Search Results

Search found 15353 results on 615 pages for 'native methods'.

Page 90/615 | < Previous Page | 86 87 88 89 90 91 92 93 94 95 96 97  | Next Page >

  • how to return response from post in a variable? jQuery

    - by robertdd
    i use this function to return the response of post: $.sendpost = function(){ return jQuery.post('inc/operations.php', {'operation':'test'}, "json"); }, i want to make something like this: in: $.another = function(){ var sendpost = $.sendpost(); alert(sendpost); } but i get: [object XMLHttpRequest] if i print the object with: jQuery.each(sendpost, function(i, val) { $(".displaydetails").append(i + " => " + val + "<br/>"); }); i get: details abort => function () { x && h.call(x); g("abort"); } dispatchEvent => function dispatchEvent() { [native code] } removeEventListener => function removeEventListener() { [native code] } open => function open() { [native code] } setRequestHeader => function setRequestHeader() { [native code] } onreadystatechange => [xpconnect wrapped nsIDOMEventListener] send => function send() { [native code] } readyState => 4 status => 200 getResponseHeader => function getResponseHeader() { [native code] } responseText => mdaaa from php how to return only the response in the variable?

    Read the article

  • Same random numbers from instantiated class

    - by user1797202
    I'm learning C# and created a class within my program that holds a random number generator: class RandomNumberGenerator { Random RNG = new Random(); // A bunch of methods that use random numbers are in here } Inside this class are a few methods that use the RNG. Data gets sent here from other parts of the program, gets processed, then gets returned. One of the methods does the following: // Method works something like this int Value1 = RNG.Next(x, y); int Value2 = RNG.Next(x, y); int Value3 = RNG.Next(x, y); The x, y values are to be sent here from another class. So, I have to create an instance of the RandomNumberGenerator within that class so I can call its methods and pass the x and y values to it. class DoStuff { RandomNumberGenerator Randomizer = new RandomNumberGenerator // Here I call a bunch of Randomizer methods that give me values I need } The problem in the above method is that I get the same numbers every time for all three values. I'm not sure if it's because they're so close together and Randomizer's seed value hasn't had time to change or if I'm doing something wrong when I create a new instance of the RandomNumberGenerator class. I've gone through a bunch of answers on here already and typically problems like this are due to people creating many new Random objects when they run methods (thus setting the seed for all of them to the same value), but the only new Random object I create is within the RandomNumberGenerator class. I then instantiate that once within the other class so I can pass it data and use its methods. Why is this happening and how would I fix this?

    Read the article

  • The broken Promise of the Mobile Web

    - by Rick Strahl
    High end mobile devices have been with us now for almost 7 years and they have utterly transformed the way we access information. Mobile phones and smartphones that have access to the Internet and host smart applications are in the hands of a large percentage of the population of the world. In many places even very remote, cell phones and even smart phones are a common sight. I’ll never forget when I was in India in 2011 I was up in the Southern Indian mountains riding an elephant out of a tiny local village, with an elephant herder in front riding atop of the elephant in front of us. He was dressed in traditional garb with the loin wrap and head cloth/turban as did quite a few of the locals in this small out of the way and not so touristy village. So we’re slowly trundling along in the forest and he’s lazily using his stick to guide the elephant and… 10 minutes in he pulls out his cell phone from his sash and starts texting. In the middle of texting a huge pig jumps out from the side of the trail and he takes a picture running across our path in the jungle! So yeah, mobile technology is very pervasive and it’s reached into even very buried and unexpected parts of this world. Apps are still King Apps currently rule the roost when it comes to mobile devices and the applications that run on them. If there’s something that you need on your mobile device your first step usually is to look for an app, not use your browser. But native app development remains a pain in the butt, with the requirement to have to support 2 or 3 completely separate platforms. There are solutions that try to bridge that gap. Xamarin is on a tear at the moment, providing their cross-device toolkit to build applications using C#. While Xamarin tools are impressive – and also *very* expensive – they only address part of the development madness that is app development. There are still specific device integration isssues, dealing with the different developer programs, security and certificate setups and all that other noise that surrounds app development. There’s also PhoneGap/Cordova which provides a hybrid solution that involves creating local HTML/CSS/JavaScript based applications, and then packaging them to run in a specialized App container that can run on most mobile device platforms using a WebView interface. This allows for using of HTML technology, but it also still requires all the set up, configuration of APIs, security keys and certification and submission and deployment process just like native applications – you actually lose many of the benefits that  Web based apps bring. The big selling point of Cordova is that you get to use HTML have the ability to build your UI once for all platforms and run across all of them – but the rest of the app process remains in place. Apps can be a big pain to create and manage especially when we are talking about specialized or vertical business applications that aren’t geared at the mainstream market and that don’t fit the ‘store’ model. If you’re building a small intra department application you don’t want to deal with multiple device platforms and certification etc. for various public or corporate app stores. That model is simply not a good fit both from the development and deployment perspective. Even for commercial, big ticket apps, HTML as a UI platform offers many advantages over native, from write-once run-anywhere, to remote maintenance, single point of management and failure to having full control over the application as opposed to have the app store overloads censor you. In a lot of ways Web based HTML/CSS/JavaScript applications have so much potential for building better solutions based on existing Web technologies for the very same reasons a lot of content years ago moved off the desktop to the Web. To me the Web as a mobile platform makes perfect sense, but the reality of today’s Mobile Web unfortunately looks a little different… Where’s the Love for the Mobile Web? Yet here we are in the middle of 2014, nearly 7 years after the first iPhone was released and brought the promise of rich interactive information at your fingertips, and yet we still don’t really have a solid mobile Web platform. I know what you’re thinking: “But we have lots of HTML/JavaScript/CSS features that allows us to build nice mobile interfaces”. I agree to a point – it’s actually quite possible to build nice looking, rich and capable Web UI today. We have media queries to deal with varied display sizes, CSS transforms for smooth animations and transitions, tons of CSS improvements in CSS 3 that facilitate rich layout, a host of APIs geared towards mobile device features and lately even a number of JavaScript framework choices that facilitate development of multi-screen apps in a consistent manner. Personally I’ve been working a lot with AngularJs and heavily modified Bootstrap themes to build mobile first UIs and that’s been working very well to provide highly usable and attractive UI for typical mobile business applications. From the pure UI perspective things actually look very good. Not just about the UI But it’s not just about the UI - it’s also about integration with the mobile device. When it comes to putting all those pieces together into what amounts to a consolidated platform to build mobile Web applications, I think we still have a ways to go… there are a lot of missing pieces to make it all work together and integrate with the device more smoothly, and more importantly to make it work uniformly across the majority of devices. I think there are a number of reasons for this. Slow Standards Adoption HTML standards implementations and ratification has been dreadfully slow, and browser vendors all seem to pick and choose different pieces of the technology they implement. The end result is that we have a capable UI platform that’s missing some of the infrastructure pieces to make it whole on mobile devices. There’s lots of potential but what is lacking that final 10% to build truly compelling mobile applications that can compete favorably with native applications. Some of it is the fragmentation of browsers and the slow evolution of the mobile specific HTML APIs. A host of mobile standards exist but many of the standards are in the early review stage and they have been there stuck for long periods of time and seem to move at a glacial pace. Browser vendors seem even slower to implement them, and for good reason – non-ratified standards mean that implementations may change and vendor implementations tend to be experimental and  likely have to be changed later. Neither Vendors or developers are not keen on changing standards. This is the typical chicken and egg scenario, but without some forward momentum from some party we end up stuck in the mud. It seems that either the standards bodies or the vendors need to carry the torch forward and that doesn’t seem to be happening quickly enough. Mobile Device Integration just isn’t good enough Current standards are not far reaching enough to address a number of the use case scenarios necessary for many mobile applications. While not every application needs to have access to all mobile device features, almost every mobile application could benefit from some integration with other parts of the mobile device platform. Integration with GPS, phone, media, messaging, notifications, linking and contacts system are benefits that are unique to mobile applications and could be widely used, but are mostly (with the exception of GPS) inaccessible for Web based applications today. Unfortunately trying to do most of this today only with a mobile Web browser is a losing battle. Aside from PhoneGap/Cordova’s app centric model with its own custom API accessing mobile device features and the token exception of the GeoLocation API, most device integration features are not widely supported by the current crop of mobile browsers. For example there’s no usable messaging API that allows access to SMS or contacts from HTML. Even obvious components like the Media Capture API are only implemented partially by mobile devices. There are alternatives and workarounds for some of these interfaces by using browser specific code, but that’s might ugly and something that I thought we were trying to leave behind with newer browser standards. But it’s not quite working out that way. It’s utterly perplexing to me that mobile standards like Media Capture and Streams, Media Gallery Access, Responsive Images, Messaging API, Contacts Manager API have only minimal or no traction at all today. Keep in mind we’ve had mobile browsers for nearly 7 years now, and yet we still have to think about how to get access to an image from the image gallery or the camera on some devices? Heck Windows Phone IE Mobile just gained the ability to upload images recently in the Windows 8.1 Update – that’s feature that HTML has had for 20 years! These are simple concepts and common problems that should have been solved a long time ago. It’s extremely frustrating to see build 90% of a mobile Web app with relative ease and then hit a brick wall for the remaining 10%, which often can be show stoppers. The remaining 10% have to do with platform integration, browser differences and working around the limitations that browsers and ‘pinned’ applications impose on HTML applications. The maddening part is that these limitations seem arbitrary as they could easily work on all mobile platforms. For example, SMS has a URL Moniker interface that sort of works on Android, works badly with iOS (only works if the address is already in the contact list) and not at all on Windows Phone. There’s no reason this shouldn’t work universally using the same interface – after all all phones have supported SMS since before the year 2000! But, it doesn’t have to be this way Change can happen very quickly. Take the GeoLocation API for example. Geolocation has taken off at the very beginning of the mobile device era and today it works well, provides the necessary security (a big concern for many mobile APIs), and is supported by just about all major mobile and even desktop browsers today. It handles security concerns via prompts to avoid unwanted access which is a model that would work for most other device APIs in a similar fashion. One time approval and occasional re-approval if code changes or caches expire. Simple and only slightly intrusive. It all works well, even though GeoLocation actually has some physical limitations, such as representing the current location when no GPS device is present. Yet this is a solved problem, where other APIs that are conceptually much simpler to implement have failed to gain any traction at all. Technically none of these APIs should be a problem to implement, but it appears that the momentum is just not there. Inadequate Web Application Linking and Activation Another important piece of the puzzle missing is the integration of HTML based Web applications. Today HTML based applications are not first class citizens on mobile operating systems. When talking about HTML based content there’s a big difference between content and applications. Content is great for search engine discovery and plain browser usage. Content is usually accessed intermittently and permanent linking is not so critical for this type of content.  But applications have different needs. Applications need to be started up quickly and must be easily switchable to support a multi-tasking user workflow. Therefore, it’s pretty crucial that mobile Web apps are integrated into the underlying mobile OS and work with the standard task management features. Unfortunately this integration is not as smooth as it should be. It starts with actually trying to find mobile Web applications, to ‘installing’ them onto a phone in an easily accessible manner in a prominent position. The experience of discovering a Mobile Web ‘App’ and making it sticky is by no means as easy or satisfying. Today the way you’d go about this is: Open the browser Search for a Web Site in the browser with your search engine of choice Hope that you find the right site Hope that you actually find a site that works for your mobile device Click on the link and run the app in a fully chrome’d browser instance (read tiny surface area) Pin the app to the home screen (with all the limitations outline above) Hope you pointed at the right URL when you pinned Even for you and me as developers, there are a few steps in there that are painful and annoying, but think about the average user. First figuring out how to search for a specific site or URL? And then pinning the app and hopefully from the right location? You’ve probably lost more than half of your audience at that point. This experience sucks. For developers too this process is painful since app developers can’t control the shortcut creation directly. This problem often gets solved by crazy coding schemes, with annoying pop-ups that try to get people to create shortcuts via fancy animations that are both annoying and add overhead to each and every application that implements this sort of thing differently. And that’s not the end of it - getting the link onto the home screen with an application icon varies quite a bit between browsers. Apple’s non-standard meta tags are prominent and they work with iOS and Android (only more recent versions), but not on Windows Phone. Windows Phone instead requires you to create an actual screen or rather a partial screen be captured for a shortcut in the tile manager. Who had that brilliant idea I wonder? Surprisingly Chrome on recent Android versions seems to actually get it right – icons use pngs, pinning is easy and pinned applications properly behave like standalone apps and retain the browser’s active page state and content. Each of the platforms has a different way to specify icons (WP doesn’t allow you to use an icon image at all), and the most widely used interface in use today is a bunch of Apple specific meta tags that other browsers choose to support. The question is: Why is there no standard implementation for installing shortcuts across mobile platforms using an official format rather than a proprietary one? Then there’s iOS and the crazy way it treats home screen linked URLs using a crazy hybrid format that is neither as capable as a Web app running in Safari nor a WebView hosted application. Moving off the Web ‘app’ link when switching to another app actually causes the browser and preview it to ‘blank out’ the Web application in the Task View (see screenshot on the right). Then, when the ‘app’ is reactivated it ends up completely restarting the browser with the original link. This is crazy behavior that you can’t easily work around. In some situations you might be able to store the application state and restore it using LocalStorage, but for many scenarios that involve complex data sources (like say Google Maps) that’s not a possibility. The only reason for this screwed up behavior I can think of is that it is deliberate to make Web apps a pain in the butt to use and forcing users trough the App Store/PhoneGap/Cordova route. App linking and management is a very basic problem – something that we essentially have solved in every desktop browser – yet on mobile devices where it arguably matters a lot more to have easy access to web content we have to jump through hoops to have even a remotely decent linking/activation experience across browsers. Where’s the Money? It’s not surprising that device home screen integration and Mobile Web support in general is in such dismal shape – the mobile OS vendors benefit financially from App store sales and have little to gain from Web based applications that bypass the App store and the cash cow that it presents. On top of that, platform specific vendor lock-in of both end users and developers who have invested in hardware, apps and consumables is something that mobile platform vendors actually aspire to. Web based interfaces that are cross-platform are the anti-thesis of that and so again it’s no surprise that the mobile Web is on a struggling path. But – that may be changing. More and more we’re seeing operations shifting to services that are subscription based or otherwise collect money for usage, and that may drive more progress into the Web direction in the end . Nothing like the almighty dollar to drive innovation forward. Do we need a Mobile Web App Store? As much as I dislike moderated experiences in today’s massive App Stores, they do at least provide one single place to look for apps for your device. I think we could really use some sort of registry, that could provide something akin to an app store for mobile Web apps, to make it easier to actually find mobile applications. This could take the form of a specialized search engine, or maybe a more formal store/registry like structure. Something like apt-get/chocolatey for Web apps. It could be curated and provide at least some feedback and reviews that might help with the integrity of applications. Coupled to that could be a native application on each platform that would allow searching and browsing of the registry and then also handle installation in the form of providing the home screen linking, plus maybe an initial security configuration that determines what features are allowed access to for the app. I’m not holding my breath. In order for this sort of thing to take off and gain widespread appeal, a lot of coordination would be required. And in order to get enough traction it would have to come from a well known entity – a mobile Web app store from a no name source is unlikely to gain high enough usage numbers to make a difference. In a way this would eliminate some of the freedom of the Web, but of course this would also be an optional search path in addition to the standard open Web search mechanisms to find and access content today. Security Security is a big deal, and one of the perceived reasons why so many IT professionals appear to be willing to go back to the walled garden of deployed apps is that Apps are perceived as safe due to the official review and curation of the App stores. Curated stores are supposed to protect you from malware, illegal and misleading content. It doesn’t always work out that way and all the major vendors have had issues with security and the review process at some time or another. Security is critical, but I also think that Web applications in general pose less of a security threat than native applications, by nature of the sandboxed browser and JavaScript environments. Web applications run externally completely and in the HTML and JavaScript sandboxes, with only a very few controlled APIs allowing access to device specific features. And as discussed earlier – security for any device interaction can be granted the same for mobile applications through a Web browser, as they can for native applications either via explicit policies loaded from the Web, or via prompting as GeoLocation does today. Security is important, but it’s certainly solvable problem for Web applications even those that need to access device hardware. Security shouldn’t be a reason for Web apps to be an equal player in mobile applications. Apps are winning, but haven’t we been here before? So now we’re finding ourselves back in an era of installed app, rather than Web based and managed apps. Only it’s even worse today than with Desktop applications, in that the apps are going through a gatekeeper that charges a toll and censors what you can and can’t do in your apps. Frankly it’s a mystery to me why anybody would buy into this model and why it’s lasted this long when we’ve already been through this process. It’s crazy… It’s really a shame that this regression is happening. We have the technology to make mobile Web apps much more prominent, but yet we’re basically held back by what seems little more than bureaucracy, partisan bickering and self interest of the major parties involved. Back in the day of the desktop it was Internet Explorer’s 98+%  market shareholding back the Web from improvements for many years – now it’s the combined mobile OS market in control of the mobile browsers. If mobile Web apps were allowed to be treated the same as native apps with simple ways to install and run them consistently and persistently, that would go a long way to making mobile applications much more usable and seriously viable alternatives to native apps. But as it is mobile apps have a severe disadvantage in placement and operation. There are a few bright spots in all of this. Mozilla’s FireFoxOs is embracing the Web for it’s mobile OS by essentially building every app out of HTML and JavaScript based content. It supports both packaged and certified package modes (that can be put into the app store), and Open Web apps that are loaded and run completely off the Web and can also cache locally for offline operation using a manifest. Open Web apps are treated as full class citizens in FireFoxOS and run using the same mechanism as installed apps. Unfortunately FireFoxOs is getting a slow start with minimal device support and specifically targeting the low end market. We can hope that this approach will change and catch on with other vendors, but that’s also an uphill battle given the conflict of interest with platform lock in that it represents. Recent versions of Android also seem to be working reasonably well with mobile application integration onto the desktop and activation out of the box. Although it still uses the Apple meta tags to find icons and behavior settings, everything at least works as you would expect – icons to the desktop on pinning, WebView based full screen activation, and reliable application persistence as the browser/app is treated like a real application. Hopefully iOS will at some point provide this same level of rudimentary Web app support. What’s also interesting to me is that Microsoft hasn’t picked up on the obvious need for a solid Web App platform. Being a distant third in the mobile OS war, Microsoft certainly has nothing to lose and everything to gain by using fresh ideas and expanding into areas that the other major vendors are neglecting. But instead Microsoft is trying to beat the market leaders at their own game, fighting on their adversary’s terms instead of taking a new tack. Providing a kick ass mobile Web platform that takes the lead on some of the proposed mobile APIs would be something positive that Microsoft could do to improve its miserable position in the mobile device market. Where are we at with Mobile Web? It sure sounds like I’m really down on the Mobile Web, right? I’ve built a number of mobile apps in the last year and while overall result and response has been very positive to what we were able to accomplish in terms of UI, getting that final 10% that required device integration dialed was an absolute nightmare on every single one of them. Big compromises had to be made and some features were left out or had to be modified for some devices. In two cases we opted to go the Cordova route in order to get the integration we needed, along with the extra pain involved in that process. Unless you’re not integrating with device features and you don’t care deeply about a smooth integration with the mobile desktop, mobile Web development is fraught with frustration. So, yes I’m frustrated! But it’s not for lack of wanting the mobile Web to succeed. I am still a firm believer that we will eventually arrive a much more functional mobile Web platform that allows access to the most common device features in a sensible way. It wouldn't be difficult for device platform vendors to make Web based applications first class citizens on mobile devices. But unfortunately it looks like it will still be some time before this happens. So, what’s your experience building mobile Web apps? Are you finding similar issues? Just giving up on raw Web applications and building PhoneGap apps instead? Completely skipping the Web and going native? Leave a comment for discussion. Resources Rick Strahl on DotNet Rocks talking about Mobile Web© Rick Strahl, West Wind Technologies, 2005-2014Posted in HTML5  Mobile   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • How to Run Apache Commands From Oracle HTTP Server 11g Home

    - by Daniel Mortimer
    Every now and then you come across a problem when there is nothing in the "troubleshooting manual" which can help you. Instead you need to think outside the box. This happened to me two or three years back. Oracle HTTP Server (OHS) 11g did not start. The error reported back by OPMN was generic and gave no clue, and worse the HTTP Server error log was empty, and remained so even after I had increased the OPMN and HTTP Server log levels. After checking configuration files, operating system resources, etc I was still no nearer the solution. And then the light bulb moment! OHS is based on Apache - what happens if I attempt to start HTTP Server using the native apache command. Trouble was the OHS 11g solution has its binaries and configuration files in separate "home" directories ORACLE_HOME contains the binaries ORACLE_INSTANCE contains the configuration files How to set the environment so that native apache commands run without error? Eventually, with help from a colleague, the knowledge articleHow to Start Oracle HTTP Server 11g Without Using opmnctl [ID 946532.1]was born! To be honest, I cannot remember the exact cause and solution to that OHS problem two or three years ago. But, I do remember that an attempt to start HTTP Server using the native apache command threw back an error to the console which led me to discover the culprit was some unusual filesystem fault.The other day, I was asked to review and publish a new knowledge article which described how to use the apache command to dump a list of static and shared loaded modules. This got me thinking that it was time [ID 946532.1] was given an update. The resultHow To Run Native Apache Commands in an Oracle HTTP Server 11g Environment [ID 946532.1] Highlights: Title change Improved environment setting scripts Interactive, should be no need to manually edit the scripts (although readers are welcome to do so) Automatically dump out some diagnostic information Inclusion of some links to other troubleshooting collateral To view the knowledge article you need a My Oracle Support login. For convenience, you can obtain the scripts via the links below.MS Windows:Wrapper cmd script - calls main cmd script [After download, remove the ".txt" file extension]Main cmd script - sets OHS 11g environment to run Apache commands [After download, remove the ".txt" file extension]Unix:Shell script - sets OHS 11g environment to run Apache commands on Unix Please note: I cannot guarantee that the scripts held in the blog repository will be maintained. Any enhancements or faults will applied to the scripts attached to the knowledge article. Lastly, to find out more about native apache commands, refer to the Apache Documentation apachectl - Apache HTTP Server Control Interface[http://httpd.apache.org/docs/2.2/programs/apachectl.html]httpd - Apache Hypertext Transfer Protocol Server[http://httpd.apache.org/docs/2.2/programs/httpd.html]

    Read the article

  • JRockit Virtual Edition Debug Key

    - by changjae.lee
    There are a few keys that can help the debugging of the JRVE env in console. you can type in each keys in JRVE console to see what's happening under the hood. key '0' : System information key '5' : Enable shutdown key '7' : Start JRockit Management Server (port 7091) key '8' : Statistics Counters key '9' : Full Thread Dump key '0' : Status of Debug-key Below is the sample out from each keys. Debug-key '1' pressed ============ JRockitVE System Information ============ JRockitVE version : 11.1.1.3.0-67-131044 Kernel version : 6.1.0.0-97-131024 JVM version : R27.6.6-28_o-125824-1.6.0_17-20091214-2104-linux-ia32 Hypervisor version : Xen 3.4.0 Boot state : 0x007effff Uptime : 0 days 02:04:31 CPU : uniprocessor @2327 Mhz CPU usage : 0% ctx/s: 285 preempt/s: 0 migrations/s: 0 Physical pages : 82379/261121 (321/1020 MB) Network info : 10.179.97.64 (10.179.97.64/255.255.254.0) GateWay : 10.179.96.1 MAC address : 00:16:3e:7e:dc:78 Boot options : vfsCwd : /application/user_projects/domains/wlsve_domain mainArgs : java -javaagent:/jrockitve/services/sshd/sshd.jar -cp /jrockitve/jrockit/lib/tools.jar:/jrockitve/lib/common.jar:/application/patch_wls1032/profiles/default/sys_manifest_classpath/weblogic_patch.jar:/application/wlserver_10.3/server/lib/weblogic.jar -Dweblogic.Name=WlsveAdmin -Dweblogic.Domain=wlsve_domain -Dweblogic.management.username=weblogic -Dweblogic.management.password=welcome1 -Dweblogic.management.GenerateDefaultConfig=true weblogic.Server consLog : /jrockitve/log/jrockitve.log mounts : ext2 / dev0; posixLocale : en_US posixTimezone : Asia/Seoul posixEncoding : ISO-8859-1 Local disk : Size: 1024M, Used: 728M, Free: 295M ======================================================== Debug-key '5' pressed Shutdown enabled. Debug-key '7' pressed [JRockit] Management server already started. Ignoring request. Debug-key '8' pressed Starting stat recording Debug-key '8' pressed ========= Statistics Counters for the last second ========= dev.eth0_rx.cnt : 22 packets dev.eth0_rx_bytes.cnt : 2704 bytes dev.net_interrupts.cnt : 22 interrupts evt.timer_ticks.cnt : 123 ticks hyper.priv_entries.cnt : 144 entries schedule.context_switches.cnt : 271 switches schedule.idle_cpu_time.cnt : 997318849 nanoseconds schedule.idle_cpu_time_0.cnt : 997318849 nanoseconds schedule.total_cpu_time.cnt : 1000031757 nanoseconds time.system_time.cnt : 1000 ns time.timer_updates.cnt : 123 updates time.wallclock_time.cnt : 1000 ns ======================================= Debug-key '9' pressed ===== FULL THREAD DUMP =============== Fri Jun 4 08:22:12 2010 BEA JRockit(R) R27.6.6-28_o-125824-1.6.0_17-20091214-2104-linux-ia32 "Main Thread" id=1 idx=0x4 tid=1 prio=5 alive, in native, waiting -- Waiting for notification on: weblogic/t3/srvr/T3Srvr@0x646ede8[fat lock] at jrockit/vm/Threads.waitForNotifySignal(JLjava/lang/Object;)Z(Native Method) at java/lang/Object.wait(J)V(Native Method) at java/lang/Object.wait(Object.java:485) at weblogic/t3/srvr/T3Srvr.waitForDeath(T3Srvr.java:919) ^-- Lock released while waiting: weblogic/t3/srvr/T3Srvr@0x646ede8[fat lock] at weblogic/t3/srvr/T3Srvr.run(T3Srvr.java:479) at weblogic/Server.main(Server.java:67) at jrockit/vm/RNI.c2java(IIIII)V(Native Method) -- end of trace "(Signal Handler)" id=2 idx=0x8 tid=2 prio=5 alive, in native, daemon Open lock chains ================ Chain 1: "ExecuteThread: '0' for queue: 'weblogic.socket.Muxer'" id=23 idx=0x50 tid=20 waiting for java/lang/String@0x630c588 held by: "ExecuteThread: '1' for queue: 'weblogic.socket.Muxer'" id=24 idx=0x54 tid=21 (active) ===== END OF THREAD DUMP =============== Debug-key '0' pressed Debug-keys enabled Happy Cloud Walking :)

    Read the article

  • Gradle + Robolectric: Where do I put the file org.robolectric.Config.properties?

    - by Rob Hawkins
    I'm trying to setup a test using Robolectric to click on a menu button in this repository. Basic Robolectric tests will run, but I'm not able to run any project-specific test using resources because it says it can't find my AndroidManifest.xml. After running ../gradlew clean check, here's the standard output from the Robolectric html file: WARNING: No manifest file found at ./AndroidManifest.xml.Falling back to the Android OS resources only. To remove this warning, annotate your test class with @Config(manifest=Config.NONE). I found these instructions which indicate I should create an org.robolectric.Config.properties file, but I'm not sure where to put it. I've tried everywhere, pretty much, and despite moving the file, the path in the error message is always the same as above (./AndroidManifest.xml). This makes me think the build process has never picked up the settings in the file org.robolectric.Config.properties. I also tried the @Config(manifest="") directive but this gave me a cannot find symbol error. If I move the AndroidManifest.xml into my project directory, then I get an error about it not being able to find the path ./res/values and I wasn't able to resolve that either. Any ideas? Update 1 Thanks Eugen, I'm now using @RunWith(RobolectricGradleTestRunner.class) instead of @RunWith(RobolectricTestRunner). Now I get a different error, still occurring on the same line of my BasicTest.java KeywordList keywordList = Robolectric.buildActivity(KeywordList.class).create().get(); Below are results from the standard error, standard output, and "failed tests" tab in the Robolectric test report: Note: I also tried substituting in a jar built from the latest Robolectric updates, robolectric-2.2-SNAPSHOT.jar, but still got an error. Standard Error WARNING: no system properties value for ro.build.date.utc Standard Output DEBUG: Loading resources for net.frontlinesms.android from ~/workspace-studio/frontlinesms-for-android/FrontlineSMS/build/res/all/debug... DEBUG: Loading resources for android from jar:~/.m2/repository/org/robolectric/android-res/4.1.2_r1_rc/android-res-4.1.2_r1_rc-real.jar!/res... INFO: no id mapping found for android:drawable/scrollbar_handle_horizontal; assigning ID #0x1140002 INFO: no id mapping found for android:drawable/scrollbar_handle_vertical; assigning ID #0x1140003 INFO: no id mapping found for android:color/highlighted_text_dark; assigning ID #0x1140004 INFO: no id mapping found for android:color/hint_foreground_dark; assigning ID #0x1140005 INFO: no id mapping found for android:color/link_text_dark; assigning ID #0x1140006 INFO: no id mapping found for android:color/dim_foreground_dark_disabled; assigning ID #0x1140007 INFO: no id mapping found for android:color/dim_foreground_dark; assigning ID #0x1140008 INFO: no id mapping found for android:color/dim_foreground_dark_inverse_disabled; assigning ID #0x1140009 INFO: no id mapping found for android:color/dim_foreground_dark_inverse; assigning ID #0x114000a INFO: no id mapping found for android:color/bright_foreground_dark_inverse; assigning ID #0x114000b INFO: no id mapping found for android:layout/text_edit_paste_window; assigning ID #0x114000c INFO: no id mapping found for android:layout/text_edit_no_paste_window; assigning ID #0x114000d INFO: no id mapping found for android:layout/text_edit_side_paste_window; assigning ID #0x114000e INFO: no id mapping found for android:layout/text_edit_side_no_paste_window; assigning ID #0x114000f INFO: no id mapping found for android:layout/text_edit_suggestion_item; assigning ID #0x1140010 Failed Tests android.view.InflateException: XML file ~/workspace-studio/frontlinesms-for-android/FrontlineSMS/build/res/all/debug/layout/rule_list.xml line #-1 (sorry, not yet implemented): Error inflating class net.frontlinesms.android.ui.view.ActionBar at android.view.LayoutInflater.createView(LayoutInflater.java:613) at android.view.LayoutInflater.createViewFromTag(LayoutInflater.java:687) at android.view.LayoutInflater.rInflate(LayoutInflater.java:746) at android.view.LayoutInflater.inflate(LayoutInflater.java:489) at android.view.LayoutInflater.inflate(LayoutInflater.java:396) at android.view.LayoutInflater.inflate(LayoutInflater.java:352) at org.robolectric.tester.android.view.RoboWindow.setContentView(RoboWindow.java:82) at org.robolectric.shadows.ShadowActivity.setContentView(ShadowActivity.java:272) at android.app.Activity.setContentView(Activity.java) at net.frontlinesms.android.activity.KeywordList.onCreate(KeywordList.java:70) at android.app.Activity.performCreate(Activity.java:5008) at org.fest.reflect.method.Invoker.invoke(Invoker.java:112) at org.robolectric.util.ActivityController$1.run(ActivityController.java:119) at org.robolectric.shadows.ShadowLooper.runPaused(ShadowLooper.java:256) at org.robolectric.util.ActivityController.create(ActivityController.java:114) at org.robolectric.util.ActivityController.create(ActivityController.java:126) at net.frontlinesms.android.BasicTest.setUp(BasicTest.java:30) at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:47) at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12) at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:44) at org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:24) at org.robolectric.RobolectricTestRunner$2.evaluate(RobolectricTestRunner.java:241) at org.junit.runners.ParentRunner.runLeaf(ParentRunner.java:271) at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:70) at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:50) at org.junit.runners.ParentRunner$3.run(ParentRunner.java:238) at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63) at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236) at org.junit.runners.ParentRunner.access$000(ParentRunner.java:53) at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229) at org.robolectric.RobolectricTestRunner$1.evaluate(RobolectricTestRunner.java:177) at org.junit.runners.ParentRunner.run(ParentRunner.java:309) at org.gradle.api.internal.tasks.testing.junit.JUnitTestClassExecuter.runTestClass(JUnitTestClassExecuter.java:80) at org.gradle.api.internal.tasks.testing.junit.JUnitTestClassExecuter.execute(JUnitTestClassExecuter.java:47) at org.gradle.api.internal.tasks.testing.junit.JUnitTestClassProcessor.processTestClass(JUnitTestClassProcessor.java:69) at org.gradle.api.internal.tasks.testing.SuiteTestClassProcessor.processTestClass(SuiteTestClassProcessor.java:49) at org.gradle.messaging.dispatch.ReflectionDispatch.dispatch(ReflectionDispatch.java:35) at org.gradle.messaging.dispatch.ReflectionDispatch.dispatch(ReflectionDispatch.java:24) at org.gradle.messaging.dispatch.ContextClassLoaderDispatch.dispatch(ContextClassLoaderDispatch.java:32) at org.gradle.messaging.dispatch.ProxyDispatchAdapter$DispatchingInvocationHandler.invoke(ProxyDispatchAdapter.java:93) at com.sun.proxy.$Proxy2.processTestClass(Unknown Source) at org.gradle.api.internal.tasks.testing.worker.TestWorker.processTestClass(TestWorker.java:103) at org.gradle.messaging.dispatch.ReflectionDispatch.dispatch(ReflectionDispatch.java:35) at org.gradle.messaging.dispatch.ReflectionDispatch.dispatch(ReflectionDispatch.java:24) at org.gradle.messaging.remote.internal.hub.MessageHub$Handler.run(MessageHub.java:355) at org.gradle.internal.concurrent.DefaultExecutorFactory$StoppableExecutorImpl$1.run(DefaultExecutorFactory.java:66) at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:895) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:918) at java.lang.Thread.run(Thread.java:680) Caused by: java.lang.reflect.InvocationTargetException at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:39) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27) at java.lang.reflect.Constructor.newInstance(Constructor.java:513) at android.view.LayoutInflater.$$robo$$LayoutInflater_1d1f_createView(LayoutInflater.java:587) at android.view.LayoutInflater.createView(LayoutInflater.java) at android.view.LayoutInflater.$$robo$$LayoutInflater_1d1f_createViewFromTag(LayoutInflater.java:687) at android.view.LayoutInflater.createViewFromTag(LayoutInflater.java) at android.view.LayoutInflater.$$robo$$LayoutInflater_1d1f_rInflate(LayoutInflater.java:746) at android.view.LayoutInflater.rInflate(LayoutInflater.java) at android.view.LayoutInflater.$$robo$$LayoutInflater_1d1f_inflate(LayoutInflater.java:489) at android.view.LayoutInflater.inflate(LayoutInflater.java) at android.view.LayoutInflater.$$robo$$LayoutInflater_1d1f_inflate(LayoutInflater.java:396) at android.view.LayoutInflater.inflate(LayoutInflater.java) at android.view.LayoutInflater.$$robo$$LayoutInflater_1d1f_inflate(LayoutInflater.java:352) at android.view.LayoutInflater.inflate(LayoutInflater.java) at org.robolectric.tester.android.view.RoboWindow.setContentView(RoboWindow.java:82) at org.robolectric.shadows.ShadowActivity.setContentView(ShadowActivity.java:272) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.robolectric.bytecode.ShadowWrangler$ShadowMethodPlan.run(ShadowWrangler.java:455) at android.app.Activity.setContentView(Activity.java) at net.frontlinesms.android.activity.KeywordList.onCreate(KeywordList.java:70) at android.app.Activity.$$robo$$Activity_c57b_performCreate(Activity.java:5008) at android.app.Activity.performCreate(Activity.java) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.fest.reflect.method.Invoker.invoke(Invoker.java:112) at org.robolectric.util.ActivityController$1.run(ActivityController.java:119) at org.robolectric.shadows.ShadowLooper.runPaused(ShadowLooper.java:256) at org.robolectric.util.ActivityController.create(ActivityController.java:114) at org.robolectric.util.ActivityController.create(ActivityController.java:126) at net.frontlinesms.android.BasicTest.setUp(BasicTest.java:30) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:47) at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12) at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:44) at org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:24) at org.robolectric.RobolectricTestRunner$2.evaluate(RobolectricTestRunner.java:241) at org.junit.runners.ParentRunner.runLeaf(ParentRunner.java:271) at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:70) at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:50) at org.junit.runners.ParentRunner$3.run(ParentRunner.java:238) at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63) at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236) at org.junit.runners.ParentRunner.access$000(ParentRunner.java:53) at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229) at org.robolectric.RobolectricTestRunner$1.evaluate(RobolectricTestRunner.java:177) at org.junit.runners.ParentRunner.run(ParentRunner.java:309) at org.gradle.api.internal.tasks.testing.junit.JUnitTestClassExecuter.runTestClass(JUnitTestClassExecuter.java:80) at org.gradle.api.internal.tasks.testing.junit.JUnitTestClassExecuter.execute(JUnitTestClassExecuter.java:47) at org.gradle.api.internal.tasks.testing.junit.JUnitTestClassProcessor.processTestClass(JUnitTestClassProcessor.java:69) at org.gradle.api.internal.tasks.testing.SuiteTestClassProcessor.processTestClass(SuiteTestClassProcessor.java:49) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.gradle.messaging.dispatch.ReflectionDispatch.dispatch(ReflectionDispatch.java:35) at org.gradle.messaging.dispatch.ReflectionDispatch.dispatch(ReflectionDispatch.java:24) at org.gradle.messaging.dispatch.ContextClassLoaderDispatch.dispatch(ContextClassLoaderDispatch.java:32) at org.gradle.messaging.dispatch.ProxyDispatchAdapter$DispatchingInvocationHandler.invoke(ProxyDispatchAdapter.java:93) at com.sun.proxy.$Proxy2.processTestClass(Unknown Source) at org.gradle.api.internal.tasks.testing.worker.TestWorker.processTestClass(TestWorker.java:103) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) ... 7 more Caused by: android.view.InflateException: XML file ~/workspace-studio/frontlinesms-for-android/FrontlineSMS/build/res/all/debug/layout/actionbar.xml line #-1 (sorry, not yet implemented): Error inflating class android.widget.ProgressBar at android.view.LayoutInflater.createView(LayoutInflater.java:613) at org.robolectric.shadows.RoboLayoutInflater.onCreateView(RoboLayoutInflater.java:38) at android.view.LayoutInflater.onCreateView(LayoutInflater.java:660) at android.view.LayoutInflater.createViewFromTag(LayoutInflater.java:685) at android.view.LayoutInflater.rInflate(LayoutInflater.java:746) at android.view.LayoutInflater.rInflate(LayoutInflater.java:749) at android.view.LayoutInflater.inflate(LayoutInflater.java:489) at android.view.LayoutInflater.inflate(LayoutInflater.java:396) at net.frontlinesms.android.ui.view.ActionBar.<init>(ActionBar.java:65) at android.view.LayoutInflater.createView(LayoutInflater.java:587) at android.view.LayoutInflater.createViewFromTag(LayoutInflater.java:687) at android.view.LayoutInflater.rInflate(LayoutInflater.java:746) at android.view.LayoutInflater.inflate(LayoutInflater.java:489) at android.view.LayoutInflater.inflate(LayoutInflater.java:396) at android.view.LayoutInflater.inflate(LayoutInflater.java:352) at org.robolectric.tester.android.view.RoboWindow.setContentView(RoboWindow.java:82) at org.robolectric.shadows.ShadowActivity.setContentView(ShadowActivity.java:272) at android.app.Activity.setContentView(Activity.java) at net.frontlinesms.android.activity.KeywordList.onCreate(KeywordList.java:70) at android.app.Activity.performCreate(Activity.java:5008) at org.fest.reflect.method.Invoker.invoke(Invoker.java:112) at org.robolectric.util.ActivityController$1.run(ActivityController.java:119) at org.robolectric.shadows.ShadowLooper.runPaused(ShadowLooper.java:256) at org.robolectric.util.ActivityController.create(ActivityController.java:114) at org.robolectric.util.ActivityController.create(ActivityController.java:126) at net.frontlinesms.android.BasicTest.setUp(BasicTest.java:30) at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:47) at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12) at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:44) at org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:24) at org.robolectric.RobolectricTestRunner$2.evaluate(RobolectricTestRunner.java:241) at org.junit.runners.ParentRunner.runLeaf(ParentRunner.java:271) at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:70) at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:50) at org.junit.runners.ParentRunner$3.run(ParentRunner.java:238) at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63) at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236) at org.junit.runners.ParentRunner.access$000(ParentRunner.java:53) at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229) at org.robolectric.RobolectricTestRunner$1.evaluate(RobolectricTestRunner.java:177) at org.junit.runners.ParentRunner.run(ParentRunner.java:309) at org.gradle.api.internal.tasks.testing.junit.JUnitTestClassExecuter.runTestClass(JUnitTestClassExecuter.java:80) at org.gradle.api.internal.tasks.testing.junit.JUnitTestClassExecuter.execute(JUnitTestClassExecuter.java:47) at org.gradle.api.internal.tasks.testing.junit.JUnitTestClassProcessor.processTestClass(JUnitTestClassProcessor.java:69) at org.gradle.api.internal.tasks.testing.SuiteTestClassProcessor.processTestClass(SuiteTestClassProcessor.java:49) at org.gradle.messaging.dispatch.ReflectionDispatch.dispatch(ReflectionDispatch.java:35) at org.gradle.messaging.dispatch.ReflectionDispatch.dispatch(ReflectionDispatch.java:24) at org.gradle.messaging.dispatch.ContextClassLoaderDispatch.dispatch(ContextClassLoaderDispatch.java:32) at org.gradle.messaging.dispatch.ProxyDispatchAdapter$DispatchingInvocationHandler.invoke(ProxyDispatchAdapter.java:93) at com.sun.proxy.$Proxy2.processTestClass(Unknown Source) at org.gradle.api.internal.tasks.testing.worker.TestWorker.processTestClass(TestWorker.java:103) ... 7 more Caused by: java.lang.reflect.InvocationTargetException at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:39) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27) at java.lang.reflect.Constructor.newInstance(Constructor.java:513) at android.view.LayoutInflater.$$robo$$LayoutInflater_1d1f_createView(LayoutInflater.java:587) at android.view.LayoutInflater.createView(LayoutInflater.java) at org.robolectric.shadows.RoboLayoutInflater.onCreateView(RoboLayoutInflater.java:38) at android.view.LayoutInflater.$$robo$$LayoutInflater_1d1f_onCreateView(LayoutInflater.java:660) at android.view.LayoutInflater.onCreateView(LayoutInflater.java) at android.view.LayoutInflater.$$robo$$LayoutInflater_1d1f_createViewFromTag(LayoutInflater.java:685) at android.view.LayoutInflater.createViewFromTag(LayoutInflater.java) at android.view.LayoutInflater.$$robo$$LayoutInflater_1d1f_rInflate(LayoutInflater.java:746) at android.view.LayoutInflater.rInflate(LayoutInflater.java) at android.view.LayoutInflater.$$robo$$LayoutInflater_1d1f_rInflate(LayoutInflater.java:749) at android.view.LayoutInflater.rInflate(LayoutInflater.java) at android.view.LayoutInflater.$$robo$$LayoutInflater_1d1f_inflate(LayoutInflater.java:489) at android.view.LayoutInflater.inflate(LayoutInflater.java) at android.view.LayoutInflater.$$robo$$LayoutInflater_1d1f_inflate(LayoutInflater.java:396) at android.view.LayoutInflater.inflate(LayoutInflater.java) at net.frontlinesms.android.ui.view.ActionBar.<init>(ActionBar.java:65) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:39) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27) at java.lang.reflect.Constructor.newInstance(Constructor.java:513) at android.view.LayoutInflater.$$robo$$LayoutInflater_1d1f_createView(LayoutInflater.java:587) at android.view.LayoutInflater.createView(LayoutInflater.java) at android.view.LayoutInflater.$$robo$$LayoutInflater_1d1f_createViewFromTag(LayoutInflater.java:687) at android.view.LayoutInflater.createViewFromTag(LayoutInflater.java) at android.view.LayoutInflater.$$robo$$LayoutInflater_1d1f_rInflate(LayoutInflater.java:746) at android.view.LayoutInflater.rInflate(LayoutInflater.java) at android.view.LayoutInflater.$$robo$$LayoutInflater_1d1f_inflate(LayoutInflater.java:489) at android.view.LayoutInflater.inflate(LayoutInflater.java) at android.view.LayoutInflater.$$robo$$LayoutInflater_1d1f_inflate(LayoutInflater.java:396) at android.view.LayoutInflater.inflate(LayoutInflater.java) at android.view.LayoutInflater.$$robo$$LayoutInflater_1d1f_inflate(LayoutInflater.java:352) at android.view.LayoutInflater.inflate(LayoutInflater.java) at org.robolectric.tester.android.view.RoboWindow.setContentView(RoboWindow.java:82) at org.robolectric.shadows.ShadowActivity.setContentView(ShadowActivity.java:272) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.robolectric.bytecode.ShadowWrangler$ShadowMethodPlan.run(ShadowWrangler.java:455) at android.app.Activity.setContentView(Activity.java) at net.frontlinesms.android.activity.KeywordList.onCreate(KeywordList.java:70) at android.app.Activity.$$robo$$Activity_c57b_performCreate(Activity.java:5008) at android.app.Activity.performCreate(Activity.java) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.fest.reflect.method.Invoker.invoke(Invoker.java:112) at org.robolectric.util.ActivityController$1.run(ActivityController.java:119) at org.robolectric.shadows.ShadowLooper.runPaused(ShadowLooper.java:256) at org.robolectric.util.ActivityController.create(ActivityController.java:114) at org.robolectric.util.ActivityController.create(ActivityController.java:126) at net.frontlinesms.android.BasicTest.setUp(BasicTest.java:30) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:47) at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12) at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:44) at org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:24) at org.robolectric.RobolectricTestRunner$2.evaluate(RobolectricTestRunner.java:241) at org.junit.runners.ParentRunner.runLeaf(ParentRunner.java:271) at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:70) at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:50) at org.junit.runners.ParentRunner$3.run(ParentRunner.java:238) at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:63) at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:236) at org.junit.runners.ParentRunner.access$000(ParentRunner.java:53) at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:229) at org.robolectric.RobolectricTestRunner$1.evaluate(RobolectricTestRunner.java:177) at org.junit.runners.ParentRunner.run(ParentRunner.java:309) at org.gradle.api.internal.tasks.testing.junit.JUnitTestClassExecuter.runTestClass(JUnitTestClassExecuter.java:80) at org.gradle.api.internal.tasks.testing.junit.JUnitTestClassExecuter.execute(JUnitTestClassExecuter.java:47) at org.gradle.api.internal.tasks.testing.junit.JUnitTestClassProcessor.processTestClass(JUnitTestClassProcessor.java:69) at org.gradle.api.internal.tasks.testing.SuiteTestClassProcessor.processTestClass(SuiteTestClassProcessor.java:49) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.gradle.messaging.dispatch.ReflectionDispatch.dispatch(ReflectionDispatch.java:35) at org.gradle.messaging.dispatch.ReflectionDispatch.dispatch(ReflectionDispatch.java:24) at org.gradle.messaging.dispatch.ContextClassLoaderDispatch.dispatch(ContextClassLoaderDispatch.java:32) at org.gradle.messaging.dispatch.ProxyDispatchAdapter$DispatchingInvocationHandler.invoke(ProxyDispatchAdapter.java:93) at com.sun.proxy.$Proxy2.processTestClass(Unknown Source) at org.gradle.api.internal.tasks.testing.worker.TestWorker.processTestClass(TestWorker.java:103) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) ... 7 more Caused by: java.lang.ClassCastException: org.robolectric.res.AttrData cannot be cast to org.robolectric.res.StyleData at org.robolectric.shadows.ShadowAssetManager$StyleResolver.getParent(ShadowAssetManager.java:353) at org.robolectric.shadows.ShadowAssetManager$StyleResolver.getAttrValue(ShadowAssetManager.java:336) at org.robolectric.shadows.ShadowResources.findAttributeValue(ShadowResources.java:259) at org.robolectric.shadows.ShadowResources.attrsToTypedArray(ShadowResources.java:188) at org.robolectric.shadows.ShadowResources.access$000(ShadowResources.java:51) at org.robolectric.shadows.ShadowResources$ShadowTheme.obtainStyledAttributes(ShadowResources.java:460) at android.content.res.Resources$Theme.obtainStyledAttributes(Resources.java) at android.content.Context.obtainStyledAttributes(Context.java:374) at android.view.View.__constructor__(View.java:3297) at org.fest.reflect.method.Invoker.invoke(Invoker.java:112) at org.robolectric.shadows.ShadowView.__constructor__(ShadowView.java:68) at android.view.View.<init>(View.java:3295) at android.widget.ProgressBar.<init>(ProgressBar.java:253) at android.widget.ProgressBar.<init>(ProgressBar.java:246) at android.widget.ProgressBar.<init>(ProgressBar.java:242) at android.view.LayoutInflater.createView(LayoutInflater.java:587) at org.robolectric.shadows.RoboLayoutInflater.onCreateView(RoboLayoutInflater.java:38) at android.view.LayoutInflater.onCreateView(LayoutInflater.java:660) at android.view.LayoutInflater.createViewFromTag(LayoutInflater.java:685) at android.view.LayoutInflater.rInflate(LayoutInflater.java:746) at android.view.LayoutInflater.rInflate(LayoutInflater.java:749) at android.view.LayoutInflater.inflate(LayoutInflater.java:489) at android.view.LayoutInflater.inflate(LayoutInflater.java:396) at net.frontlinesms.android.ui.view.ActionBar.<init>(ActionBar.java:65) at android.view.LayoutInflater.createView(LayoutInflater.java:587) at android.view.LayoutInflater.createViewFromTag(LayoutInflater.java:687) at android.view.LayoutInflater.rInflate(LayoutInflater.java:746) at android.view.LayoutInflater.inflate(LayoutInflater.java:489) at android.view.LayoutInflater.inflate(LayoutInflater.java:396) at android.view.LayoutInflater.inflate(LayoutInflater.java:352) at org.robolectric.tester.android.view.RoboWindow.setContentView(RoboWindow.java:82) [truncated, hit stack overflow character limit...]

    Read the article

  • Impossible to do POSTs with appengine-jruby/RoR: Reflection is not allowed

    - by Joel Cuevas
    I'm trying to build a site with RoR on Google App Engine. I'm using the google-appengine gem (http://appengine-jruby.googlecode.com) and following the instructions in (http://gist.github.com/268192). The problem is that I can't submit ANY form! I've already tried this in two diferent clean Win 7 Pro envs and the result is the same. After install Ruby 1.8.6 (One-Click Installer): 1. gem update --system 2. gem install rails 3. gem install google-appengine 4. gem install rails_dm_datastore 5. gem install activerecord-nulldb-adapter 6. curl -O http://appengine-jruby.googlecode.com/hg/demos/rails2/rails2_appengine.rb 7. ruby rails2_appengine.rb (previously downloaded) 8. rails myproj 9. chmod myproj 10. ruby script/generate dd_model MyModel f1:string f2:float f3:float f4:float f5:integer f6:integer f7:integer -f 11. ruby script/generate scaffold MyModel f1:string f2:float f3:float f4:float f5:integer f6:integer f7:integer -f --skip-migration 12. dev_appserver.rb -p 3000 . At this point, I manually test the scaffold in (http://localhost:3000/my_models). The index is OK, then I create a new registry with the generated form, everything's fine, but when I try to create a second one, I get a "java.lang.RuntimeException: DummyDynamicScope should never be used for backref storage" in the console. As far as I read this is a won't-fix behavior in JRuby 1.4.1, but it's converted to a debug only warning in 1.5.0, so I proceed to install the pre release. 13. gem install appengine-jruby-jars --pre With this, that exception is solved and everything works great... until I move the project to the GAE server. 14. ruby appcfg.rb update . And now, in (http://myproj.appspot.com/my_models), again, the index is fine, also the new form, but in the moment that I submit it with valid data, I get a 500 error: "java.lang.IllegalAccessException: Reflection is not allowed on public int". As I said, this behavior is not present in the local SDK. In both cases, I'm completely unable to post anything. This is what I have right now in the GAE environment: Ruby version 1.8.7 (java) RubyGems disabled Rack version 1.1 Rails version 2.3.5 Action Pack version 2.3.5 Active Support version 2.3.5 DataMapper version 0.10.2 Environment production JRuby Runtime version 1.5.0.pre JRuby-Rack version 0.9.7 AppEngine SDK version Google App Engine/1.3.3 AppEngine APIs version 0.0.15 And this are my intalled gems: actionmailer (2.3.5) actionpack (2.3.5) activerecord (2.3.5) activerecord-nulldb-adapter (0.2.0) activeresource (2.3.5) activesupport (2.3.5) addressable (2.1.2) appengine-apis (0.0.15) appengine-jruby-jars (0.0.8.pre, 0.0.7) appengine-rack (0.0.8) appengine-sdk (1.3.3.1) appengine-tools (0.0.12) bundler08 (0.8.5) dm-appengine (0.0.8) dm-ar-finders (0.10.2) dm-core (0.10.2) dm-timestamps (0.10.2) dm-validations (0.10.2) extlib (0.9.14) fxri (0.3.7, 0.3.6) google-appengine (0.0.12) hpricot (0.8.2 x86-mswin32, 0.6 mswin32) jruby-rack (0.9.8, 0.9.7) log4r (1.1.7, 1.0.5) rack (1.1.0, 1.0.1) rails (2.3.5) rails_appengine (0.0.3) rails_dm_datastore (0.2.9) rake (0.8.7, 0.7.3) rubygems-update (1.3.7, 1.3.6) rubyzip (0.9.4) sources (0.0.1) win32-api (1.4.6 x86-mswin32-60, 1.0.4 mswin32) win32-clipboard (0.5.2, 0.4.3) win32-dir (0.3.6, 0.3.2) win32-eventlog (0.5.2, 0.4.6) win32-file (0.6.3, 0.5.4) win32-file-stat (1.3.4, 1.2.7) win32-process (0.6.2, 0.5.3) win32-sapi (0.1.5, 0.1.4) win32-sound (0.4.2, 0.4.1) windows-api (0.4.0, 0.2.0) windows-pr (1.0.9, 0.7.2) I'm unable to attach the full logs of the exceptions because of the character limits, but I can provide them under request. Here's an abstract of them: DummyDynamicScope (dev and prod envs): 14-may-2010 7:18:40 com.google.appengine.tools.development.ApiProxyLocalImpl log SEVERE: [1273821520195000] javax.servlet.ServletContext log: Application Error java.lang.RuntimeException: DummyDynamicScope should never be used for backref storage at org.jruby.runtime.scope.DummyDynamicScope.getBackRef(DummyDynamicScope.java:49) at org.jruby.RubyRegexp.updateBackRef(RubyRegexp.java:1404) at org.jruby.RubyRegexp.updateBackRef(RubyRegexp.java:1396) at org.jruby.RubyRegexp.search(RubyRegexp.java:1386) at org.jruby.RubyRegexp.op_match(RubyRegexp.java:1301) at org.jruby.RubyString.op_match(RubyString.java:1446) at org.jruby.RubyString$i_method_1_0$RUBYINVOKER$op_match.call(org/jruby/RubyString$i_method_1_0$RUBYINVOKER$op_match.gen) at org.jruby.internal.runtime.methods.JavaMethod$JavaMethodOneOrN.call(JavaMethod.java:721) at org.jruby.RubyClass.finvoke(RubyClass.java:472) at org.jruby.RubyObject.send(RubyObject.java:1442) at org.jruby.RubyObject$i_method_multi$RUBYINVOKER$send.call(org/jruby/RubyObject$i_method_multi$RUBYINVOKER$send.gen) at org.jruby.internal.runtime.methods.JavaMethod$JavaMethodZeroOrOneOrTwoOrNBlock.call(JavaMethod.java:276) at org.jruby.runtime.callsite.CachingCallSite.cacheAndCall(CachingCallSite.java:330) at org.jruby.runtime.callsite.CachingCallSite.call(CachingCallSite.java:189) at ruby.jit.ruby.C_3a_.Desarrollo.AppEngine.gorgory.WEB_minus_INF.lib.gems_dot_jar.bundler_gems.jruby.$1_dot_8.gems.dm_minus_validations_minus_0_dot_10_dot_2.lib.dm_minus_validations.validators.numeric_validator.validate_with_comparison at ruby.jit.ruby.C_3a_.Desarrollo.AppEngine.gorgory.WEB_minus_INF.lib.gems_dot_jar.bundler_gems.jruby.$1_dot_8.gems.dm_minus_validations_minus_0_dot_10_dot_2.lib.dm_minus_validations.validators.numeric_validator.validate_with_comparison at org.jruby.internal.runtime.methods.JittedMethod.call(JittedMethod.java:102) at org.jruby.internal.runtime.methods.DefaultMethod.call(DefaultMethod.java:144) at org.jruby.runtime.callsite.CachingCallSite.cacheAndCall(CachingCallSite.java:280) at org.jruby.runtime.callsite.CachingCallSite.call(CachingCallSite.java:69) at org.jruby.ast.FCallManyArgsNode.interpret(FCallManyArgsNode.java:60) at org.jruby.ast.NewlineNode.interpret(NewlineNode.java:104) at org.jruby.internal.runtime.methods.InterpretedMethod.call(InterpretedMethod.java:229) at org.jruby.internal.runtime.methods.DefaultMethod.call(DefaultMethod.java:193) at org.jruby.RubyClass.finvoke(RubyClass.java:491) at org.jruby.RubyObject.send(RubyObject.java:1448) at org.jruby.RubyObject$i_method_multi$RUBYINVOKER$send.call(org/jruby/RubyObject$i_method_multi$RUBYINVOKER$send.gen) at org.jruby.internal.runtime.methods.JavaMethod$JavaMethodZeroOrOneOrTwoOrThreeOrNBlock.call(JavaMethod.java:293) at org.jruby.runtime.callsite.CachingCallSite.cacheAndCall(CachingCallSite.java:350) at org.jruby.runtime.callsite.CachingCallSite.call(CachingCallSite.java:229) at ruby.jit.ruby.C_3a_.Desarrollo.AppEngine.gorgory.WEB_minus_INF.lib.gems_dot_jar.bundler_gems.jruby.$1_dot_8.gems.dm_minus_validations_minus_0_dot_10_dot_2.lib.dm_minus_validations.validators.numeric_validator.validate_with28985350_50 at ruby.jit.ruby.C_3a_.Desarrollo.AppEngine.gorgory.WEB_minus_INF.lib.gems_dot_jar.bundler_gems.jruby.$1_dot_8.gems.dm_minus_validations_minus_0_dot_10_dot_2.lib.dm_minus_validations.validators.numeric_validator.validate_with28985350_50 at org.jruby.internal.runtime.methods.JittedMethod.call(JittedMethod.java:221) at org.jruby.internal.runtime.methods.DefaultMethod.call(DefaultMethod.java:201) at org.jruby.runtime.callsite.CachingCallSite.call(CachingCallSite.java:227) at org.jruby.ast.FCallThreeArgNode.interpret(FCallThreeArgNode.java:40) Reflection (only prod env): Java::JavaLang::SecurityException (java.lang.IllegalAccessException: Reflection is not allowed on public int java.lang.String$CaseInsensitiveComparator.compare(java.lang.String,java.lang.String)): com.google.appengine.runtime.Request.process-92563a0605f433ea(Request.java) java.lang.reflect.AccessibleObject.setAccessible(AccessibleObject.java:40) org.jruby.javasupport.JavaMethod.<init>(JavaMethod.java:176) org.jruby.javasupport.JavaMethod.create(JavaMethod.java:183) org.jruby.java.invokers.MethodInvoker.createCallable(MethodInvoker.java:23) org.jruby.java.invokers.RubyToJavaInvoker.<init>(RubyToJavaInvoker.java:63) org.jruby.java.invokers.MethodInvoker.<init>(MethodInvoker.java:13) org.jruby.java.invokers.InstanceMethodInvoker.<init>(InstanceMethodInvoker.java:15) org.jruby.javasupport.JavaClass$InstanceMethodInvokerInstaller.install(JavaClass.java:339) org.jruby.javasupport.JavaClass.installClassMethods(JavaClass.java:723) org.jruby.javasupport.JavaClass.setupProxy(JavaClass.java:586) org.jruby.javasupport.Java.createProxyClass(Java.java:506) org.jruby.javasupport.Java.getProxyClass(Java.java:445) org.jruby.javasupport.Java.getInstance(Java.java:354) org.jruby.javasupport.JavaUtil.convertJavaToUsableRubyObject(JavaUtil.java:143) org.jruby.javasupport.JavaClass$ConstantField.install(JavaClass.java:360) org.jruby.javasupport.JavaClass.installClassFields(JavaClass.java:711) org.jruby.javasupport.JavaClass.setupProxy(JavaClass.java:585) org.jruby.javasupport.Java.createProxyClass(Java.java:506) org.jruby.javasupport.Java.getProxyClass(Java.java:445) org.jruby.javasupport.Java.getProxyOrPackageUnderPackage(Java.java:885) org.jruby.javasupport.Java.get_proxy_or_package_under_package(Java.java:918) org.jruby.javasupport.JavaUtilities.get_proxy_or_package_under_package(JavaUtilities.java:54) org.jruby.javasupport.JavaUtilities$s_method_2_0$RUBYINVOKER$get_proxy_or_package_under_package.call(org/jruby/javasupport/JavaUtilities$s_method_2_0$RUBYINVOKER$get_proxy_or_package_under_package.gen:65535) org.jruby.runtime.callsite.CachingCallSite.cacheAndCall(CachingCallSite.java:329) org.jruby.runtime.callsite.CachingCallSite.call(CachingCallSite.java:188) org.jruby.ast.CallTwoArgNode.interpret(CallTwoArgNode.java:59) org.jruby.ast.NewlineNode.interpret(NewlineNode.java:104) org.jruby.ast.BlockNode.interpret(BlockNode.java:71) org.jruby.internal.runtime.methods.InterpretedMethod.call(InterpretedMethod.java:113) org.jruby.internal.runtime.methods.DefaultMethod.call(DefaultMethod.java:138) org.jruby.javasupport.util.RuntimeHelpers$MethodMissingMethod.call(RuntimeHelpers.java:389) org.jruby.internal.runtime.methods.DynamicMethod.call(DynamicMethod.java:182) What should I do now? Any hint would be wellcome. Thanks!

    Read the article

  • Error creating ODBC connection to SQL Server 2008 Express

    - by DavidB
    When creating a System DSN, I get the error: Connection failed: SQLState: '08001' SQL Server Error: 2 [Microsoft][SQL Server Native Client 10.0]Named Pipes Provider: Could not open a connection to SQL Server [2]. Connection failed: SQLState: 'HYT00' SQL Server Error: 0 [Microsoft][SQL Server Native Client 10.0]Login timeout expired I'm running Vista Home Premium 64-bit SP2, and installed SQL Server 2008 Express Advanced without errors. I'll be using the database locally for an app installed on the same PC. I'm able to successfully connect with SQL Server Management Studio using Windows Authentication (my Windows account is a member of local Administrators), and I can successfully create a database with default ownership (defaults to my Windows account). SQL Server Configuration Manager shows that Shared Memory, TCP/IP, and Named Pipes are enabled for SQL Native Client 10.0 Configuration, SQL Native Client 10.0 Configuration (32bit), and SQL Server Network Configuration (SQLEXPRESS). The SQL Server (SQLEXPRESS) and SQL Server Reporting Services (SQLEXPRESS) services are running. When I create a system DSN, my driver choices are SQL server (sqlsrv32.dll 4-10-09), which gives a generic wizard, and SQL Server Native Client 10.0 (sqlncli10.dll 7-10-08), which gives the SQL Server 2008 wizard. I choose the latter. I enter name, description, and have tried both MyPCName and 127.0.0.1 for the server name (browsing turns up nothing). After clicking Next, I leave it at Integrated Windows authentication, and leave Connect to server for additional options checked. After clicking Next, I get the error above. I know it's probably a simple answer, (permission issue?) and I'm a SQL noob, so I appreciate anything that would point me in the right direction. Thanks!

    Read the article

  • Using Toshiba 22EL833 as PC display through HDMI input

    - by Oleg V. Volkov
    I had another Toshiba TV - 19SL738 - connected to this same PC and video card (GTX 8800) through DVI<-HDMI (DVI on PC side, HDMI on TV) before, that was working perfectly at it's native resolution 1360x768. Some time ago I had to change to 22EL833 and immediately faced problem with Windows 7 control panel and NVIDIA control panel both reporting native resolution for new TV as 1080i, 1920x1280, despite TV documentation saying that it have same 1360x768 as previous one. Practical tests confirmed that true native resolution is indeed 1360x768, because plugging in through DVI<-VGA and setting custom resolution through NVIDIA panel shown clear colors and crisp image, while setting anything different with either DVI<-VGA or DVI<-HDMI produced horribly distorted or squished images, with almost unreadable slim lines (as in letters, for example). Now, my problem is that there's no drivers for this TV and I'm unable to get good image while connecting it through DVI<-HDMI directly. The best I've achieved is editing EDID/driver manually, to persuade system that native resolution should be 1360x768, and while image became mostly clear, colors turned to some strange washed out effect, with pools of pure yellow, cyan and magenta there and there filling place of other colors. Gradients also became noticeably stripped as well. Somehow it looks like dithering gone bad and makes me suspect that image is still down/upscaled several times internally somewhere along the line. How can I connect this TV to DVI output of my video card to get best possible clear image, correct colors and correct native resolution?

    Read the article

  • Using Toshiba 22EL833 as PC display with GTX8800

    - by Oleg V. Volkov
    I had another Toshiba TV - 19SL738 - connected to this same PC and video card (GTX 8800) through DVI<-HDMI (DVI on PC side, HDMI on TV) before, that was working perfectly at it's native resolution 1360x768. Some time ago I had to change to 22EL833 and immediately faced problem with Windows 7 control panel and NVIDIA control panel both reporting native resolution for new TV as 1080i, 1920x1280, despite TV documentation saying that it have same 1360x768 as previous one. Practical tests confirmed that true native resolution is indeed 1360x768, because plugging in through DVI<-VGA and setting custom resolution through NVIDIA panel shown clear colors and crisp image, while setting anything different with either DVI<-VGA or DVI<-HDMI produced horribly distorted or squished images, with almost unreadable slim lines (as in letters, for example). Now, my problem is that there's no drivers for this TV and I'm unable to get good image while connecting it through DVI<-HDMI directly. The best I've achieved is editing EDID/driver manually, to persuade system that native resolution should be 1360x768, and while image became mostly clear, colors turned to some strange washed out effect, with pools of pure yellow, cyan and magenta there and there filling place of other colors. Gradients also became noticeably stripped as well. Somehow it looks like dithering gone bad and makes me suspect that image is still down/upscaled several times internally somewhere along the line. How can I connect this TV to DVI output of my video card to get best possible clear image, correct colors and correct native resolution?

    Read the article

  • Attaining Explicit and Predictable Ruby on Rails...

    - by Winston
    I need help, how can I learn this framework? Here's what I need to know. Routes, it's expected outcome, the prefix/suffix methods associated with every changes made with it. ActiveRecord, the dynamic generation of methods, the behind the scenes with prefix_ and _suffix methods. The View, how do I know what prefix/suffix methods can be used in the View. Is there's a way to know all those behind-the-scenes actions in console.

    Read the article

  • How do I make solr/jetty find the installed slf4j jars in Ubuntu 12.04?

    - by J. Pablo Fernández
    I'm running Ubuntu 12.04's packaged Jetty in which I installed solr 4.3.1 (by copying the war file to /var/lib/jetty/webapps. When I start Jetty, I get this error: failed SolrRequestFilter: org.apache.solr.common.SolrException: Could not find necessary SLF4j logging jars. If using Jetty, the SLF4j logging jars need to go in the jetty lib/ext directory. The package libslf4j-java is installed, and the jars are in /usr/share/java: /usr/share/java/log4j-over-slf4j.jar /usr/share/java/slf4j-api.jar /usr/share/java/slf4j-jcl.jar /usr/share/java/slf4j-jdk14.jar /usr/share/java/slf4j-log4j12.jar /usr/share/java/slf4j-migrator.jar /usr/share/java/slf4j-nop.jar /usr/share/java/slf4j-simple.jar but somehow, Jetty and/or Solr are not finding them. How do I make them find them? or how do I install some other jars where jetty/solr would find them? The full error is: 88 [main] INFO org.mortbay.log - jetty-6.1.24 443 [main] INFO org.mortbay.log - Deploy /etc/jetty/contexts/javadoc.xml -> org.mortbay.jetty.handler.ContextHandler@cec0c5{/javadoc,file:/usr/share/jetty/javadoc} 522 [main] INFO org.mortbay.log - Extract file:/var/lib/jetty/webapps/solr.war to /var/cache/jetty/data/Jetty__8080_solr.war__solr__zdafkg/webapp 1501 [main] WARN org.mortbay.log - failed SolrRequestFilter: org.apache.solr.common.SolrException: Could not find necessary SLF4j logging jars. If using Jetty, the SLF4j logging jars need to go in the jetty lib/ext directory. For other containers, the corresponding directory should be used. For more information, see: http://wiki.apache.org/solr/SolrLogging 1501 [main] ERROR org.mortbay.log - Failed startup of context org.mortbay.jetty.webapp.WebAppContext@5329c5{/solr,file:/var/lib/jetty/webapps/solr.war} org.apache.solr.common.SolrException: Could not find necessary SLF4j logging jars. If using Jetty, the SLF4j logging jars need to go in the jetty lib/ext directory. For other containers, the corresponding directory should be used. For more information, see: http://wiki.apache.org/solr/SolrLogging at org.apache.solr.servlet.SolrDispatchFilter.<init>(SolrDispatchFilter.java:105) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:532) at java.lang.Class.newInstance0(Class.java:374) at java.lang.Class.newInstance(Class.java:327) at org.mortbay.jetty.servlet.Holder.newInstance(Holder.java:153) at org.mortbay.jetty.servlet.FilterHolder.doStart(FilterHolder.java:92) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:50) at org.mortbay.jetty.servlet.ServletHandler.initialize(ServletHandler.java:662) at org.mortbay.jetty.servlet.Context.startContext(Context.java:140) at org.mortbay.jetty.webapp.WebAppContext.startContext(WebAppContext.java:1250) at org.mortbay.jetty.handler.ContextHandler.doStart(ContextHandler.java:518) at org.mortbay.jetty.webapp.WebAppContext.doStart(WebAppContext.java:467) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:50) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection.java:152) at org.mortbay.jetty.handler.ContextHandlerCollection.doStart(ContextHandlerCollection.java:156) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:50) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection.java:152) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:50) at org.mortbay.jetty.handler.HandlerWrapper.doStart(HandlerWrapper.java:130) at org.mortbay.jetty.Server.doStart(Server.java:224) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:50) at org.mortbay.xml.XmlConfiguration.main(XmlConfiguration.java:985) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.mortbay.start.Main.invokeMain(Main.java:194) at org.mortbay.start.Main.start(Main.java:534) at org.mortbay.jetty.start.daemon.Bootstrap.start(Bootstrap.java:30) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.apache.commons.daemon.support.DaemonLoader.start(DaemonLoader.java:243) Caused by: java.lang.NoClassDefFoundError: org/slf4j/LoggerFactory at org.apache.solr.servlet.SolrDispatchFilter.<init>(SolrDispatchFilter.java:103) ... 36 more Caused by: java.lang.ClassNotFoundException: org.slf4j.LoggerFactory at java.net.URLClassLoader$1.run(URLClassLoader.java:217) at java.security.AccessController.doPrivileged(Native Method) at java.net.URLClassLoader.findClass(URLClassLoader.java:205) at org.mortbay.jetty.webapp.WebAppClassLoader.loadClass(WebAppClassLoader.java:392) at org.mortbay.jetty.webapp.WebAppClassLoader.loadClass(WebAppClassLoader.java:363) ... 37 more 1505 [main] WARN org.mortbay.log - failed org.mortbay.jetty.webapp.WebAppContext@5329c5{/solr,file:/var/lib/jetty/webapps/solr.war}: java.lang.NoClassDefFoundError: org/slf4j/Logger 1579 [main] WARN org.mortbay.log - failed ContextHandlerCollection@19d0a1: java.lang.NoClassDefFoundError: org/slf4j/Logger 1582 [main] INFO org.mortbay.log - Opened /var/log/jetty/2013_06_27.request.log 1582 [main] WARN org.mortbay.log - failed HandlerCollection@cbf30e: java.lang.NoClassDefFoundError: org/slf4j/Logger 1582 [main] ERROR org.mortbay.log - Error starting handlers java.lang.NoClassDefFoundError: org/slf4j/Logger at java.lang.Class.getDeclaredMethods0(Native Method) at java.lang.Class.privateGetDeclaredMethods(Class.java:2454) at java.lang.Class.getMethod0(Class.java:2697) at java.lang.Class.getMethod(Class.java:1622) at org.mortbay.log.Log.unwind(Log.java:228) at org.mortbay.log.Log.warn(Log.java:197) at org.mortbay.jetty.webapp.WebAppContext.doStart(WebAppContext.java:475) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:50) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection.java:152) at org.mortbay.jetty.handler.ContextHandlerCollection.doStart(ContextHandlerCollection.java:156) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:50) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection.java:152) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:50) at org.mortbay.jetty.handler.HandlerWrapper.doStart(HandlerWrapper.java:130) at org.mortbay.jetty.Server.doStart(Server.java:224) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:50) at org.mortbay.xml.XmlConfiguration.main(XmlConfiguration.java:985) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.mortbay.start.Main.invokeMain(Main.java:194) at org.mortbay.start.Main.start(Main.java:534) at org.mortbay.jetty.start.daemon.Bootstrap.start(Bootstrap.java:30) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:616) at org.apache.commons.daemon.support.DaemonLoader.start(DaemonLoader.java:243) Caused by: java.lang.ClassNotFoundException: org.slf4j.Logger at java.net.URLClassLoader$1.run(URLClassLoader.java:217) at java.security.AccessController.doPrivileged(Native Method) at java.net.URLClassLoader.findClass(URLClassLoader.java:205) at org.mortbay.jetty.webapp.WebAppClassLoader.loadClass(WebAppClassLoader.java:392) at org.mortbay.jetty.webapp.WebAppClassLoader.loadClass(WebAppClassLoader.java:363) ... 29 more

    Read the article

  • How to generate NUnit fixtures programmatically?

    - by pmezard
    Hello, Say I have a test like: void TestSomething(int someParam) { // Test code } I would like to execute this test with a set of "someParam" values. I could write explicit [Test] fixtures calling TestSomething() with the parameters, which means having N methods for every TestSomething() method. I could write another [Test] method looping on "someParam" values and calling TestSomething(), it means 2 methods for every test, and the test report is not as good as with individual TestSomethingWithXValue() methods. So, is there any way to programmatically generate fixtures for every test methods and input values?

    Read the article

  • Method Overloading for NULL parameter

    - by Phani
    I have added three methods with parameters: public static void doSomething(Object obj) { System.out.println("Object called"); } public static void doSomething(char[] obj) { System.out.println("Array called"); } public static void doSomething(Integer obj) { System.out.println("Array called"); } When I am calling doSomething(null) , then compiler throws error as ambiguous methods. So Is the issue because Integer and char[] methods or Integer and Object methods?

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • Best Practices - updated: which domain types should be used to run applications

    - by jsavit
    This post is one of a series of "best practices" notes for Oracle VM Server for SPARC (formerly named Logical Domains). This is an updated and enlarged version of the post on this topic originally posted October 2012. One frequent question "what type of domain should I use to run applications?" There used to be a simple answer: "run applications in guest domains in almost all cases", but now there are more things to consider. Enhancements to Oracle VM Server for SPARC and introduction of systems like the current SPARC servers including the T4 and T5 systems, the Oracle SuperCluster T5-8 and Oracle SuperCluster M6-32 provide scale and performance much higher than the original servers that ran domains. Single-CPU performance, I/O capacity, memory sizes, are much larger now, and far more demanding applications are now being hosted in logical domains. The general advice continues to be "use guest domains in almost all cases", meaning, "use virtual I/O rather than physical I/O", unless there is a specific reason to use the other domain types. The sections below will discuss the criteria for choosing between domain types. Review: division of labor and types of domain Oracle VM Server for SPARC offloads management and I/O functionality from the hypervisor to domains (also called virtual machines), providing a modern alternative to older VM architectures that use a "thick", monolithic hypervisor. This permits a simpler hypervisor design, which enhances reliability, and security. It also reduces single points of failure by assigning responsibilities to multiple system components, further improving reliability and security. Oracle VM Server for SPARC defines the following types of domain, each with their own roles: Control domain - management control point for the server, runs the logical domain daemon and constraints engine, and is used to configure domains and manage resources. The control domain is the first domain to boot on a power-up, is always an I/O domain, and is usually a service domain as well. It doesn't have to be, but there's no reason to not leverage it for virtual I/O services. There is one control domain per T-series system, and one per Physical Domain (PDom) on an M5-32 or M6-32 system. M5 and M6 systems can be physically domained, with logical domains within the physical ones. I/O domain - a domain that has been assigned physical I/O devices. The devices may be one more more PCIe root complexes (in which case the domain is also called a root complex domain). The domain has native access to all the devices on the assigned PCIe buses. The devices can be any device type supported by Solaris on the hardware platform. a SR-IOV (Single-Root I/O Virtualization) function. SR-IOV lets a physical device (also called a physical function) or PF) be subdivided into multiple virtual functions (VFs) which can be individually assigned directly to domains. SR-IOV devices currently can be Ethernet or InfiniBand devices. direct I/O ownership of one or more PCI devices residing in a PCIe bus slot. The domain has direct access to the individual devices An I/O domain has native performance and functionality for the devices it owns, unmediated by any virtualization layer. It may also have virtual devices. Service domain - a domain that provides virtual network and disk devices to guest domains. The services are defined by commands that are run in the control domain. It usually is an I/O domain as well, in order for it to have devices to virtualize and serve out. Guest domain - a domain whose devices are all virtual rather than physical: virtual network and disk devices provided by one or more service domains. In common practice, this is where applications are run. Device considerations Consider the following when choosing between virtual devices and physical devices: Virtual devices provide the best flexibility - they can be dynamically added to and removed from a running domain, and you can have a large number of them up to a per-domain device limit. Virtual devices are compatible with live migration - domains that exclusively have virtual devices can be live migrated between servers supporting domains. On the other hand: Physical devices provide the best performance - in fact, native "bare metal" performance. Virtual devices approach physical device throughput and latency, especially with virtual network devices that can now saturate 10GbE links, but physical devices are still faster. Physical I/O devices do not add load to service domains - all the I/O goes directly from the I/O domain to the device, while virtual I/O goes through service domains, which must be provided sufficient CPU and memory capacity. Physical I/O devices can be other than network and disk - we virtualize network, disk, and serial console, but physical devices can be the wide range of attachable certified devices, including things like tape and CDROM/DVD devices. In some cases the lines are now blurred: virtual devices have better performance than previously: starting with Oracle VM Server for SPARC 3.1 there is near-native virtual network performance. There is more flexibility with physical devices than before: SR-IOV devices can now be dynamically reconfigured on domains. Tradeoffs one used to have to make are now relaxed: you can often have the flexibility of virtual I/O with performance that previously required physical I/O. You can have the performance and isolation of SR-IOV with the ability to dynamically reconfigure it, just like with virtual devices. Typical deployment A service domain is generally also an I/O domain: otherwise it wouldn't have access to physical device "backends" to offer to its clients. Similarly, an I/O domain is also typically a service domain in order to leverage the available PCI buses. Control domains must be I/O domains, because they boot up first on the server and require physical I/O. It's typical for the control domain to also be a service domain too so it doesn't "waste" the I/O resources it uses. A simple configuration consists of a control domain that is also the one I/O and service domain, and some number of guest domains using virtual I/O. In production, customers typically use multiple domains with I/O and service roles to eliminate single points of failure, as described in Availability Best Practices - Avoiding Single Points of Failure . Guest domains have virtual disk and virtual devices provisioned from more than one service domain, so failure of a service domain or I/O path or device does not result in an application outage. This also permits "rolling upgrades" in which service domains are upgraded one at a time while their guests continue to operate without disruption. (It should be noted that resiliency to I/O device failures can also be provided by the single control domain, using multi-path I/O) In this type of deployment, control, I/O, and service domains are used for virtualization infrastructure, while applications run in guest domains. Changing application deployment patterns The above model has been widely and successfully used, but more configuration options are available now. Servers got bigger than the original T2000 class machines with 2 I/O buses, so there is more I/O capacity that can be used for applications. Increased server capacity made it attractive to run more vertically-scaled applications, such as databases, with higher resource requirements than the "light" applications originally seen. This made it attractive to run applications in I/O domains so they could get bare-metal native I/O performance. This is leveraged by the Oracle SuperCluster engineered systems mentioned previously. In those engineered systems, I/O domains are used for high performance applications with native I/O performance for disk and network and optimized access to the Infiniband fabric. Another technical enhancement is Single Root I/O Virtualization (SR-IOV), which make it possible to give domains direct connections and native I/O performance for selected I/O devices. Not all I/O domains own PCI complexes, and there are increasingly more I/O domains that are not service domains. They use their I/O connectivity for performance for their own applications. However, there are some limitations and considerations: at this time, a domain using physical I/O cannot be live-migrated to another server. There is also a need to plan for security and introducing unneeded dependencies: if an I/O domain is also a service domain providing virtual I/O to guests, it has the ability to affect the correct operation of its client guest domains. This is even more relevant for the control domain. where the ldm command must be protected from unauthorized (or even mistaken) use that would affect other domains. As a general rule, running applications in the service domain or the control domain should be avoided. For reference, an excellent guide to secure deployment of domains by Stefan Hinker is at Secure Deployment of Oracle VM Server for SPARC. To recap: Guest domains with virtual I/O still provide the greatest operational flexibility, including features like live migration. They should be considered the default domain type to use unless there is a specific requirement that mandates an I/O domain. I/O domains can be used for applications with the highest performance requirements. Single Root I/O Virtualization (SR-IOV) makes this more attractive by giving direct I/O access to more domains, and by permitting dynamic reconfiguration of SR-IOV devices. Today's larger systems provide multiple PCIe buses - for example, 16 buses on the T5-8 - making it possible to configure multiple I/O domains each owning their own bus. Service domains should in general not be used for applications, because compromised security in the domain, or an outage, can affect domains that depend on it. This concern can be mitigated by providing guests' their virtual I/O from more than one service domain, so interruption of service in one service domain does not cause an application outage. The control domain should in general not be used to run applications, for the same reason. Oracle SuperCluster uses the control domain for applications, but it is an exception. It's not a general purpose environment; it's an engineered system with specifically configured applications and optimization for optimal performance. These are recommended "best practices" based on conversations with a number of Oracle architects. Keep in mind that "one size does not fit all", so you should evaluate these practices in the context of your own requirements. Summary Higher capacity servers that run Oracle VM Server for SPARC are attractive for applications with the most demanding resource requirements. New deployment models permit native I/O performance for demanding applications by running them in I/O domains with direct access to their devices. This is leveraged in SPARC SuperCluster, and can be leveraged in T-series servers to provision high-performance applications running in domains. Carefully planned, this can be used to provide peak performance for critical applications. That said, the improved virtual device performance in Oracle VM Server means that the default choice should still be guest domains with virtual I/O.

    Read the article

  • Is Oracle certified to run on VMWare?

    - by Mike Dietrich
    This question in similar occurences gets asked during every Upgrade Workshop at least once. People would like to know if they can run an Oracle Database or Oracle Real Application Clusters or Oracle Grid Control or Oracle Fusion Middleware or ... in an VM environment with VMWare's virtualisation products. And the answer is: Yes, you can!! But ... there's a fine print you should take care on before setting up virtual environments with a different solution than XEN based Oracle VM. Please read Note:942852.1 - VMWare Certification for Oracle Products and Note:249212.1 - Support Position for Oracle Products Running on VMWare Virtualized Environments for further details: Support Status for VMware Virtualized Environments Oracle has not certified any of its products on VMware virtualized environments. Oracle Support will assist customers running Oracle products on VMware in the following manner: Oracle will only provide support for issues that either are known to occur on the native OS, or can be demonstrated not to be as a result of running on VMware. If a problem is a known Oracle issue, Oracle support will recommend the appropriate solution on the native OS. If that solution does not work in the VMware virtualized environment, the customer will be referred to VMware for support. When the customer can demonstrate that the Oracle solution does not work when running on the native OS, Oracle will resume support, including logging a bug with Oracle Development for investigation if required. If the problem is determined not to be a known Oracle issue, we will refer the customer to VMware for support. When the customer can demonstrate that the issue occurs when running on the native OS, Oracle will resume support, including logging a bug with Oracle Development for investigation if required. NOTE: Oracle has not certified any of its products on VMware. For Oracle RAC, Oracle will only accept Service Requests as described in this note on Oracle RAC 11.2.0.2 and later releases.

    Read the article

  • Implicit OAuth2 endpoint vs. cookies

    - by Jamie
    I currently have an app which basically runs two halves of an API - a restful API for the web app, and a synchronisation API for the native clients (all over SSL). The web app is completely javascript based and is quite similar to the native clients anyway - except it currently does not work offline. What I'm hoping to do is merge the fragmented APIs into a single restful API. The web app currently authenticates by issuing a cookie to the client whereas the native clients work using a custom HMAC access token implementation. Obviously a public/private key scenario for a javascript app is a little pointless. I think the best solution would be to create an OAuth2 endpoint on the API (like Instagram, for example http://instagram.com/developer/authentication/) which is used by both the native apps and the web app. My question is, in terms of security how does an implicit OAuth2 flow compare (storing the access token in local storage) to "secure" cookies? Presumably although SSL solves man in the middle attacks, the user could theoretically grab the access token from local storage and copy it to another machine?

    Read the article

  • Problem running apt-get DPKG broken?

    - by nekochan7
    Problem when runing apt-get debian av # sudo dpkg --configure -a Setting up libgdata2.1-cil (2.2.0.0-2) ... mono: ../nptl/pthread_mutex_lock.c:80: __pthread_mutex_cond_lock: Assertion `mutex->__data.__owner == 0' failed. Native stacktrace: /usr/bin/mono() [0x4ac5a1] /lib/x86_64-linux-gnu/libpthread.so.0(+0xf8f0) [0x7fee2c0e88f0] /lib/x86_64-linux-gnu/libc.so.6(gsignal+0x37) [0x7fee2bd65407] /lib/x86_64-linux-gnu/libc.so.6(abort+0x148) [0x7fee2bd68508] /lib/x86_64-linux-gnu/libc.so.6(+0x2e516) [0x7fee2bd5e516] /lib/x86_64-linux-gnu/libc.so.6(+0x2e5c2) [0x7fee2bd5e5c2] /lib/x86_64-linux-gnu/libpthread.so.0(+0x113f6) [0x7fee2c0ea3f6] /lib/x86_64-linux-gnu/libpthread.so.0(pthread_cond_wait+0x150) [0x7fee2c0e5140] /usr/bin/mono() [0x6058b3] /usr/bin/mono() [0x5fdd25] /usr/bin/mono() [0x604077] /lib/x86_64-linux-gnu/libpthread.so.0(+0x80ca) [0x7fee2c0e10ca] /lib/x86_64-linux-gnu/libc.so.6(clone+0x6d) [0x7fee2be1605d] Debug info from gdb: ================================================================= Got a SIGABRT while executing native code. This usually indicates a fatal error in the mono runtime or one of the native libraries used by your application. ================================================================= Aborted mono: ../nptl/pthread_mutex_lock.c:80: __pthread_mutex_cond_lock: Assertion `mutex->__data.__owner == 0' failed. Native stacktrace: /usr/bin/mono() [0x4ac5a1] /lib/x86_64-linux-gnu/libpthread.so.0(+0xf8f0) [0x7fcec8eef8f0] /lib/x86_64-linux-gnu/libc.so.6(gsignal+0x37) [0x7fcec8b6c407] /lib/x86_64-linux-gnu/libc.so.6(abort+0x148) [0x7fcec8b6f508] /lib/x86_64-linux-gnu/libc.so.6(+0x2e516) [0x7fcec8b65516] /lib/x86_64-linux-gnu/libc.so.6(+0x2e5c2) [0x7fcec8b655c2] /lib/x86_64-linux-gnu/libpthread.so.0(+0x113f6) [0x7fcec8ef13f6] /lib/x86_64-linux-gnu/libpthread.so.0(pthread_cond_wait+0x150) [0x7fcec8eec140] /usr/bin/mono() [0x6058b3] /usr/bin/mono() [0x5fdd25] /usr/bin/mono() [0x604077] /lib/x86_64-linux-gnu/libpthread.so.0(+0x80ca) [0x7fcec8ee80ca] /lib/x86_64-linux-gnu/libc.so.6(clone+0x6d) [0x7fcec8c1d05d] Debug info from gdb:

    Read the article

  • Gnome Do not Launching

    - by PyRulez
    When I try running gnome do, I get this. chris@Chris-Ubuntu-Laptop:~$ gnome-do pgrep: invalid user name: -u and it is not writable Trying sudo: chris@Chris-Ubuntu-Laptop:~$ sudo gnome-do [NetworkService] Could not initialize Network Manager dbus: Unable to open the session message bus. [Error 17:54:30.122] [SystemService] Could not initialize dbus: Unable to open the session message bus. (Do:2401): Wnck-CRITICAL **: wnck_set_client_type got called multiple times. (Do:2401): libdo-WARNING **: Binding '<Super>space' failed! [Error 17:54:30.649] [AbstractKeyBindingService] Key "" is already mapped. Tomboy.NotesItemSource "Tomboy Notes" encountered an error in UpdateItems: System.TypeInitializationException: An exception was thrown by the type initializer for Tomboy.TomboyDBus ---> System.Exception: Unable to open the session message bus. ---> System.ArgumentNullException: Argument cannot be null. Parameter name: address at NDesk.DBus.Bus.Open (System.String address) [0x00000] in <filename unknown>:0 at NDesk.DBus.Bus.get_Session () [0x00000] in <filename unknown>:0 --- End of inner exception stack trace --- at NDesk.DBus.Bus.get_Session () [0x00000] in <filename unknown>:0 at Tomboy.TomboyDBus..cctor () [0x00000] in <filename unknown>:0 --- End of inner exception stack trace --- at Tomboy.NotesItemSource.UpdateItems () [0x00000] in <filename unknown>:0 at Do.Universe.Safe.SafeItemSource.UpdateItems () [0x00000] in <filename unknown>:0 . Firefox.PlacesItemSource "Firefox Places" encountered an error in UpdateItems: System.InvalidCastException: Cannot cast from source type to destination type. at Mono.Data.Sqlite.SqliteDataReader.VerifyType (Int32 i, DbType typ) [0x00000] in <filename unknown>:0 at Mono.Data.Sqlite.SqliteDataReader.GetString (Int32 i) [0x00000] in <filename unknown>:0 at Firefox.PlacesItemSource+<LoadPlaceItems>c__Iterator3.MoveNext () [0x00000] in <filename unknown>:0 at System.Collections.Generic.List`1[Firefox.PlaceItem].AddEnumerable (IEnumerable`1 enumerable) [0x00000] in <filename unknown>:0 at System.Collections.Generic.List`1[Firefox.PlaceItem]..ctor (IEnumerable`1 collection) [0x00000] in <filename unknown>:0 at System.Linq.Enumerable.ToArray[PlaceItem] (IEnumerable`1 source) [0x00000] in <filename unknown>:0 at Firefox.PlacesItemSource.UpdateItems () [0x00000] in <filename unknown>:0 at Do.Universe.Safe.SafeItemSource.UpdateItems () [0x00000] in <filename unknown>:0 . Do.Universe.Linux.GNOMESpecialLocationsItemSource "GNOME Special Locations" encountered an error in UpdateItems: System.IO.FileNotFoundException: Could not find file "/root/.gtk-bookmarks". File name: '/root/.gtk-bookmarks' at System.IO.FileStream..ctor (System.String path, FileMode mode, FileAccess access, FileShare share, Int32 bufferSize, Boolean anonymous, FileOptions options) [0x00000] in <filename unknown>:0 at System.IO.FileStream..ctor (System.String path, FileMode mode, FileAccess access, FileShare share) [0x00000] in <filename unknown>:0 at (wrapper remoting-invoke-with-check) System.IO.FileStream:.ctor (string,System.IO.FileMode,System.IO.FileAccess,System.IO.FileShare) at System.IO.File.OpenRead (System.String path) [0x00000] in <filename unknown>:0 at System.IO.StreamReader..ctor (System.String path, System.Text.Encoding encoding, Boolean detectEncodingFromByteOrderMarks, Int32 bufferSize) [0x00000] in <filename unknown>:0 at System.IO.StreamReader..ctor (System.String path) [0x00000] in <filename unknown>:0 at (wrapper remoting-invoke-with-check) System.IO.StreamReader:.ctor (string) at Do.Universe.Linux.GNOMESpecialLocationsItemSource+<ReadBookmarkItems>c__Iterator3.MoveNext () [0x00000] in <filename unknown>:0 at Do.Universe.Linux.GNOMESpecialLocationsItemSource.UpdateItems () [0x00000] in <filename unknown>:0 at Do.Universe.Safe.SafeItemSource.UpdateItems () [0x00000] in <filename unknown>:0 . ^[^\Full thread dump: "<unnamed thread>" tid=0x0xb7570700 this=0x0x56f18 thread handle 0x403 state : not waiting owns () at (wrapper managed-to-native) Mono.Unix.Native.Syscall.read (int,intptr,ulong) <0xffffffff> at Mono.Unix.Native.Syscall.read (int,void*,ulong) <0x00023> at Mono.Unix.UnixStream.Read (byte[],int,int) <0x0008b> at NDesk.DBus.Connection.ReadMessage () <0x0003c> at NDesk.DBus.Connection.Iterate () <0x0001b> at NDesk.DBus.BusG/<Init>c__AnonStorey0.<>m__0 (intptr,NDesk.GLib.IOCondition,intptr) <0x00033> at (wrapper native-to-managed) NDesk.DBus.BusG/<Init>c__AnonStorey0.<>m__0 (intptr,NDesk.GLib.IOCondition,intptr) <0xffffffff> at (wrapper managed-to-native) Gtk.Clipboard.gtk_clipboard_wait_is_text_available (intptr) <0xffffffff> at Gtk.Clipboard.WaitIsTextAvailable () <0x00017> at Do.Universe.SelectedTextItem.UpdateSelection (object,System.EventArgs) <0x00027> at Do.Platform.AbstractApplicationService.OnSummoned () <0x00025> at Do.Platform.ApplicationService.<ApplicationService>m__31 (object,System.EventArgs) <0x00013> at Do.Core.Controller.OnSummoned () <0x00025> at Do.Core.Controller.Summon () <0x00027> at Do.Do.Main (string[]) <0x001eb> at (wrapper runtime-invoke) <Module>.runtime_invoke_void_object (object,intptr,intptr,intptr) <0xffffffff> "<unnamed thread>" tid=0x0xb2c81b40 this=0x0x194150 thread handle 0x412 state : interrupted state owns () at (wrapper managed-to-native) System.IO.InotifyWatcher.ReadFromFD (intptr,byte[],intptr) <0xffffffff> at System.IO.InotifyWatcher.Monitor () <0x0005f> at System.Threading.Thread.StartInternal () <0x00057> at (wrapper runtime-invoke) object.runtime_invoke_void__this__ (object,intptr,intptr,intptr) <0xffffffff> "Universe Update Dispatcher" tid=0x0xb29ffb40 this=0x0x569d8 thread handle 0x41b state : interrupted state owns () at (wrapper managed-to-native) System.Threading.WaitHandle.WaitOne_internal (System.Threading.WaitHandle,intptr,int,bool) <0xffffffff> at System.Threading.WaitHandle.WaitOne (System.TimeSpan,bool) <0x00133> at System.Threading.WaitHandle.WaitOne (System.TimeSpan) <0x00022> at Do.Core.UniverseManager.UniverseUpdateLoop () <0x0007a> at System.Threading.Thread.StartInternal () <0x00057> at (wrapper runtime-invoke) object.runtime_invoke_void__this__ (object,intptr,intptr,intptr) <0xffffffff> Tomboy.NotesItemSource "Tomboy Notes" encountered an error in UpdateItems: System.TypeInitializationException: An exception was thrown by the type initializer for Tomboy.TomboyDBus ---> System.Exception: Unable to open the session message bus. ---> System.ArgumentNullException: Argument cannot be null. Parameter name: address at NDesk.DBus.Bus.Open (System.String address) [0x00000] in <filename unknown>:0 at NDesk.DBus.Bus.get_Session () [0x00000] in <filename unknown>:0 --- End of inner exception stack trace --- at NDesk.DBus.Bus.get_Session () [0x00000] in <filename unknown>:0 at Tomboy.TomboyDBus..cctor () [0x00000] in <filename unknown>:0 --- End of inner exception stack trace --- at Tomboy.NotesItemSource.UpdateItems () [0x00000] in <filename unknown>:0 at Do.Universe.Safe.SafeItemSource.UpdateItems () [0x00000] in <filename unknown>:0 . Firefox.PlacesItemSource "Firefox Places" encountered an error in UpdateItems: System.InvalidCastException: Cannot cast from source type to destination type. at Mono.Data.Sqlite.SqliteDataReader.VerifyType (Int32 i, DbType typ) [0x00000] in <filename unknown>:0 at Mono.Data.Sqlite.SqliteDataReader.GetString (Int32 i) [0x00000] in <filename unknown>:0 at Firefox.PlacesItemSource+<LoadPlaceItems>c__Iterator3.MoveNext () [0x00000] in <filename unknown>:0 at System.Collections.Generic.List`1[Firefox.PlaceItem].AddEnumerable (IEnumerable`1 enumerable) [0x00000] in <filename unknown>:0 at System.Collections.Generic.List`1[Firefox.PlaceItem]..ctor (IEnumerable`1 collection) [0x00000] in <filename unknown>:0 at System.Linq.Enumerable.ToArray[PlaceItem] (IEnumerable`1 source) [0x00000] in <filename unknown>:0 at Firefox.PlacesItemSource.UpdateItems () [0x00000] in <filename unknown>:0 at Do.Universe.Safe.SafeItemSource.UpdateItems () [0x00000] in <filename unknown>:0 . Do.Universe.Linux.GNOMESpecialLocationsItemSource "GNOME Special Locations" encountered an error in UpdateItems: System.IO.FileNotFoundException: Could not find file "/root/.gtk-bookmarks". File name: '/root/.gtk-bookmarks' at System.IO.FileStream..ctor (System.String path, FileMode mode, FileAccess access, FileShare share, Int32 bufferSize, Boolean anonymous, FileOptions options) [0x00000] in <filename unknown>:0 at System.IO.FileStream..ctor (System.String path, FileMode mode, FileAccess access, FileShare share) [0x00000] in <filename unknown>:0 at (wrapper remoting-invoke-with-check) System.IO.FileStream:.ctor (string,System.IO.FileMode,System.IO.FileAccess,System.IO.FileShare) at System.IO.File.OpenRead (System.String path) [0x00000] in <filename unknown>:0 at System.IO.StreamReader..ctor (System.String path, System.Text.Encoding encoding, Boolean detectEncodingFromByteOrderMarks, Int32 bufferSize) [0x00000] in <filename unknown>:0 at System.IO.StreamReader..ctor (System.String path) [0x00000] in <filename unknown>:0 at (wrapper remoting-invoke-with-check) System.IO.StreamReader:.ctor (string) at Do.Universe.Linux.GNOMESpecialLocationsItemSource+<ReadBookmarkItems>c__Iterator3.MoveNext () [0x00000] in <filename unknown>:0 at Do.Universe.Linux.GNOMESpecialLocationsItemSource.UpdateItems () [0x00000] in <filename unknown>:0 at Do.Universe.Safe.SafeItemSource.UpdateItems () [0x00000] in <filename unknown>:0 . It stops when I try my key combination, ctrl-alt-. It does not pop up though.

    Read the article

  • What is there so useful in the Decorator Pattern? My example doesn't work

    - by Green
    The book says: The decorator pattern can be used to extend (decorate) the functionality of a certain object I have a rabbit animal. And I want my rabbit to have, for example, reptile skin. Just want to decorate a common rabbit with reptile skin. I have the code. First I have abstract class Animal with everythig that is common to any animal: abstract class Animal { abstract public function setSleep($hours); abstract public function setEat($food); abstract public function getSkinType(); /* and more methods which for sure will be implemented in any concrete animal */ } I create class for my rabbit: class Rabbit extends Animal { private $rest; private $stomach; private $skinType = "hair"; public function setSleep($hours) { $this->rest = $hours; } public function setFood($food) { $this->stomach = $food; } public function getSkinType() { return $this->$skinType; } } Up to now everything is OK. Then I create abstract AnimalDecorator class which extends Animal: abstract class AnimalDecorator extends Animal { protected $animal; public function __construct(Animal $animal) { $this->animal = $animal; } } And here the problem comes. Pay attention that AnimalDecorator also gets all the abstract methods from the Animal class (in this example just two but in real can have many more). Then I create concrete ReptileSkinDecorator class which extends AnimalDecorator. It also has those the same two abstract methods from Animal: class ReptileSkinDecorator extends AnimalDecorator { public function getSkinColor() { $skin = $this->animal->getSkinType(); $skin = "reptile"; return $skin; } } And finaly I want to decorate my rabbit with reptile skin: $reptileSkinRabbit = ReptileSkinDecorator(new Rabbit()); But I can't do this because I have two abstract methods in ReptileSkinDecorator class. They are: abstract public function setSleep($hours); abstract public function setEat($food); So, instead of just re-decorating only skin I also have to re-decorate setSleep() and setEat(); methods. But I don't need to. In all the book examples there is always ONLY ONE abstract method in Animal class. And of course it works then. But here I just made very simple real life example and tried to use the Decorator pattern and it doesn't work without implementing those abstract methods in ReptileSkinDecorator class. It means that if I want to use my example I have to create a brand new rabbit and implement for it its own setSleep() and setEat() methods. OK, let it be. But then this brand new rabbit has the instance of commont Rabbit I passed to ReptileSkinDecorator: $reptileSkinRabbit = ReptileSkinDecorator(new Rabbit()); I have one common rabbit instance with its own methods in the reptileSkinRabbit instance which in its turn has its own reptileSkinRabbit methods. I have rabbit in rabbit. But I think I don't have to have such possibility. I don't understand the Decarator pattern right way. Kindly ask you to point on any mistakes in my example, in my understanding of this pattern. Thank you.

    Read the article

  • C#: Why Decorate When You Can Intercept

    - by James Michael Hare
    We've all heard of the old Decorator Design Pattern (here) or used it at one time or another either directly or indirectly.  A decorator is a class that wraps a given abstract class or interface and presents the same (or a superset) public interface but "decorated" with additional functionality.   As a really simplistic example, consider the System.IO.BufferedStream, it itself is a descendent of System.IO.Stream and wraps the given stream with buffering logic while still presenting System.IO.Stream's public interface:   1: Stream buffStream = new BufferedStream(rawStream); Now, let's take a look at a custom-code example.  Let's say that we have a class in our data access layer that retrieves a list of products from a database:  1: // a class that handles our CRUD operations for products 2: public class ProductDao 3: { 4: ... 5:  6: // a method that would retrieve all available products 7: public IEnumerable<Product> GetAvailableProducts() 8: { 9: var results = new List<Product>(); 10:  11: // must create the connection 12: using (var con = _factory.CreateConnection()) 13: { 14: con.ConnectionString = _productsConnectionString; 15: con.Open(); 16:  17: // create the command 18: using (var cmd = _factory.CreateCommand()) 19: { 20: cmd.Connection = con; 21: cmd.CommandText = _getAllProductsStoredProc; 22: cmd.CommandType = CommandType.StoredProcedure; 23:  24: // get a reader and pass back all results 25: using (var reader = cmd.ExecuteReader()) 26: { 27: while(reader.Read()) 28: { 29: results.Add(new Product 30: { 31: Name = reader["product_name"].ToString(), 32: ... 33: }); 34: } 35: } 36: } 37: }            38:  39: return results; 40: } 41: } Yes, you could use EF or any myriad other choices for this sort of thing, but the germaine point is that you have some operation that takes a non-trivial amount of time.  What if, during the production day I notice that my application is performing slowly and I want to see how much of that slowness is in the query versus my code.  Well, I could easily wrap the logic block in a System.Diagnostics.Stopwatch and log the results to log4net or other logging flavor of choice: 1:     // a class that handles our CRUD operations for products 2:     public class ProductDao 3:     { 4:         private static readonly ILog _log = LogManager.GetLogger(typeof(ProductDao)); 5:         ... 6:         7:         // a method that would retrieve all available products 8:         public IEnumerable<Product> GetAvailableProducts() 9:         { 10:             var results = new List<Product>(); 11:             var timer = Stopwatch.StartNew(); 12:             13:             // must create the connection 14:             using (var con = _factory.CreateConnection()) 15:             { 16:                 con.ConnectionString = _productsConnectionString; 17:                 18:                 // and all that other DB code... 19:                 ... 20:             } 21:             22:             timer.Stop(); 23:             24:             if (timer.ElapsedMilliseconds > 5000) 25:             { 26:                 _log.WarnFormat("Long query in GetAvailableProducts() took {0} ms", 27:                     timer.ElapsedMillseconds); 28:             } 29:             30:             return results; 31:         } 32:     } In my eye, this is very ugly.  It violates Single Responsibility Principle (SRP), which says that a class should only ever have one responsibility, where responsibility is often defined as a reason to change.  This class (and in particular this method) has two reasons to change: If the method of retrieving products changes. If the method of logging changes. Well, we could “simplify” this using the Decorator Design Pattern (here).  If we followed the pattern to the letter, we'd need to create a base decorator that implements the DAOs public interface and forwards to the wrapped instance.  So let's assume we break out the ProductDAO interface into IProductDAO using your refactoring tool of choice (Resharper is great for this). Now, ProductDao will implement IProductDao and get rid of all logging logic: 1:     public class ProductDao : IProductDao 2:     { 3:         // this reverts back to original version except for the interface added 4:     } 5:  And we create the base Decorator that also implements the interface and forwards all calls: 1:     public class ProductDaoDecorator : IProductDao 2:     { 3:         private readonly IProductDao _wrappedDao; 4:         5:         // constructor takes the dao to wrap 6:         public ProductDaoDecorator(IProductDao wrappedDao) 7:         { 8:             _wrappedDao = wrappedDao; 9:         } 10:         11:         ... 12:         13:         // and then all methods just forward their calls 14:         public IEnumerable<Product> GetAvailableProducts() 15:         { 16:             return _wrappedDao.GetAvailableProducts(); 17:         } 18:     } This defines our base decorator, then we can create decorators that add items of interest, and for any methods we don't decorate, we'll get the default behavior which just forwards the call to the wrapper in the base decorator: 1:     public class TimedThresholdProductDaoDecorator : ProductDaoDecorator 2:     { 3:         private static readonly ILog _log = LogManager.GetLogger(typeof(TimedThresholdProductDaoDecorator)); 4:         5:         public TimedThresholdProductDaoDecorator(IProductDao wrappedDao) : 6:             base(wrappedDao) 7:         { 8:         } 9:         10:         ... 11:         12:         public IEnumerable<Product> GetAvailableProducts() 13:         { 14:             var timer = Stopwatch.StartNew(); 15:             16:             var results = _wrapped.GetAvailableProducts(); 17:             18:             timer.Stop(); 19:             20:             if (timer.ElapsedMilliseconds > 5000) 21:             { 22:                 _log.WarnFormat("Long query in GetAvailableProducts() took {0} ms", 23:                     timer.ElapsedMillseconds); 24:             } 25:             26:             return results; 27:         } 28:     } Well, it's a bit better.  Now the logging is in its own class, and the database logic is in its own class.  But we've essentially multiplied the number of classes.  We now have 3 classes and one interface!  Now if you want to do that same logging decorating on all your DAOs, imagine the code bloat!  Sure, you can simplify and avoid creating the base decorator, or chuck it all and just inherit directly.  But regardless all of these have the problem of tying the logging logic into the code itself. Enter the Interceptors.  Things like this to me are a perfect example of when it's good to write an Interceptor using your class library of choice.  Sure, you could design your own perfectly generic decorator with delegates and all that, but personally I'm a big fan of Castle's Dynamic Proxy (here) which is actually used by many projects including Moq. What DynamicProxy allows you to do is intercept calls into any object by wrapping it with a proxy on the fly that intercepts the method and allows you to add functionality.  Essentially, the code would now look like this using DynamicProxy: 1: // Note: I like hiding DynamicProxy behind the scenes so users 2: // don't have to explicitly add reference to Castle's libraries. 3: public static class TimeThresholdInterceptor 4: { 5: // Our logging handle 6: private static readonly ILog _log = LogManager.GetLogger(typeof(TimeThresholdInterceptor)); 7:  8: // Handle to Castle's proxy generator 9: private static readonly ProxyGenerator _generator = new ProxyGenerator(); 10:  11: // generic form for those who prefer it 12: public static object Create<TInterface>(object target, TimeSpan threshold) 13: { 14: return Create(typeof(TInterface), target, threshold); 15: } 16:  17: // Form that uses type instead 18: public static object Create(Type interfaceType, object target, TimeSpan threshold) 19: { 20: return _generator.CreateInterfaceProxyWithTarget(interfaceType, target, 21: new TimedThreshold(threshold, level)); 22: } 23:  24: // The interceptor that is created to intercept the interface calls. 25: // Hidden as a private inner class so not exposing Castle libraries. 26: private class TimedThreshold : IInterceptor 27: { 28: // The threshold as a positive timespan that triggers a log message. 29: private readonly TimeSpan _threshold; 30:  31: // interceptor constructor 32: public TimedThreshold(TimeSpan threshold) 33: { 34: _threshold = threshold; 35: } 36:  37: // Intercept functor for each method invokation 38: public void Intercept(IInvocation invocation) 39: { 40: // time the method invocation 41: var timer = Stopwatch.StartNew(); 42:  43: // the Castle magic that tells the method to go ahead 44: invocation.Proceed(); 45:  46: timer.Stop(); 47:  48: // check if threshold is exceeded 49: if (timer.Elapsed > _threshold) 50: { 51: _log.WarnFormat("Long execution in {0} took {1} ms", 52: invocation.Method.Name, 53: timer.ElapsedMillseconds); 54: } 55: } 56: } 57: } Yes, it's a bit longer, but notice that: This class ONLY deals with logging long method calls, no DAO interface leftovers. This class can be used to time ANY class that has an interface or virtual methods. Personally, I like to wrap and hide the usage of DynamicProxy and IInterceptor so that anyone who uses this class doesn't need to know to add a Castle library reference.  As far as they are concerned, they're using my interceptor.  If I change to a new library if a better one comes along, they're insulated. Now, all we have to do to use this is to tell it to wrap our ProductDao and it does the rest: 1: // wraps a new ProductDao with a timing interceptor with a threshold of 5 seconds 2: IProductDao dao = TimeThresholdInterceptor.Create<IProductDao>(new ProductDao(), 5000); Automatic decoration of all methods!  You can even refine the proxy so that it only intercepts certain methods. This is ideal for so many things.  These are just some of the interceptors we've dreamed up and use: Log parameters and returns of methods to XML for auditing. Block invocations to methods and return default value (stubbing). Throw exception if certain methods are called (good for blocking access to deprecated methods). Log entrance and exit of a method and the duration. Log a message if a method takes more than a given time threshold to execute. Whether you use DynamicProxy or some other technology, I hope you see the benefits this adds.  Does it completely eliminate all need for the Decorator pattern?  No, there may still be cases where you want to decorate a particular class with functionality that doesn't apply to the world at large. But for all those cases where you are using Decorator to add functionality that's truly generic.  I strongly suggest you give this a try!

    Read the article

  • Web API, JavaScript, Chrome &amp; Cross-Origin Resource Sharing

    - by Brian Lanham
    The team spent much of the week working through this issues related to Chrome running on Windows 8 consuming cross-origin resources using Web API.  We thought it was resolved on day 2 but it resurfaced the next day.  We definitely resolved it today though.  I believe I do not fully understand the situation but I am going to explain what I know in an effort to help you avoid and/or resolve a similar issue. References We referenced many sources during our trial-and-error troubleshooting.  These are the links we reference in order of applicability to the solution: Zoiner Tejada JavaScript and other material from -> http://www.devproconnections.com/content1/topic/microsoft-azure-cors-141869/catpath/windows-azure-platform2/page/3 WebDAV Where I learned about “Accept” –>  http://www-jo.se/f.pfleger/cors-and-iis? IT Hit Tells about NOT using ‘*’ –> http://www.webdavsystem.com/ajax/programming/cross_origin_requests Carlos Figueira Sample back-end code (newer) –> http://code.msdn.microsoft.com/windowsdesktop/Implementing-CORS-support-a677ab5d (older version) –> http://code.msdn.microsoft.com/CORS-support-in-ASPNET-Web-01e9980a   Background As a measure of protection, Web designers (W3C) and implementers (Google, Microsoft, Mozilla) made it so that a request, especially a JSON request (but really any URL), sent from one domain to another will only work if the requestee “knows” about the requester and allows requests from it. So, for example, if you write a ASP.NET MVC Web API service and try to consume it from multiple apps, the browsers used may (will?) indicate that you are not allowed by showing an “Access-Control-Allow-Origin” error indicating the requester is not allowed to make requests. Internet Explorer (big surprise) is the odd-hair-colored step-child in this mix. It seems that running locally at least IE allows this for development purposes.  Chrome and Firefox do not.  In fact, Chrome is quite restrictive.  Notice the images below. IE shows data (a tabular view with one row for each day of a week) while Chrome does not (trust me, neither does Firefox).  Further, the Chrome developer console shows an XmlHttpRequest (XHR) error. Screen captures from IE (left) and Chrome (right). Note that Chrome does not display data and the console shows an XHR error. Why does this happen? The Web browser submits these requests and processes the responses and each browser is different. Okay, so, IE is probably the only one that’s truly different.  However, Chrome has a specific process of performing a “pre-flight” check to make sure the service can respond to an “Access-Control-Allow-Origin” or Cross-Origin Resource Sharing (CORS) request.  So basically, the sequence is, if I understand correctly:  1)Page Loads –> 2)JavaScript Request Processed by Browser –> 3)Browsers Prepares to Submit Request –> 4)[Chrome] Browser Submits Pre-Flight Request –> 5)Server Responds with HTTP 200 –> 6)Browser Submits Request –> 7)Server Responds with Data –> 8)Page Shows Data This situation occurs for both GET and POST methods.  Typically, GET methods are called with query string parameters so there is no data posted.  Instead, the requesting domain needs to be permitted to request data but generally nothing more is required.  POSTs on the other hand send form data.  Therefore, more configuration is required (you’ll see the configuration below).  AJAX requests are not friendly with this (POSTs) either because they don’t post in a form. How to fix it. The team went through many iterations of self-hair removal and we think we finally have a working solution.  The trial-and-error approach eventually worked and we referenced many sources for the information.  I indicate those references above.  There are basically three (3) tasks needed to make this work. Assumptions: You are using Visual Studio, Web API, JavaScript, and have Cross-Origin Resource Sharing, and several browsers. 1. Configure the client Joel Cochran centralized our “cors-oriented” JavaScript (from here). There are two calls including one for GET and one for POST function(url, data, callback) {             console.log(data);             $.support.cors = true;             var jqxhr = $.post(url, data, callback, "json")                 .error(function(jqXhHR, status, errorThrown) {                     if ($.browser.msie && window.XDomainRequest) {                         var xdr = new XDomainRequest();                         xdr.open("post", url);                         xdr.onload = function () {                             if (callback) {                                 callback(JSON.parse(this.responseText), 'success');                             }                         };                         xdr.send(data);                     } else {                         console.log(">" + jqXhHR.status);                         alert("corsAjax.post error: " + status + ", " + errorThrown);                     }                 });         }; The GET CORS JavaScript function (credit to Zoiner Tejada) function(url, callback) {             $.support.cors = true;             var jqxhr = $.get(url, null, callback, "json")                 .error(function(jqXhHR, status, errorThrown) {                     if ($.browser.msie && window.XDomainRequest) {                         var xdr = new XDomainRequest();                         xdr.open("get", url);                         xdr.onload = function () {                             if (callback) {                                 callback(JSON.parse(this.responseText), 'success');                             }                         };                         xdr.send();                     } else {                         alert("CORS is not supported in this browser or from this origin.");                     }                 });         }; The POST CORS JavaScript function (credit to Zoiner Tejada) Now you need to call these functions to get and post your data (instead of, say, using $.Ajax). Here is a GET example: corsAjax.get(url, function(data) { if (data !== null && data.length !== undefined) { // do something with data } }); And here is a POST example: corsAjax.post(url, item); Simple…except…you’re not done yet. 2. Change Web API Controllers to Allow CORS There are actually two steps here.  Do you remember above when we mentioned the “pre-flight” check?  Chrome actually asks the server if it is allowed to ask it for cross-origin resource sharing access.  So you need to let the server know it’s okay.  This is a two-part activity.  a) Add the appropriate response header Access-Control-Allow-Origin, and b) permit the API functions to respond to various methods including GET, POST, and OPTIONS.  OPTIONS is the method that Chrome and other browsers use to ask the server if it can ask about permissions.  Here is an example of a Web API controller thus decorated: NOTE: You’ll see a lot of references to using “*” in the header value.  For security reasons, Chrome does NOT recognize this is valid. [HttpHeader("Access-Control-Allow-Origin", "http://localhost:51234")] [HttpHeader("Access-Control-Allow-Credentials", "true")] [HttpHeader("Access-Control-Allow-Methods", "ACCEPT, PROPFIND, PROPPATCH, COPY, MOVE, DELETE, MKCOL, LOCK, UNLOCK, PUT, GETLIB, VERSION-CONTROL, CHECKIN, CHECKOUT, UNCHECKOUT, REPORT, UPDATE, CANCELUPLOAD, HEAD, OPTIONS, GET, POST")] [HttpHeader("Access-Control-Allow-Headers", "Accept, Overwrite, Destination, Content-Type, Depth, User-Agent, X-File-Size, X-Requested-With, If-Modified-Since, X-File-Name, Cache-Control")] [HttpHeader("Access-Control-Max-Age", "3600")] public abstract class BaseApiController : ApiController {     [HttpGet]     [HttpOptions]     public IEnumerable<foo> GetFooItems(int id)     {         return foo.AsEnumerable();     }     [HttpPost]     [HttpOptions]     public void UpdateFooItem(FooItem fooItem)     {         // NOTE: The fooItem object may or may not         // (probably NOT) be set with actual data.         // If not, you need to extract the data from         // the posted form manually.         if (fooItem.Id == 0) // However you check for default...         {             // We use NewtonSoft.Json.             string jsonString = context.Request.Form.GetValues(0)[0].ToString();             Newtonsoft.Json.JsonSerializer js = new Newtonsoft.Json.JsonSerializer();             fooItem = js.Deserialize<FooItem>(new Newtonsoft.Json.JsonTextReader(new System.IO.StringReader(jsonString)));         }         // Update the set fooItem object.     } } Please note a few specific additions here: * The header attributes at the class level are required.  Note all of those methods and headers need to be specified but we find it works this way so we aren’t touching it. * Web API will actually deserialize the posted data into the object parameter of the called method on occasion but so far we don’t know why it does and doesn’t. * [HttpOptions] is, again, required for the pre-flight check. * The “Access-Control-Allow-Origin” response header should NOT NOT NOT contain an ‘*’. 3. Headers and Methods and Such We had most of this code in place but found that Chrome and Firefox still did not render the data.  Interestingly enough, Fiddler showed that the GET calls succeeded and the JSON data is returned properly.  We learned that among the headers set at the class level, we needed to add “ACCEPT”.  Note that I accidentally added it to methods and to headers.  Adding it to methods worked but I don’t know why.  We added it to headers also for good measure. [HttpHeader("Access-Control-Allow-Methods", "ACCEPT, PROPFIND, PROPPA... [HttpHeader("Access-Control-Allow-Headers", "Accept, Overwrite, Destin... Next Steps That should do it.  If it doesn’t let us know.  What to do next?  * Don’t hardcode the allowed domains.  Note that port numbers and other domain name specifics will cause problems and must be specified.  If this changes do you really want to deploy updated software?  Consider Miguel Figueira’s approach in the following link to writing a custom HttpHeaderAttribute class that allows you to specify the domain names and then you can do it dynamically.  There are, of course, other ways to do it dynamically but this is a clean approach. http://code.msdn.microsoft.com/windowsdesktop/Implementing-CORS-support-a677ab5d

    Read the article

  • GZip/Deflate Compression in ASP.NET MVC

    - by Rick Strahl
    A long while back I wrote about GZip compression in ASP.NET. In that article I describe two generic helper methods that I've used in all sorts of ASP.NET application from WebForms apps to HttpModules and HttpHandlers that require gzip or deflate compression. The same static methods also work in ASP.NET MVC. Here are the two routines:/// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } /// <summary> /// Sets up the current page or handler to use GZip through a Response.Filter /// IMPORTANT: /// You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() { HttpResponse Response = HttpContext.Current.Response; if (IsGZipSupported()) { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (AcceptEncoding.Contains("gzip")) { Response.Filter = new System.IO.Compression.GZipStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "gzip"); } else { Response.Filter = new System.IO.Compression.DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "deflate"); } } // Allow proxy servers to cache encoded and unencoded versions separately Response.AppendHeader("Vary", "Content-Encoding"); } The first method checks whether the client sending the request includes the accept-encoding for either gzip or deflate, and if if it does it returns true. The second function uses IsGzipSupported() to decide whether it should encode content and uses an Response Filter to do its job. Basically response filters look at the Response output stream as it's written and convert the data flowing through it. Filters are a bit tricky to work with but the two .NET filter streams for GZip and Deflate Compression make this a snap to implement. In my old code and even now in MVC I can always do:public ActionResult List(string keyword=null, int category=0) { WebUtils.GZipEncodePage(); …} to encode my content. And that works just fine. The proper way: Create an ActionFilterAttribute However in MVC this sort of thing is typically better handled by an ActionFilter which can be applied with an attribute. So to be all prim and proper I created an CompressContentAttribute ActionFilter that incorporates those two helper methods and which looks like this:/// <summary> /// Attribute that can be added to controller methods to force content /// to be GZip encoded if the client supports it /// </summary> public class CompressContentAttribute : ActionFilterAttribute { /// <summary> /// Override to compress the content that is generated by /// an action method. /// </summary> /// <param name="filterContext"></param> public override void OnActionExecuting(ActionExecutingContext filterContext) { GZipEncodePage(); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } /// <summary> /// Sets up the current page or handler to use GZip through a Response.Filter /// IMPORTANT: /// You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() { HttpResponse Response = HttpContext.Current.Response; if (IsGZipSupported()) { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (AcceptEncoding.Contains("gzip")) { Response.Filter = new System.IO.Compression.GZipStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "gzip"); } else { Response.Filter = new System.IO.Compression.DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "deflate"); } } // Allow proxy servers to cache encoded and unencoded versions separately Response.AppendHeader("Vary", "Content-Encoding"); } } It's basically the same code wrapped into an ActionFilter attribute, which intercepts requests MVC requests to Controller methods and lets you hook up logic before and after the methods have executed. Here I want to override OnActionExecuting() which fires before the Controller action is fired. With the CompressContentAttribute created, it can now be applied to either the controller as a whole:[CompressContent] public class ClassifiedsController : ClassifiedsBaseController { … } or to one of the Action methods:[CompressContent] public ActionResult List(string keyword=null, int category=0) { … } The former applies compression to every action method, while the latter is selective and only applies it to the individual action method. Is the attribute better than the static utility function? Not really, but it is the standard MVC way to hook up 'filter' content and that's where others are likely to expect to set options like this. In fact,  you have a bit more control with the utility function because you can conditionally apply it in code, but this is actually much less likely in MVC applications than old WebForms apps since controller methods tend to be more focused. Compression Caveats Http compression is very cool and pretty easy to implement in ASP.NET but you have to be careful with it - especially if your content might get transformed or redirected inside of ASP.NET. A good example, is if an error occurs and a compression filter is applied. ASP.NET errors don't clear the filter, but clear the Response headers which results in some nasty garbage because the compressed content now no longer matches the headers. Another issue is Caching, which has to account for all possible ways of compression and non-compression that the content is served. Basically compressed content and caching don't mix well. I wrote about several of these issues in an old blog post and I recommend you take a quick peek before diving into making every bit of output Gzip encoded. None of these are show stoppers, but you have to be aware of the issues. Related Posts GZip Compression with ASP.NET Content ASP.NET GZip Encoding Caveats© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Silverlight Cream for January 01, 2011 -- #1020

    - by Dave Campbell
    In this short New Year's Day 2011 Issue, 3 Mikes: Mike Taulty, Mike Snow, and Mike Ormond. Above the Fold: Silverlight: "Native Extensions for Silverlight (NESL)?" Mike Taulty WP7: "Monitoring Memory Usage on Windows Phone 7" Mike Ormond From SilverlightCream.com: Native Extensions for Silverlight (NESL)? Mike Taulty has a really good write-up on Native Extensions for Silverlight... he describes what that project is about and gives guidance on best practices. Win7 Mobile: Uniquely Identifying a Device or User Mike Snow has a post up describing how to uniquely identify the phone or device your app is running on using the Microsoft.Phone.Info.DeviceExtendedProperties namespace Monitoring Memory Usage on Windows Phone 7 Mike Ormond has a post up showing how to turn on and make use of the framerate counters in WP7 Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

< Previous Page | 86 87 88 89 90 91 92 93 94 95 96 97  | Next Page >