Search Results

Search found 3589 results on 144 pages for 'cluster computing'.

Page 91/144 | < Previous Page | 87 88 89 90 91 92 93 94 95 96 97 98  | Next Page >

  • Getting up to speed on modern architecture

    - by Matt Thrower
    Hi, I don't have any formal qualifications in computer science, rather I taught myself classic ASP back in the days of the dotcom boom and managed to get myself a job and my career developed from there. I was a confident and, I think, pretty good programmer in ASP 3 but as others have observed one of the problems with classic ASP was that it did a very good job of hiding the nitty-gritty of http so you could become quite competent as a programmer on the basis of relatively poor understanding of the technology you were working with. When I changed on to .NET at first I treated it like classic ASP, developing stand-alone applications as individual websites simply because I didn't know any better at the time. I moved jobs at this point and spent the next several years working on a single site whose architecture relied heavily on custom objects: in other words I gained a lot of experience working with .NET as a middle-tier development tool using a quite old-fashioned approach to OO design along the lines of the classic "car" class example that's so often used to teach OO. Breaking down programs into blocks of functionality and basing your classes and methods around that. Although we worked under an Agile approach to manage the work the whole setup was classic client/server stuff. That suited me and I gradually got to grips with .NET and started using it far more in the manner that it should be, and I began to see the power inherent in the technology and precisely why it was so much better than good old ASP 3. In my latest job I have found myself suddenly dropped in at the deep end with two quite young, skilled and very cutting-edge programmers. They've built a site architecture which is modelling along a lot of stuff which is new to me and which, in truth I'm having a lot of trouble understanding. The application is built on a cloud computing model with multi-tenancy and the architecture is all loosely coupled using a lot of interfaces, factories and the like. They use nHibernate a lot too. Shortly after I joined, both these guys left and I'm now supposedly the senior developer on a system whose technology and architecture I don't really understand and I have no-one to ask questions of. Except you, the internet. Frankly I feel like I've been pitched in at the deep end and I'm sinking. I'm not sure if this is because I lack the educational background to understand this stuff, if I'm simply not mathematically minded enough for modern computing (my maths was never great - my approach to design is often to simply debug until it works, then refactor until it looks neat), or whether I've simply been presented with too much of too radical a nature at once. But the only way to find out which it is is to try and learn it. So can anyone suggest some good places to start? Good books, tutorials or blogs? I've found a lot of internet material simply presupposes a level of understanding that I just don't have. Your advice is much appreciated. Help a middle-aged, stuck in the mud developer get enthusastic again! Please!

    Read the article

  • Nutch search always returns 0 results

    - by darbour
    I have set up nutch 1.0 on a cluster. It has been setup and has successfully crawled, I copied the crawl directory using the dfs -copyToLocal and set the value of searcher.dir in the nutch-site.xml file located in the tomcat directory to point to that directory. Still when I try to search I receive 0 results. Any help would be greatly appreciated.

    Read the article

  • Pi/Infinite Numbers

    - by Ben Shelock
    I'm curious about infinite numbers in computing, in particular pi. For a computer to render a circle it would have to understand pi. But how can it if it is infinite? Am I looking too much into this? Would it just use a rounded value?

    Read the article

  • Drawing a polygon around groups of datapoints in MATLAB

    - by Hossein
    Hi, I have a set of datapoints each of which belongs to a certain cluster(group).I need to draw a polygone around each of these clusters.Does anyone knows how to do it? PS: It doesn't matter if I use or not use the actual datapoints for drawing the polygon. I just need them to be wrapped in a polygon. Thanks

    Read the article

  • Java JIT compiler compiles at compile time or runtime ?

    - by Tony
    From wiki: In computing, just-in-time compilation (JIT), also known as dynamic translation, is a technique for improving the runtime performance of a computer program. So I guess JVM has another compiler, not javac, that only compiles bytecode to machine code at runtime, while javac compiles sources to bytecode,is that right?

    Read the article

  • take performance as the only criterion for a smal site, which framework should I choose on a shared

    - by john
    Dear friends, I'm trying to set up a small full functional website for a small community on a shared hosting. Scientific computing is quite heavy. Scalability is not important. The only criterion is performance. Which framework would you suggest among the following:(or more) from your list) 1)Ruby on Rails 2) Grails 3) asp.net 4) zend I'm really new to this area, only starting reading some books and googling different blogs...so your expertise is really appreciated! thanks!

    Read the article

  • Erlang: What's a good way to automatically assign node names?

    - by mwt
    I want to have an EC2 based cluster that can grow and shrink at will. No node will be special in any way nor do I want them to have to coordinate their names with any other nodes. I don't want to hard code the names since I want to use one image and spin them up as needed. I understand nodes have to have names to communicate, though. What's a good strategy for automatically and dynamically coming up with a name at start script time?

    Read the article

  • Switch User in RedHat like XP [closed]

    - by rd42
    In our cluster, RedHat4 & 5 machines, if someone locks the computer and walks away no body can use it. Is there a feature in RedHat5, Gnome, KDE etc that would allow for the option of switching users at the lock screen, so more than one person can be logged in? Thanks, rd42

    Read the article

  • Splitting a list based on another list values in Mathematica

    - by Max
    In Mathematica I have a list of point coordinates size = 50; points = Table[{RandomInteger[{0, size}], RandomInteger[{0, size}]}, {i, 1, n}]; and a list of cluster indices these points belong to clusterIndices = {1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1}; what is the easiest way to split the points into two separate lists based on the clusterIndices values?

    Read the article

  • C++ Expression Templates

    - by yCalleecharan
    Hi, I currently use C for numerical computations. I've heard that using C++ Expression Templates is better for scientific computing. What are C++ Expression Templates in simple terms? Are there books around that discuss numerical methods/computations using C++ Expression Templates? In what way, C++ Expression Templates are better than using pure C? Thanks a lot

    Read the article

  • Possible to distribute or parallel process a sequential program?

    - by damigu
    In C++, I've written a mathematical program (for diffusion limited aggregation) where each new point calculated is dependent on all of the preceding points. Is it possible to have such a program work in a parallel or distributed manner to increase computing speed? If so, what type of modifications to the code would I need to look into?

    Read the article

  • What's the purpose of the rotate instructions (ROL, RCL on x86) ?

    - by lgratian
    I always wondered what's the purpose of the rotate instructions some CPUs have (ROL, RCL on x86, for example). What kind of software makes use of these instructions? I first thought they may be used for encryption/computing hash codes, but these libraries are written usually in C, which doesn't have operators that map to these instructions. Has anybody found an use for them? Why where they added to the instructions set?

    Read the article

  • C++ variable alias - what's that exactly, and why is it better to turn if off?

    - by Poni
    I've read the essay Surviving the Release Version. Under the "Aliasing bugs" clause it says: You can get tighter code if you tell the compiler that it can assume no aliasing.... I've also read Aliasing (computing). What exactly is a variable alias? I understand it means using a pointer to a variable is an alias, but, how/why does it affect badly, or in other words - why telling the compiler that it can assume no aliasing would get me a "tighter code"

    Read the article

  • Changing the block size of a dfs file in Hadoop

    - by Sam
    I found that my map tasks is currently inefficient when parsing one particular set of files (total 2 TB). I'd like to change the block size of files in the Hadoop dfs (from 64MB to 128 MB). I can't find how to do it in the documentation for only one set of files and not the entire cluster, does anyone know the command that would change the block size when I upload it (ie copy from local to the dfs)? Thanks!

    Read the article

  • Smooth redeployment of WAR in production?

    - by stephanos
    I was wondering if there is a 'smooth way' of redeploying a Java WAR to a production server (no cluster, no OSGi)? All I can come up with is stop server, update file, restart server. And 10 minutes beforehand I need to display a maintenance warning on the site. What's your approach?

    Read the article

  • Good resource for studying Database High Availability techniques

    - by Invincible
    Hello Can anybody suggest some good resource/book on Database high availability techniques? Moreover, High-availability of system software like Intrusion Prevention system or Web servers. I am considering high-availability is global term which covers clustring, cloud computing, replication, replica management, distributed synchronization for cluster. Thanks in advance!

    Read the article

  • Is it faster to compute values in a query, call a Scalar Function (decimal(28,2) datatype) 4 times,

    - by Pulsehead
    I have a handful of queries I need to write in SQL Server 2005. Each Query will be calculating 4 unit cost values based on a handful of (up to 11) fields. Any time I want 1 of these 4 unit cost values, I'll want all 4. Which is quicker? Computing in the SQL Query ((a+b+c+d+e+f+g+h+i)/(j+k)), calling ComputeScalarUnitCost(datapoint.ID) 4 times, or joining to ComputeUnitCostTable(datapoint.ID) one time?

    Read the article

  • SQL Server Redirection

    - by MrTehee
    We are switching from a SQL cluster to a mirrored solution. The problem is that we have a bunch of programs that would have to switch connection strings to handle the failover. Is there any way the we can set up a redirect or proxy that would take any legacy requests and forward them to the mirrored solution?

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Exchange Server 2007 Setup

    - by AlamedaDad
    Hi, I'm working on a upgrade to Exchange 2007 and I wanted to get some advise on hardware choices. We currently have an Exchange 2003 STD server with 400 users split between 6 AD Sites, that is housed on a single server. We need to move to a redundant, fault tolerant system to support our users. I'm planning on installing 2 Dell 1950 servers with W2k8-std to act as CAS and Hub servers, with NLB to allow abstraction of the actual server name to the users. There won't be an edge system since we have a Barracuda box already that will handle in/out spam/virus filtering. Backend I'm planning on 2 mailbox servers which will be Dell 2950s with 16GB RAM, 2 either dual-core or quad-core CPUs and 6 300GB SAS drives in some RAID config. These systems will be clustered using W2k8 Ent clustering and running CCR in Exchange. My questions are as follows: Is 16GB enough RAM for serving that many mailboxes along with the windows clustering and ccr? I'm trying to figure out disk layouts and I'm unsure of whether to use all local disk or some local and some SAN, via an OpenFiler iSCSI server. The SAN would be a Dell 2850 with 6 - 300GB SCSI drives and a PERC controller to slice as I want, with 8GB RAM. Option 1: 2 drives, RAID 1 - OS 2 drives, RAID 1 - Logs 2 drives, RAID 1 - Mail stores Option 2: 2 drives, RAID 1 - OS and logs 4 drives, RAID 5 - Mail Stores and scratch space for eseutil. Option 3: 2 drives, RAID 1 - OS 2 drives, RAID 1 - Logs 2 drives, RAID 0 - scratch space ~300GB iSCSI volume for mail stores Option 4: 2 drives, RAID 1 - OS 4 drives, RAID 5 - scratch space ~300GB iSCSI volume for mail stores ~300GB iSCSI volume for logs I have 2 sockets for CPUs and need to chose between dual and quad cores. The dual core have faster clocks but less cache and I'm thinking older architecture. Am I better off with more cores and cache while sacraficing clock speed? I am planning on adding the new E2K7 cluster to the E2K3 server and then move each mailbox over, all at once, then remove the old server. This seems more complicated than simply getting rid of the 2003 server and then adding the 2007 cluster and restoring the mailboxes using PowerControls or exmerge. The migration option lets me do this on my time, where a cutover means it all needs to work at once. If I go with the cutover method, how can I prebuild the servers and add them to the domain right after removing the 2003 server, or can't I? I think the answer is no and the migration is my only real option if I want to prebuild. I need to also migrate about 30GB of Public Folders. Is there anything special about this, other than specifying in the E2K7 install that I want older Outlook clients and PF's setup? I guess I could even keep the E2K3 server to host just the PFs? Lastly, if I have a mix of Outlook 200, 2003 and 2007 what do I need to do to make sure they all have access to the GAL and OAB? At time of cutover, we'll be at like 90% 2007, but we will have some older stuff around. My plan is to use Outlook Anywhere on laptops that are used outside the physical network. Are there any gotchas involved in that? I'm even thinking about using is for all Outlook clients, does anyone do that? The reason I'm considering it is that our WAN is really VPN tunnels over internet connections, so not a fully messhed, stable WAN. Thank you all very much for the assistance in advance and I look forward to discussion of these points! Regards...Michael

    Read the article

  • javax.naming.InvalidNameException using Oracle BPM and weblogic when accessing directory

    - by alfredozn
    We are getting this exception when we start our cluster (2 managed servers, 1 admin), we have deployed only the ears corresponding to the OBPM 10.3.1 SP1 in a weblogic 10.3. When the server cluster starts, one of the managed servers (the first to start) get overloaded and ran out of connections to the directory DB because of this repeatedly error. It looks like the engine is trying to get the info from the LDAP server but I don't know why it is building a wrong query. fuego.directory.DirectoryRuntimeException: Exception [javax.naming.InvalidNameException: CN=Alvarez Guerrero Bernardo DEL:ca9ef28d-3b94-4e8f-a6bd-8c880bb3791b,CN=Deleted Objects,DC=corp: [LDAP: error code 34 - 0000208F: NameErr: DSID-031001BA, problem 2006 (BAD_NAME), data 8349, best match of: 'CN=Alvarez Guerrero Bernardo DEL:ca9ef28d-3b94-4e8f-a6bd-8c880bb3791b,CN=Deleted Objects,DC=corp,dc=televisa,dc=com,dc=mx' ^@]; remaining name 'CN=Alvarez Guerrero Bernardo DEL:ca9ef28d-3b94-4e8f-a6bd-8c880bb3791b,CN=Deleted Objects,DC=corp']. at fuego.directory.DirectoryRuntimeException.wrapException(DirectoryRuntimeException.java:85) at fuego.directory.hybrid.ldap.JNDIQueryExecutor.selectById(JNDIQueryExecutor.java:163) at fuego.directory.hybrid.ldap.JNDIQueryExecutor.selectById(JNDIQueryExecutor.java:110) at fuego.directory.hybrid.ldap.Repository.selectById(Repository.java:38) at fuego.directory.hybrid.msad.MSADGroupValueProvider.getAssignedParticipantsInternal(MSADGroupValueProvider.java:124) at fuego.directory.hybrid.msad.MSADGroupValueProvider.getAssignedParticipants(MSADGroupValueProvider.java:70) at fuego.directory.hybrid.ldap.Group$7.getValue(Group.java:149) at fuego.directory.hybrid.ldap.Group$7.getValue(Group.java:152) at fuego.directory.hybrid.ldap.LDAPResult.getValue(LDAPResult.java:76) at fuego.directory.hybrid.ldap.LDAPOrganizationGroupAccessor.setInfo(LDAPOrganizationGroupAccessor.java:352) at fuego.directory.hybrid.ldap.LDAPOrganizationGroupAccessor.build(LDAPOrganizationGroupAccessor.java:121) at fuego.directory.hybrid.ldap.LDAPOrganizationGroupAccessor.build(LDAPOrganizationGroupAccessor.java:114) at fuego.directory.hybrid.ldap.LDAPOrganizationGroupAccessor.fetchGroup(LDAPOrganizationGroupAccessor.java:94) at fuego.directory.hybrid.HybridGroupAccessor.fetchGroup(HybridGroupAccessor.java:146) at sun.reflect.GeneratedMethodAccessor66.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at fuego.directory.provider.DirectorySessionImpl$AccessorProxy.invoke(DirectorySessionImpl.java:756) at $Proxy66.fetchGroup(Unknown Source) at fuego.directory.DirOrganizationalGroup.fetch(DirOrganizationalGroup.java:275) at fuego.metadata.GroupManager.loadGroup(GroupManager.java:225) at fuego.metadata.GroupManager.find(GroupManager.java:57) at fuego.metadata.ParticipantManager.addNestedGroups(ParticipantManager.java:621) at fuego.metadata.ParticipantManager.buildCompleteRoleAssignments(ParticipantManager.java:527) at fuego.metadata.Participant$RoleTransitiveClousure.build(Participant.java:760) at fuego.metadata.Participant$RoleTransitiveClousure.access$100(Participant.java:692) at fuego.metadata.Participant.buildRoles(Participant.java:401) at fuego.metadata.Participant.updateMembers(Participant.java:372) at fuego.metadata.Participant.<init>(Participant.java:64) at fuego.metadata.Participant.createUncacheParticipant(Participant.java:84) at fuego.server.persistence.jdbc.JdbcProcessInstancePersMgr.loadItems(JdbcProcessInstancePersMgr.java:1706) at fuego.server.persistence.Persistence.loadInstanceItems(Persistence.java:838) at fuego.server.AbstractInstanceService.readInstance(AbstractInstanceService.java:791) at fuego.ejbengine.EJBInstanceService.getLockedROImpl(EJBInstanceService.java:218) at fuego.server.AbstractInstanceService.getLockedROImpl(AbstractInstanceService.java:892) at fuego.server.AbstractInstanceService.getLockedImpl(AbstractInstanceService.java:743) at fuego.server.AbstractInstanceService.getLockedImpl(AbstractInstanceService.java:730) at fuego.server.AbstractInstanceService.getLocked(AbstractInstanceService.java:144) at fuego.server.AbstractInstanceService.getLocked(AbstractInstanceService.java:162) at fuego.server.AbstractInstanceService.unselectAllItems(AbstractInstanceService.java:454) at fuego.server.execution.ToDoItemUnselect.execute(ToDoItemUnselect.java:105) at fuego.server.execution.DefaultEngineExecution$AtomicExecutionTA.runTransaction(DefaultEngineExecution.java:304) at fuego.transaction.TransactionAction.startNestedTransaction(TransactionAction.java:527) at fuego.transaction.TransactionAction.startTransaction(TransactionAction.java:548) at fuego.transaction.TransactionAction.start(TransactionAction.java:212) at fuego.server.execution.DefaultEngineExecution.executeImmediate(DefaultEngineExecution.java:123) at fuego.server.execution.DefaultEngineExecution.executeAutomaticWork(DefaultEngineExecution.java:62) at fuego.server.execution.EngineExecution.executeAutomaticWork(EngineExecution.java:42) at fuego.server.execution.ToDoItem.executeAutomaticWork(ToDoItem.java:261) at fuego.ejbengine.ItemExecutionBean$1.execute(ItemExecutionBean.java:223) at fuego.server.execution.DefaultEngineExecution$AtomicExecutionTA.runTransaction(DefaultEngineExecution.java:304) at fuego.transaction.TransactionAction.startBaseTransaction(TransactionAction.java:470) at fuego.transaction.TransactionAction.startTransaction(TransactionAction.java:551) at fuego.transaction.TransactionAction.start(TransactionAction.java:212) at fuego.server.execution.DefaultEngineExecution.executeImmediate(DefaultEngineExecution.java:123) at fuego.server.execution.EngineExecution.executeImmediate(EngineExecution.java:66) at fuego.ejbengine.ItemExecutionBean.processMessage(ItemExecutionBean.java:209) at fuego.ejbengine.ItemExecutionBean.onMessage(ItemExecutionBean.java:120) at weblogic.ejb.container.internal.MDListener.execute(MDListener.java:466) at weblogic.ejb.container.internal.MDListener.transactionalOnMessage(MDListener.java:371) at weblogic.ejb.container.internal.MDListener.onMessage(MDListener.java:327) at weblogic.jms.client.JMSSession.onMessage(JMSSession.java:4547) at weblogic.jms.client.JMSSession.execute(JMSSession.java:4233) at weblogic.jms.client.JMSSession.executeMessage(JMSSession.java:3709) at weblogic.jms.client.JMSSession.access$000(JMSSession.java:114) at weblogic.jms.client.JMSSession$UseForRunnable.run(JMSSession.java:5058) at weblogic.work.SelfTuningWorkManagerImpl$WorkAdapterImpl.run(SelfTuningWorkManagerImpl.java:516) at weblogic.work.ExecuteThread.execute(ExecuteThread.java:201) at weblogic.work.ExecuteThread.run(ExecuteThread.java:173) Caused by: javax.naming.InvalidNameException: CN=Alvarez Guerrero Bernardo DEL:ca9ef28d-3b94-4e8f-a6bd-8c880bb3791b,CN=Deleted Objects,DC=corp: [LDAP: error code 34 - 0000208F: NameErr: DSID-031001BA, problem 2006 (BAD_NAME), data 8349, best match of: 'CN=Alvarez Guerrero Bernardo DEL:ca9ef28d-3b94-4e8f-a6bd-8c880bb3791b,CN=Deleted Objects,DC=corp,dc=televisa,dc=com,dc=mx' ^@]; remaining name 'CN=Alvarez Guerrero Bernardo DEL:ca9ef28d-3b94-4e8f-a6bd-8c880bb3791b,CN=Deleted Objects,DC=corp' at com.sun.jndi.ldap.LdapCtx.processReturnCode(LdapCtx.java:2979) at com.sun.jndi.ldap.LdapCtx.processReturnCode(LdapCtx.java:2794) at com.sun.jndi.ldap.LdapCtx.searchAux(LdapCtx.java:1826) at com.sun.jndi.ldap.LdapCtx.c_search(LdapCtx.java:1749) at com.sun.jndi.toolkit.ctx.ComponentDirContext.p_search(ComponentDirContext.java:368) at com.sun.jndi.toolkit.ctx.PartialCompositeDirContext.search(PartialCompositeDirContext.java:338) at com.sun.jndi.toolkit.ctx.PartialCompositeDirContext.search(PartialCompositeDirContext.java:321) at javax.naming.directory.InitialDirContext.search(InitialDirContext.java:248) at fuego.jndi.FaultTolerantLdapContext.search(FaultTolerantLdapContext.java:612) at fuego.directory.hybrid.ldap.JNDIQueryExecutor.selectById(JNDIQueryExecutor.java:136) ... 67 more

    Read the article

< Previous Page | 87 88 89 90 91 92 93 94 95 96 97 98  | Next Page >