Search Results

Search found 11808 results on 473 pages for 'circular reference'.

Page 91/473 | < Previous Page | 87 88 89 90 91 92 93 94 95 96 97 98  | Next Page >

  • One-to-One relation classes

    - by SeyZ
    I want to have a class named ProjectDirectory and a class named MetaDirectory. Each project has a MetaDirectory which contains some meta data. Is it the good way to write the classes like this: class ProjectDirectory(object): def __init__(self, directory=None): self.directory = directory self.meta_directory = MetaDirectory(self) def __repr__(self): return self.directory class MetaDirectory(object): def __init__(self, project_directory=None): self.project_directory = project_directory self.directory = "%s/.meta/" % project_directory ProjectDirectory has a reference to MetaDirectory and MetaDirectory has a reference to ProjectDirectory. Is there an other solution or this solution is good ?

    Read the article

  • Adding a refence to Header from a control

    - by Qiky
    In the Page load of A control the Page.Header is null when I am attempting to add a reference. Is there anything special I have to do to add a reference to the head of a page from a control. Maybe a better way to as this is when does Page.Header load or when can it be accessed from a control

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • rotating model around own Y-axis XNA

    - by ChocoMan
    I'm have trouble with my model rotating around it's own Y-axis. The model is a person. When I test my world, the model is loaded at a position of 0, 0, 0. When I rotate my model from there, the model rotates like normal. The problem comes AFTER I moved the model to a new position. If I move the the model forward, left, etc, then try to rotate it on it's own Y-Axis, the model will rotate, but still around the original position in a circular manner (think of yourself swing around on a rope, but always facing outward from the center). Does anyone know how to keep the center point of rotation updated?

    Read the article

  • PTLQueue : a scalable bounded-capacity MPMC queue

    - by Dave
    Title: Fast concurrent MPMC queue -- I've used the following concurrent queue algorithm enough that it warrants a blog entry. I'll sketch out the design of a fast and scalable multiple-producer multiple-consumer (MPSC) concurrent queue called PTLQueue. The queue has bounded capacity and is implemented via a circular array. Bounded capacity can be a useful property if there's a mismatch between producer rates and consumer rates where an unbounded queue might otherwise result in excessive memory consumption by virtue of the container nodes that -- in some queue implementations -- are used to hold values. A bounded-capacity queue can provide flow control between components. Beware, however, that bounded collections can also result in resource deadlock if abused. The put() and take() operators are partial and wait for the collection to become non-full or non-empty, respectively. Put() and take() do not allocate memory, and are not vulnerable to the ABA pathologies. The PTLQueue algorithm can be implemented equally well in C/C++ and Java. Partial operators are often more convenient than total methods. In many use cases if the preconditions aren't met, there's nothing else useful the thread can do, so it may as well wait via a partial method. An exception is in the case of work-stealing queues where a thief might scan a set of queues from which it could potentially steal. Total methods return ASAP with a success-failure indication. (It's tempting to describe a queue or API as blocking or non-blocking instead of partial or total, but non-blocking is already an overloaded concurrency term. Perhaps waiting/non-waiting or patient/impatient might be better terms). It's also trivial to construct partial operators by busy-waiting via total operators, but such constructs may be less efficient than an operator explicitly and intentionally designed to wait. A PTLQueue instance contains an array of slots, where each slot has volatile Turn and MailBox fields. The array has power-of-two length allowing mod/div operations to be replaced by masking. We assume sensible padding and alignment to reduce the impact of false sharing. (On x86 I recommend 128-byte alignment and padding because of the adjacent-sector prefetch facility). Each queue also has PutCursor and TakeCursor cursor variables, each of which should be sequestered as the sole occupant of a cache line or sector. You can opt to use 64-bit integers if concerned about wrap-around aliasing in the cursor variables. Put(null) is considered illegal, but the caller or implementation can easily check for and convert null to a distinguished non-null proxy value if null happens to be a value you'd like to pass. Take() will accordingly convert the proxy value back to null. An advantage of PTLQueue is that you can use atomic fetch-and-increment for the partial methods. We initialize each slot at index I with (Turn=I, MailBox=null). Both cursors are initially 0. All shared variables are considered "volatile" and atomics such as CAS and AtomicFetchAndIncrement are presumed to have bidirectional fence semantics. Finally T is the templated type. I've sketched out a total tryTake() method below that allows the caller to poll the queue. tryPut() has an analogous construction. Zebra stripping : alternating row colors for nice-looking code listings. See also google code "prettify" : https://code.google.com/p/google-code-prettify/ Prettify is a javascript module that yields the HTML/CSS/JS equivalent of pretty-print. -- pre:nth-child(odd) { background-color:#ff0000; } pre:nth-child(even) { background-color:#0000ff; } border-left: 11px solid #ccc; margin: 1.7em 0 1.7em 0.3em; background-color:#BFB; font-size:12px; line-height:65%; " // PTLQueue : Put(v) : // producer : partial method - waits as necessary assert v != null assert Mask = 1 && (Mask & (Mask+1)) == 0 // Document invariants // doorway step // Obtain a sequence number -- ticket // As a practical concern the ticket value is temporally unique // The ticket also identifies and selects a slot auto tkt = AtomicFetchIncrement (&PutCursor, 1) slot * s = &Slots[tkt & Mask] // waiting phase : // wait for slot's generation to match the tkt value assigned to this put() invocation. // The "generation" is implicitly encoded as the upper bits in the cursor // above those used to specify the index : tkt div (Mask+1) // The generation serves as an epoch number to identify a cohort of threads // accessing disjoint slots while s-Turn != tkt : Pause assert s-MailBox == null s-MailBox = v // deposit and pass message Take() : // consumer : partial method - waits as necessary auto tkt = AtomicFetchIncrement (&TakeCursor,1) slot * s = &Slots[tkt & Mask] // 2-stage waiting : // First wait for turn for our generation // Acquire exclusive "take" access to slot's MailBox field // Then wait for the slot to become occupied while s-Turn != tkt : Pause // Concurrency in this section of code is now reduced to just 1 producer thread // vs 1 consumer thread. // For a given queue and slot, there will be most one Take() operation running // in this section. // Consumer waits for producer to arrive and make slot non-empty // Extract message; clear mailbox; advance Turn indicator // We have an obvious happens-before relation : // Put(m) happens-before corresponding Take() that returns that same "m" for T v = s-MailBox if v != null : s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 // unlock slot to admit next producer and consumer return v Pause tryTake() : // total method - returns ASAP with failure indication for auto tkt = TakeCursor slot * s = &Slots[tkt & Mask] if s-Turn != tkt : return null T v = s-MailBox // presumptive return value if v == null : return null // ratify tkt and v values and commit by advancing cursor if CAS (&TakeCursor, tkt, tkt+1) != tkt : continue s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 return v The basic idea derives from the Partitioned Ticket Lock "PTL" (US20120240126-A1) and the MultiLane Concurrent Bag (US8689237). The latter is essentially a circular ring-buffer where the elements themselves are queues or concurrent collections. You can think of the PTLQueue as a partitioned ticket lock "PTL" augmented to pass values from lock to unlock via the slots. Alternatively, you could conceptualize of PTLQueue as a degenerate MultiLane bag where each slot or "lane" consists of a simple single-word MailBox instead of a general queue. Each lane in PTLQueue also has a private Turn field which acts like the Turn (Grant) variables found in PTL. Turn enforces strict FIFO ordering and restricts concurrency on the slot mailbox field to at most one simultaneous put() and take() operation. PTL uses a single "ticket" variable and per-slot Turn (grant) fields while MultiLane has distinct PutCursor and TakeCursor cursors and abstract per-slot sub-queues. Both PTL and MultiLane advance their cursor and ticket variables with atomic fetch-and-increment. PTLQueue borrows from both PTL and MultiLane and has distinct put and take cursors and per-slot Turn fields. Instead of a per-slot queues, PTLQueue uses a simple single-word MailBox field. PutCursor and TakeCursor act like a pair of ticket locks, conferring "put" and "take" access to a given slot. PutCursor, for instance, assigns an incoming put() request to a slot and serves as a PTL "Ticket" to acquire "put" permission to that slot's MailBox field. To better explain the operation of PTLQueue we deconstruct the operation of put() and take() as follows. Put() first increments PutCursor obtaining a new unique ticket. That ticket value also identifies a slot. Put() next waits for that slot's Turn field to match that ticket value. This is tantamount to using a PTL to acquire "put" permission on the slot's MailBox field. Finally, having obtained exclusive "put" permission on the slot, put() stores the message value into the slot's MailBox. Take() similarly advances TakeCursor, identifying a slot, and then acquires and secures "take" permission on a slot by waiting for Turn. Take() then waits for the slot's MailBox to become non-empty, extracts the message, and clears MailBox. Finally, take() advances the slot's Turn field, which releases both "put" and "take" access to the slot's MailBox. Note the asymmetry : put() acquires "put" access to the slot, but take() releases that lock. At any given time, for a given slot in a PTLQueue, at most one thread has "put" access and at most one thread has "take" access. This restricts concurrency from general MPMC to 1-vs-1. We have 2 ticket locks -- one for put() and one for take() -- each with its own "ticket" variable in the form of the corresponding cursor, but they share a single "Grant" egress variable in the form of the slot's Turn variable. Advancing the PutCursor, for instance, serves two purposes. First, we obtain a unique ticket which identifies a slot. Second, incrementing the cursor is the doorway protocol step to acquire the per-slot mutual exclusion "put" lock. The cursors and operations to increment those cursors serve double-duty : slot-selection and ticket assignment for locking the slot's MailBox field. At any given time a slot MailBox field can be in one of the following states: empty with no pending operations -- neutral state; empty with one or more waiting take() operations pending -- deficit; occupied with no pending operations; occupied with one or more waiting put() operations -- surplus; empty with a pending put() or pending put() and take() operations -- transitional; or occupied with a pending take() or pending put() and take() operations -- transitional. The partial put() and take() operators can be implemented with an atomic fetch-and-increment operation, which may confer a performance advantage over a CAS-based loop. In addition we have independent PutCursor and TakeCursor cursors. Critically, a put() operation modifies PutCursor but does not access the TakeCursor and a take() operation modifies the TakeCursor cursor but does not access the PutCursor. This acts to reduce coherence traffic relative to some other queue designs. It's worth noting that slow threads or obstruction in one slot (or "lane") does not impede or obstruct operations in other slots -- this gives us some degree of obstruction isolation. PTLQueue is not lock-free, however. The implementation above is expressed with polite busy-waiting (Pause) but it's trivial to implement per-slot parking and unparking to deschedule waiting threads. It's also easy to convert the queue to a more general deque by replacing the PutCursor and TakeCursor cursors with Left/Front and Right/Back cursors that can move either direction. Specifically, to push and pop from the "left" side of the deque we would decrement and increment the Left cursor, respectively, and to push and pop from the "right" side of the deque we would increment and decrement the Right cursor, respectively. We used a variation of PTLQueue for message passing in our recent OPODIS 2013 paper. ul { list-style:none; padding-left:0; padding:0; margin:0; margin-left:0; } ul#myTagID { padding: 0px; margin: 0px; list-style:none; margin-left:0;} -- -- There's quite a bit of related literature in this area. I'll call out a few relevant references: Wilson's NYU Courant Institute UltraComputer dissertation from 1988 is classic and the canonical starting point : Operating System Data Structures for Shared-Memory MIMD Machines with Fetch-and-Add. Regarding provenance and priority, I think PTLQueue or queues effectively equivalent to PTLQueue have been independently rediscovered a number of times. See CB-Queue and BNPBV, below, for instance. But Wilson's dissertation anticipates the basic idea and seems to predate all the others. Gottlieb et al : Basic Techniques for the Efficient Coordination of Very Large Numbers of Cooperating Sequential Processors Orozco et al : CB-Queue in Toward high-throughput algorithms on many-core architectures which appeared in TACO 2012. Meneghin et al : BNPVB family in Performance evaluation of inter-thread communication mechanisms on multicore/multithreaded architecture Dmitry Vyukov : bounded MPMC queue (highly recommended) Alex Otenko : US8607249 (highly related). John Mellor-Crummey : Concurrent queues: Practical fetch-and-phi algorithms. Technical Report 229, Department of Computer Science, University of Rochester Thomasson : FIFO Distributed Bakery Algorithm (very similar to PTLQueue). Scott and Scherer : Dual Data Structures I'll propose an optimization left as an exercise for the reader. Say we wanted to reduce memory usage by eliminating inter-slot padding. Such padding is usually "dark" memory and otherwise unused and wasted. But eliminating the padding leaves us at risk of increased false sharing. Furthermore lets say it was usually the case that the PutCursor and TakeCursor were numerically close to each other. (That's true in some use cases). We might still reduce false sharing by incrementing the cursors by some value other than 1 that is not trivially small and is coprime with the number of slots. Alternatively, we might increment the cursor by one and mask as usual, resulting in a logical index. We then use that logical index value to index into a permutation table, yielding an effective index for use in the slot array. The permutation table would be constructed so that nearby logical indices would map to more distant effective indices. (Open question: what should that permutation look like? Possibly some perversion of a Gray code or De Bruijn sequence might be suitable). As an aside, say we need to busy-wait for some condition as follows : "while C == 0 : Pause". Lets say that C is usually non-zero, so we typically don't wait. But when C happens to be 0 we'll have to spin for some period, possibly brief. We can arrange for the code to be more machine-friendly with respect to the branch predictors by transforming the loop into : "if C == 0 : for { Pause; if C != 0 : break; }". Critically, we want to restructure the loop so there's one branch that controls entry and another that controls loop exit. A concern is that your compiler or JIT might be clever enough to transform this back to "while C == 0 : Pause". You can sometimes avoid this by inserting a call to a some type of very cheap "opaque" method that the compiler can't elide or reorder. On Solaris, for instance, you could use :"if C == 0 : { gethrtime(); for { Pause; if C != 0 : break; }}". It's worth noting the obvious duality between locks and queues. If you have strict FIFO lock implementation with local spinning and succession by direct handoff such as MCS or CLH,then you can usually transform that lock into a queue. Hidden commentary and annotations - invisible : * And of course there's a well-known duality between queues and locks, but I'll leave that topic for another blog post. * Compare and contrast : PTLQ vs PTL and MultiLane * Equivalent : Turn; seq; sequence; pos; position; ticket * Put = Lock; Deposit Take = identify and reserve slot; wait; extract & clear; unlock * conceptualize : Distinct PutLock and TakeLock implemented as ticket lock or PTL Distinct arrival cursors but share per-slot "Turn" variable provides exclusive role-based access to slot's mailbox field put() acquires exclusive access to a slot for purposes of "deposit" assigns slot round-robin and then acquires deposit access rights/perms to that slot take() acquires exclusive access to slot for purposes of "withdrawal" assigns slot round-robin and then acquires withdrawal access rights/perms to that slot At any given time, only one thread can have withdrawal access to a slot at any given time, only one thread can have deposit access to a slot Permissible for T1 to have deposit access and T2 to simultaneously have withdrawal access * round-robin for the purposes of; role-based; access mode; access role mailslot; mailbox; allocate/assign/identify slot rights; permission; license; access permission; * PTL/Ticket hybrid Asymmetric usage ; owner oblivious lock-unlock pairing K-exclusion add Grant cursor pass message m from lock to unlock via Slots[] array Cursor performs 2 functions : + PTL ticket + Assigns request to slot in round-robin fashion Deconstruct protocol : explication put() : allocate slot in round-robin fashion acquire PTL for "put" access store message into slot associated with PTL index take() : Acquire PTL for "take" access // doorway step seq = fetchAdd (&Grant, 1) s = &Slots[seq & Mask] // waiting phase while s-Turn != seq : pause Extract : wait for s-mailbox to be full v = s-mailbox s-mailbox = null Release PTL for both "put" and "take" access s-Turn = seq + Mask + 1 * Slot round-robin assignment and lock "doorway" protocol leverage the same cursor and FetchAdd operation on that cursor FetchAdd (&Cursor,1) + round-robin slot assignment and dispersal + PTL/ticket lock "doorway" step waiting phase is via "Turn" field in slot * PTLQueue uses 2 cursors -- put and take. Acquire "put" access to slot via PTL-like lock Acquire "take" access to slot via PTL-like lock 2 locks : put and take -- at most one thread can access slot's mailbox Both locks use same "turn" field Like multilane : 2 cursors : put and take slot is simple 1-capacity mailbox instead of queue Borrow per-slot turn/grant from PTL Provides strict FIFO Lock slot : put-vs-put take-vs-take at most one put accesses slot at any one time at most one put accesses take at any one time reduction to 1-vs-1 instead of N-vs-M concurrency Per slot locks for put/take Release put/take by advancing turn * is instrumental in ... * P-V Semaphore vs lock vs K-exclusion * See also : FastQueues-excerpt.java dice-etc/queue-mpmc-bounded-blocking-circular-xadd/ * PTLQueue is the same as PTLQB - identical * Expedient return; ASAP; prompt; immediately * Lamport's Bakery algorithm : doorway step then waiting phase Threads arriving at doorway obtain a unique ticket number Threads enter in ticket order * In the terminology of Reed and Kanodia a ticket lock corresponds to the busy-wait implementation of a semaphore using an eventcount and a sequencer It can also be thought of as an optimization of Lamport's bakery lock was designed for fault-tolerance rather than performance Instead of spinning on the release counter, processors using a bakery lock repeatedly examine the tickets of their peers --

    Read the article

  • Complex algorithm for complex problem

    - by Locaaaaa
    I got this question in an interview and I was not able to solve it. You have a circular road, with N number of gas stations. You know the ammount of gas that each station has. You know the ammount of gas you need to GO from one station to the next one. Your car starts with 0. The question is: Create an algorithm, to know from which gas station you must start driving. As an exercise to me, I would translate the algorithm to C#.

    Read the article

  • Breakout clone, how to handle/design for collision detection/physics between objects?

    - by Zolomon
    I'm working on a breakout clone, and I wish to create some realistic physics effects for collision - angles on the paddle should allow the ball to bounce, as well as doing curve balls etc. I could use per-pixel based collision detection, but then I thought it might be easier with line/circle intersection testing. So, then I naturally consider making a polygon class for the line-based objects and use the built-in circle class for the circular objects. That sounds like an OK approach, right? And then just check for collision using the specified algorithm based on the objects that might be within each other's range?

    Read the article

  • Can anyone help solve this complex algorithmic problem?

    - by Locaaaaa
    I got this question in an interview and I was not able to solve it. You have a circular road, with N number of gas stations. You know the ammount of gas that each station has. You know the ammount of gas you need to GO from one station to the next one. Your car starts with 0. The question is: Create an algorithm, to know from which gas station you must start driving. As an exercise to me, I would translate the algorithm to C#.

    Read the article

  • APEX Patchset 4.2.1 erschienen

    - by Carsten Czarski
    Seit Freitag, dem 14.12. steht das APEX Patchset 4.2.1 zur Verfügung. Neben zahlreichen Bugfixes sind auch einige, kleinere Änderungen enthalten: Die JQuery Mobile Bibliothek wurde auf Version 1.2.0 aktualisiert Die AnyChart-Engine wurde auf Version 6.0.11 gehoben. Dadurch stehen "Circular Gauge" Charts auch als HTML5 Diagramme bereit Diagramme in Anwendungen für mobile Endgeräte können sich nun dynamisch der Bildschirmgröße anpassen Details zum Patchset finden sich, wie immer in den Release Notes. Wie bislang unterscheidet sich der Installationsvorgang je nach verwendeter APEX-Version. Wenn noch kein APEX oder eine ältere Version als 4.2 installiert ist, kann die Vollinstallation für APEX 4.2.1 direkt aus dem OTN heruntergeladen und normal installiert werden. Wenn APEX 4.2.0 installiert ist, muss Patch Nr. 14732511 aus MyOracle Support heruntergeladen und eingespielt werden.

    Read the article

  • Square game map rendered as sphere

    - by Roflha
    For a hobby project of mine I have created a finite voxel world (similar to Minecraft), but as I said, mine is finite. When you reach the edge of it, you are sent to the other side. That is all working fine along with rendering the far side of the map, but I want to be able to render this grid as a sphere. Looking down from above, the world is a square. I basically want to be able to represent a portion of that square as a sphere, as if you were looking at a planet. Right now I am experimenting with taking a circular section of the map, and rendering that, but it look to flat (no curvature around the edges). My question then, is what would be the best way to add some curvature to the edges of a 2d circle to make it look like a hemisphere. However, I am not overly attached to this implementation so if somebody has some other idea for representing the square as a planet, I am all ears.

    Read the article

  • Check for bodies within a specific circle in Box2D

    - by ltjax
    I'm trying to find positions to insert new bodies into my world. For that, I'd like to have a "free" spot where this body wouldn't overlap with anything else. So my plan was to sample "random" positions and check whether they overlap with my "potential" new body. Since my bodies are always circular, I'd need to test within a given circle. So far, the only way to use box2d for this seems to use b2World::QueryAABB around my circle and manually doing an overlap test with all the fixtures it gives me (Box2D doesn't event seem to allow me to tap into its overlapping tests?!). It seems to me like Box2D should already provide such functionality - is there a way that lets me do this without reinventing most of the wheel again?

    Read the article

  • Channelling an explosion along a narrow passage

    - by finnw
    I am simulating explosions in a 2D maze game. If an explosion occurs in an open area, it covers a circular region (this is the easy bit.) However if an explosion occurs in a narrow passage (i.e narrower than the blast range) then it should be "compressed", so that it goes further and also it should go around corners. Ultimately, unless it is completely boxed-in, then it should cover a constant number of pixels, spreading in whatever direction is necessary to reach this total area. I have tried using a shortest-path algorithm to pick the nearest N pixels to the origin avoiding walls, but the effect is exaggerated - the blast travels around corners too easily, making U-turns even when there is a clear path in another direction. I don't know whether this is realistic or not but it is counter-intuitive to players who assume that they can hide around a corner and the blast will take the path of least resistance in a different direction. Is there a well-known (and fast) algorithm for this?

    Read the article

  • Store and create game objects at positions along terrain

    - by Alex
    I have a circular character that rolls down terrain like that shown in the picture below. The terrain is created from an array holding 1000 points. The ground is drawn one screen width infront and one screen width behind. So as the character moves, edges are created infront and edges are removed behind. My problem is, I want to create box2d bodies at certain locations along the path and need a way to store these creator methods or objects. I need some way to store a position at which they are created and some pointer to a function to create them, once the character is in range. I guess this would be an array of some sort that is checked each time the ground is updated and then if in range, the function is executed and removed from the array. But I'm not sure if its even possible to store pointers to functions with parameters included... any help is much appreciated!

    Read the article

  • rotating menu with Actors in libgdx

    - by joecks
    I am intending to build a circular menu, with menu items equally distributed around the circle. When clicking on a menu item the circle should rotate so that the selected item is facing the top. I am using libgdx and I am not very familiar with the Actors concept, so I intuitivly tried to implement an Actor, who is drawing a texture and then transforming it by using Actions, with no success: class CircleActor extends Actor { @Override public void draw(SpriteBatch batch, float parentAlpha) { batch.draw(texture1, 100, 100); } @Override public Actor hit(float x, float y) { return this; } } and the rotate action: CircleActor circleActor = new CircleActor(); circleActor.action(Forever.$(RotateBy.$(0.1f, 0.1f))); // stage.addActor(); stage.addActor(circleActor); The texture is rectangular, but it doe not work. 1. What is wrong? 2. Is it a good approach to solve the task? Thanks!

    Read the article

  • how to get started with a game engine [closed]

    - by user19343
    I'm a 3rd year Computer Science student and I would like to get started with building a game engine or at least tinkering with making one. I am curious if there are any good resources to use to get started. I get the idea behind different pieces in the engine, but I'm not really sure about how they fit together. Is there anything out there to help teach me the skeleton of a game engine? So far I've been playing with the idea of a game engine that uses modules built in a circular linked list so that each can do it's computing and then pass move to the next piece of the engine to work.

    Read the article

  • How is Basic Physics applied in CS/SE?

    - by Wulf
    What basic physics principles do software engineers and/or computer scientists use to help solve specific or common problems? The first one that came to my head was creating a Physics engine for a game; physics is involved, as it requires knowledge of: Forces and Motion: Kinematics, Dynamics, Circular Motion However, I need another example, but haven't come across one that involves basic physics. Please consider the following basic physics (grade 12 level) concepts: Energy and Momentum: Work and Energy, Momentum and Collisions, Gravitational and Celestial Mechanics Electric, Gravitational & Magnetic Field: Electric Charges and Electric Field, Magnetic Fields and Electomagnetism The Wave Nature of Light: Waves and Light, Wave Effects of Light Matter-Energy Interface: Einstein’s Special Theory of Relativity, Waves, Photons and Matter, Radioactivity and Elementary Particles I will be happy with any response; Keywords for google, names of methods like raycasting, etc.

    Read the article

  • How to move an object along a circumference of another object?

    - by Lumis
    I am so out of math that it hurts, but for some of you this should be a piece of cake. I want to move an object around another along its ages or circumference on a simple circular path. At the moment my game algorithm knows how to move and position a sprite just at the edge of an obstacle and now it waits for the next point to move depending on various conditions. So the mathematical problem here is how to get (aX, aY) and (bX, bY) positions, when I know the Centre (cX, cY), the object position (oX, oY) and the distance required to move (d)

    Read the article

  • Is it bad SEO to embed an img tag in the middle of a sentence?

    - by Offlein
    I recently received a web mockup that included a sidebar with a short paragraph of narrow text; a quote from a person. At the end of the quote, the mockup had a circular portrait of the person floated to the right, hanging off the edge of the block, with the text flowing around the edge of it. It looked like this, where "TEXT" is the text, and "o" is the portrait TEXTTEXTTEXTTEXTTEX TEXTTEXTTEXTTE TEXTTEXTTEXT ooooo TEXTTEXTTEXT ooooooo TEXTTEXTTEXT ooooooo ooooo The easiest way to do this would be to put the tag for the portrait somewhere in the markup of the text, and float it right. But the HTML will look like, in that case: TEXTTEXTTE<img src="..." style="float: right;">XTTEXTTEXT and I fear this would be bad for SEO. Does anyone know? The other option is putting the at the end, absolutely positioning it, and using manual line breaks -- which sucks for my responsive design.

    Read the article

  • MVVM application architecture, where to put dependency injection configuration class, BusinessLayer and Common interfaces?

    - by gt.guybrush
    Planning my architecture for an MVVM application I come to this: MyApp.UI View MyApp.BusinessLayer ViewModel MyApp.DataAccessLayer RepositoryImplEF MyApp.DomainLayer DomainObject RepositoryInterface MyApp.Common Logging Security Utility (contains some reflection method used by many levels) CustomException MyApp.UnitTest I was inspired by Domain-driven-desing, test-driven-development and onion architecture but not sure to have done all well. I am not sure of a couple of things: where to put dependency injection configuration class? In the common project? where to put BusinessLayer interfaces? in Domain layer? where to put Common interfaces? in Domain layer? But Common in referenced from domain (for some reflection utilities and for DI if the response to 1. is yes) and circular reference isn't good

    Read the article

  • Improving python code

    - by cobie
    I just answered the question on project euler about finding circular primes below 1 million using python. My solution is below. I was able to reduce the running time of the solution from 9 seconds to about 3 seconds. I would like to see what else can be done to the code to reduce its running time further. This is strictly for educational purposes and for fun. import math import time def getPrimes(n): """returns set of all primes below n""" non_primes = [j for j in range(4, n, 2)] # 2 covers all even numbers for i in range(3, n, 2): non_primes.extend([j for j in range(i*2, n, i)]) return set([i for i in range(2, n)]) - set(non_primes) def getCircularPrimes(n): primes = getPrimes(n) is_circ = [] for prime in primes: prime_str = str(prime) iter_count = len(prime_str) - 1 rotated_num = [] while iter_count > 0: prime_str = prime_str[1:] + prime_str[:1] rotated_num.append(int(prime_str)) iter_count -= 1 if primes >= set(rotated_num): is_circ.append(prime) return len(is_circ)

    Read the article

  • Can't Reboot into Windows 8.1 from Ubuntu

    - by Extended Range
    I am newb in Ubuntu. Currently I am using an Acer V11 laptop with a pre-intalled Windows 8.1. I follow some guideline (http://www.everydaylinuxuser.com/2014/05/install-ubuntu-1404-alongside-windows.html) which successfully install Ubuntu 14.04 LTS alongside Windows 8.1 with UEFI enabled all the way throughout the installation and my current usage and a GRUB. But I got into some problem. The dual boot mostly works fine as I am able to successfully boot into either one of the Windows 8.1 or Ubuntu when stating my laptop. However it ran into issue after I start the device and use Ubuntu for a while (2 hour for instance) and then restart it: If I press the restart from Ubuntu, the grub still shows and I am still able to choose the Windows Boot Manager. But the Windows loading process was stuck at the Acer Loading Screen and I am not able to see the standard circular Win8 loading progress bar. Does someone know why would this happens?

    Read the article

  • Windows Phone 7: Building a simple dictionary web client

    - by TechTwaddle
    Like I mentioned in this post a while back, I came across a dictionary web service called Aonaware that serves up word definitions from various dictionaries and is really easy to use. The services page on their website, http://services.aonaware.com/DictService/DictService.asmx, lists all the operations that are supported by the dictionary service. Here they are, Word Dictionary Web Service The following operations are supported. For a formal definition, please review the Service Description. Define Define given word, returning definitions from all dictionaries DefineInDict Define given word, returning definitions from specified dictionary DictionaryInfo Show information about the specified dictionary DictionaryList Returns a list of available dictionaries DictionaryListExtended Returns a list of advanced dictionaries (e.g. translating dictionaries) Match Look for matching words in all dictionaries using the given strategy MatchInDict Look for matching words in the specified dictionary using the given strategy ServerInfo Show remote server information StrategyList Return list of all available strategies on the server Follow the links above to get more information on each API. In this post we will be building a simple windows phone 7 client which uses this service to get word definitions for words entered by the user. The application will also allow the user to select a dictionary from all the available ones and look up the word definition in that dictionary. So of all the apis above we will be using only two, DictionaryList() to get a list of all supported dictionaries and DefineInDict() to get the word definition from a particular dictionary. Before we get started, a note to you all; I would have liked to implement this application using concepts from data binding, item templates, data templates etc. I have a basic understanding of what they are but, being a beginner, I am not very comfortable with those topics yet so I didn’t use them. I thought I’ll get this version out of the way and maybe in the next version I could give those a try. A somewhat scary mock-up of the what the final application will look like, Select Dictionary is a list picker control from the silverlight toolkit (you need to download and install the toolkit if you haven’t already). Below it is a textbox where the user can enter words to look up and a button beside it to fetch the word definition when clicked. Finally we have a textblock which occupies the remaining area and displays the word definition from the selected dictionary. Create a silverlight application for windows phone 7, AonawareDictionaryClient, and add references to the silverlight toolkit and the web service. From the solution explorer right on References and select Microsoft.Phone.Controls.Toolkit from under the .NET tab, Next, add a reference to the web service. Again right click on References and this time select Add Service Reference In the resulting dialog paste the service url in the Address field and press go, (url –> http://services.aonaware.com/DictService/DictService.asmx) once the service is discovered, provide a name for the NameSpace, in this case I’ve called it AonawareDictionaryService. Press OK. You can now use the classes and functions that are generated in the AonawareDictionaryClient.AonawareDictionaryService namespace. Let’s get the UI done now. In MainPage.xaml add a namespace declaration to use the toolkit controls, xmlns:toolkit="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone.Controls.Toolkit" the content of LayoutRoot is changed as follows, (sorry, no syntax highlighting in this post) <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,5,0,5">     <TextBlock x:Name="ApplicationTitle" Text="AONAWARE DICTIONARY CLIENT" Style="{StaticResource PhoneTextNormalStyle}"/>     <!--<TextBlock x:Name="PageTitle" Text="page name" Margin="9,-7,0,0" Style="{StaticResource PhoneTextTitle1Style}"/>--> </StackPanel> <!--ContentPanel - place additional content here--> <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">     <Grid.RowDefinitions>         <RowDefinition Height="Auto"/>         <RowDefinition Height="Auto"/>         <RowDefinition Height="*"/>     </Grid.RowDefinitions>     <toolkit:ListPicker Grid.Column="1" x:Name="listPickerDictionaryList"                         Header="Select Dictionary :">     </toolkit:ListPicker>     <Grid Grid.Row="1" Margin="0,5,0,0">         <Grid.ColumnDefinitions>             <ColumnDefinition Width="*"/>             <ColumnDefinition Width="Auto" />         </Grid.ColumnDefinitions>         <TextBox x:Name="txtboxInputWord" Grid.Column="0" GotFocus="OnTextboxInputWordGotFocus" />         <Button x:Name="btnGo" Grid.Column="1" Click="OnButtonGoClick" >             <Button.Content>                 <Image Source="/images/button-go.png"/>             </Button.Content>         </Button>     </Grid>     <ScrollViewer Grid.Row="2" x:Name="scrollViewer">         <TextBlock  Margin="12,5,12,5"  x:Name="txtBlockWordMeaning" HorizontalAlignment="Stretch"                    VerticalAlignment="Stretch" TextWrapping="Wrap"                    FontSize="26" />     </ScrollViewer> </Grid> I have commented out the PageTitle as it occupies too much valuable space, and the ContentPanel is changed to contain three rows. First row contains the list picker control, second row contains the textbox and the button, and the third row contains a textblock within a scroll viewer. The designer will now be showing the final ui, Now go to MainPage.xaml.cs, and add the following namespace declarations, using Microsoft.Phone.Controls; using AonawareDictionaryClient.AonawareDictionaryService; using System.IO.IsolatedStorage; A class called DictServiceSoapClient would have been created for you in the background when you added a reference to the web service. This class functions as a wrapper to the services exported by the web service. All the web service functions that we saw at the start can be access through this class, or more precisely through an object of this class. Create a data member of type DictServiceSoapClient in the Mainpage class, and a function which initializes it, DictServiceSoapClient DictSvcClient = null; private DictServiceSoapClient GetDictServiceSoapClient() {     if (null == DictSvcClient)     {         DictSvcClient = new DictServiceSoapClient();     }     return DictSvcClient; } We have two major tasks remaining. First, when the application loads we need to populate the list picker with all the supported dictionaries and second, when the user enters a word and clicks on the arrow button we need to fetch the word’s meaning. Populating the List Picker In the OnNavigatingTo event of the MainPage, we call the DictionaryList() api. This can also be done in the OnLoading event handler of the MainPage; not sure if one has an advantage over the other. Here’s the code for OnNavigatedTo, protected override void OnNavigatedTo(System.Windows.Navigation.NavigationEventArgs e) {     DictServiceSoapClient client = GetDictServiceSoapClient();     client.DictionaryListCompleted += new EventHandler<DictionaryListCompletedEventArgs>(OnGetDictionaryListCompleted);     client.DictionaryListAsync();     base.OnNavigatedTo(e); } Windows Phone 7 supports only async calls to web services. When we added a reference to the dictionary service, asynchronous versions of all the functions were generated automatically. So in the above function we register a handler to the DictionaryListCompleted event which will occur when the call to DictionaryList() gets a response from the server. Then we call the DictionaryListAsynch() function which is the async version of the DictionaryList() api. The result of this api will be sent to the handler OnGetDictionaryListCompleted(), void OnGetDictionaryListCompleted(object sender, DictionaryListCompletedEventArgs e) {     IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;     Dictionary[] listOfDictionaries;     if (e.Error == null)     {         listOfDictionaries = e.Result;         PopulateListPicker(listOfDictionaries, settings);     }     else if (settings.Contains("SavedDictionaryList"))     {         listOfDictionaries = settings["SavedDictionaryList"] as Dictionary[];         PopulateListPicker(listOfDictionaries, settings);     }     else     {         MessageBoxResult res = MessageBox.Show("An error occured while retrieving dictionary list, do you want to try again?", "Error", MessageBoxButton.OKCancel);         if (MessageBoxResult.OK == res)         {             GetDictServiceSoapClient().DictionaryListAsync();         }     }     settings.Save(); } I have used IsolatedStorageSettings to store a few things; the entire dictionary list and the dictionary that is selected when the user exits the application, so that the next time when the user starts the application the current dictionary is set to the last selected value. First we check if the api returned any error, if the error object is null e.Result will contain the list (actually array) of Dictionary type objects. If there was an error, we check the isolated storage settings to see if there is a dictionary list stored from a previous instance of the application and if so, we populate the list picker based on this saved list. Note that in this case there are chances that the dictionary list might be out of date if there have been changes on the server. Finally, if none of these cases are true, we display an error message to the user and try to fetch the list again. PopulateListPicker() is passed the array of Dictionary objects and the settings object as well, void PopulateListPicker(Dictionary[] listOfDictionaries, IsolatedStorageSettings settings) {     listPickerDictionaryList.Items.Clear();     foreach (Dictionary dictionary in listOfDictionaries)     {         listPickerDictionaryList.Items.Add(dictionary.Name);     }     settings["SavedDictionaryList"] = listOfDictionaries;     string savedDictionaryName;     if (settings.Contains("SavedDictionary"))     {         savedDictionaryName = settings["SavedDictionary"] as string;     }     else     {         savedDictionaryName = "WordNet (r) 2.0"; //default dictionary, wordnet     }     foreach (string dictName in listPickerDictionaryList.Items)     {         if (dictName == savedDictionaryName)         {             listPickerDictionaryList.SelectedItem = dictName;             break;         }     }     settings["SavedDictionary"] = listPickerDictionaryList.SelectedItem as string; } We first clear all the items from the list picker, add the dictionary names from the array and then create a key in the settings called SavedDictionaryList and store the dictionary list in it. We then check if there is saved dictionary available from a previous instance, if there is, we set it as the selected item in the list picker. And if not, we set “WordNet ® 2.0” as the default dictionary. Before returning, we save the selected dictionary in the “SavedDictionary” key of the isolated storage settings. Fetching word definitions Getting this part done is very similar to the above code. We get the input word from the textbox, call into DefineInDictAsync() to fetch the definition and when DefineInDictAsync completes, we get the result and display it in the textblock. Here is the handler for the button click, private void OnButtonGoClick(object sender, RoutedEventArgs e) {     txtBlockWordMeaning.Text = "Please wait..";     IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;     if (txtboxInputWord.Text.Trim().Length <= 0)     {         MessageBox.Show("Please enter a word in the textbox and press 'Go'");     }     else     {         Dictionary[] listOfDictionaries = settings["SavedDictionaryList"] as Dictionary[];         string selectedDictionary = listPickerDictionaryList.SelectedItem.ToString();         string dictId = "wn"; //default dictionary is wordnet (wn is the dict id)         foreach (Dictionary dict in listOfDictionaries)         {             if (dict.Name == selectedDictionary)             {                 dictId = dict.Id;                 break;             }         }         DictServiceSoapClient client = GetDictServiceSoapClient();         client.DefineInDictCompleted += new EventHandler<DefineInDictCompletedEventArgs>(OnDefineInDictCompleted);         client.DefineInDictAsync(dictId, txtboxInputWord.Text.Trim());     } } We validate the input and then select the dictionary id based on the currently selected dictionary. We need the dictionary id because the api DefineInDict() expects the dictionary identifier and not the dictionary name. We could very well have stored the dictionary id in isolated storage settings too. Again, same as before, we register a event handler for the DefineInDictCompleted event and call the DefineInDictAsync() method passing in the dictionary id and the input word. void OnDefineInDictCompleted(object sender, DefineInDictCompletedEventArgs e) {     WordDefinition wd = e.Result;     scrollViewer.ScrollToVerticalOffset(0.0f);     if (wd.Definitions.Length == 0)     {         txtBlockWordMeaning.Text = String.Format("No definitions were found for '{0}' in '{1}'", txtboxInputWord.Text.Trim(), listPickerDictionaryList.SelectedItem.ToString().Trim());     }     else     {         foreach (Definition def in wd.Definitions)         {             string str = def.WordDefinition;             str = str.Replace("  ", " "); //some formatting             txtBlockWordMeaning.Text = str;         }     } } When the api completes, e.Result will contain a WordDefnition object. This class is also generated in the background while adding the service reference. We check the word definitions within this class to see if any results were returned, if not, we display a message to the user in the textblock. If a definition was found the text on the textblock is set to display the definition of the word. Adding final touches, we now need to save the current dictionary when the application exits. A small but useful thing is selecting the entire word in the input textbox when the user selects it. This makes sure that if the user has looked up a definition for a really long word, he doesn’t have to press ‘clear’ too many times to enter the next word, protected override void OnNavigatingFrom(System.Windows.Navigation.NavigatingCancelEventArgs e) {     IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;     settings["SavedDictionary"] = listPickerDictionaryList.SelectedItem as string;     settings.Save();     base.OnNavigatingFrom(e); } private void OnTextboxInputWordGotFocus(object sender, RoutedEventArgs e) {     TextBox txtbox = sender as TextBox;     if (txtbox.Text.Trim().Length > 0)     {         txtbox.SelectionStart = 0;         txtbox.SelectionLength = txtbox.Text.Length;     } } OnNavigatingFrom() is called whenever you navigate away from the MainPage, since our application contains only one page that would mean that it is exiting. I leave you with a short video of the application in action, but before that if you have any suggestions on how to make the code better and improve it please do leave a comment. Until next time…

    Read the article

  • Configuring WCF to Handle a Signature on a SOAP Message from an Oracle Server

    - by AlEl
    I'm trying to use WCF to consume a web service provided by a third-party's Oracle Application Server. I pass a username and password and as part of the response the web service returns a standard security tag in the header which includes a digest and signature. With my current setup, I successfully send a request to the server and the web service sends the expected response data back. However, when parsing the response WCF throws a MessageSecurityException, with an InnerException.Message of "Supporting token signatures not expected." My guess is that WCF wants me to configure it to handle the signature and verify it. I have a certificate from the third party that hosts the web service that I should be able to use to verify the signature. It's in the form of -----BEGIN CERTIFICATE----- [certificate garble] -----END CERTIFICATE----- Here's a sample header from a response that makes WCF throw the exception: <?xml version="1.0" encoding="UTF-8"?> <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> <soap:Header> <wsse:Security soap:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd" xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <dsig:Signature xmlns="http://www.w3.org/2000/09/xmldsig#" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"> <dsig:SignedInfo> <dsig:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> <dsig:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> <dsig:Reference URI="#_51IUwNWRVvPOcz12pZHLNQ22"> <dsig:Transforms> <dsig:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> </dsig:Transforms> <dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> <dsig:DigestValue> [DigestValue here] </dsig:DigestValue> </dsig:Reference> <dsig:Reference URI="#_dI5j0EqxrVsj0e62J6vd6w22"> <dsig:Transforms> <dsig:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> </dsig:Transforms> <dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> <dsig:DigestValue> [DigestValue here] </dsig:DigestValue> </dsig:Reference> </dsig:SignedInfo> <dsig:SignatureValue> [Signature Value Here] </dsig:SignatureValue> <dsig:KeyInfo> <wsse:SecurityTokenReference xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <wsse:Reference URI="#BST-9nKWbrE4LRv6maqstrGuUQ22" ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"/> </wsse:SecurityTokenReference> </dsig:KeyInfo> </dsig:Signature> <wsse:BinarySecurityToken ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3" EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary" wsu:Id="BST-9nKWbrE4LRv6maqstrGuUQ22" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"> [Security Token Here] </wsse:BinarySecurityToken> <wsu:Timestamp wsu:Id="_dI5j0EqxrVsj0e62J6vd6w22" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"> <wsu:Created>2010-05-26T18:46:30Z</wsu:Created> </wsu:Timestamp> </wsse:Security> </soap:Header> <soap:Body wsu:Id="_51IUwNWRVvPOcz12pZHLNQ22" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"> [Body content here] </soap:Body> </soap:Envelope> My binding configuration looks like: <basicHttpBinding> <binding name="myBinding" closeTimeout="00:01:00" openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00" allowCookies="false" bypassProxyOnLocal="false" hostNameComparisonMode="StrongWildcard" maxBufferSize="65536" maxBufferPoolSize="524288" maxReceivedMessageSize="65536" messageEncoding="Text" textEncoding="utf-8" transferMode="Buffered" useDefaultWebProxy="true"> <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384" maxBytesPerRead="4096" maxNameTableCharCount="16384" /> <security mode="TransportWithMessageCredential"> <transport clientCredentialType="None" proxyCredentialType="None" realm="" /> <message clientCredentialType="UserName" algorithmSuite="Default" /> </security> </binding> </basicHttpBinding> I'm new at WCF, so I'm sorry if this is a bit of a dumb question. I've been trying to Google solutions, but there seem to be so many different ways to configure WCF that I'm getting overwhelmed. Thanks in advance!

    Read the article

  • Configuring a WCF Client to Use UserName Credentials On the Request and Check Certificate Credential

    - by AlEl
    I'm trying to use WCF to consume a web service provided by a third-party's Oracle Application Server. I pass a username and password in a UsernameToken as part of the request and as part of the response the web service returns a standard security tag in the header which includes a digest and signature. With my current setup, I successfully send a request to the server and the web service sends the expected response data back. However, when parsing the response WCF throws a MessageSecurityException, with an InnerException.Message of "Supporting token signatures not expected." My guess is that WCF wants me to configure it to handle the signature and verify it. I have a certificate from the third party that hosts the web service that I should be able to use to verify the signature, although I'm not sure if I'll need it. Here's a sample header from a response that makes WCF throw the exception: <?xml version="1.0" encoding="UTF-8"?> <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> <soap:Header> <wsse:Security soap:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd" xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <dsig:Signature xmlns="http://www.w3.org/2000/09/xmldsig#" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"> <dsig:SignedInfo> <dsig:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> <dsig:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> <dsig:Reference URI="#_51IUwNWRVvPOcz12pZHLNQ22"> <dsig:Transforms> <dsig:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> </dsig:Transforms> <dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> <dsig:DigestValue> [DigestValue here] </dsig:DigestValue> </dsig:Reference> <dsig:Reference URI="#_dI5j0EqxrVsj0e62J6vd6w22"> <dsig:Transforms> <dsig:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> </dsig:Transforms> <dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> <dsig:DigestValue> [DigestValue here] </dsig:DigestValue> </dsig:Reference> </dsig:SignedInfo> <dsig:SignatureValue> [Signature Value Here] </dsig:SignatureValue> <dsig:KeyInfo> <wsse:SecurityTokenReference xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <wsse:Reference URI="#BST-9nKWbrE4LRv6maqstrGuUQ22" ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"/> </wsse:SecurityTokenReference> </dsig:KeyInfo> </dsig:Signature> <wsse:BinarySecurityToken ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3" EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary" wsu:Id="BST-9nKWbrE4LRv6maqstrGuUQ22" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"> [Security Token Here] </wsse:BinarySecurityToken> <wsu:Timestamp wsu:Id="_dI5j0EqxrVsj0e62J6vd6w22" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"> <wsu:Created>2010-05-26T18:46:30Z</wsu:Created> </wsu:Timestamp> </wsse:Security> </soap:Header> <soap:Body wsu:Id="_51IUwNWRVvPOcz12pZHLNQ22" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"> [Body content here] </soap:Body> </soap:Envelope> My binding configuration looks like: <basicHttpBinding> <binding name="myBinding" closeTimeout="00:01:00" openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00" allowCookies="false" bypassProxyOnLocal="false" hostNameComparisonMode="StrongWildcard" maxBufferSize="65536" maxBufferPoolSize="524288" maxReceivedMessageSize="65536" messageEncoding="Text" textEncoding="utf-8" transferMode="Buffered" useDefaultWebProxy="true"> <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384" maxBytesPerRead="4096" maxNameTableCharCount="16384" /> <security mode="TransportWithMessageCredential"> <transport clientCredentialType="None" proxyCredentialType="None" realm="" /> <message clientCredentialType="UserName" algorithmSuite="Default" /> </security> </binding> </basicHttpBinding> I think that basically what I have to do is configure WCF to use UserName client credentials in the request and Certificate client credentials in the response. I don't know how to do this though. I'm new at WCF, so I'm sorry if this is a bit of a dumb question. I've been trying to Google solutions, but there seem to be so many different ways to configure WCF that I'm getting overwhelmed. Thanks in advance!

    Read the article

  • SQL CLR Assembly Error 80131051 when late binding to a registered C# COM .dll

    - by Shanubus
    I must have hit an unusual one, because I can't find any reference to this specific failing anywhere... Scenario: I have a legacy SQL function used to transform(encrypt) data. This function is called from within many stored procedures used by multiple applications. I say this, because the obvious answer of 'just call it from your code' is not really an option (or at least one I'd prefer not explore). The legacy function used sp_OA with an ActiveX dll on SQL2000 to perform its work. The new function is targeted at SQL2008 x64. I am ditching the sp_OA call in favor of CLR assembly; and am getting rid of the ActiveX dll and using a COM+ .dll (3rd party) to perform the same work. This 3rd party COM+ is required to be used based on spec given to me, so can't get rid of this piece either. Problem: After multiple attempts at getting this to work I have eliminated the following approaches 1) Create a Sql Assembly to call the local COM+ directly -- Can't do this as it requires a reference to System.EnterpriseServices. Including this requires that a whole slew of unsupported assemblies be registered which I don't want. The COM+ requires it's methods to be accessed via an Interface, so my attempts at late binding to it directly have not been successful (late binding would allow me to drop the unsupported references). 2) Create a Sql Assembly which references a C# class library that then calls the COM+. -- Same issue as #1; since the referenced dll uses System.EnterpriseServices and will be added as a dependency when referenced in the Sql Assembly, again trying to load all the unsupported libraries 3) Create a Sql Assembly which late binds to an ActiveX COM dll that calls the COM+. -- Worked in my dev environment, but can't go to x64 in production with ActiveX dll's written in VB6 (not to mention I hate backtracking anyway)... again failure... I am now onto an approach that is almost working, with of course one last hangup. I now have -a Sql Assembly that late binds to a C# COM dll, eliminating the need for including System.EnterpriseServices and eliminating the need to reference the C# COM in the SqlAssembly itself. The C# COM does reference System.EnterpriseServices to call the COM+, but since I am late binding to it from the SqlAssembly, I bypass the need for Sql to actually load them as referenced assemblies. Works in debugger.. Works on my dev box when the SqlAssembly dll is referenced in a test console app and called directly Installs to Sql2008 just fine Executing the actual UDF works, but returns no data due to a failure reporting from the late bound dll! So the SqlAssembly is instanciated just fine. It actually fails on it's late binding to the C# COM, which is working from a test console app on the same machine. It appears to be a difference in behavior based on whether called from within the SQL UDF or not. Since it is working on the same box from my console app, I am assuming it's on the SQL side. My steps to install were. --Install the COM+ dll and ensure it can be called successfully (as from with in the console app) --Register the C# COM dll (which calls the COM+) and get it to the GAC (again proofed to be working from console app) --Create my Assymetric Key CREATE ASYMMETRIC KEY SqlCryptoKey FROM EXECUTABLE FILE = 'D:\SqlEx.dll' CREATE LOGIN SqlExLogin FROM ASYMMETRIC KEY SqlExKey GRANT UNSAFE ASSEMBLY TO SqlExLogin GO --Add the assembly CREATE ASSEMBLY SqlEx FROM 'D:\SqlEx.dll' WITH PERMISSION_SET = UNSAFE; GO --Create the function CREATE FUNCTION dbo.f_SqlEx( @clearText [nvarchar](512) ) RETURNS nvarchar(512) WITH EXECUTE AS CALLER AS EXTERNAL NAME SqlEx.[SqlEx.SqlEx].Ex GO With all that done, I can now call my function SELECT dbo.f_SqlEx('test') But get this error in the event log... Retrieving the COM class factory for component with CLSID {F69D6320-5884-323F-936A-7657946604BE} failed due to the following error: 80131051. I can't really provide direct code examples, due to internal security implications; but all the code itself seems to work, I am suspecting perms or something of the like... I just find it odd that I can't find any reference to error 80131051. If someone out there believe some 'indirect' code samples will help, I will be happy to provide. Any assistance is appreciated.

    Read the article

< Previous Page | 87 88 89 90 91 92 93 94 95 96 97 98  | Next Page >