Search Results

Search found 6950 results on 278 pages for 'moving average'.

Page 90/278 | < Previous Page | 86 87 88 89 90 91 92 93 94 95 96 97  | Next Page >

  • Implementing a 30 day time trial

    - by svintus
    Question for indie Mac developers out there: How do I implement a 30-day time trial in a non-evil fashion? Putting a counter in the prefs is not an option, since wiping prefs once a month is not a problem for an average user. Putting the counter in a hidden file somewhere sounds a bit dodgy - as a user I hate when apps sprinkle my hard drive with random files. Any ideas?

    Read the article

  • Indexing on only part of a field in MongoDB

    - by Rob Hoare
    Is there a way to create an index on only part of a field in MongoDB, for example on the first 10 characters? I couldn't find it documented (or asked about on here). The MySQL equivalent would be CREATE INDEX part_of_name ON customer (name(10));. Reason: I have a collection with a single field that varies in length from a few characters up to over 1000 characters, average 50 characters. As there are a hundred million or so documents it's going to be hard to fit the full index in memory (testing with 8% of the data the index is already 400MB, according to stats). Indexing just the first part of the field would reduce the index size by about 75%. In most cases the search term is quite short, it's not a full-text search. A work-around would be to add a second field of 10 (lowercased) characters for each item, index that, then add logic to filter the results if the search term is over ten characters (and that extra field is probably needed anyway for case-insensitive searches, unless anybody has a better way). Seems like an ugly way to do it though. [added later] I tried adding the second field, containing the first 12 characters from the main field, lowercased. It wasn't a big success. Previously, the average object size was 50 bytes, but I forgot that includes the _id and other overheads, so my main field length (there was only one) averaged nearer to 30 bytes than 50. Then, the second field index contains the _id and other overheads. Net result (for my 8% sample) is the index on the main field is 415MB and on the 12 byte field is 330MB - only a 20% saving in space, not worthwhile. I could duplicate the entire field (to work around the case insensitive search problem) but realistically it looks like I should reconsider whether MongoDB is the right tool for the job (or just buy more memory and use twice as much disk space). [added even later] This is a typical document, with the source field, and the short lowercased field: { "_id" : ObjectId("505d0e89f56588f20f000041"), "q" : "Continental Airlines", "f" : "continental " } Indexes: db.test.ensureIndex({q:1}); db.test.ensureIndex({f:1}); The 'f" index, working on a shorter field, is 80% of the size of the "q" index. I didn't mean to imply I included the _id in the index, just that it needs to use that somewhere to show where the index will point to, so it's an overhead that probably helps explain why a shorter key makes so little difference. Access to the index will be essentially random, no part of it is more likely to be accessed than any other. Total index size for the full file will likely be 5GB, so it's not extreme for that one index. Adding some other fields for other search cases, and their associated indexes, and copies of data for lower case, does start to add up, which I why I started looking into a more concise index.

    Read the article

  • Trying to get the associated value from an Enum at runtime in Java

    - by devoured elysium
    I want to accomplish something like the following (my interest is in the toInt() method). Is there any native way to accomplish this? If not, how can I get the integer associated with an enum value (like in C#) ? enum Rate { VeryBad(1), Bad(2), Average(3), Good(4), Excellent(5); private int rate; private Rate(int rate) { this.rate = rate; } public int toInt() { return rate; } } Thanks

    Read the article

  • Performance analysis for java application

    - by user1827614
    I want to do a performance measurement of my application and would like to be able to configure the stats for specific module like (enable for specific module and disable for some) and I want to measure things like memory usage, threads, average band width etc.. Can any one suggest something please, I am new to this. I think Visual VM is good but it doesnot support configuring for different modules. Does Perf4j or Admin4j work here? any one has used these before?

    Read the article

  • SQL Command Not Properly Ended (Nested Aggregation with Group-by)

    - by snowind
    I keep getting this error when I tried to execute this query, although I couldn't figure out what went wrong. I'm using Oracle and JDBC. Here's the query: SELECT Temp.flight_number, Temp.avgprice FROM (SELECT P.flight_number, AVG (P.amount) AS avgprice FROM purchase P GROUP BY P.flight_number) AS Temp WHERE Temp.avgprice = (SELECT MAX (Temp.avgprice) FROM Temp) I'm trying to get the maximum of average price of the tickets that customers have booked, group by flight_number.

    Read the article

  • MySQL: averaging with nulls...

    - by Zombies
    Is there a simple way I can exclude nulls from affecting the avg? They appear to count as 0, which is not what I want. I simply don't want to take their average into account, yet here is the catch, I can't drop them from the result set, as that record has data on it that I do need.

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Why do we get a sudden spike in response times?

    - by Christian Hagelid
    We have an API that is implemented using ServiceStack which is hosted in IIS. While performing load testing of the API we discovered that the response times are good but that they deteriorate rapidly as soon as we hit about 3,500 concurrent users per server. We have two servers and when hitting them with 7,000 users the average response times sit below 500ms for all endpoints. The boxes are behind a load balancer so we get 3,500 concurrents per server. However as soon as we increase the number of total concurrent users we see a significant increase in response times. Increasing the concurrent users to 5,000 per server gives us an average response time per endpoint of around 7 seconds. The memory and CPU on the servers are quite low, both while the response times are good and when after they deteriorate. At peak with 10,000 concurrent users the CPU averages just below 50% and the RAM sits around 3-4 GB out of 16. This leaves us thinking that we are hitting some kind of limit somewhere. The below screenshot shows some key counters in perfmon during a load test with a total of 10,000 concurrent users. The highlighted counter is requests/second. To the right of the screenshot you can see the requests per second graph becoming really erratic. This is the main indicator for slow response times. As soon as we see this pattern we notice slow response times in the load test. How do we go about troubleshooting this performance issue? We are trying to identify if this is a coding issue or a configuration issue. Are there any settings in web.config or IIS that could explain this behaviour? The application pool is running .NET v4.0 and the IIS version is 7.5. The only change we have made from the default settings is to update the application pool Queue Length value from 1,000 to 5,000. We have also added the following config settings to the Aspnet.config file: <system.web> <applicationPool maxConcurrentRequestsPerCPU="5000" maxConcurrentThreadsPerCPU="0" requestQueueLimit="5000" /> </system.web> More details: The purpose of the API is to combine data from various external sources and return as JSON. It is currently using an InMemory cache implementation to cache individual external calls at the data layer. The first request to a resource will fetch all data required and any subsequent requests for the same resource will get results from the cache. We have a 'cache runner' that is implemented as a background process that updates the information in the cache at certain set intervals. We have added locking around the code that fetches data from the external resources. We have also implemented the services to fetch the data from the external sources in an asynchronous fashion so that the endpoint should only be as slow as the slowest external call (unless we have data in the cache of course). This is done using the System.Threading.Tasks.Task class. Could we be hitting a limitation in terms of number of threads available to the process?

    Read the article

  • Why the server is not responding?

    - by par
    Hello! Our server occasionally refuses to serve a simple HTML page. This is happening during a relatively high number of requests. However, the processor is not heavy loaded and there are a lot of free memory. The error seems to occure 1 out of 50 requests in average, depending on the server load. I need to find the source of the problem and take the appropriate actions to eliminate it. I have a suspicion that the problem source is a huge number of incoming network packets. There are 5000 packets per second on average. Traffic - 2 MBits/sec Can this be the cause of the error? There is an interesting thing, in case the server fails to respond, the request string is not logged to access.log by Apache. The error is repeatable from several client computers. DNS is not involved, since I have accessed the server by the IP. I have profiled the problem case with tcpdump utility. These are the good and bad sessions traced by tcpdump. The request is the same in both experiments. Good - server returns response. Bad - no response, time-out error. ---- Bad ---- 12:23:36.366292 IP 123.45.67.890.61749 > myserver.superbservers.com.www: S 2125316338:2125316338(0) win 8192 <mss 1460,nop,wscale 2,nop,nop,sackOK> 12:23:39.362394 IP 123.45.67.890.61749 > myserver.superbservers.com.www: S 2125316338:2125316338(0) win 8192 <mss 1460,nop,wscale 2,nop,nop,sackOK> 12:23:45.365567 IP 123.45.67.890.61749 > myserver.superbservers.com.www: S 2125316338:2125316338(0) win 8192 <mss 1460,nop,nop,sackOK> -------- ---- Good ---- 12:27:07.632229 IP 123.45.67.890.63914 > myserver.superbservers.com.www: S 3581365570:3581365570(0) win 8192 <mss 1460,nop,wscale 2,nop,nop,sackOK> 12:27:10.620946 IP 123.45.67.890.63914 > myserver.superbservers.com.www: S 3581365570:3581365570(0) win 8192 <mss 1460,nop,wscale 2,nop,nop,sackOK> 12:27:10.620969 IP myserver.superbservers.com.www > 123.45.67.890.63914: S 2654770980:2654770980(0) ack 3581365571 win 5840 <mss 1460,nop,nop,sackOK,nop,wscale 6> 12:27:10.838747 IP 123.45.67.890.63914 > myserver.superbservers.com.www: . ack 1 win 4380 12:27:10.957143 IP 123.45.67.890.63914 > myserver.superbservers.com.www: P 1:213(212) ack 1 win 4380 12:27:10.957152 IP myserver.superbservers.com.www > 123.45.67.890.63914: . ack 213 win 108 12:27:10.965543 IP myserver.superbservers.com.www > 123.45.67.890.63914: P 1:630(629) ack 213 win 108 12:27:10.965621 IP myserver.superbservers.com.www > 123.45.67.890.63914: F 630:630(0) ack 213 win 108 12:27:11.183540 IP 123.45.67.890.63914 > myserver.superbservers.com.www: . ack 631 win 4222 12:27:11.185657 IP 123.45.67.890.63914 > myserver.superbservers.com.www: F 213:213(0) ack 631 win 4222 12:27:11.185663 IP myserver.superbservers.com.www > 123.45.67.890.63914: . ack 214 win 108 -------- Hoster: SuperbHosting OS: Ubuntu Server parameters: E6300 CONROE 1.86GHZ 2 X 1MB CACHE 1066 1GB DDR2 667MHZ This is a link to apache configuration file we use http://repkin5.snow.prohosting.com/apache.txt This is server-status report taken right after time-out error. http://repkin5.snow.prohosting.com/server-status.htm There are only 10 Child Servers running out of 120, so enough space for new requests. VMSTAT procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu---- r b swpd free buff cache si so bi bo in cs us sy id wa 0 0 8900 725900 8468 65684 0 0 5 18 11 33 4 3 92 1

    Read the article

  • VPS 512 MB RAM with WordPressMU comes to consumes lots of memory

    - by CAPitalZ
    I have googled for days and gathered all optimization suggestions and tried. My sites are not getting any high hits. May be like 100 hits per day [all my sites combined]. Here are my specs I have 512 MB RAM VPS with burstable 1024 MB. Centos 5 32-bit & cPanel/WHM Apache 2.2 MySQL 5.0 PHP 5.3.2 Here is my Configs I have 2 WordPressMU production sites, and 1 test site my.cnf # The following options will be passed to all MySQL clients [client] #password = your_password port = 3306 socket = /var/lib/mysql/mysql.sock # Here follows entries for some specific programs # The MySQL server [mysqld] port = 3306 socket = /var/lib/mysql/mysql.sock skip-locking skip-bdb skip-innodb key_buffer = 16M max_allowed_packet = 1M table_cache = 64 sort_buffer_size = 512K net_buffer_length = 8K read_buffer_size = 256K read_rnd_buffer_size = 512K myisam_sort_buffer_size = 8M #CAPitalZ thread_cache_size=8 thread_concurrency=4 #query_cache_type=1 #query_cache_limit=1M query_cache_size=16M concurrent_insert=2 low_priority_updates=1 max_connections=50 tmp_table_size=16M max_heap_table_size=16M join_buffer_size=1M interactive_timeout=25 wait_timeout=1000 #connect_timout=10 not able to restart mysql max_connect_errors=10 # Don't listen on a TCP/IP port at all. This can be a security enhancement, # if all processes that need to connect to mysqld run on the same host. # All interaction with mysqld must be made via Unix sockets or named pipes. # Note that using this option without enabling named pipes on Windows # (via the "enable-named-pipe" option) will render mysqld useless! # skip-networking # Disable Federated by default skip-federated # Replication Master Server (default) # binary logging is required for replication log-bin=mysql-bin # required unique id between 1 and 2^32 - 1 # defaults to 1 if master-host is not set # but will not function as a master if omitted server-id = 1 [mysqld_safe] open_files_limit=8192 [mysqldump] quick max_allowed_packet = 16M [mysql] no-auto-rehash # Remove the next comment character if you are not familiar with SQL #safe-updates [isamchk] key_buffer = 20M sort_buffer_size = 20M read_buffer = 2M write_buffer = 2M [myisamchk] key_buffer = 20M sort_buffer_size = 20M read_buffer = 2M write_buffer = 2M [mysqlhotcopy] interactive-timeout httpd.conf I have unselected many modules and recompiled using EasyApache in WHM. Only have the following modules built Deflate Expires Fileprotect Imagemap MPM Prefork Version [default] EAccelerator for PHP Bcmath Calendar CurlSSL [I'm using Curl. But I don't have any https sites] Expat GD [for image cropping] Gettext Imap Mbregex [default] Mbstring [need both Mbregex and Mbstring for utf-8] Mysql of the system MySQL "Improved" extension. Sockets TTF (FreeType) [I'm using custom font] Zlib Under Global Configuration I only have FollowSymLinks enabled I Have TraceEnable, ServerSignature, FileETag OFF ServerTokens ProductOnly DirectoryIndex Priority has index.php as the first one I have removed Clamd [Clam Anti-virus] SpamAssasin is Off Under Tweak Settings Default catch-all/default address behavior for new accounts. This is set to "fail" All stats programs turned off I have eAccelerator installed and checked in phpinfo and its working [Pre VirtualHost Include under WHM] Timeout 20 KeepAlive On MaxKeepAliveRequests 200 KeepAliveTimeout 3 MinSpareServers 1 MaxSpareServers 3 StartServers 1 ServerLimit 50 MaxClients 50 MaxRequestsPerChild 4000 ExtendedStatus Off #ServerType standalone this throws error HostnameLookups Off <Directory "/"> AllowOverride None </Directory> My sites will take ages to load and WHM/CPanel will not even load. adadaa.com/ http://adadaa.net/ kadais.ca/ My average memory consumption is like 1000 MB! [yes always bursting] The process that consumes most CPU and also most memory is mysql But I also get like 15 httpd processes [when its bursting] I already got warning from cpuwatchcheck saying "While processing, the cpu has been maxed out for more than a 6 hour period. The current load/uptime line on the server at the time of this email is 07:00:37 up 11:30, 0 users, load average: 14.64, 16.79, 20.07" I don't know, I have tried switching these config values many different times, but nothing seems to work. Please show some light... Thanks

    Read the article

  • Sphere entering in to the cube.unity

    - by Parthi
    I am trying Roll a Ball unity tutorial.Everything is fine,but when I roll the ball it is moving through the cube instead of picking it. my player class is using UnityEngine; using System.Collections; public class player : MonoBehaviour { public float speed; // Use this for initialization // Update is called once per frame void Update () { float h = Input.GetAxis("Horizontal"); float v = Input.GetAxis("Vertical"); Vector3 move = new Vector3(h,0,v); rigidbody.AddForce(move * speed * Time.deltaTime); } void OnTriggerEnter(Collider other) { if(other.gameObject.tag == "Pick up") { other.gameObject.SetActive(false); } } }

    Read the article

  • New Book From Luís Abreu: ASP.NET 4.0 – The Complete Course (Portuguese)

    - by Paulo Morgado
    Thsi book, with several practical examples, presents how to build web applications using ASP.NET 4.0. Starts by introducing the framework to build pages and controls and gradually introduces all the new features available. More compact that its previous versions  (part of the content was moved to FCA’s site in the form of apendices), this new book gives emphasis to to the new features in ASP.NET 4.0 and targets both developers new to ASP.NET and developers moving from previous versions of ASP.NET. This time there’s good new for Brazilian readers. The book will be distributed in Brazil by: Zamboni Comércio de Livros Ltda. Av.Parada Pinto, 1476 São Paulo – SP Telf. / Fax: +55 11 2233-2333 E-mail: [email protected] Our book (LINQ Com C# (Portuguese)) isn’t still distributed in Brazil, but, if you want it, you can always try that distributer.

    Read the article

  • Transportable Database 11gR2 Certified with E-Business Suite

    - by Steven Chan
    Platform migration is the process of moving a database from one operating system platform to a different operating system platform. You might wish to migrate your E-Business Suite database to create testing instances, experiment with new architectures, perform benchmarks, or prepare for actual platform changes in your production environment. Database migration across platforms of the same "endian" format (byte ordering) using the Transportable Database (TDB) process is now certified with Oracle Database 11gR2 (11.2.0.1) for:Oracle E-Business Suite Releases 11i (11.5.10.2) Oracle E-Business Suite Release 12.0.4 or higherOracle E-Business Suite Release 12.1.1 or higherThis EBS database migration process was previously certified only for 10gR2 and 11gR1.

    Read the article

  • Adobe Photoshop Vs Lightroom Vs Aperture

    - by Aditi
    Adobe Photoshop is the standard choice for photographers, graphic artists and Web designers. Adobe Photoshop Lightroom  & Apple’s Aperture are also in the same league but the usage is vastly different. Although Photoshop is most popular & widely used by photographers, but in many ways it’s less relevant to photographers than ever before. As Lightroom & Aperture is aimed squarely at photographers for photo-processing. With this write up we are going to help you choose what is right for you and why. Adobe Photoshop Adobe Photoshop is the most liked tool for the detailed photo editing & designing work. Photoshop provides great features for rollover and Image slicing. Adobe Photoshop includes comprehensive optimization features for producing the highest quality Web graphics with the smallest possible file sizes. You can also create startling animations with it. Designers & Editors know how important precise masking is, PhotoShop lets you do that with various detailing tools. Art history brush, contact sheets, and history palette are some of the smart features, which add to its viability. Download Whether you’re producing printed pages or moving images, you can work more efficiently and produce better results because of its smooth integration across other adobe applications. Buy supporting layer effects, it allows you to quickly add drop shadows, inner and outer glows, bevels, and embossing to layers. It also provides Seamless Web Graphics Workflow. Photoshop is hands-down the BEST for editing. Photoshop Cons: • Slower, less precise editing features in Bridge • Processing lots of images requires actions and can be slower than exporting images from Lightroom • Much slower with editing and processing a large number of images Aperture Apple Aperture is aimed at the professional photographer who shoots predominantly raw files. It helps them to manage their workflow and perform their initial Raw conversion in a better way. Aperture provides adjustment tools such as Histogram to modify color and white balance, but most of the editing of photos is left for Photoshop. It gives users the option of seeing their photographs laid out like slides or negatives on a light table. It boasts of – stars, color-coding and easy techniques for filtering and picking images. Aperture has moved forward few steps than Photoshop, but most of the editing work has been left for Photoshop as it features seamless Photoshop integration. Aperture Pros: Aperture is a step up from the iPhoto software that comes with every Mac, and fairly easy to learn. Adjustments are made in a logical order from top to bottom of the menu. You can store the images in a library or any folder you choose. Aperture also works really well with direct Canon files. It is just $79 if you buy it through Apple’s App Store Moving forward, it will run on the iPad, and possibly the iPhone – Adobe products like Lightroom and Photoshop may never offer these options It is much nicer and simpler user interface. Lightroom Lightroom does a smashing job of basic fixing and editing. It is more advanced tool for photographers. They can use it to have a startling photography effect. Light room has many advanced features, which makes it one of the best tools for photographers and far ahead of the other two. They are Nondestructive editing. Nothing is actually changed in an image until the photo is exported. Better controls over organizing your photos. Lightroom helps to gather a group of photos to use in a slideshow. Lightroom has larger Compare and Survey views of images. Quickly customizable interface. Simple keystrokes allow you to perform different All Lightroom controls are kept available in panels right next to the photos. Always-available History palette, it doesn’t go when you close lightroom. You gain more colors to work with compared to Photoshop and with more precise control. Local control, or adjusting small parts of a photo without affecting anything else, has long been an important part of photography. In Lightroom 2, you can darken, lighten, and affect color and change sharpness and other aspects of specific areas in the photo simply by brushing your cursor across the areas. Photoshop has far more power in its Cloning and Healing Brush tools than Lightroom, but Lightroom offers simple cloning and healing that’s nondestructive. Lightroom supports the RAW formats of more cameras than Aperture. Lightroom provides the option of storing images outside the application in the file system. It costs less than photoshop. Download Why PhotoShop is advanced than Lightroom? There are countless image processing plug-ins on the market for doing specialized processing in Photoshop. For example, if your image needs sophisticated noise reduction, you can use the Noiseware plug-in with Photoshop to do a much better job or noise removal than Lightroom can do. Lightroom’s advantages over Aperture 3 Will always have better integration with Photoshop. Lightroom is backed by bigger and more active user community (So abundant availability for tutorials, etc.) Better noise reduction tool. Especially for photographers the Lens-distortion correction tool  is perfect Lightroom Cons: • Have to Import images to work on them • Slows down with over 10,000 images in the catalog • For processing just one or two images this is a slower workflow Photoshop Pros: • ACR has the same RAW processing controls as Lightroom • ACR Histogram is specialized to the chosen color space (Lightroom is locked into ProPhoto RGB color space with an sRGB tone curve) • Don’t have to Import images to open in Bridge or ACR • Ability to customize processing of RAW images with Photoshop Actions Pricing and Availability Get LightRoomGet PhotoShop Latest version Of Photoshop can be purchased from Adobe store and Adobe authorized reseller and it costs US$999. Latest version of Aperture can be bought for US$199 from Apple Online store or Mac App Store. You can buy latest version of LightRoom from Adobe Store or Adobe Authorized reseller for US$299. Related posts:Adobe Photoshop CS5 vs Photoshop CS5 extended Web based Alternatives to Photoshop 10 Free Alternatives for Adobe Photoshop Software

    Read the article

  • Create a trailing, ghosting effect of a sprite

    - by Neeko
    I want to create a trailing, ghosting like effect of a sprite that's moving fast. Something very similar to this image of Sonic (apologies of bad quality, it's the only example I could find of the effect I'm looking to achieve) However, I don't want to do this at the sprite sheet level, to avoid having to essentially double (or possibly quadruple) the amount of sprites in my atlas. It's also very labor intensive. So is there any other way to achieve this effect? Possibly by some shader voodoo magic? I am using Unity and 2D Toolkit, if that helps.

    Read the article

  • Mobile HCM: It’s not the future, it is right now

    - by Natalia Rachelson
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Calibri","sans-serif"; mso-ascii- mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi- mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} A guest post by Steve Boese, Director Product Strategy, Oracle I’ll bet you reached for your iPhone or Android or BlackBerry and took a quick look at email or Facebook or last night’s text messages before you even got out of bed this morning. Come on, admit it, it’s ok, you are among friends here. See, feel better now? But seriously, the incredible growth and near-ubiquity of increasingly powerful, capable, and for many of us, essential in our daily lives mobile devices has profoundly changed the way we communicate, consume information, socialize, and more and more, conduct business and get our work done. And if you doubt that profound change has happened, just think for a moment about the last time you misplaced your iPhone.  The shivers, the cold sweats, the panic... We have all been there. And indeed your personal experiences with mobile technology echoes throughout the world - here are a few data points to consider: Market research firm IDC estimates 1.8 billion mobile phones will be shipped in 2012. A recent Pew study reports 46% of Americans own a smartphone of some kind. And finally in the USA, ownership of tablets like the iPad has doubled from 10% to 19% in the last year. So truly for the Human Resources leader, the question is no longer, ‘Should HR explore ways to exploit mobile devices and their always-on nature to better support and empower the modern workforce?’, but rather ‘How can HR best take advantage of smartphone and tablet capability to provide information, enable transactions, and enhance decision making?’. Because even though moving HCM applications to mobile devices seems inherently logical given today’s fast-moving and mobile workforces, and its promise to deliver incredible value to the organization, HR leaders also have to consider many factors before devising their Mobile HCM strategy and embarking on mobile HR technology projects. Here are just some of the important considerations for HR leaders as you build your strategies and evaluate mobile HCM solutions: Does your organization provide mobile devices to the workforce today, and if so, will the current set of deployed devices have the necessary capability and ecosystems to support your mobile HCM initiatives? Will you allow workers to use or bring their own mobile devices, (commonly abbreviated as ‘BYOD’), and if so are your IT and Security organizations in agreement and capable of supporting that strategy? Do you know which workers need access to mobile HCM applications? Often mobile HCM capability flows down in an organization, with executives and other ‘road-warrior’ types having the most immediate needs, followed by field sales staff, project managers, and even potential job candidates. But just as an organization will have to spend time understanding ‘who’ should have access to mobile HCM technology, the ‘what’ of the way the solutions should be deployed to these groups will also vary. What works and makes sense for the executive, (company-wide dashboards and analytics on an iPad), might not be as relevant for a retail store manager, (employee schedules, location-level sales and inventory data, transaction approvals, etc.). With Oracle Fusion HCM, we are taking an approach to mobile HR that encompasses not just the mobile solution needs for the various types of worker, but also incorporates the fundamental attributes of great mobile applications - the ability to support end-to-end transactions, apps that respond with lightning-fast speed, with functions that are embedded in a worker’s daily activities, and features that can be mashed-up easily with other business areas like Finance and CRM. Finally, and perhaps most importantly for the Oracle Fusion HCM team, delivering mobile experiences that truly enhance, enable, and empower the mobile workforce, and deliver on the design mantras of the best-in-class consumer applications, continues to shape and drive design decisions. Mobile is no longer the future, it is right now, and the cutting-edge HR leader of today will need to consider how mobile fits her HCM technology strategy from here on out. You can learn more about our ideas and plans for Oracle Fusion HCM mobile solutions at https://fusiontap.oracle.com/.

    Read the article

  • How to eliminate screen jitter in Flash game?

    - by Huang F. Lei
    We made a flash game with a big screen size(1000x600), and the terrain graphic will jitter while the screen scrolling(that's, camera moving with player) continuously. What's the root cause? Or if you know how to eliminate this problem, please tell me. Any help is appreciated. UPDATE: The map's size is more bigger than screen, e.g 6000x1200. And the map has more than one layer, generally it has 3 layers. Terrain is composed by tiles. And FPS is 24. If the FPS is set to 60, things will be better. But any way, it should work well at 24 FPS. I'm not sure if it is a natural problem of flash player, because some times a terrain object(e.g a house) look like a little bit distorted.

    Read the article

  • Finding the Value in SOA by Stephen Bennett

    - by J Swaroop
    Here's an excerpt from a very interesting article on CIO update titled "Finding the value in SOA" by Stephen Bennett of Oracle "Because of this, SOA must not be seen as a solution development approach that starts and ends once a solution is delivered. It must be seen as an on-going process that, when coupled with a strategic framework, can change and evolve with the business over time. Unfortunately, many enterprises adopt SOA without utilizing a strategic framework, causing a host of challenges for their business. Just a few of the challenges I have seen include: More complexity and moving parts Increased costs Projects taking longer than before Solutions more fragile than ever Little or no agility Difficulty identifying and discovering services Exponentially growing governance challenges Limited service re-use Duplication of effort leading to service sprawl Multiple siloed technology focused SOAs Funding for service oriented projects being cut" Read the complete article

    Read the article

  • Daisies and Rye Swaying in the Summer Wind Wallpaper

    - by Asian Angel
    Flowers [DesktopNexus] Latest Features How-To Geek ETC Should You Delete Windows 7 Service Pack Backup Files to Save Space? What Can Super Mario Teach Us About Graphics Technology? Windows 7 Service Pack 1 is Released: But Should You Install It? How To Make Hundreds of Complex Photo Edits in Seconds With Photoshop Actions How to Enable User-Specific Wireless Networks in Windows 7 How to Use Google Chrome as Your Default PDF Reader (the Easy Way) Reclaim Vertical UI Space by Moving Your Tabs to the Side in Firefox Wind and Water: Puzzle Battles – An Awesome Game for Linux and Windows How Star Wars Changed the World [Infographic] Tabs Visual Manager Adds Thumbnailed Tab Switching to Chrome Daisies and Rye Swaying in the Summer Wind Wallpaper Read On Phone Pushes Data from Your Desktop to the Appropriate Android App

    Read the article

  • IIS7.5 + Wordpress + Restrict Access to wp-login.php by client IP address

    - by JuanValdez
    I am moving from an Apache host to IIS. One of my sites in Wordpress (running Multi-site) which give me multiple blogs. I have moved all my rules from my .htaccess to the Microsoft URL ReWrite module. I have one section left that will not import. I want to restrict access to all instances of the file wp-login.php by Client IP address. In my .htaccess file I did the following: <Files wp-login.php> Order Deny,Allow Deny from all Allow from 192.168 </Files> Any smart ideas on how to accompish this in IIS7.5?

    Read the article

  • The “AfterDark” reception is back!

    - by rituchhibber
    This year, the OPN Exchange “AfterDark” Reception is moving to new heights! Join us on the 5th floor of the Metreon building in San Francisco for this exclusive ‘VIP’ event. The reception will be held from 7:30 p.m. – 10 p.m. on Sunday, September 30th. Enjoy the smooth sounds of Macy Gray over a cocktail, as you network the night away and watch the 2012 live Music Festival performances from above! Best of all, this event is exclusive and free to all Oracle PartnerNetwork Exchange attendees! So come mix and mingle with us as we kick-off Oracle OpenWorld 2012 with great conversation and music! See You After Dark! The OPN Communications Team

    Read the article

  • Opengl glVertexAttrib4fv doesn't work?

    - by Naor
    This is my vertex shader: static const GLchar * vertex_shader_source[] = { "#version 430 core \n" "layout (location = 0) in vec4 offset; \n" "void main(void) \n" "{ \n" " const vec4 vertices[3] = vec4[3](vec4( 0.25, -0.25, 0.5, 1.0),\n" " vec4(-0.25, -0.25, 0.5, 1.0), \n" " vec4( 0.25, 0.25, 0.5, 1.0)); \n" " gl_Position = vertices[gl_VertexID] + offset; \n" "} \n" }; and this is what im trying to do: glUseProgram(rendering_program); GLfloat attrib[] = { (float)sin(currentTime) * 0.5f, (float)cos(currentTime) * 0.6f, 0.0f, 0.0f }; glVertexAttrib4fv(0, attrib); glDrawArrays(GL_TRIANGLES, 0, 3); currentTime - The number in seconds since the program has started. Expected result - Triangle moving around the window. Its from the SuperBible book (sixth edition), this is the full code:http://pastebin.com/xA3eCKz1 The triangle should move across the screen but it doesn't.

    Read the article

  • .co.uk targeted for google.co.uk .com targeted for google.com

    - by Higgs Boson
    We've had a website running on a .co.uk domain for some years, this domain is listed in the SERPS for our brand on both google.co.uk and google.com. We get little traffic from anywhere other than the UK because the website is targeted at the UK market with specific UK keywords. This is great, however we recently purchased the .com domain with the intention of producing a second version of the website targeted to the United States with US specific keywords i.e. targeting and moving in to the US marketplace. We have used Google webmaster tools to set the geographic target for the .com domain to be the US. I think I was expecting ONLY the .com site to show up when searching google.com and only the .co.uk site to show up when searching google.co.uk. However when we search google.com for our 'brand' the .co.uk site is listed in the SERPS. We would prefer the .com to appear in the SERPS on google.com. Is there anything we can do?

    Read the article

< Previous Page | 86 87 88 89 90 91 92 93 94 95 96 97  | Next Page >