4]; T10c.TexCoord = textureCoordinates[13]; T10c.Position = allVertices[3]; verticesT10.Add(T10c); Face F10 = new Face(verticesT10); faces.Add(F10); //bottom face //11 IList<VertexData> verticesT11 = new List<VertexData>(); VertexData T11a = new VertexData(); T11a.Normal = normals[5]; T11a.TexCoord = textureCoordinates[10]; T11a.Position = allVertices[7]; verticesT11.Add(T11a); VertexData T11b = new VertexData(); T11b.Normal = normals[5]; T11b.TexCoord = textureCoordinates[9]; T11b.Position = allVertices[6]; verticesT11.Add(T11b); VertexData T11c = new VertexData(); T11c.Normal = normals[5]; T11c.TexCoord = textureCoordinates[14]; T11c.Position = allVertices[4]; verticesT11.Add(T11c); Face F11 = new Face(verticesT11); faces.Add(F11); //12 IList<VertexData> verticesT12 = new List<VertexData>(); VertexData T12a = new VertexData(); T12a.Normal = normals[5]; T12a.TexCoord = textureCoordinates[13]; T12a.Position = allVertices[5]; verticesT12.Add(T12a); VertexData T12b = new VertexData(); T12b.Normal = normals[5]; T12b.TexCoord = textureCoordinates[14]; T12b.Position = allVertices[4]; verticesT12.Add(T12b); VertexData T12c = new VertexData(); T12c.Normal = normals[5]; T12c.TexCoord = textureCoordinates[9]; T12c.Position = allVertices[6]; verticesT12.Add(T12c); Face F12 = new Face(verticesT12); faces.Add(F12); } public void draw() { GL.Begin(BeginMode.Triangles); foreach (Face face in faces) { foreach (VertexData datapoint in face.verticesWithTexCoords) { GL.Normal3(datapoint.Normal); GL.TexCoord2(datapoint.TexCoord); GL.Vertex3(datapoint.Position); } } GL.End(); } } } Gets me this very nice picture: The immediate mode cube renders nicely and taught me a bit on how to use OpenGL, but VBO's are the way to go. Since I read on the OpenTK forums that OpenTK has problems doing VA's or DL's, I decided to skip using those. Now, I've tried to change this cube to a VBO by using the same vertex, normal and tc collections, and making float arrays from them by using the coordinates in combination with uint arrays which contain the index numbers from the immediate cube. (see the private functions at end of the code sample) Somehow this only renders two triangles namespace SharpEngine.Utility.Mesh { using System; using System.Collections.Generic; using OpenTK; using OpenTK.Graphics; using OpenTK.Graphics.OpenGL; using SharpEngine.Utility; using System.Drawing; public class VBOFaceBasedCube : IMesh { private int VerticesVBOID; private int VerticesVBOStride; private int VertexCount; private int ELementBufferObjectID; private int textureCoordinateVBOID; private int textureCoordinateVBOStride; //private int textureCoordinateArraySize; private int normalVBOID; private int normalVBOStride; public VBOFaceBasedCube() { IList<Vector3> allVertices = new List<Vector3>(); //rechtsbovenvoor allVertices.Add(new Vector3(1.0f, 1.0f, 1.0f)); //0 //rechtsbovenachter allVertices.Add(new Vector3(1.0f, 1.0f, -1.0f)); //1 //linksbovenachter allVertices.Add(new Vector3(-1.0f, 1.0f, -1.0f)); //2 //linksbovenvoor allVertices.Add(new Vector3(-1.0f, 1.0f, 1.0f)); //3 //rechtsondervoor allVertices.Add(new Vector3(1.0f, -1.0f, 1.0f)); //4 //rechtsonderachter allVertices.Add(new Vector3(1.0f, -1.0f, -1.0f)); //5 //linksonderachter allVertices.Add(new Vector3(-1.0f, -1.0f, -1.0f)); //6 //linksondervoor allVertices.Add(new Vector3(-1.0f, -1.0f, 1.0f)); //7 IList<Vector2> textureCoordinates = new List<Vector2>(); textureCoordinates.Add(new Vector2(0, 0)); //AA - 0 textureCoordinates.Add(new Vector2(0, 0.3333333f)); //AB - 1 textureCoordinates.Add(new Vector2(0, 0.6666666f)); //AC - 2 textureCoordinates.Add(new Vector2(0, 1)); //AD - 3 textureCoordinates.Add(new Vector2(0.3333333f, 0)); //BA - 4 textureCoordinates.Add(new Vector2(0.3333333f, 0.3333333f)); //BB - 5 textureCoordinates.Add(new Vector2(0.3333333f, 0.6666666f)); //BC - 6 textureCoordinates.Add(new Vector2(0.3333333f, 1)); //BD - 7 textureCoordinates.Add(new Vector2(0.6666666f, 0)); //CA - 8 textureCoordinates.Add(new Vector2(0.6666666f, 0.3333333f)); //CB - 9 textureCoordinates.Add(new Vector2(0.6666666f, 0.6666666f)); //CC -10 textureCoordinates.Add(new Vector2(0.6666666f, 1)); //CD -11 textureCoordinates.Add(new Vector2(1, 0)); //DA -12 textureCoordinates.Add(new Vector2(1, 0.3333333f)); //DB -13 textureCoordinates.Add(new Vector2(1, 0.6666666f)); //DC -14 textureCoordinates.Add(new Vector2(1, 1)); //DD -15 Vector3 copy1 = new Vector3(-2.0f, -2.5f, -3.5f); IList<Vector3> normals = new List<Vector3>(); normals.Add(new Vector3(0, 1.0f, 0)); //0 normals.Add(new Vector3(0, 0, 1.0f)); //1 normals.Add(new Vector3(1.0f, 0, 0)); //2 normals.Add(new Vector3(0, 0, -1.0f)); //3 normals.Add(new Vector3(-1.0f, 0, 0)); //4 normals.Add(new Vector3(0, -1.0f, 0)); //5 //todo: VBO based rendering uint[] vertexElements = { 3,0,1, //01 1,2,3, //02 3,7,0, //03 0,7,4, //04 0,4,1, //05 4,5,1, //06 5,2,1, //07 2,5,6, //08 6,3,2, //09 6,7,5, //10 7,6,4, //11 5,4,6 //12 }; VertexCount = vertexElements.Length; IList<uint> vertexElementList = new List<uint>(vertexElements); uint[] normalElements = { 0,0,0, 0,0,0, 1,1,1, 1,1,1, 2,2,2, 2,2,2, 3,3,3, 3,3,3, 4,4,4, 4,4,4, 5,5,5, 5,5,5 }; IList<uint> normalElementList = new List<uint>(normalElements); uint[] textureIndexArray = { 5,9,10, 10,6,5, 1,0,5, 5,0,4, 2,1,6, 1,5,6, 4,9,5, 9,4,8, 8,13,9, 8,12,13, 10,9,14, 13,14,9 }; //textureCoordinateArraySize = textureIndexArray.Length; IList<uint> textureIndexList = new List<uint>(textureIndexArray); LoadVBO(allVertices, normals, textureCoordinates, vertexElements, normalElementList, textureIndexList); } public void draw() { //bind vertices //bind elements //bind normals //bind texture coordinates GL.EnableClientState(ArrayCap.VertexArray); GL.EnableClientState(ArrayCap.NormalArray); GL.EnableClientState(ArrayCap.TextureCoordArray); GL.BindBuffer(BufferTarget.ArrayBuffer, VerticesVBOID); GL.VertexPointer(3, VertexPointerType.Float, VerticesVBOStride, 0); GL.BindBuffer(BufferTarget.ArrayBuffer, normalVBOID); GL.NormalPointer(NormalPointerType.Float, normalVBOStride, 0); GL.BindBuffer(BufferTarget.ArrayBuffer, textureCoordinateVBOID); GL.TexCoordPointer(2, TexCoordPointerType.Float, textureCoordinateVBOStride, 0); GL.BindBuffer(BufferTarget.ElementArrayBuffer, ELementBufferObjectID); GL.DrawElements(BeginMode.Polygon, VertexCount, DrawElementsType.UnsignedShort, 0); } //loads a static VBO void LoadVBO(IList<Vector3> vertices, IList<Vector3> normals, IList<Vector2> texcoords, uint[] elements, IList<uint> normalIndices, IList<uint> texCoordIndices) { int size; //todo // To create a VBO: // 1) Generate the buffer handles for the vertex and element buffers. // 2) Bind the vertex buffer handle and upload your vertex data. Check that the buffer was uploaded correctly. // 3) Bind the element buffer handle and upload your element data. Check that the buffer was uploaded correctly. float[] verticesArray = convertVector3fListToFloatArray(vertices); float[] normalsArray = createFloatArrayFromListOfVector3ElementsAndIndices(normals, normalIndices); float[] textureCoordinateArray = createFloatArrayFromListOfVector2ElementsAndIndices(texcoords, texCoordIndices); GL.GenBuffers(1, out VerticesVBOID); GL.BindBuffer(BufferTarget.ArrayBuffer, VerticesVBOID); Console.WriteLine("load 1 - vertices"); VerticesVBOStride = BlittableValueType.StrideOf(verticesArray); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(verticesArray.Length * sizeof(float)), verticesArray, BufferUsageHint.StaticDraw); GL.GetBufferParameter(BufferTarget.ArrayBuffer, BufferParameterName.BufferSize, out size); if (verticesArray.Length * BlittableValueType.StrideOf(verticesArray) != size) { throw new ApplicationException("Vertex data not uploaded correctly"); } else { Console.WriteLine("load 1 finished ok"); size = 0; } Console.WriteLine("load 2 - elements"); GL.GenBuffers(1, out ELementBufferObjectID); GL.BindBuffer(BufferTarget.ElementArrayBuffer, ELementBufferObjectID); GL.BufferData(BufferTarget.ElementArrayBuffer, (IntPtr)(elements.Length * sizeof(uint)), elements, BufferUsageHint.StaticDraw); GL.GetBufferParameter(BufferTarget.ElementArrayBuffer, BufferParameterName.BufferSize, out size); if (elements.Length * sizeof(uint) != size) { throw new ApplicationException("Element data not uploaded correctly"); } else { size = 0; Console.WriteLine("load 2 finished ok"); } GL.GenBuffers(1, out normalVBOID); GL.BindBuffer(BufferTarget.ArrayBuffer, normalVBOID); Console.WriteLine("load 3 - normals"); normalVBOStride = BlittableValueType.StrideOf(normalsArray); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(normalsArray.Length * sizeof(float)), normalsArray, BufferUsageHint.StaticDraw); GL.GetBufferParameter(BufferTarget.ArrayBuffer, BufferParameterName.BufferSize, out size); Console.WriteLine("load 3 - pre check"); if (normalsArray.Length * BlittableValueType.StrideOf(normalsArray) != size) { throw new ApplicationException("Normal data not uploaded correctly"); } else { Console.WriteLine("load 3 finished ok"); size = 0; } GL.GenBuffers(1, out textureCoordinateVBOID); GL.BindBuffer(BufferTarget.ArrayBuffer, textureCoordinateVBOID); Console.WriteLine("load 4- texture coordinates"); textureCoordinateVBOStride = BlittableValueType.StrideOf(textureCoordinateArray); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(textureCoordinateArray.Length * textureCoordinateVBOStride), textureCoordinateArray, BufferUsageHint.StaticDraw); GL.GetBufferParameter(BufferTarget.ArrayBuffer, BufferParameterName.BufferSize, out size); if (textureCoordinateArray.Length * BlittableValueType.StrideOf(textureCoordinateArray) != size) { throw new ApplicationException("texture coordinate data not uploaded correctly"); } else { Console.WriteLine("load 3 finished ok"); size = 0; } } //used to convert vertex arrayss for use with VBO's private float[] convertVector3fListToFloatArray(IList<Vector3> input) { int arrayElementCount = input.Count * 3; float[] output = new float[arrayElementCount]; int fillCount = 0; foreach (Vector3 v in input) { output[fillCount] = v.X; output[fillCount + 1] = v.Y; output[fillCount + 2] = v.Z; fillCount += 3; } return output; } //used for converting texture coordinate arrays for use with VBO's private float[] convertVector2List_to_floatArray(IList<Vector2> input) { int arrayElementCount = input.Count * 2; float[] output = new float[arrayElementCount]; int fillCount = 0; foreach (Vector2 v in input) { output[fillCount] = v.X; output[fillCount + 1] = v.Y; fillCount += 2; } return output; } //used to create an array of floats from private float[] createFloatArrayFromListOfVector3ElementsAndIndices(IList<Vector3> inputVectors, IList<uint> indices) { int arrayElementCount = inputVectors.Count * indices.Count * 3; float[] output = new float[arrayElementCount]; int fillCount = 0; foreach (int i in indices) { output[fillCount] = inputVectors[i].X; output[fillCount + 1] = inputVectors[i].Y; output[fillCount + 2] = inputVectors[i].Z; fillCount += 3; } return output; } private float[] createFloatArrayFromListOfVector2ElementsAndIndices(IList<Vector2> inputVectors, IList<uint> indices) { int arrayElementCount = inputVectors.Count * indices.Count * 2; float[] output = new float[arrayElementCount]; int fillCount = 0; foreach (int i in indices) { output[fillCount] = inputVectors[i].X; output[fillCount + 1] = inputVectors[i].Y; fillCount += 2; } return output; } } } This code will only render two triangles and they're nothing like I had in mind: I've done some searching. In some other questions I read that, if I did something wrong, I'd get no rendering at all. Clearly, something gets sent to the GFX card, but it might be that I'm not sending the right data. I've tried altering the sequence in which the triangles are rendered by swapping some of the index numbers in the vert, tc and normal index arrays, but this doesn't seem to be of any effect. I'm slightly lost here. What am I doing wrong here?

    Read the article

  • array and array_view from amp.h

    - by Daniel Moth
    This is a very long post, but it also covers what are probably the classes (well, array_view at least) that you will use the most with C++ AMP, so I hope you enjoy it! Overview The concurrency::array and concurrency::array_view template classes represent multi-dimensional data of type T, of N dimensions, specified at compile time (and you can later access the number of dimensions via the rank property). If N is not specified, it is assumed that it is 1 (i.e. single-dimensional case). They are rectangular (not jagged). The difference between them is that array is a container of data, whereas array_view is a wrapper of a container of data. So in that respect, array behaves like an STL container, whereas the closest thing an array_view behaves like is an STL iterator (albeit with random access and allowing you to view more than one element at a time!). The data in the array (whether provided at creation time or added later) resides on an accelerator (which is specified at creation time either explicitly by the developer, or set to the default accelerator at creation time by the runtime) and is laid out contiguously in memory. The data provided to the array_view is not stored by/in the array_view, because the array_view is simply a view over the real source (which can reside on the CPU or other accelerator). The underlying data is copied on demand to wherever the array_view is accessed. Elements which differ by one in the least significant dimension of the array_view are adjacent in memory. array objects must be captured by reference into the lambda you pass to the parallel_for_each call, whereas array_view objects must be captured by value (into the lambda you pass to the parallel_for_each call). Creating array and array_view objects and relevant properties You can create array_view objects from other array_view objects of the same rank and element type (shallow copy, also possible via assignment operator) so they point to the same underlying data, and you can also create array_view objects over array objects of the same rank and element type e.g.   array_view<int,3> a(b); // b can be another array or array_view of ints with rank=3 Note: Unlike the constructors above which can be called anywhere, the ones in the rest of this section can only be called from CPU code. You can create array objects from other array objects of the same rank and element type (copy and move constructors) and from other array_view objects, e.g.   array<float,2> a(b); // b can be another array or array_view of floats with rank=2 To create an array from scratch, you need to at least specify an extent object, e.g. array<int,3> a(myExtent);. Note that instead of an explicit extent object, there are convenience overloads when N<=3 so you can specify 1-, 2-, 3- integers (dependent on the array's rank) and thus have the extent created for you under the covers. At any point, you can access the array's extent thought the extent property. The exact same thing applies to array_view (extent as constructor parameters, incl. convenience overloads, and property). While passing only an extent object to create an array is enough (it means that the array will be written to later), it is not enough for the array_view case which must always wrap over some other container (on which it relies for storage space and actual content). So in addition to the extent object (that describes the shape you'd like to be viewing/accessing that data through), to create an array_view from another container (e.g. std::vector) you must pass in the container itself (which must expose .data() and a .size() methods, e.g. like std::array does), e.g.   array_view<int,2> aaa(myExtent, myContainerOfInts); Similarly, you can create an array_view from a raw pointer of data plus an extent object. Back to the array case, to optionally initialize the array with data, you can pass an iterator pointing to the start (and optionally one pointing to the end of the source container) e.g.   array<double,1> a(5, myVector.begin(), myVector.end()); We saw that arrays are bound to an accelerator at creation time, so in case you don’t want the C++ AMP runtime to assign the array to the default accelerator, all array constructors have overloads that let you pass an accelerator_view object, which you can later access via the accelerator_view property. Note that at the point of initializing an array with data, a synchronous copy of the data takes place to the accelerator, and then to copy any data back we'll see that an explicit copy call is required. This does not happen with the array_view where copying is on demand... refresh and synchronize on array_view Note that in the previous section on constructors, unlike the array case, there was no overload that accepted an accelerator_view for array_view. That is because the array_view is simply a wrapper, so the allocation of the data has already taken place before you created the array_view. When you capture an array_view variable in your call to parallel_for_each, the copy of data between the non-CPU accelerator and the CPU takes place on demand (i.e. it is implicit, versus the explicit copy that has to happen with the array). There are some subtleties to the on-demand-copying that we cover next. The assumption when using an array_view is that you will continue to access the data through the array_view, and not through the original underlying source, e.g. the pointer to the data that you passed to the array_view's constructor. So if you modify the data through the array_view on the GPU, the original pointer on the CPU will not "know" that, unless one of two things happen: you access the data through the array_view on the CPU side, i.e. using indexing that we cover below you explicitly call the array_view's synchronize method on the CPU (this also gets called in the array_view's destructor for you) Conversely, if you make a change to the underlying data through the original source (e.g. the pointer), the array_view will not "know" about those changes, unless you call its refresh method. Finally, note that if you create an array_view of const T, then the data is copied to the accelerator on demand, but it does not get copied back, e.g.   array_view<const double, 5> myArrView(…); // myArrView will not get copied back from GPU There is also a similar mechanism to achieve the reverse, i.e. not to copy the data of an array_view to the GPU. copy_to, data, and global copy/copy_async functions Both array and array_view expose two copy_to overloads that allow copying them to another array, or to another array_view, and these operations can also be achieved with assignment (via the = operator overloads). Also both array and array_view expose a data method, to get a raw pointer to the underlying data of the array or array_view, e.g. float* f = myArr.data();. Note that for array_view, this only works when the rank is equal to 1, due to the data only being contiguous in one dimension as covered in the overview section. Finally, there are a bunch of global concurrency::copy functions returning void (and corresponding concurrency::copy_async functions returning a future) that allow copying between arrays and array_views and iterators etc. Just browse intellisense or amp.h directly for the full set. Note that for array, all copying described throughout this post is deep copying, as per other STL container expectations. You can never have two arrays point to the same data. indexing into array and array_view plus projection Reading or writing data elements of an array is only legal when the code executes on the same accelerator as where the array was bound to. In the array_view case, you can read/write on any accelerator, not just the one where the original data resides, and the data gets copied for you on demand. In both cases, the way you read and write individual elements is via indexing as described next. To access (or set the value of) an element, you can index into it by passing it an index object via the subscript operator. Furthermore, if the rank is 3 or less, you can use the function ( ) operator to pass integer values instead of having to use an index object. e.g. array<float,2> arr(someExtent, someIterator); //or array_view<float,2> arr(someExtent, someContainer); index<2> idx(5,4); float f1 = arr[idx]; float f2 = arr(5,4); //f2 ==f1 //and the reverse for assigning, e.g. arr(idx[0], 7) = 6.9; Note that for both array and array_view, regardless of rank, you can also pass a single integer to the subscript operator which results in a projection of the data, and (for both array and array_view) you get back an array_view of rank N-1 (or if the rank was 1, you get back just the element at that location). Not Covered In this already very long post, I am not going to cover three very cool methods (and related overloads) that both array and array_view expose: view_as, section, reinterpret_as. We'll revisit those at some point in the future, probably on the team blog. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

< Previous Page | 86 87 88 89 90 91 92 93 94 95 96 97  | Next Page >