Search Results

Search found 3479 results on 140 pages for 'sequence diagram'.

Page 90/140 | < Previous Page | 86 87 88 89 90 91 92 93 94 95 96 97  | Next Page >

  • Tips On Using The Service Contracts Import Program

    - by LuciaC
    Prior to release 12.1 there was no supported way to import contracts into the EBS Service Contracts application - there were no public APIs nor contract load programs provided.  From release 12.1 onwards the 'Service Contracts Import Program' is provided to load service contracts into the application. The Service Contracts Import functionality is explained in How to Use the Service Contracts Import Program - Scope and Limitations (Doc ID 1057242.1).  This note includes an attached document which explains the program architecture, shows the Entity Relationship Diagram and details the interface table definitions. The Import program takes data from the interface tables listed below and populates the contracts schema tables:  OKS_USAGE_COUNTERS_INTERFACE OKS_SALES_CREDITS_INTERFACEOKS_NOTES_INTERFACEOKS_LINES_INTERFACEOKS_HEADERS_INTERFACEOKS_COVERED_LEVELS_INTERFACEThese interface tables must be loaded via a custom load program.The Service Contracts Import concurrent request is then submitted to create contracts from this legacy data. The parameters to run the Import program are:  Parameter Description  Mode Validate only, Import  Batch Number Batch_Id (unique id populated into the OKS_HEADERS_INTERFACE table)  Number of Workers Number of workers required (these are spawned as separate sub-requests)  Commit size Represents number of successfully processed contracts commited to database The program spawns sub-requests for the import worker(s) and the 'Service Contracts Import Report'.  The data is validated prior to import and into the Contracts tables and will report errors in the Service Contracts Import Report program output file (Import Execution Report).  Troubleshooting tips are provided in R12.1 - Common Service Contract Import Errors (Doc ID 762545.1); this document lists some, but not all, import errors.  The document will be updated over time.  Additional help is given in Debugging Tip for Service Contracts Import Errors (Doc ID 971426.1).After you successfully import contracts, you can purge the records from the interface tables by running the Service Contracts Import Purge concurrent program. Note that there is no supported way to mass delete data from the Contracts schema tables once they are populated, so data loaded by the Import program must be fully tested and verified before the program is run to load data into a Production system.A Service Contracts Import Test program has been provided which will take an existing contract in the application and load the interface tables using the data from that contract.  This can be used as an example for guidance on how to load the interface tables.  The Test program functionality is explained in How to Use the Service Contracts Test Import Program Provided in Release 12.1 (Doc ID 761209.1).  Note that the Test program has some limitations which do not apply to the full Import program and is not a supported program, it is simply a testing tool.  

    Read the article

  • Social Analytics and the Customer

    - by David Dorf
    Many successful retailers put the customer at the center of everything they do, so its important that the customer is modeled correctly across all their systems.  The path to omni-channel starts and ends with the customer so at ARTS, our next big project is focused on ensuring a consistent representation of customers across our transactional data model, datawarehouse model, and XML schemas.  Further, we've started a new whitepaper that describes how Big Data and Social Media Analytics should be leveraged by retailers to add and additional level of customer insight. Let's start by taking a closer look at the meaning of social analytics.  Here's my definition: Social Analytics, in the retail context, describes the analysis of data obtained from social media sources in an effort to better comprehend and interact with the community of consumers.  This discipline seeks to understand what’s being said by the community about brands and products (“monitoring”), as well as understand the behaviors of those in the community (“profiling”).  The results are used to enforce the brand image, improve product decisions, and better focus marketing, all of which lead to increased sales. To help illustrate the facets of social analytics, I drew the diagram below which was originally published by Retail Touchpoints. There are lots of tools on the market that allow retailers to monitor social media for brand and product mentions.  These include analysis of sentiment, reach, share of voice, engagement, etc.  When your brand is mentioned, good or bad, its an opportunity to engage with the customer and possibly lead to a sale.  Because products are not always unique, its much more difficult to monitor product mentions, but detecting product trends early can help a retailer make better merchandising decisions, especially in fashion. Once a retailer understands what's being said, the next step is learn more about who's saying it.  That involves profiling customers beyond simple demographics to understand their motivations.  Much can be learned from patterns, and even more when customers voluntarily share their data.  Knowing that a customer is passionate about, for example, mountain biking allows the retailer to make relevant offers on helmets, ask for opinions on hydration, and help spread marketing messages. Social analytics has many facets that benefit retailers, some of which are easy but many of which are hard.  Its important for the CMO and CIO to work closely together to plan for these capabilities and monitor the maturity of tools on the market.  This is an area that will separate winners from losers.

    Read the article

  • Understanding Data Science: Recent Studies

    - by Joe Lamantia
    If you need such a deeper understanding of data science than Drew Conway's popular venn diagram model, or Josh Wills' tongue in cheek characterization, "Data Scientist (n.): Person who is better at statistics than any software engineer and better at software engineering than any statistician." two relatively recent studies are worth reading.   'Analyzing the Analyzers,' an O'Reilly e-book by Harlan Harris, Sean Patrick Murphy, and Marck Vaisman, suggests four distinct types of data scientists -- effectively personas, in a design sense -- based on analysis of self-identified skills among practitioners.  The scenario format dramatizes the different personas, making what could be a dry statistical readout of survey data more engaging.  The survey-only nature of the data,  the restriction of scope to just skills, and the suggested models of skill-profiles makes this feel like the sort of exercise that data scientists undertake as an every day task; collecting data, analyzing it using a mix of statistical techniques, and sharing the model that emerges from the data mining exercise.  That's not an indictment, simply an observation about the consistent feel of the effort as a product of data scientists, about data science.  And the paper 'Enterprise Data Analysis and Visualization: An Interview Study' by researchers Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffery Heer considers data science within the larger context of industrial data analysis, examining analytical workflows, skills, and the challenges common to enterprise analysis efforts, and identifying three archetypes of data scientist.  As an interview-based study, the data the researchers collected is richer, and there's correspondingly greater depth in the synthesis.  The scope of the study included a broader set of roles than data scientist (enterprise analysts) and involved questions of workflow and organizational context for analytical efforts in general.  I'd suggest this is useful as a primer on analytical work and workers in enterprise settings for those who need a baseline understanding; it also offers some genuinely interesting nuggets for those already familiar with discovery work. We've undertaken a considerable amount of research into discovery, analytical work/ers, and data science over the past three years -- part of our programmatic approach to laying a foundation for product strategy and highlighting innovation opportunities -- and both studies complement and confirm much of the direct research into data science that we conducted. There were a few important differences in our findings, which I'll share and discuss in upcoming posts.

    Read the article

  • CRM vs VRM

    - by David Dorf
    In a previous post, I discussed the potential power of combining social, interest, and location graphs in order to personalize marketing and shopping experiences for consumers.  Marketing companies have been trying to collect detailed information for that very purpose, a large majority of which comes from tracking people on the internet.  But their approaches stem from the one-way nature of traditional advertising.  With TV, radio, and magazines there is no opportunity to truly connect to customers, which has trained marketing companies to [covertly] collect data and segment customers into easily identifiable groups.  To a large extent, we think of this as CRM. But what if we turned this viewpoint upside-down to accommodate for the two-way nature of social media?  The notion of marketing as conversations was the basis for the Cluetrain, an early attempt at drawing attention to the fact that customers are actually unique humans.  A more practical implementation is Project VRM, which is a reverse CRM of sorts.  Instead of vendors managing their relationships with customers, customers manage their relationships with vendors. Your shopping experience is not really controlled by you; rather, its controlled by the retailer and advertisers.  And unfortunately, they typically don't give you a say in the matter.  Yes, they might tailor the content for "female age 25-35 interested in shoes" but that's not really the essence of you, is it?  A better approach is to the let consumers volunteer information about themselves.  And why wouldn't they if it means a better, more relevant shopping experience?  I'd gladly list out my likes and dislikes in exchange for getting rid of all those annoying cookies on my harddrive. I really like this diagram from Beyond SocialCRM as it captures the differences between CRM and VRM. The closest thing to VRM I can find is Buyosphere, a start-up that allows consumers to track their shopping history across many vendors, then share it appropriately.  Also, Amazon does a pretty good job allowing its customers to edit their profile, which includes everything you've ever purchased from Amazon.  You can mark items as gifts, or explicitly exclude them from their recommendation engine.  This is a win-win for both the consumer and retailer. So here is my plea to retailers: Instead of trying to infer my interests from snapshots of my day, please just ask me.  We'll both have a better experience in the long-run.

    Read the article

  • Spotlight on RIVA: CRM integration for Oracle CRM on Demand and Microsoft Exchange

    - by Richard Lefebvre
    Introducing Riva from Omni - an Oracle ISV partner specializing in Enterprise Management and Integration Solutions Riva delivers advanced, server-side integration for Oracle CRM On Demand and Microsoft Exchange or even Novell GroupWise. Riva allows Oracle customers to go beyond the standard Outlook plug-in to deliver additional value for the end user as they interact between Outlook and CRM On Demand. Riva syncs CRM On Demand to ALL Exchange mail apps, not just Windows Outlook.  So, whether customers are using Outlook 2010, Outlook Web Access (web client), Outlook 2011 for Mac, Apple Mail, Outlook on Citrix  or a mobile device, Riva's got them covered. There are no plug-ins to be installed, configured, managed and maintained on users' desktops, laptops as Riva delivers Server-side synchronisation for CRMOD and Exchange. The automation of CRM and Outlook integration will remove the reliance upon users to synchronise between the two with Riva handling this process. Riva allows administrators to define sync policies and apply them to individuals or groups of users depending on their sync requirements. Administrators will be able to determine and manage the exposure of the most pertinent detail to be synchronised between Outlook and CRM On Demand. Custom and organic contact filtering for large deployments i.e. Based on ownership, groupings and contact frequency, filters can be applied on what contact records are shared with the users. Riva provides the capability to synchronise CRM and Outlook beyond Contacts, Calendar entries and Email. The synchronisation can be extended to cater for  opportunities, quotes and custom objects for example within the Outlook interface. Riva SmartConvert Folders can automate the creation of opportunities and associated contacts for example if they don't already exist. This can facilitate a reduction in manual detail entry through quick association whilst also benefiting user adoption. From a mobile perspective, Riva allows users to view and manage their CRM On Demand contacts, calendar, tasks, opportunities and cases from iPad, iPhone, Android and BlackBerry devices.  Again, there are no mobile apps or additional plugins to install, configure or manage. We sync CRM On Demand to Exchange.  Because the mobile device is connected to an Exchange mailbox, the information automatically syncs down to the native address book, calendar and mail apps on the smartphone or tablet. Riva Datasheet for CRM On Demand Riva Brochure – Oracle CRM On Demand  Technical Knowledgebase & Riva Trial  http://kb.omni-ts.com/47/ Comparison to Outlook Plug-ins Riva Diagram – Riva Comparison with Outlook Plug-ins Contact: Wolfgang Berger - [email protected]

    Read the article

  • The challenge of giving a positive No

    - by MarkPearl
    I find it ironic that the more I am involved in the software industry, the more apparent it becomes that soft skills are just as if not more important than the technical abilities of a developer. One of the biggest challenges I have faced in my career is in managing client expectations to what one can deliver and being able to work with multiple clients. If I look at where things commonly go pear shaped, one area features a lot is where I should have said "No" to a request, but because of the way the request was made I ended up saying yes. Time and time again this has caused immense pain. Thus, when I saw on Amazon that they had a book titled "The power of a positive no" by William Ury I had to buy it and read it. In William's book he explains an approach to saying No that while extremely simple does change the way a No is presented. In essence he talks of a pattern the Yes! > No > Yes? Pattern. 1. Yes! -> positively and concretely describing your core interests and values 2. No. -> explicitly link your no to this YES! 3. Yes? -> suggest another positive outcome or agreement to the other person Let me explain how I understood it. If you are working on a really important project and someone asks you to do add a quick feature to another project, your Yes! would be to the more important project, which would mean a No to the quick feature, and an option for your Yes? may be an alternative time when you can look at it.. An example of an appropriate response would be... It is really important that I keep to the commitment that I made to this customer to finish his project on time so I cannot work on your feature right now but I am available to help you in a weeks time. William then goes on to explain the type of behaviour a person may display when the no is received. He illustrates this with a diagram called the curve of acceptance. William points out that if you are aware of the type of behaviour you can expect it empowers you to stay true to your no. Personally I think reading and having an understanding of the “soft” side of things like saying no is invaluable to a developer.

    Read the article

  • Stop Saying "Multi-Channel!"

    - by David Dorf
    I keep hearing the term "multi-channel" in our industry, but its time to move on. It kinda reminds me of the term "ECR" or electronic cash register. Long ago ECR was a leading-edge term, but nowadays its rarely used because its table-stakes. After all, what cash register today isn't electronic? The same logic applies to multi-channel, at least when we're talking about tier-1 and tier-2 retailers. If you're still talking about multi-channel retailing, you're in big trouble. Some have switched over to the term "cross-channel," and that's a step in the right direction but still falls short. Its kinda like saying, "I upgraded my ECR to accept debit cards!" Yawn. Who hasn't? Today's retailers need to focus on omni-channel, which I first heard from my friends over at RSR but was originally coined at IDC. First retailers added e-commerce to their store and catalog channels yielding multi-channel retailing. Consumers could use the channel that worked best for them. Then some consumers wanted to combine channels with features like buy-on-the-Web, pickup-in-the-store. Thus began the cross-channel initiatives to breakdown the silos and enable the channels to communicate with each other. But the multi-channel architecture is full of duplication that thwarts efforts of providing a consistent experience. Each has its own cart, its own pricing, and often its own CRM. This was an outcrop of trying to bring the independent channels to market quickly. Rather than reusing and rebuilding existing components to meet the new demands, silos were created that continue to exist today. Today's consumers want omni-channel retailing. They want to interact with brands in a consistent manner that is channel transparent, yet optimized for that particular interaction. The diagram below, from the soon-to-be-released NRF Mobile Blueprint v2, shows this progression. For retailers to provide an omni-channel experience, there needs to be one logical representation of products, prices, promotions, and customers across all channels. The only thing that varies is the presentation of the content based on the delivery mechanism (e.g. shelf labels, mobile phone, web site, print, etc.) and often these mechanisms can be combined in various ways. I'm looking forward to the day in which I can use my phone to scan QR-codes in a catalog to create a shopping cart of items. Then do some further research on the retailer's Web site and be told about related items that might interest me. Be able to easily solicit opinions and reviews from social sites, and finally enter the store to pickup my items, knowing that any applicable coupons have been applied. In this scenario, I the consumer are dealing with a single brand that is aware of me and my needs throughout the entire transaction. Nirvana.

    Read the article

  • Music Notation Editor - Refactoring view creation logic elseware

    - by Cyril Silverman
    Let me preface by saying that knowing some elementary music theory and music notation may be helpful in grasping the problem at hand. I'm currently building a Music Notation and Tablature Editor (in Javascript). But I've come to a point where the core parts of the program are more or less there. All functionality I plan to add at this point will really build off the foundation that I've created. As a result, I want to refactor to really solidify my code. I'm using an API called VexFlow to render notation. Basically I pass the parts of the editor's state to VexFlow to build the graphical representation of the score. Here is a rough and stripped down UML diagram showing you the outline of my program: In essence, a Part has many Measures which has many Notes which has many NoteItems (yes, this is semantically weird, as a chord is represented as a Note with multiple NoteItems, individual pitches or fret positions). All of the relationships are bi-directional. There are a few problems with my design because my Measure class contains the majority of the entire application view logic. The class holds the data about all VexFlow objects (the graphical representation of the score). It contains the graphical Staff object and the graphical notes. (Shouldn't these be placed somewhere else in the program?) While VexFlowFactory deals with actual creation (and some processing) of most of the VexFlow objects, Measure still "directs" the creation of all the objects and what order they are supposed to be created in for both the VexFlowStaff and VexFlowNotes. I'm not looking for a specific answer as you'd need a much deeper understanding of my code. Just a general direction to go in. Here's a thought I had, create an MeasureView/NoteView/PartView classes that contains the basic VexFlow objects for each class in addition to any extraneous logic for it's creation? but where would these views be contained? Do I create a ScoreView that is a parallel graphical representation of everything? So that ScoreView.render() would cascade down PartView and call render for each PartView and casade down into each MeasureView, etc. Again, I just have no idea what direction to go in. The more I think about it, the more ways to go seem to pop into my head. I tried to be as concise and simplistic as possible while still getting my problem across. Please feel free to ask me any questions if anything is unclear. It's quite a struggle trying to dumb down a complicated problem to its core parts.

    Read the article

  • 2D SAT Collision Detection not working when using certain polygons

    - by sFuller
    My SAT algorithm falsely reports that collision is occurring when using certain polygons. I believe this happens when using a polygon that does not contain a right angle. Here is a simple diagram of what is going wrong: Here is the problematic code: std::vector<vec2> axesB = polygonB->GetAxes(); //loop over axes B for(int i = 0; i < axesB.size(); i++) { float minA,minB,maxA,maxB; polygonA->Project(axesB[i],&minA,&maxA); polygonB->Project(axesB[i],&minB,&maxB); float intervalDistance = polygonA->GetIntervalDistance(minA, maxA, minB, maxB); if(intervalDistance >= 0) return false; //Collision not occurring } This function retrieves axes from the polygon: std::vector<vec2> Polygon::GetAxes() { std::vector<vec2> axes; for(int i = 0; i < verts.size(); i++) { vec2 a = verts[i]; vec2 b = verts[(i+1)%verts.size()]; vec2 edge = b-a; axes.push_back(vec2(-edge.y,edge.x).GetNormailzed()); } return axes; } This function returns the normalized vector: vec2 vec2::GetNormailzed() { float mag = sqrt( x*x + y*y ); return *this/mag; } This function projects a polygon onto an axis: void Polygon::Project(vec2* axis, float* min, float* max) { float d = axis->DotProduct(&verts[0]); float _min = d; float _max = d; for(int i = 1; i < verts.size(); i++) { d = axis->DotProduct(&verts[i]); _min = std::min(_min,d); _max = std::max(_max,d); } *min = _min; *max = _max; } This function returns the dot product of the vector with another vector. float vec2::DotProduct(vec2* other) { return (x*other->x + y*other->y); } Could anyone give me a pointer in the right direction to what could be causing this bug?

    Read the article

  • Tools for Enterprise Architects: OmniGraffle for iPad?

    - by pat.shepherd
    Well, I have to admit to being a bit of an Apple fan and, of course, and early adopter of gadgets and technology in general.  So, when FedEx showed up with my iPad 3G last week, I was a kid in a candy store.  One of the apps that my “buy finger” was hovering over for a while (like all of 3 days) was Omnigraffle for the iPad.  I imagined that it would be very cool to use this with a customer’s EA’s to sketch out Business, Application, Information and Technology architectures.  Instead of using the blackboard, this seemed to offer promise as a white-boarding tool with obvious benefits over a traditional white-board.  I figured I’d get a VGA adapter, plug it into the customer’s projector and off we would go with a great JAD tool.  The touch pad approach offered an additional hands-on kind of feel. So, I made the $49.99 purchase + the $29.99 VGA adapter and tried to give it a go.  Well, I was both pleasantly and unpleasantly surprised.  It is both powerful and easy to use.  There are great stencils included for shapes, software icons, Visio shapes, and even UML notation.  There is even a free-hand tool that works well.  I created some diagrams pretty quickly.   The one below was just a test and took all of 10 minuets to do. The only problem was that Onmigraffle does not recognize the VGA output, so I was stopped dead in my tracks, as it were.  My use case was as a collaborative diagramming tool with other architects, though I can still use it off line.  I called Omnigraffle and they said that VGA support is on the feature request list so, hopefully, in a short amount of time, I can use the tool as I envisioned.   Review: Criteria Result Is it fun? Yes Is it Useful? Yes Does it Show Promise? Yes Did the VGA Output Work? No File/diagram Formats PDF, Onmigraffle proprietary, image   Quick Sample:     OmniGraffle for iPad - Products - The Omni Group

    Read the article

  • Multi Pass Blend

    - by Kirk Patrick
    I am seeking the simplest working example of a two pass HLSL pixel shader. It can do anything really, but the main idea is to perform "ping ponging" to take the output of the first pass and then send it for the second pass. In my example I want to draw to the R channel and then draw to the G channel and produce a simple Venn Diagram in the shader, but need to detect overlap. I can currently detect one or the other but not overlap. There are a red and green circle overlapping, and I want to put a dynamic texture map in the overlap region. I can currently put it in either or. Below is how it looks in the shader. -------------------------------- Texture2D shaderTexture; SamplerState SampleType; ////////////// // TYPEDEFS // ////////////// struct PixelInputType { float4 position : SV_POSITION; float2 tex0 : TEXCOORD0; float2 tex1 : TEXCOORD1; float4 color : COLOR; }; //////////////////////////////////////////////////////////////////////////////// // Pixel Shader //////////////////////////////////////////////////////////////////////////////// float4 main(PixelInputType input) : SV_TARGET { float4 textureColor0; float4 textureColor1; // Sample the pixel color from the texture using the sampler at this texture coordinate location. textureColor0 = shaderTexture.Sample(SampleType, input.tex0); textureColor1 = shaderTexture.Sample(SampleType, input.tex1); if (input.color[0]==1.0f && input.color[1]==1.0f) // Requires multi-pass textureColor0 = textureColor1; return textureColor0; } Here is the calling code (that needs to be modified) m_d3dContext->IASetVertexBuffers(0, 2, vbs, strides, offsets); m_d3dContext->IASetIndexBuffer(m_indexBuffer.Get(), DXGI_FORMAT_R32_UINT,0); m_d3dContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); m_d3dContext->IASetInputLayout(m_inputLayout.Get()); m_d3dContext->VSSetShader(m_vertexShader.Get(), nullptr, 0); m_d3dContext->VSSetConstantBuffers(0, 1, m_constantBuffer.GetAddressOf()); m_d3dContext->PSSetShader(m_pixelShader.Get(), nullptr, 0); m_d3dContext->PSSetShaderResources(0, 1, m_SRV.GetAddressOf()); m_d3dContext->PSSetSamplers(0, 1, m_QuadsTexSamplerState.GetAddressOf());

    Read the article

  • Configuring the iPlanet as web tier for Oracle WebCenter Content (UCM)

    - by Adao Junior
    If you are looking for configure the iPlanet as Web server/proxy to use with the Oracle WebCenter Content, you probably won’t found an specific documentation for that or will found some old complex notes related to the old 10gR3. This post will help you out with few simple steps. That’s the diagram of the test scenario, considering that you will deploy in production in an cluster environment. First you need the software, for our scenario you will need: - Oracle iPlanet Web Server 7.0.15+ (Installed) - Oracle WebCenter Content 11gR1 PS5 (Installed) - Oracle WebLogic Web Server Plugins 11g (1.1) - Supported JDK (Using Oracle Java JDK 7u4 for the test) - Certified Client OS - Certified Server OS (Using Oracle Solaris 11 for the test) - Certified Database (Using Oracle Database 11.2.0.3 for the test) Then the configuration: - Download the latest plugin: http://www.oracle.com/technetwork/middleware/ias/downloads/wls-plugins-096117.html - Extract the WLSPlugin11g-iPlanet7.0 in some folder, like <iPlanet_Home>/plugins/wls11 - Include the plugin reference to the magnus.conf: If Unix (Solaris or Linux), include the line: Init fn="load-modules" shlib="/apps/oracle/WebServer7/plugins/wls11/lib/mod_wl.so" If Windows, Include the line:        Init fn="load-modules" shlib="D:\\oracle\\WebServer7\\plugins\\wls11\\lib\\mod_wl.dll" - Include the proxy reference to the obj.conf of each instance: <Object name="weblogic" ppath="*/cs/*"> Service fn="wl-proxy" WebLogicCluster="wcc-node1:16201,wcc-node2:16202, wcc-node3:16203" </Object>   <Object name="weblogic" ppath="*/_dav/*"> Service fn="wl-proxy" WebLogicCluster="wcc-node1:16201,wcc-node2:16202, wcc-node3:16203" </Object>   <Object name="weblogic" ppath="*/_ocsh/*"> Service fn="wl-proxy" WebLogicCluster="wcc-node1:16201,wcc-node2:16202, wcc-node3:16203" </Object>   <Object name="weblogic" ppath="*/adfAuthentication/*"> Service fn="wl-proxy" WebLogicCluster="wcc-node1:16201,wcc-node2:16202, wcc-node3:16203" </Object> If you are using an single node setup, change the Service fn=…. line to something like: Service fn="wl-proxy" WebLogicHost=<wcc-server> WebLogicPort=16200 With these configurations, your should have the WebCenter Content UI working with the iPlanet, test it. [http://<web-server>/cs/] With the UI working, the last step is to configure the WebDav: - Go to the iPlanet Admin Console (usually https://<web-server>:8989) - Go to Configurations >> [instance] >> Virtual Servers >> [Virtual Server] >> WebDAV: - Click New - Populate the URI with /cs/idcplg/webdav: - Select “Anyone (No Authentication)”, the wc Content will take care of the security: This will allow you to use the WebDav feature and the Desktop Integration Suite, including double-byte characters. Anothers iPlanet tunes could be done, I can cover in the next post related to the iPlanet. Cross-posted on the ContentrA.com Blog Related posts:  - Using a Web Proxy Server with WebCenter Family

    Read the article

  • Interconnect nodes in a Java distributed infrastructure for tweet processing

    - by David Moreno García
    I'm working in a new version of an old project that I used to download and process user statuses from Twitter. The main problem of that project was its infrastructure. I used multiple instances of a java application (trackers) to download from Twitter given an specific task (basically terms to search for), connected with a central node (a web application) that had to process all tweets once per day and generate a new task for each trackers once each 15 minutes. The central node also had to monitor all trackers and enable/disable them under user petition. This, as I said, was too slow because I had multiple bottlenecks, so in this new version I want to improve the infrastructure and isolate all functionalities in specific nodes. I also need a good notification system to receive notifications for any node. So, in the next diagram I show the components that I'll need in this new version: As you can see, there are more nodes. Here are some notes about them: Dashboard: Controls trackers statuses and send a single task to each of them (under user request). The trackers will use this task until replaced with a new one (if done, not each 15 minutes like before). Search engine: I need to store all the tweets. They are firstly stored in a local database for each tracker but after that I'm thinking on using something like Elasticsearch to be able to do fast searches. Tweet processor: Just and isolated component with its own database (maybe something like the search engine to have fast access to info generated by the module). In the future more could be added. Application UI: A web application with a shared database with the Dashboard (mainly to store users information and preferences). Indeed, both could be merged into a single web. The main difference with the previous version of the project is that now they will be isolated and they will only show information and send requests. I will not do any heavy task in them (like process tweets as I did before). So, having this components, my main headache is how to structure all to not have to rewrite a lot of code every time I need to access any new data. Another headache is how can I interconnect nodes. I could use sockets but that is a pain in the ass. Maybe a REST layer? And finally, if all the nodes are isolated, how could I generate notifications for each user which info is only in the database used by the Application UI? I'm programming this using Java and Spring (at least I used them in the last version) but I have no problems with changing the language if I can take advantage of a tool/library/engine to make my life easier and have a better platform. Any comment will be appreciated.

    Read the article

  • Building an MVC application using QuickBooks

    - by dataintegration
    RSSBus ADO.NET Providers can be used from many tools and IDEs. In this article we show how to connect to QuickBooks from an MVC3 project using the RSSBus ADO.NET Provider for QuickBooks. Although this example uses the QuickBooks Data Provider, the same process can be used with any of our ADO.NET Providers. Creating the Model Step 1: Download and install the QuickBooks Data Provider from RSSBus. Step 2: Create a new MVC3 project in Visual Studio. Add a data model to the Models folder using the ADO.NET Entity Data Model wizard. Step 3: Create a new RSSBus QuickBooks Data Source by clicking "New Connection", specify the connection string options, and click Next. Step 4: Select all the tables and views you need, and click Finish to create the data model. Step 5: Right click on the entity diagram and select 'Add Code Generation Item'. Choose the 'ADO.NET DbContext Generator'. Creating the Controller and the Views Step 6: Add a new controller to the Controllers folder. Give it a meaningful name, such as ReceivePaymentsController. Also, make sure the template selected is 'Controller with empty read/write actions'. Before adding new methods to the Controller, create views for your model. We will add the List, Create, and Delete views. Step 7: Right click on the Views folder and go to Add -> View. Here create a new view for each: List, Create, and Delete templates. Make sure to also associate your Model with the new views. Step 10: Now that the views are ready, go back and edit the RecievePayment controller. Update your code to handle the Index, Create, and Delete methods. Sample Project We are including a sample project that shows how to use the QuickBooks Data Provider in an MVC3 application. You may download the C# project here or download the VB.NET project here. You will also need to install the QuickBooks ADO.NET Data Provider to run the demo. You can download a free trial here. To use this demo, you will also need to modify the connection string in the 'web.config'.

    Read the article

  • determine collision angle on a rotating body

    - by jorb
    update: new diagram and updated description I have a contact listener set up to try and determine the side that a collision happened at relative to the a bodies rotation. One way to solve this is to find the value of the yellow angle between the red and blue vectors drawn above. The angle can be found by taking the arc cosine of the dot product of the two vectors (Evan pointed this out). One of my points of confusion is the difference in domain of the atan2 function html canvas coordinates and the Box2d rotation information. I know I have to account for this somehow... SS below questions: Does Box2D provide these angles more directly in the collision information? Am I even on the right track? If so, any hints? I have the following javascript so far: Ship.prototype.onCollide = function (other_ent,cx,cy) { var pos = this.body.GetPosition(); //collision position relative to body var d_cx = pos.x - cx; var d_cy = pos.y - cy; //length of initial vector var len = Math.sqrt(Math.pow(pos.x -cx,2) + Math.pow(pos.y-cy,2)); //body angle - can over rotate hence mod 2*Pi var ang = this.body.GetAngle() % (Math.PI * 2); //vector representing body's angle - same magnitude as the first var b_vx = len * Math.cos(ang); var b_vy = len * Math.sin(ang); //dot product of the two vectors var dot_prod = d_cx * b_vx + d_cy * b_vy; //new calculation of difference in angle - NOT WORKING! var d_ang = Math.acos(dot_prod); var side; if (Math.abs(d_ang) < Math.PI/2 ) side = "front"; else side = "back"; console.log("length",len); console.log("pos:",pos.x,pos.y); console.log("offs:",d_cx,d_cy); console.log("body vec",b_vx,b_vy); console.log("body angle:",ang); console.log("dot product",dot_prod); console.log("result:",d_ang); console.log("side",side); console.log("------------------------"); }

    Read the article

  • The Use-Case Driven Approach to Change Management

    - by Lauren Clark
    In the third entry of the series on OUM and PMI’s Pulse of the Profession, we took a look at the continued importance of change management and risk management. The topic of change management and OUM’s use-case driven approach has come up in few recent conversations. So I thought I would jot down a few thoughts on how the use-case driven approach aids a project team in managing the project’s scope. The use-case model is one of several tools in OUM that is used to establish and manage the project's scope.  Because a use-case model can be understood by both business and IT project team members, it can serve as a bridge for ongoing collaboration as well as a visual diagram that encapsulates all agreed-upon functionality. This makes it a vital artifact in identifying changes to the project’s scope. Here are some of the primary benefits of using the use-case model as part of the effort for establishing and managing project scope: The use-case model quickly communicates scope in a straightforward manner. All project stakeholders can have a common foundation for the decisions regarding architecture and design and how they relate to the project's objectives. Once agreed upon, the model can be put under change control and any updates to the model can then be quickly identified as potentially affecting the project’s scope.  Changes requested or discovered later in the project can be analyzed objectively for their impact on project's budget, resources and schedule. A modular foundation for the design of the software solution can be established in Elaboration.  This permits work to be divided up effectively and executed in so that the most important and riskiest use-cases can be tackled early in the project. The use-case model helps the team make informed decisions about implementation priorities, which allows effective allocation of limited project resources.  This is very helpful in not only managing scope, but in doing iterative and incremental planning which relies heavily on the ability to identify project priorities. Bottom line is that the use-case model gives the project team solid understanding of scope early in the project.  Combine this understanding with effective project management and communication and you have an effective tool for reducing the risk of overruns in budget and/or time due to out of control scope changes. Now that you’ve had a chance to read these thoughts on the use-case model and project scope, please let me know your feedback based on your experience.

    Read the article

  • Suggestions for Summer Intern Application Assignments

    - by orangepips
    As part of our application process we want prospective college interns to complete an assignment on their own - either programming or analytical - to give us something tangible to evaluate such as code or a flowchart. I have two ideas for these assignments, one programming and one analytical, I am interested in gathering feedback about these. Programming Assignment Generate an a month's calendar for a given date. The first row should indicate the days of the week (e.g. Sunday - Saturday). Each subsequent row should contain a week's days. The date supplied should be highlighted (e.g. bolded). I am thinking we'll probably proscribe the output format even more strictly - probably down to what the HTML source should look like including CSS classes. Thinking is this forces answerers to actually do some work if they merely copy a solution from the internet. Analytical Assignment Diagram or describe in prose a system for managing a set of traffic lights for traffic at a four way intersection. Each direction (i.e. North, South, East and West) has two lanes (i.e. right and left). The left lane is turn only and has green arrow light to indicate right of way. The system is able to detect if lanes have cars in them and change the lights accordingly. I would expect a flow chart or some prose describing a finite state machine that deals with each contingency. This would hopefully provide some indication of the applicant's ability to reason through a logic problem of sorts and articulate an approach for solving. Areas Seeking Feedback Is it unreasonable to ask this of applicants? If not, is it better to request before or after a phone screen? Are these questions too hard or easy for a collegiate audience? Any suggestions for alternate questions? Do these seem like good tools for analyzing people who would part of a software development life cycle? Programming language suggestions - I'm thinking Java, Python and/or C# (we're actually a ColdFusion shop).

    Read the article

  • 2D SAT Collision Detection not working when using certain polygons (With example)

    - by sFuller
    My SAT algorithm falsely reports that collision is occurring when using certain polygons. I believe this happens when using a polygon that does not contain a right angle. Here is a simple diagram of what is going wrong: Here is the problematic code: std::vector<vec2> axesB = polygonB->GetAxes(); //loop over axes B for(int i = 0; i < axesB.size(); i++) { float minA,minB,maxA,maxB; polygonA->Project(axesB[i],&minA,&maxA); polygonB->Project(axesB[i],&minB,&maxB); float intervalDistance = polygonA->GetIntervalDistance(minA, maxA, minB, maxB); if(intervalDistance >= 0) return false; //Collision not occurring } This function retrieves axes from the polygon: std::vector<vec2> Polygon::GetAxes() { std::vector<vec2> axes; for(int i = 0; i < verts.size(); i++) { vec2 a = verts[i]; vec2 b = verts[(i+1)%verts.size()]; vec2 edge = b-a; axes.push_back(vec2(-edge.y,edge.x).GetNormailzed()); } return axes; } This function returns the normalized vector: vec2 vec2::GetNormailzed() { float mag = sqrt( x*x + y*y ); return *this/mag; } This function projects a polygon onto an axis: void Polygon::Project(vec2* axis, float* min, float* max) { float d = axis->DotProduct(&verts[0]); float _min = d; float _max = d; for(int i = 1; i < verts.size(); i++) { d = axis->DotProduct(&verts[i]); _min = std::min(_min,d); _max = std::max(_max,d); } *min = _min; *max = _max; } This function returns the dot product of the vector with another vector. float vec2::DotProduct(vec2* other) { return (x*other->x + y*other->y); } Could anyone give me a pointer in the right direction to what could be causing this bug? Edit: I forgot this function, which gives me the interval distance: float Polygon::GetIntervalDistance(float minA, float maxA, float minB, float maxB) { float intervalDistance; if (minA < minB) { intervalDistance = minB - maxA; } else { intervalDistance = minA - maxB; } return intervalDistance; //A positive value indicates this axis can be separated. } Edit 2: I have recreated the problem in HTML5/Javascript: Demo

    Read the article

  • Best Practices for High Volume CPA Import Operations with ebXML in B2B 11g

    - by Shub Lahiri, A-Team
    Background B2B 11g supports ebXML messaging protocol, where multiple CPAs can be imported via command-line utilities.  This note highlights one aspect of the best practices for import of CPA, when large numbers of CPAs in the excess of several hundreds are required to be maintained within the B2B repository. Symptoms The import of CPA usually is a 2-step process, namely creating a soa.zip file using b2bcpaimport utility based on a CPA properties file and then using b2bimport to import the b2b repository.  The commands are provided below: ant -f ant-b2b-util.xml b2bcpaimport -Dpropfile="<Path to cpp_cpa.properties>" -Dstandard=true ant -f ant-b2b-util.xml b2bimport -Dlocalfile=true -Dexportfile="<Path to soa.zip>" -Doverwrite=true Usually the first command completes fairly quickly regardless of the number of CPAs in the repository. However, as the number of trading partners within the repository goes up, the time to complete the second command could go up to ~30 secs per operation. So, this could add up to a significant amount, if there is a need to import hundreds of CPA in a production system within a limited downtime, maintenance window.  Remedy In situations, where there is a large number of entries to be imported, it is best to setup a staging environment and go through the import operation of each individual CPA in an empty repository. Since, this will be done in an empty repository, the time taken for completion should be reasonable.  After all the partner profiles have been imported, a full repository export can be taken to capture the metadata for all the entries in one file.  If this single file with all the partner entries is imported in a loaded repository, the total time taken for import of all the CPAs should see a dramatic reduction. Results Let us take a look at the numbers to see the benefit of this approach. With a pre-loaded repository of ~400 partners, the individual import time for each entry takes ~30 secs. So, if we had to import another 100 partners, the individual entries will take ~50 minutes (100 times ~30 secs). On the other hand, if we prepare the repository export file of the same 100 partners from a staging environment earlier, the import takes about ~5 mins. The total processing time for the loading of metadata, specially in a production environment, can thus be shortened by almost a factor of 10. Summary The following diagram summarizes the entire approach and process. Acknowledgements The material posted here has been compiled with the help from B2B Engineering and Product Management teams.

    Read the article

  • Separating logic and data in browser game

    - by Tesserex
    I've been thinking this over for days and I'm still not sure what to do. I'm trying to refactor a combat system in PHP (...sorry.) Here's what exists so far: There are two (so far) types of entities that can participate in combat. Let's just call them players and NPCs. Their data is already written pretty well. When involved in combat, these entities are wrapped with another object in the DB called a Combatant, which gives them information about the particular fight. They can be involved in multiple combats at once. I'm trying to write the logic engine for combat by having combatants injected into it. I want to be able to mock everything for testing. In order to separate logic and data, I want to have two interfaces / base classes, one being ICombatantData and the other ICombatantLogic. The two implementers of data will be one for the real objects stored in the database, and the other for my mock objects. I'm now running into uncertainties with designing the logic side of things. I can have one implementer for each of players and NPCs, but then I have an issue. A combatant needs to be able to return the entity that it wraps. Should this getter method be part of logic or data? I feel strongly that it should be in data, because the logic part is used for executing combat, and won't be available if someone is just looking up information about an upcoming fight. But the data classes only separate mock from DB, not player from NPC. If I try having two child classes of the DB data implementer, one for each entity type, then how do I architect that while keeping my mocks in the loop? Do I need some third interface like IEntityProvider that I inject into the data classes? Also with some of the ideas I've been considering, I feel like I'll have to put checks in place to make sure you don't mismatch things, like making the logic for an NPC accidentally wrap the data for a player. Does that make any sense? Is that a situation that would even be possible if the architecture is correct, or would the right design prohibit that completely so I don't need to check for it? If someone could help me just layout a class diagram or something for this it would help me a lot. Thanks. edit Also useful to note, the mock data class doesn't really need the Entity, since I'll just be specifying all the parameters like combat stats directly instead. So maybe that will affect the correct design.

    Read the article

  • C Programming arrays, I dont understand how I would go about making this program, If anyone can just guide me through the basic outline please :) [on hold]

    - by Rashmi Kohli
    Problem The temperature of a car engine has been measured, from real-world experiments, as shown in the table and graph below: Time (min) Temperature (oC) 0 20 1 36 2 61 3 68 4 77 5 110 Use linear regression to find the engine’s temperature at 1.5 minutes, 4.3 minutes, and any other time specified by the user. Background In engineering, many times we measure several data points in an experiment, but then we need to predict a value that we have not measured which lies between two measured values, such as the problem statement above. If the relation between the measured parameters seems to be roughly linear, then we can use linear regression to find the relationship between those parameters. In the graph of the problem statement above, the relation seems to be roughly linear. Hence, we can apply linear regression to the above problem. Assuming y {y0, y1, …yn-1} has a linear relation with x {x0, x1, … xn-1}, we can say that: y = mx+b where m and b can be found with linear regression as follows: For the problem in this lab, using linear regression gives us the following line (in blue) compared to the measured curve (in red). As you can see, there is usually a difference between the measured values and the estimated (predicted) values. What linear regression does is to minimize those differences and still give us a straight line (blue). Other methods, such as non-linear regression, are also possible to achieve higher accuracy and better curve fitting. Requirements Your program should first print the table of the temperatures similar to the way it’s printed in the problem statement. It should then calculate the temperature at minute 1.5 and 4.3 and show the answers to the user. Next, it should prompt the user to enter a time in minutes (or -1 to quit), and after reading the user’s specified time it should give the value of the engine’s temperature at that time. It should then go back to the prompt. Hints •Use a one dimensional array to store the temperature values given in the problem statement. •Use functions to separate tasks such as calculating m, calculating b, calculating the temperature at a given time, printing the prompt, etc. You can then give your algorithm as well as you pseudo code per function, as opposed to one large algorithm diagram or one large sequence of pseudo code.

    Read the article

  • Sorting Algorithms

    - by MarkPearl
    General Every time I go back to university I find myself wading through sorting algorithms and their implementation in C++. Up to now I haven’t really appreciated their true value. However as I discovered this last week with Dictionaries in C# – having a knowledge of some basic programming principles can greatly improve the performance of a system and make one think twice about how to tackle a problem. I’m going to cover briefly in this post the following: Selection Sort Insertion Sort Shellsort Quicksort Mergesort Heapsort (not complete) Selection Sort Array based selection sort is a simple approach to sorting an unsorted array. Simply put, it repeats two basic steps to achieve a sorted collection. It starts with a collection of data and repeatedly parses it, each time sorting out one element and reducing the size of the next iteration of parsed data by one. So the first iteration would go something like this… Go through the entire array of data and find the lowest value Place the value at the front of the array The second iteration would go something like this… Go through the array from position two (position one has already been sorted with the smallest value) and find the next lowest value in the array. Place the value at the second position in the array This process would be completed until the entire array had been sorted. A positive about selection sort is that it does not make many item movements. In fact, in a worst case scenario every items is only moved once. Selection sort is however a comparison intensive sort. If you had 10 items in a collection, just to parse the collection you would have 10+9+8+7+6+5+4+3+2=54 comparisons to sort regardless of how sorted the collection was to start with. If you think about it, if you applied selection sort to a collection already sorted, you would still perform relatively the same number of iterations as if it was not sorted at all. Many of the following algorithms try and reduce the number of comparisons if the list is already sorted – leaving one with a best case and worst case scenario for comparisons. Likewise different approaches have different levels of item movement. Depending on what is more expensive, one may give priority to one approach compared to another based on what is more expensive, a comparison or a item move. Insertion Sort Insertion sort tries to reduce the number of key comparisons it performs compared to selection sort by not “doing anything” if things are sorted. Assume you had an collection of numbers in the following order… 10 18 25 30 23 17 45 35 There are 8 elements in the list. If we were to start at the front of the list – 10 18 25 & 30 are already sorted. Element 5 (23) however is smaller than element 4 (30) and so needs to be repositioned. We do this by copying the value at element 5 to a temporary holder, and then begin shifting the elements before it up one. So… Element 5 would be copied to a temporary holder 10 18 25 30 23 17 45 35 – T 23 Element 4 would shift to Element 5 10 18 25 30 30 17 45 35 – T 23 Element 3 would shift to Element 4 10 18 25 25 30 17 45 35 – T 23 Element 2 (18) is smaller than the temporary holder so we put the temporary holder value into Element 3. 10 18 23 25 30 17 45 35 – T 23   We now have a sorted list up to element 6. And so we would repeat the same process by moving element 6 to a temporary value and then shifting everything up by one from element 2 to element 5. As you can see, one major setback for this technique is the shifting values up one – this is because up to now we have been considering the collection to be an array. If however the collection was a linked list, we would not need to shift values up, but merely remove the link from the unsorted value and “reinsert” it in a sorted position. Which would reduce the number of transactions performed on the collection. So.. Insertion sort seems to perform better than selection sort – however an implementation is slightly more complicated. This is typical with most sorting algorithms – generally, greater performance leads to greater complexity. Also, insertion sort performs better if a collection of data is already sorted. If for instance you were handed a sorted collection of size n, then only n number of comparisons would need to be performed to verify that it is sorted. It’s important to note that insertion sort (array based) performs a number item moves – every time an item is “out of place” several items before it get shifted up. Shellsort – Diminishing Increment Sort So up to now we have covered Selection Sort & Insertion Sort. Selection Sort makes many comparisons and insertion sort (with an array) has the potential of making many item movements. Shellsort is an approach that takes the normal insertion sort and tries to reduce the number of item movements. In Shellsort, elements in a collection are viewed as sub-collections of a particular size. Each sub-collection is sorted so that the elements that are far apart move closer to their final position. Suppose we had a collection of 15 elements… 10 20 15 45 36 48 7 60 18 50 2 19 43 30 55 First we may view the collection as 7 sub-collections and sort each sublist, lets say at intervals of 7 10 60 55 – 20 18 – 15 50 – 45 2 – 36 19 – 48 43 – 7 30 10 55 60 – 18 20 – 15 50 – 2 45 – 19 36 – 43 48 – 7 30 (Sorted) We then sort each sublist at a smaller inter – lets say 4 10 55 60 18 – 20 15 50 2 – 45 19 36 43 – 48 7 30 10 18 55 60 – 2 15 20 50 – 19 36 43 45 – 7 30 48 (Sorted) We then sort elements at a distance of 1 (i.e. we apply a normal insertion sort) 10 18 55 60 2 15 20 50 19 36 43 45 7 30 48 2 7 10 15 18 19 20 30 36 43 45 48 50 55 (Sorted) The important thing with shellsort is deciding on the increment sequence of each sub-collection. From what I can tell, there isn’t any definitive method and depending on the order of your elements, different increment sequences may perform better than others. There are however certain increment sequences that you may want to avoid. An even based increment sequence (e.g. 2 4 8 16 32 …) should typically be avoided because it does not allow for even elements to be compared with odd elements until the final sort phase – which in a way would negate many of the benefits of using sub-collections. The performance on the number of comparisons and item movements of Shellsort is hard to determine, however it is considered to be considerably better than the normal insertion sort. Quicksort Quicksort uses a divide and conquer approach to sort a collection of items. The collection is divided into two sub-collections – and the two sub-collections are sorted and combined into one list in such a way that the combined list is sorted. The algorithm is in general pseudo code below… Divide the collection into two sub-collections Quicksort the lower sub-collection Quicksort the upper sub-collection Combine the lower & upper sub-collection together As hinted at above, quicksort uses recursion in its implementation. The real trick with quicksort is to get the lower and upper sub-collections to be of equal size. The size of a sub-collection is determined by what value the pivot is. Once a pivot is determined, one would partition to sub-collections and then repeat the process on each sub collection until you reach the base case. With quicksort, the work is done when dividing the sub-collections into lower & upper collections. The actual combining of the lower & upper sub-collections at the end is relatively simple since every element in the lower sub-collection is smaller than the smallest element in the upper sub-collection. Mergesort With quicksort, the average-case complexity was O(nlog2n) however the worst case complexity was still O(N*N). Mergesort improves on quicksort by always having a complexity of O(nlog2n) regardless of the best or worst case. So how does it do this? Mergesort makes use of the divide and conquer approach to partition a collection into two sub-collections. It then sorts each sub-collection and combines the sorted sub-collections into one sorted collection. The general algorithm for mergesort is as follows… Divide the collection into two sub-collections Mergesort the first sub-collection Mergesort the second sub-collection Merge the first sub-collection and the second sub-collection As you can see.. it still pretty much looks like quicksort – so lets see where it differs… Firstly, mergesort differs from quicksort in how it partitions the sub-collections. Instead of having a pivot – merge sort partitions each sub-collection based on size so that the first and second sub-collection of relatively the same size. This dividing keeps getting repeated until the sub-collections are the size of a single element. If a sub-collection is one element in size – it is now sorted! So the trick is how do we put all these sub-collections together so that they maintain their sorted order. Sorted sub-collections are merged into a sorted collection by comparing the elements of the sub-collection and then adjusting the sorted collection. Lets have a look at a few examples… Assume 2 sub-collections with 1 element each 10 & 20 Compare the first element of the first sub-collection with the first element of the second sub-collection. Take the smallest of the two and place it as the first element in the sorted collection. In this scenario 10 is smaller than 20 so 10 is taken from sub-collection 1 leaving that sub-collection empty, which means by default the next smallest element is in sub-collection 2 (20). So the sorted collection would be 10 20 Lets assume 2 sub-collections with 2 elements each 10 20 & 15 19 So… again we would Compare 10 with 15 – 10 is the winner so we add it to our sorted collection (10) leaving us with 20 & 15 19 Compare 20 with 15 – 15 is the winner so we add it to our sorted collection (10 15) leaving us with 20 & 19 Compare 20 with 19 – 19 is the winner so we add it to our sorted collection (10 15 19) leaving us with 20 & _ 20 is by default the winner so our sorted collection is 10 15 19 20. Make sense? Heapsort (still needs to be completed) So by now I am tired of sorting algorithms and trying to remember why they were so important. I think every year I go through this stuff I wonder to myself why are we made to learn about selection sort and insertion sort if they are so bad – why didn’t we just skip to Mergesort & Quicksort. I guess the only explanation I have for this is that sometimes you learn things so that you can implement them in future – and other times you learn things so that you know it isn’t the best way of implementing things and that you don’t need to implement it in future. Anyhow… luckily this is going to be the last one of my sorts for today. The first step in heapsort is to convert a collection of data into a heap. After the data is converted into a heap, sorting begins… So what is the definition of a heap? If we have to convert a collection of data into a heap, how do we know when it is a heap and when it is not? The definition of a heap is as follows: A heap is a list in which each element contains a key, such that the key in the element at position k in the list is at least as large as the key in the element at position 2k +1 (if it exists) and 2k + 2 (if it exists). Does that make sense? At first glance I’m thinking what the heck??? But then after re-reading my notes I see that we are doing something different – up to now we have really looked at data as an array or sequential collection of data that we need to sort – a heap represents data in a slightly different way – although the data is stored in a sequential collection, for a sequential collection of data to be in a valid heap – it is “semi sorted”. Let me try and explain a bit further with an example… Example 1 of Potential Heap Data Assume we had a collection of numbers as follows 1[1] 2[2] 3[3] 4[4] 5[5] 6[6] For this to be a valid heap element with value of 1 at position [1] needs to be greater or equal to the element at position [3] (2k +1) and position [4] (2k +2). So in the above example, the collection of numbers is not in a valid heap. Example 2 of Potential Heap Data Lets look at another collection of numbers as follows 6[1] 5[2] 4[3] 3[4] 2[5] 1[6] Is this a valid heap? Well… element with the value 6 at position 1 must be greater or equal to the element at position [3] and position [4]. Is 6 > 4 and 6 > 3? Yes it is. Lets look at element 5 as position 2. It must be greater than the values at [4] & [5]. Is 5 > 3 and 5 > 2? Yes it is. If you continued to examine this second collection of data you would find that it is in a valid heap based on the definition of a heap.

    Read the article

  • Convert from Procedural to Object Oriented Code

    - by Anthony
    I have been reading Working Effectively with Legacy Code and Clean Code with the goal of learning strategies on how to begin cleaning up the existing code-base of a large ASP.NET webforms application. This system has been around since 2005 and since then has undergone a number of enhancements. Originally the code was structured as follows (and is still largely structured this way): ASP.NET (aspx/ascx) Code-behind (c#) Business Logic Layer (c#) Data Access Layer (c#) Database (Oracle) The main issue is that the code is procedural masquerading as object-oriented. It virtually violates all of the guidelines described in both books. This is an example of a typical class in the Business Logic Layer: public class AddressBO { public TransferObject GetAddress(string addressID) { if (StringUtils.IsNull(addressID)) { throw new ValidationException("Address ID must be entered"); } AddressDAO addressDAO = new AddressDAO(); return addressDAO.GetAddress(addressID); } public TransferObject Insert(TransferObject addressDetails) { if (StringUtils.IsNull(addressDetails.GetString("EVENT_ID")) || StringUtils.IsNull(addressDetails.GetString("LOCALITY")) || StringUtils.IsNull(addressDetails.GetString("ADDRESS_TARGET")) || StringUtils.IsNull(addressDetails.GetString("ADDRESS_TYPE_CODE")) || StringUtils.IsNull(addressDetails.GetString("CREATED_BY"))) { throw new ValidationException( "You must enter an Event ID, Locality, Address Target, Address Type Code and Created By."); } string addressID = Sequence.GetNextValue("ADDRESS_ID_SEQ"); addressDetails.SetValue("ADDRESS_ID", addressID); string syncID = Sequence.GetNextValue("SYNC_ID_SEQ"); addressDetails.SetValue("SYNC_ADDRESS_ID", syncID); TransferObject syncDetails = new TransferObject(); Transaction transaction = new Transaction(); try { AddressDAO addressDAO = new AddressDAO(); addressDAO.Insert(addressDetails, transaction); // insert the record for the target TransferObject addressTargetDetails = new TransferObject(); switch (addressDetails.GetString("ADDRESS_TARGET")) { case "PARTY_ADDRESSES": { addressTargetDetails.SetValue("ADDRESS_ID", addressID); addressTargetDetails.SetValue("ADDRESS_TYPE_CODE", addressDetails.GetString("ADDRESS_TYPE_CODE")); addressTargetDetails.SetValue("PARTY_ID", addressDetails.GetString("PARTY_ID")); addressTargetDetails.SetValue("EVENT_ID", addressDetails.GetString("EVENT_ID")); addressTargetDetails.SetValue("CREATED_BY", addressDetails.GetString("CREATED_BY")); addressDAO.InsertPartyAddress(addressTargetDetails, transaction); break; } case "PARTY_CONTACT_ADDRESSES": { addressTargetDetails.SetValue("ADDRESS_ID", addressID); addressTargetDetails.SetValue("ADDRESS_TYPE_CODE", addressDetails.GetString("ADDRESS_TYPE_CODE")); addressTargetDetails.SetValue("PUBLIC_RELEASE_FLAG", addressDetails.GetString("PUBLIC_RELEASE_FLAG")); addressTargetDetails.SetValue("CONTACT_ID", addressDetails.GetString("CONTACT_ID")); addressTargetDetails.SetValue("EVENT_ID", addressDetails.GetString("EVENT_ID")); addressTargetDetails.SetValue("CREATED_BY", addressDetails.GetString("CREATED_BY")); addressDAO.InsertContactAddress(addressTargetDetails, transaction); break; } << many more cases here >> default: { break; } } // synchronise SynchronisationBO synchronisationBO = new SynchronisationBO(); syncDetails = synchronisationBO.Synchronise("I", transaction, "ADDRESSES", addressDetails.GetString("ADDRESS_TARGET"), addressDetails, addressTargetDetails); // commit transaction.Commit(); } catch (Exception) { transaction.Rollback(); throw; } return new TransferObject("ADDRESS_ID", addressID, "SYNC_DETAILS", syncDetails); } << many more methods are here >> } It has a lot of duplication, the class has a number of responsibilities, etc, etc - it is just generally 'un-clean' code. All of the code throughout the system is dependent on concrete implementations. This is an example of a typical class in the Data Access Layer: public class AddressDAO : GenericDAO { public static readonly string BASE_SQL_ADDRESSES = "SELECT " + " a.address_id, " + " a.event_id, " + " a.flat_unit_type_code, " + " fut.description as flat_unit_description, " + " a.flat_unit_num, " + " a.floor_level_code, " + " fl.description as floor_level_description, " + " a.floor_level_num, " + " a.building_name, " + " a.lot_number, " + " a.street_number, " + " a.street_name, " + " a.street_type_code, " + " st.description as street_type_description, " + " a.street_suffix_code, " + " ss.description as street_suffix_description, " + " a.postal_delivery_type_code, " + " pdt.description as postal_delivery_description, " + " a.postal_delivery_num, " + " a.locality, " + " a.state_code, " + " s.description as state_description, " + " a.postcode, " + " a.country, " + " a.lock_num, " + " a.created_by, " + " TO_CHAR(a.created_datetime, '" + SQL_DATETIME_FORMAT + "') as created_datetime, " + " a.last_updated_by, " + " TO_CHAR(a.last_updated_datetime, '" + SQL_DATETIME_FORMAT + "') as last_updated_datetime, " + " a.sync_address_id, " + " a.lat," + " a.lon, " + " a.validation_confidence, " + " a.validation_quality, " + " a.validation_status " + "FROM ADDRESSES a, FLAT_UNIT_TYPES fut, FLOOR_LEVELS fl, STREET_TYPES st, " + " STREET_SUFFIXES ss, POSTAL_DELIVERY_TYPES pdt, STATES s " + "WHERE a.flat_unit_type_code = fut.flat_unit_type_code(+) " + "AND a.floor_level_code = fl.floor_level_code(+) " + "AND a.street_type_code = st.street_type_code(+) " + "AND a.street_suffix_code = ss.street_suffix_code(+) " + "AND a.postal_delivery_type_code = pdt.postal_delivery_type_code(+) " + "AND a.state_code = s.state_code(+) "; public TransferObject GetAddress(string addressID) { //Build the SELECT Statement StringBuilder selectStatement = new StringBuilder(BASE_SQL_ADDRESSES); //Add WHERE condition selectStatement.Append(" AND a.address_id = :addressID"); ArrayList parameters = new ArrayList{DBUtils.CreateOracleParameter("addressID", OracleDbType.Decimal, addressID)}; // Execute the SELECT statement Query query = new Query(); DataSet results = query.Execute(selectStatement.ToString(), parameters); // Check if 0 or more than one rows returned if (results.Tables[0].Rows.Count == 0) { throw new NoDataFoundException(); } if (results.Tables[0].Rows.Count > 1) { throw new TooManyRowsException(); } // Return a TransferObject containing the values return new TransferObject(results); } public void Insert(TransferObject insertValues, Transaction transaction) { // Store Values string addressID = insertValues.GetString("ADDRESS_ID"); string syncAddressID = insertValues.GetString("SYNC_ADDRESS_ID"); string eventID = insertValues.GetString("EVENT_ID"); string createdBy = insertValues.GetString("CREATED_BY"); // postal delivery string postalDeliveryTypeCode = insertValues.GetString("POSTAL_DELIVERY_TYPE_CODE"); string postalDeliveryNum = insertValues.GetString("POSTAL_DELIVERY_NUM"); // unit/building string flatUnitTypeCode = insertValues.GetString("FLAT_UNIT_TYPE_CODE"); string flatUnitNum = insertValues.GetString("FLAT_UNIT_NUM"); string floorLevelCode = insertValues.GetString("FLOOR_LEVEL_CODE"); string floorLevelNum = insertValues.GetString("FLOOR_LEVEL_NUM"); string buildingName = insertValues.GetString("BUILDING_NAME"); // street string lotNumber = insertValues.GetString("LOT_NUMBER"); string streetNumber = insertValues.GetString("STREET_NUMBER"); string streetName = insertValues.GetString("STREET_NAME"); string streetTypeCode = insertValues.GetString("STREET_TYPE_CODE"); string streetSuffixCode = insertValues.GetString("STREET_SUFFIX_CODE"); // locality/state/postcode/country string locality = insertValues.GetString("LOCALITY"); string stateCode = insertValues.GetString("STATE_CODE"); string postcode = insertValues.GetString("POSTCODE"); string country = insertValues.GetString("COUNTRY"); // esms address string esmsAddress = insertValues.GetString("ESMS_ADDRESS"); //address/GPS string lat = insertValues.GetString("LAT"); string lon = insertValues.GetString("LON"); string zoom = insertValues.GetString("ZOOM"); //string validateDate = insertValues.GetString("VALIDATED_DATE"); string validatedBy = insertValues.GetString("VALIDATED_BY"); string confidence = insertValues.GetString("VALIDATION_CONFIDENCE"); string status = insertValues.GetString("VALIDATION_STATUS"); string quality = insertValues.GetString("VALIDATION_QUALITY"); // the insert statement StringBuilder insertStatement = new StringBuilder("INSERT INTO ADDRESSES ("); StringBuilder valuesStatement = new StringBuilder("VALUES ("); ArrayList parameters = new ArrayList(); // build the insert statement insertStatement.Append("ADDRESS_ID, EVENT_ID, CREATED_BY, CREATED_DATETIME, LOCK_NUM "); valuesStatement.Append(":addressID, :eventID, :createdBy, SYSDATE, 1 "); parameters.Add(DBUtils.CreateOracleParameter("addressID", OracleDbType.Decimal, addressID)); parameters.Add(DBUtils.CreateOracleParameter("eventID", OracleDbType.Decimal, eventID)); parameters.Add(DBUtils.CreateOracleParameter("createdBy", OracleDbType.Varchar2, createdBy)); // build the insert statement if (!StringUtils.IsNull(syncAddressID)) { insertStatement.Append(", SYNC_ADDRESS_ID"); valuesStatement.Append(", :syncAddressID"); parameters.Add(DBUtils.CreateOracleParameter("syncAddressID", OracleDbType.Decimal, syncAddressID)); } if (!StringUtils.IsNull(postalDeliveryTypeCode)) { insertStatement.Append(", POSTAL_DELIVERY_TYPE_CODE"); valuesStatement.Append(", :postalDeliveryTypeCode "); parameters.Add(DBUtils.CreateOracleParameter("postalDeliveryTypeCode", OracleDbType.Varchar2, postalDeliveryTypeCode)); } if (!StringUtils.IsNull(postalDeliveryNum)) { insertStatement.Append(", POSTAL_DELIVERY_NUM"); valuesStatement.Append(", :postalDeliveryNum "); parameters.Add(DBUtils.CreateOracleParameter("postalDeliveryNum", OracleDbType.Varchar2, postalDeliveryNum)); } if (!StringUtils.IsNull(flatUnitTypeCode)) { insertStatement.Append(", FLAT_UNIT_TYPE_CODE"); valuesStatement.Append(", :flatUnitTypeCode "); parameters.Add(DBUtils.CreateOracleParameter("flatUnitTypeCode", OracleDbType.Varchar2, flatUnitTypeCode)); } if (!StringUtils.IsNull(lat)) { insertStatement.Append(", LAT"); valuesStatement.Append(", :lat "); parameters.Add(DBUtils.CreateOracleParameter("lat", OracleDbType.Decimal, lat)); } if (!StringUtils.IsNull(lon)) { insertStatement.Append(", LON"); valuesStatement.Append(", :lon "); parameters.Add(DBUtils.CreateOracleParameter("lon", OracleDbType.Decimal, lon)); } if (!StringUtils.IsNull(zoom)) { insertStatement.Append(", ZOOM"); valuesStatement.Append(", :zoom "); parameters.Add(DBUtils.CreateOracleParameter("zoom", OracleDbType.Decimal, zoom)); } if (!StringUtils.IsNull(flatUnitNum)) { insertStatement.Append(", FLAT_UNIT_NUM"); valuesStatement.Append(", :flatUnitNum "); parameters.Add(DBUtils.CreateOracleParameter("flatUnitNum", OracleDbType.Varchar2, flatUnitNum)); } if (!StringUtils.IsNull(floorLevelCode)) { insertStatement.Append(", FLOOR_LEVEL_CODE"); valuesStatement.Append(", :floorLevelCode "); parameters.Add(DBUtils.CreateOracleParameter("floorLevelCode", OracleDbType.Varchar2, floorLevelCode)); } if (!StringUtils.IsNull(floorLevelNum)) { insertStatement.Append(", FLOOR_LEVEL_NUM"); valuesStatement.Append(", :floorLevelNum "); parameters.Add(DBUtils.CreateOracleParameter("floorLevelNum", OracleDbType.Varchar2, floorLevelNum)); } if (!StringUtils.IsNull(buildingName)) { insertStatement.Append(", BUILDING_NAME"); valuesStatement.Append(", :buildingName "); parameters.Add(DBUtils.CreateOracleParameter("buildingName", OracleDbType.Varchar2, buildingName)); } if (!StringUtils.IsNull(lotNumber)) { insertStatement.Append(", LOT_NUMBER"); valuesStatement.Append(", :lotNumber "); parameters.Add(DBUtils.CreateOracleParameter("lotNumber", OracleDbType.Varchar2, lotNumber)); } if (!StringUtils.IsNull(streetNumber)) { insertStatement.Append(", STREET_NUMBER"); valuesStatement.Append(", :streetNumber "); parameters.Add(DBUtils.CreateOracleParameter("streetNumber", OracleDbType.Varchar2, streetNumber)); } if (!StringUtils.IsNull(streetName)) { insertStatement.Append(", STREET_NAME"); valuesStatement.Append(", :streetName "); parameters.Add(DBUtils.CreateOracleParameter("streetName", OracleDbType.Varchar2, streetName)); } if (!StringUtils.IsNull(streetTypeCode)) { insertStatement.Append(", STREET_TYPE_CODE"); valuesStatement.Append(", :streetTypeCode "); parameters.Add(DBUtils.CreateOracleParameter("streetTypeCode", OracleDbType.Varchar2, streetTypeCode)); } if (!StringUtils.IsNull(streetSuffixCode)) { insertStatement.Append(", STREET_SUFFIX_CODE"); valuesStatement.Append(", :streetSuffixCode "); parameters.Add(DBUtils.CreateOracleParameter("streetSuffixCode", OracleDbType.Varchar2, streetSuffixCode)); } if (!StringUtils.IsNull(locality)) { insertStatement.Append(", LOCALITY"); valuesStatement.Append(", :locality"); parameters.Add(DBUtils.CreateOracleParameter("locality", OracleDbType.Varchar2, locality)); } if (!StringUtils.IsNull(stateCode)) { insertStatement.Append(", STATE_CODE"); valuesStatement.Append(", :stateCode"); parameters.Add(DBUtils.CreateOracleParameter("stateCode", OracleDbType.Varchar2, stateCode)); } if (!StringUtils.IsNull(postcode)) { insertStatement.Append(", POSTCODE"); valuesStatement.Append(", :postcode "); parameters.Add(DBUtils.CreateOracleParameter("postcode", OracleDbType.Varchar2, postcode)); } if (!StringUtils.IsNull(country)) { insertStatement.Append(", COUNTRY"); valuesStatement.Append(", :country "); parameters.Add(DBUtils.CreateOracleParameter("country", OracleDbType.Varchar2, country)); } if (!StringUtils.IsNull(esmsAddress)) { insertStatement.Append(", ESMS_ADDRESS"); valuesStatement.Append(", :esmsAddress "); parameters.Add(DBUtils.CreateOracleParameter("esmsAddress", OracleDbType.Varchar2, esmsAddress)); } if (!StringUtils.IsNull(validatedBy)) { insertStatement.Append(", VALIDATED_DATE"); valuesStatement.Append(", SYSDATE "); insertStatement.Append(", VALIDATED_BY"); valuesStatement.Append(", :validatedBy "); parameters.Add(DBUtils.CreateOracleParameter("validatedBy", OracleDbType.Varchar2, validatedBy)); } if (!StringUtils.IsNull(confidence)) { insertStatement.Append(", VALIDATION_CONFIDENCE"); valuesStatement.Append(", :confidence "); parameters.Add(DBUtils.CreateOracleParameter("confidence", OracleDbType.Decimal, confidence)); } if (!StringUtils.IsNull(status)) { insertStatement.Append(", VALIDATION_STATUS"); valuesStatement.Append(", :status "); parameters.Add(DBUtils.CreateOracleParameter("status", OracleDbType.Varchar2, status)); } if (!StringUtils.IsNull(quality)) { insertStatement.Append(", VALIDATION_QUALITY"); valuesStatement.Append(", :quality "); parameters.Add(DBUtils.CreateOracleParameter("quality", OracleDbType.Decimal, quality)); } // finish off the statement insertStatement.Append(") "); valuesStatement.Append(")"); // build the insert statement string sql = insertStatement + valuesStatement.ToString(); // Execute the INSERT Statement Dml dmlDAO = new Dml(); int rowsAffected = dmlDAO.Execute(sql, transaction, parameters); if (rowsAffected == 0) { throw new NoRowsAffectedException(); } } << many more methods go here >> } This system was developed by me and a small team back in 2005 after a 1 week .NET course. Before than my experience was in client-server applications. Over the past 5 years I've come to recognise the benefits of automated unit testing, automated integration testing and automated acceptance testing (using Selenium or equivalent) but the current code-base seems impossible to introduce these concepts. We are now starting to work on a major enhancement project with tight time-frames. The team consists of 5 .NET developers - 2 developers with a few years of .NET experience and 3 others with little or no .NET experience. None of the team (including myself) has experience in using .NET unit testing or mocking frameworks. What strategy would you use to make this code cleaner, more object-oriented, testable and maintainable?

    Read the article

  • Developing custom MBeans to manage J2EE Applications (Part III)

    - by philippe Le Mouel
    This is the third and final part in a series of blogs, that demonstrate how to add management capability to your own application using JMX MBeans. In Part I we saw: How to implement a custom MBean to manage configuration associated with an application. How to package the resulting code and configuration as part of the application's ear file. How to register MBeans upon application startup, and unregistered them upon application stop (or undeployment). How to use generic JMX clients such as JConsole to browse and edit our application's MBean. In Part II we saw: How to add localized descriptions to our MBean, MBean attributes, MBean operations and MBean operation parameters. How to specify meaningful name to our MBean operation parameters. We also touched on future enhancements that will simplify how we can implement localized MBeans. In this third and last part, we will re-write our MBean to simplify how we added localized descriptions. To do so we will take advantage of the functionality we already described in part II and that is now part of WebLogic 10.3.3.0. We will show how to take advantage of WebLogic's localization support to localize our MBeans based on the client's Locale independently of the server's Locale. Each client will see MBean descriptions localized based on his/her own Locale. We will show how to achieve this using JConsole, and also using a sample programmatic JMX Java client. The complete code sample and associated build files for part III are available as a zip file. The code has been tested against WebLogic Server 10.3.3.0 and JDK6. To build and deploy our sample application, please follow the instruction provided in Part I, as they also apply to part III's code and associated zip file. Providing custom descriptions take II In part II we localized our MBean descriptions by extending the StandardMBean class and overriding its many getDescription methods. WebLogic 10.3.3.0 similarly to JDK 7 can automatically localize MBean descriptions as long as those are specified according to the following conventions: Descriptions resource bundle keys are named according to: MBean description: <MBeanInterfaceClass>.mbean MBean attribute description: <MBeanInterfaceClass>.attribute.<AttributeName> MBean operation description: <MBeanInterfaceClass>.operation.<OperationName> MBean operation parameter description: <MBeanInterfaceClass>.operation.<OperationName>.<ParameterName> MBean constructor description: <MBeanInterfaceClass>.constructor.<ConstructorName> MBean constructor parameter description: <MBeanInterfaceClass>.constructor.<ConstructorName>.<ParameterName> We also purposely named our resource bundle class MBeanDescriptions and included it as part of the same package as our MBean. We already followed the above conventions when creating our resource bundle in part II, and our default resource bundle class with English descriptions looks like: package blog.wls.jmx.appmbean; import java.util.ListResourceBundle; public class MBeanDescriptions extends ListResourceBundle { protected Object[][] getContents() { return new Object[][] { {"PropertyConfigMXBean.mbean", "MBean used to manage persistent application properties"}, {"PropertyConfigMXBean.attribute.Properties", "Properties associated with the running application"}, {"PropertyConfigMXBean.operation.setProperty", "Create a new property, or change the value of an existing property"}, {"PropertyConfigMXBean.operation.setProperty.key", "Name that identify the property to set."}, {"PropertyConfigMXBean.operation.setProperty.value", "Value for the property being set"}, {"PropertyConfigMXBean.operation.getProperty", "Get the value for an existing property"}, {"PropertyConfigMXBean.operation.getProperty.key", "Name that identify the property to be retrieved"} }; } } We have now also added a resource bundle with French localized descriptions: package blog.wls.jmx.appmbean; import java.util.ListResourceBundle; public class MBeanDescriptions_fr extends ListResourceBundle { protected Object[][] getContents() { return new Object[][] { {"PropertyConfigMXBean.mbean", "Manage proprietes sauvegarde dans un fichier disque."}, {"PropertyConfigMXBean.attribute.Properties", "Proprietes associee avec l'application en cour d'execution"}, {"PropertyConfigMXBean.operation.setProperty", "Construit une nouvelle proprietee, ou change la valeur d'une proprietee existante."}, {"PropertyConfigMXBean.operation.setProperty.key", "Nom de la propriete dont la valeur est change."}, {"PropertyConfigMXBean.operation.setProperty.value", "Nouvelle valeur"}, {"PropertyConfigMXBean.operation.getProperty", "Retourne la valeur d'une propriete existante."}, {"PropertyConfigMXBean.operation.getProperty.key", "Nom de la propriete a retrouver."} }; } } So now we can just remove the many getDescriptions methods from our MBean code, and have a much cleaner: package blog.wls.jmx.appmbean; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.File; import java.net.URL; import java.util.Map; import java.util.HashMap; import java.util.Properties; import javax.management.MBeanServer; import javax.management.ObjectName; import javax.management.MBeanRegistration; import javax.management.StandardMBean; import javax.management.MBeanOperationInfo; import javax.management.MBeanParameterInfo; public class PropertyConfig extends StandardMBean implements PropertyConfigMXBean, MBeanRegistration { private String relativePath_ = null; private Properties props_ = null; private File resource_ = null; private static Map operationsParamNames_ = null; static { operationsParamNames_ = new HashMap(); operationsParamNames_.put("setProperty", new String[] {"key", "value"}); operationsParamNames_.put("getProperty", new String[] {"key"}); } public PropertyConfig(String relativePath) throws Exception { super(PropertyConfigMXBean.class , true); props_ = new Properties(); relativePath_ = relativePath; } public String setProperty(String key, String value) throws IOException { String oldValue = null; if (value == null) { oldValue = String.class.cast(props_.remove(key)); } else { oldValue = String.class.cast(props_.setProperty(key, value)); } save(); return oldValue; } public String getProperty(String key) { return props_.getProperty(key); } public Map getProperties() { return (Map) props_; } private void load() throws IOException { InputStream is = new FileInputStream(resource_); try { props_.load(is); } finally { is.close(); } } private void save() throws IOException { OutputStream os = new FileOutputStream(resource_); try { props_.store(os, null); } finally { os.close(); } } public ObjectName preRegister(MBeanServer server, ObjectName name) throws Exception { // MBean must be registered from an application thread // to have access to the application ClassLoader ClassLoader cl = Thread.currentThread().getContextClassLoader(); URL resourceUrl = cl.getResource(relativePath_); resource_ = new File(resourceUrl.toURI()); load(); return name; } public void postRegister(Boolean registrationDone) { } public void preDeregister() throws Exception {} public void postDeregister() {} protected String getParameterName(MBeanOperationInfo op, MBeanParameterInfo param, int sequence) { return operationsParamNames_.get(op.getName())[sequence]; } } The only reason we are still extending the StandardMBean class, is to override the default values for our operations parameters name. If this isn't a concern, then one could just write the following code: package blog.wls.jmx.appmbean; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.File; import java.net.URL; import java.util.Properties; import javax.management.MBeanServer; import javax.management.ObjectName; import javax.management.MBeanRegistration; import javax.management.StandardMBean; import javax.management.MBeanOperationInfo; import javax.management.MBeanParameterInfo; public class PropertyConfig implements PropertyConfigMXBean, MBeanRegistration { private String relativePath_ = null; private Properties props_ = null; private File resource_ = null; public PropertyConfig(String relativePath) throws Exception { props_ = new Properties(); relativePath_ = relativePath; } public String setProperty(String key, String value) throws IOException { String oldValue = null; if (value == null) { oldValue = String.class.cast(props_.remove(key)); } else { oldValue = String.class.cast(props_.setProperty(key, value)); } save(); return oldValue; } public String getProperty(String key) { return props_.getProperty(key); } public Map getProperties() { return (Map) props_; } private void load() throws IOException { InputStream is = new FileInputStream(resource_); try { props_.load(is); } finally { is.close(); } } private void save() throws IOException { OutputStream os = new FileOutputStream(resource_); try { props_.store(os, null); } finally { os.close(); } } public ObjectName preRegister(MBeanServer server, ObjectName name) throws Exception { // MBean must be registered from an application thread // to have access to the application ClassLoader ClassLoader cl = Thread.currentThread().getContextClassLoader(); URL resourceUrl = cl.getResource(relativePath_); resource_ = new File(resourceUrl.toURI()); load(); return name; } public void postRegister(Boolean registrationDone) { } public void preDeregister() throws Exception {} public void postDeregister() {} } Note: The above would also require changing the operations parameters name in the resource bundle classes. For instance: PropertyConfigMXBean.operation.setProperty.key would become: PropertyConfigMXBean.operation.setProperty.p0 Client based localization When accessing our MBean using JConsole started with the following command line: jconsole -J-Djava.class.path=$JAVA_HOME/lib/jconsole.jar:$JAVA_HOME/lib/tools.jar: $WL_HOME/server/lib/wljmxclient.jar -J-Djmx.remote.protocol.provider.pkgs=weblogic.management.remote -debug We see that our MBean descriptions are localized according to the WebLogic's server Locale. English in this case: Note: Consult Part I for information on how to use JConsole to browse/edit our MBean. Now if we specify the client's Locale as part of the JConsole command line as follow: jconsole -J-Djava.class.path=$JAVA_HOME/lib/jconsole.jar:$JAVA_HOME/lib/tools.jar: $WL_HOME/server/lib/wljmxclient.jar -J-Djmx.remote.protocol.provider.pkgs=weblogic.management.remote -J-Dweblogic.management.remote.locale=fr-FR -debug We see that our MBean descriptions are now localized according to the specified client's Locale. French in this case: We use the weblogic.management.remote.locale system property to specify the Locale that should be associated with the cient's JMX connections. The value is composed of the client's language code and its country code separated by the - character. The country code is not required, and can be omitted. For instance: -Dweblogic.management.remote.locale=fr We can also specify the client's Locale using a programmatic client as demonstrated below: package blog.wls.jmx.appmbean.client; import javax.management.MBeanServerConnection; import javax.management.ObjectName; import javax.management.MBeanInfo; import javax.management.remote.JMXConnector; import javax.management.remote.JMXServiceURL; import javax.management.remote.JMXConnectorFactory; import java.util.Hashtable; import java.util.Set; import java.util.Locale; public class JMXClient { public static void main(String[] args) throws Exception { JMXConnector jmxCon = null; try { JMXServiceURL serviceUrl = new JMXServiceURL( "service:jmx:iiop://127.0.0.1:7001/jndi/weblogic.management.mbeanservers.runtime"); System.out.println("Connecting to: " + serviceUrl); // properties associated with the connection Hashtable env = new Hashtable(); env.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES, "weblogic.management.remote"); String[] credentials = new String[2]; credentials[0] = "weblogic"; credentials[1] = "weblogic"; env.put(JMXConnector.CREDENTIALS, credentials); // specifies the client's Locale env.put("weblogic.management.remote.locale", Locale.FRENCH); jmxCon = JMXConnectorFactory.newJMXConnector(serviceUrl, env); jmxCon.connect(); MBeanServerConnection con = jmxCon.getMBeanServerConnection(); Set mbeans = con.queryNames( new ObjectName( "blog.wls.jmx.appmbean:name=myAppProperties,type=PropertyConfig,*"), null); for (ObjectName mbeanName : mbeans) { System.out.println("\n\nMBEAN: " + mbeanName); MBeanInfo minfo = con.getMBeanInfo(mbeanName); System.out.println("MBean Description: "+minfo.getDescription()); System.out.println("\n"); } } finally { // release the connection if (jmxCon != null) jmxCon.close(); } } } The above client code is part of the zip file associated with this blog, and can be run using the provided client.sh script. The resulting output is shown below: $ ./client.sh Connecting to: service:jmx:iiop://127.0.0.1:7001/jndi/weblogic.management.mbeanservers.runtime MBEAN: blog.wls.jmx.appmbean:type=PropertyConfig,name=myAppProperties MBean Description: Manage proprietes sauvegarde dans un fichier disque. $ Miscellaneous Using Description annotation to specify MBean descriptions Earlier we have seen how to name our MBean descriptions resource keys, so that WebLogic 10.3.3.0 automatically uses them to localize our MBean. In some cases we might want to implicitly specify the resource key, and resource bundle. For instance when operations are overloaded, and the operation name is no longer sufficient to uniquely identify a single operation. In this case we can use the Description annotation provided by WebLogic as follow: import weblogic.management.utils.Description; @Description(resourceKey="myapp.resources.TestMXBean.description", resourceBundleBaseName="myapp.resources.MBeanResources") public interface TestMXBean { @Description(resourceKey="myapp.resources.TestMXBean.threshold.description", resourceBundleBaseName="myapp.resources.MBeanResources" ) public int getthreshold(); @Description(resourceKey="myapp.resources.TestMXBean.reset.description", resourceBundleBaseName="myapp.resources.MBeanResources") public int reset( @Description(resourceKey="myapp.resources.TestMXBean.reset.id.description", resourceBundleBaseName="myapp.resources.MBeanResources", displayNameKey= "myapp.resources.TestMXBean.reset.id.displayName.description") int id); } The Description annotation should be applied to the MBean interface. It can be used to specify MBean, MBean attributes, MBean operations, and MBean operation parameters descriptions as demonstrated above. Retrieving the Locale associated with a JMX operation from the MBean code There are several cases where it is necessary to retrieve the Locale associated with a JMX call from the MBean implementation. For instance this can be useful when localizing exception messages. This can be done as follow: import weblogic.management.mbeanservers.JMXContextUtil; ...... // some MBean method implementation public String setProperty(String key, String value) throws IOException { Locale callersLocale = JMXContextUtil.getLocale(); // use callersLocale to localize Exception messages or // potentially some return values such a Date .... } Conclusion With this last part we conclude our three part series on how to write MBeans to manage J2EE applications. We are far from having exhausted this particular topic, but we have gone a long way and are now capable to take advantage of the latest functionality provided by WebLogic's application server to write user friendly MBeans.

    Read the article

  • MERGE Bug with Filtered Indexes

    - by Paul White
    A MERGE statement can fail, and incorrectly report a unique key violation when: The target table uses a unique filtered index; and No key column of the filtered index is updated; and A column from the filtering condition is updated; and Transient key violations are possible Example Tables Say we have two tables, one that is the target of a MERGE statement, and another that contains updates to be applied to the target.  The target table contains three columns, an integer primary key, a single character alternate key, and a status code column.  A filtered unique index exists on the alternate key, but is only enforced where the status code is ‘a’: CREATE TABLE #Target ( pk integer NOT NULL, ak character(1) NOT NULL, status_code character(1) NOT NULL,   PRIMARY KEY (pk) );   CREATE UNIQUE INDEX uq1 ON #Target (ak) INCLUDE (status_code) WHERE status_code = 'a'; The changes table contains just an integer primary key (to identify the target row to change) and the new status code: CREATE TABLE #Changes ( pk integer NOT NULL, status_code character(1) NOT NULL,   PRIMARY KEY (pk) ); Sample Data The sample data for the example is: INSERT #Target (pk, ak, status_code) VALUES (1, 'A', 'a'), (2, 'B', 'a'), (3, 'C', 'a'), (4, 'A', 'd');   INSERT #Changes (pk, status_code) VALUES (1, 'd'), (4, 'a');          Target                     Changes +-----------------------+    +------------------+ ¦ pk ¦ ak ¦ status_code ¦    ¦ pk ¦ status_code ¦ ¦----+----+-------------¦    ¦----+-------------¦ ¦  1 ¦ A  ¦ a           ¦    ¦  1 ¦ d           ¦ ¦  2 ¦ B  ¦ a           ¦    ¦  4 ¦ a           ¦ ¦  3 ¦ C  ¦ a           ¦    +------------------+ ¦  4 ¦ A  ¦ d           ¦ +-----------------------+ The target table’s alternate key (ak) column is unique, for rows where status_code = ‘a’.  Applying the changes to the target will change row 1 from status ‘a’ to status ‘d’, and row 4 from status ‘d’ to status ‘a’.  The result of applying all the changes will still satisfy the filtered unique index, because the ‘A’ in row 1 will be deleted from the index and the ‘A’ in row 4 will be added. Merge Test One Let’s now execute a MERGE statement to apply the changes: MERGE #Target AS t USING #Changes AS c ON c.pk = t.pk WHEN MATCHED AND c.status_code <> t.status_code THEN UPDATE SET status_code = c.status_code; The MERGE changes the two target rows as expected.  The updated target table now contains: +-----------------------+ ¦ pk ¦ ak ¦ status_code ¦ ¦----+----+-------------¦ ¦  1 ¦ A  ¦ d           ¦ <—changed from ‘a’ ¦  2 ¦ B  ¦ a           ¦ ¦  3 ¦ C  ¦ a           ¦ ¦  4 ¦ A  ¦ a           ¦ <—changed from ‘d’ +-----------------------+ Merge Test Two Now let’s repopulate the changes table to reverse the updates we just performed: TRUNCATE TABLE #Changes;   INSERT #Changes (pk, status_code) VALUES (1, 'a'), (4, 'd'); This will change row 1 back to status ‘a’ and row 4 back to status ‘d’.  As a reminder, the current state of the tables is:          Target                        Changes +-----------------------+    +------------------+ ¦ pk ¦ ak ¦ status_code ¦    ¦ pk ¦ status_code ¦ ¦----+----+-------------¦    ¦----+-------------¦ ¦  1 ¦ A  ¦ d           ¦    ¦  1 ¦ a           ¦ ¦  2 ¦ B  ¦ a           ¦    ¦  4 ¦ d           ¦ ¦  3 ¦ C  ¦ a           ¦    +------------------+ ¦  4 ¦ A  ¦ a           ¦ +-----------------------+ We execute the same MERGE statement: MERGE #Target AS t USING #Changes AS c ON c.pk = t.pk WHEN MATCHED AND c.status_code <> t.status_code THEN UPDATE SET status_code = c.status_code; However this time we receive the following message: Msg 2601, Level 14, State 1, Line 1 Cannot insert duplicate key row in object 'dbo.#Target' with unique index 'uq1'. The duplicate key value is (A). The statement has been terminated. Applying the changes using UPDATE Let’s now rewrite the MERGE to use UPDATE instead: UPDATE t SET status_code = c.status_code FROM #Target AS t JOIN #Changes AS c ON t.pk = c.pk WHERE c.status_code <> t.status_code; This query succeeds where the MERGE failed.  The two rows are updated as expected: +-----------------------+ ¦ pk ¦ ak ¦ status_code ¦ ¦----+----+-------------¦ ¦  1 ¦ A  ¦ a           ¦ <—changed back to ‘a’ ¦  2 ¦ B  ¦ a           ¦ ¦  3 ¦ C  ¦ a           ¦ ¦  4 ¦ A  ¦ d           ¦ <—changed back to ‘d’ +-----------------------+ What went wrong with the MERGE? In this test, the MERGE query execution happens to apply the changes in the order of the ‘pk’ column. In test one, this was not a problem: row 1 is removed from the unique filtered index by changing status_code from ‘a’ to ‘d’ before row 4 is added.  At no point does the table contain two rows where ak = ‘A’ and status_code = ‘a’. In test two, however, the first change was to change row 1 from status ‘d’ to status ‘a’.  This change means there would be two rows in the filtered unique index where ak = ‘A’ (both row 1 and row 4 meet the index filtering criteria ‘status_code = a’). The storage engine does not allow the query processor to violate a unique key (unless IGNORE_DUP_KEY is ON, but that is a different story, and doesn’t apply to MERGE in any case).  This strict rule applies regardless of the fact that if all changes were applied, there would be no unique key violation (row 4 would eventually be changed from ‘a’ to ‘d’, removing it from the filtered unique index, and resolving the key violation). Why it went wrong The query optimizer usually detects when this sort of temporary uniqueness violation could occur, and builds a plan that avoids the issue.  I wrote about this a couple of years ago in my post Beware Sneaky Reads with Unique Indexes (you can read more about the details on pages 495-497 of Microsoft SQL Server 2008 Internals or in Craig Freedman’s blog post on maintaining unique indexes).  To summarize though, the optimizer introduces Split, Filter, Sort, and Collapse operators into the query plan to: Split each row update into delete followed by an inserts Filter out rows that would not change the index (due to the filter on the index, or a non-updating update) Sort the resulting stream by index key, with deletes before inserts Collapse delete/insert pairs on the same index key back into an update The effect of all this is that only net changes are applied to an index (as one or more insert, update, and/or delete operations).  In this case, the net effect is a single update of the filtered unique index: changing the row for ak = ‘A’ from pk = 4 to pk = 1.  In case that is less than 100% clear, let’s look at the operation in test two again:          Target                     Changes                   Result +-----------------------+    +------------------+    +-----------------------+ ¦ pk ¦ ak ¦ status_code ¦    ¦ pk ¦ status_code ¦    ¦ pk ¦ ak ¦ status_code ¦ ¦----+----+-------------¦    ¦----+-------------¦    ¦----+----+-------------¦ ¦  1 ¦ A  ¦ d           ¦    ¦  1 ¦ d           ¦    ¦  1 ¦ A  ¦ a           ¦ ¦  2 ¦ B  ¦ a           ¦    ¦  4 ¦ a           ¦    ¦  2 ¦ B  ¦ a           ¦ ¦  3 ¦ C  ¦ a           ¦    +------------------+    ¦  3 ¦ C  ¦ a           ¦ ¦  4 ¦ A  ¦ a           ¦                            ¦  4 ¦ A  ¦ d           ¦ +-----------------------+                            +-----------------------+ From the filtered index’s point of view (filtered for status_code = ‘a’ and shown in nonclustered index key order) the overall effect of the query is:   Before           After +---------+    +---------+ ¦ pk ¦ ak ¦    ¦ pk ¦ ak ¦ ¦----+----¦    ¦----+----¦ ¦  4 ¦ A  ¦    ¦  1 ¦ A  ¦ ¦  2 ¦ B  ¦    ¦  2 ¦ B  ¦ ¦  3 ¦ C  ¦    ¦  3 ¦ C  ¦ +---------+    +---------+ The single net change there is a change of pk from 4 to 1 for the nonclustered index entry ak = ‘A’.  This is the magic performed by the split, sort, and collapse.  Notice in particular how the original changes to the index key (on the ‘ak’ column) have been transformed into an update of a non-key column (pk is included in the nonclustered index).  By not updating any nonclustered index keys, we are guaranteed to avoid transient key violations. The Execution Plans The estimated MERGE execution plan that produces the incorrect key-violation error looks like this (click to enlarge in a new window): The successful UPDATE execution plan is (click to enlarge in a new window): The MERGE execution plan is a narrow (per-row) update.  The single Clustered Index Merge operator maintains both the clustered index and the filtered nonclustered index.  The UPDATE plan is a wide (per-index) update.  The clustered index is maintained first, then the Split, Filter, Sort, Collapse sequence is applied before the nonclustered index is separately maintained. There is always a wide update plan for any query that modifies the database. The narrow form is a performance optimization where the number of rows is expected to be relatively small, and is not available for all operations.  One of the operations that should disallow a narrow plan is maintaining a unique index where intermediate key violations could occur. Workarounds The MERGE can be made to work (producing a wide update plan with split, sort, and collapse) by: Adding all columns referenced in the filtered index’s WHERE clause to the index key (INCLUDE is not sufficient); or Executing the query with trace flag 8790 set e.g. OPTION (QUERYTRACEON 8790). Undocumented trace flag 8790 forces a wide update plan for any data-changing query (remember that a wide update plan is always possible).  Either change will produce a successfully-executing wide update plan for the MERGE that failed previously. Conclusion The optimizer fails to spot the possibility of transient unique key violations with MERGE under the conditions listed at the start of this post.  It incorrectly chooses a narrow plan for the MERGE, which cannot provide the protection of a split/sort/collapse sequence for the nonclustered index maintenance. The MERGE plan may fail at execution time depending on the order in which rows are processed, and the distribution of data in the database.  Worse, a previously solid MERGE query may suddenly start to fail unpredictably if a filtered unique index is added to the merge target table at any point. Connect bug filed here Tests performed on SQL Server 2012 SP1 CUI (build 11.0.3321) x64 Developer Edition © 2012 Paul White – All Rights Reserved Twitter: @SQL_Kiwi Email: [email protected]

    Read the article

< Previous Page | 86 87 88 89 90 91 92 93 94 95 96 97  | Next Page >