Search Results

Search found 35121 results on 1405 pages for 'object cache'.

Page 91/1405 | < Previous Page | 87 88 89 90 91 92 93 94 95 96 97 98  | Next Page >

  • Object addSubview only works in viewDidLoad

    - by DecodingSand
    Hi, I'm new to iPhone dev and need some help with adding subViews. I have a reusable object that I made that is stored in a separate .h .m and xib file. I would like to use this object in my main project's view controller. I have included the header and the assignment of the object generates no errors. I am able to load the object into my main project but can only do things with it inside my viewDidLoad method. I intend to have a few of these objects on my screen and am looking fora solution that is more robust then just hard wiring up multiple copies of the shape object. As soon as I try to access the object outside of the viewDidLoad it produces a variable unknown error - first use in this function. Here is my viewDidLoad method: shapeViewController *shapeView = [[shapeViewController alloc] initWithNibName:@"shapeViewController" bundle:nil]; [self.view addSubview: shapeView.view]; // This is the problem line // This code works changes the display on the shape object [shapeView updateDisplay:@"123456"]; ---- but the same code outside of the viewDidLoad generates the error. So to sum up, everything works except when I try to access the shapeView object in the rest of the methods. Thanks in advance

    Read the article

  • Strange behavior with complex Q object filter queries in Django

    - by HWM-Rocker
    Hi I am trying to write a tagging system for Django, but today I encountered a strange behavior in filter or the Q object (django.db.models.Q). I wrote a function, that converts a search string into a Q object. The next step would be to filter the TaggedObject with these query. But unfortunately I get a strange behavior. when I search (id=20) = Q: (AND: ('tags__tag__id', 20)) and it returns 2 Taged Objects with the ID 1127 and 132 when I search (id=4) = Q: (AND: ('tags__tag__id', 4)) and it returns also 2 Objects, but this time 1180 and 1127 until here is everything fine, but when i make a little bit more complex query like (id=4) or (id=20) = Q: (OR: ('tags__tag__id', 4), ('tags__tag__id', 20)) then it returns 4(!) Objects 1180, 1127, 1127, 132 But the object with the ID 1127 is returned twice, but thats not the behaviour I want. Do I have to live with it, and uniqify that list or can I do something different. The representation of the Q object looks fine for me. But the worst is now, when I search for (id=20) and (id=4) = Q: (AND: ('tags__tag__id', 20), ('tags__tag__id', 4)) then it returns no object at all. But why? The representation should be ok and the object with the id 1127 is tagged by both. What am I missing? Here are also the relevant parts of the classes, that are involved: class TaggedObject(models.Model): """ class that represent a tagged object """ tags = generic.GenericRelation('ObjectTagBridge', blank=True, null=True) class ObjectTagBridge(models.Model): """ Help to connect a generic object to a Tag. """ # pylint: disable-msg=W0232,R0903 content_type = models.ForeignKey(ContentType) object_id = models.PositiveIntegerField() content_object = generic.GenericForeignKey('content_type', 'object_id') tag = models.ForeignKey('Tag') class Tag(models.Model): ... Thanks for your help

    Read the article

  • IOS : BAD ACCESS when trying to add a new Entity object

    - by Maverick447
    So i'm using coredata to model my relationships . This is the model in brief Type A can have one or more types of type B Type B has a inverse relationship of being associated with one of type A Type B can have one or more types of type C Type C has a inverse relationship of being associated with one of type B From a UI standpoint , I have a Navigation controller with controllers that successively sets up the first A object (VC-1) , then another viewcontroller (VC-2) creates a B object ( I pass in the A object to this controller) and the B object is added to the A object . Similarly the same thing happens with B and C . The third Viewcontroller (VC3) first creates a C object and assigns it to the passed B Object . Also between these viewcontrollers the managedObjectCOntext is also passed . SO my use case is such that while viewcontroller (VC-3) is the top controller a button action will keep creating multiple objects of type C and add them to the same type B object that was passed . Also as part of this function I save the managedObject context after saving each type C . e.g. code in viewcontroller 3 - (void) SaveNewTypeC { TypeC *newtypeC = (Question*)[NSEntityDescription insertNewObjectForEntityForName:@"TypeC" inManagedObjectContext:managedObjectContext]; [newtypeC setProp1:] ; [newtypeC setProp2:] .. .. **[typeBObject addTypeCInTypeBObject:newtypeC];** [section setTotalCObjectCount:[ NSNumber numberWithInt:typeCIndex++]]; NSError *error = nil; if (![managedObjectContext save:&error]) { // Handle error NSLog(@"Unresolved error %@, %@, %@", error, [error userInfo],[error localizedDescription]); exit(-1); // Fail } [newtypeC release]; } - (IBAction)selectedNewButton:(id)sender { [self SaveNewTypeC]; [self startRepeatingTimer]; } The BAD ACCESS seems to appear when the bold line above executes Relating to some HashValue . Any clues on resolving this would be helpful .

    Read the article

  • unexpected behaviour of object stored in web service Session

    - by draconis
    Hi. I'm using Session variables inside a web service to maintain state between successive method calls by an external application called QBWC. I set this up by decorating my web service methods with this attribute: [WebMethod(EnableSession = true)] I'm using the Session variable to store an instance of a custom object called QueueManager. The QueueManager has a property called ChangeQueue which looks like this: [Serializable] public class QueueManager { ... public Queue<QBChange> ChangeQueue { get; set; } ... where QBChange is a custom business object belonging to my web service. Now, every time I get a call to a method in my web service, I use this code to retrieve my QueueManager object and access my queue: QueueManager qm = (QueueManager)Session[ticket]; then I remove an object from the queue, using qm.dequeue() and then I save the modified query manager object (modified because it contains one less object in the queue) back to the Session variable, like so: Session[ticket] = qm; ready for the next web service method call using the same ticket. Now here's the thing: if I comment out this last line //Session[ticket] = qm; , then the web service behaves exactly the same way, reducing the size of the queue between method calls. Now why is that? The web service seems to be updating a class contained in serialized form in a Session variable without being asked to. Why would it do that? When I deserialize my Queuemanager object, does the qm variable hold a reference to the serialized object inside the Session[ticket] variable?? This seems very unlikely.

    Read the article

  • Determining if object is visible and clickable

    - by Alan Mendelevich
    I'm looking for ways to effectively determine if a control is actually visible and clickable. I mean beyond checking Visibility property of the object. I can check RenderSize and that would be [0,0] if any of the parent elements is collapsed. So this is simple too. I can also traverse up the visual tree and see if Opacity of all elements is set to 1. What I don't know how to check nicely are these scenarios: The object is obstructed by some other object. Obviously it's possible to use FindElementsInHostCoordinates() and do computations to find out how much these objects obstruct but this could be an overkill. I can also make a "screenshot" of the object in question and "screenshot" of the whole page and check if pixels where my object should be match the actual object pixels. That sounds like an overkill too. The object is obstructed by a transparent object that still "swallows" clicks (taps). The workarounds for the first problem could still fail in this scenario. Any better ideas? Do I miss something? Thanks!

    Read the article

  • How LINQ to Object statements work

    - by rajbk
    This post goes into detail as to now LINQ statements work when querying a collection of objects. This topic assumes you have an understanding of how generics, delegates, implicitly typed variables, lambda expressions, object/collection initializers, extension methods and the yield statement work. I would also recommend you read my previous two posts: Using Delegates in C# Part 1 Using Delegates in C# Part 2 We will start by writing some methods to filter a collection of data. Assume we have an Employee class like so: 1: public class Employee { 2: public int ID { get; set;} 3: public string FirstName { get; set;} 4: public string LastName {get; set;} 5: public string Country { get; set; } 6: } and a collection of employees like so: 1: var employees = new List<Employee> { 2: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 3: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 4: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 5: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 6: }; Filtering We wish to  find all employees that have an even ID. We could start off by writing a method that takes in a list of employees and returns a filtered list of employees with an even ID. 1: static List<Employee> GetEmployeesWithEvenID(List<Employee> employees) { 2: var filteredEmployees = new List<Employee>(); 3: foreach (Employee emp in employees) { 4: if (emp.ID % 2 == 0) { 5: filteredEmployees.Add(emp); 6: } 7: } 8: return filteredEmployees; 9: } The method can be rewritten to return an IEnumerable<Employee> using the yield return keyword. 1: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 2: foreach (Employee emp in employees) { 3: if (emp.ID % 2 == 0) { 4: yield return emp; 5: } 6: } 7: } We put these together in a console application. 1: using System; 2: using System.Collections.Generic; 3: //No System.Linq 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 15: }; 16: var filteredEmployees = GetEmployeesWithEvenID(employees); 17:  18: foreach (Employee emp in filteredEmployees) { 19: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 20: emp.ID, emp.FirstName, emp.LastName, emp.Country); 21: } 22:  23: Console.ReadLine(); 24: } 25: 26: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 27: foreach (Employee emp in employees) { 28: if (emp.ID % 2 == 0) { 29: yield return emp; 30: } 31: } 32: } 33: } 34:  35: public class Employee { 36: public int ID { get; set;} 37: public string FirstName { get; set;} 38: public string LastName {get; set;} 39: public string Country { get; set; } 40: } Output: ID 2 First_Name Jim Last_Name Ashlock Country UK ID 4 First_Name Jill Last_Name Anderson Country AUS Our filtering method is too specific. Let us change it so that it is capable of doing different types of filtering and lets give our method the name Where ;-) We will add another parameter to our Where method. This additional parameter will be a delegate with the following declaration. public delegate bool Filter(Employee emp); The idea is that the delegate parameter in our Where method will point to a method that contains the logic to do our filtering thereby freeing our Where method from any dependency. The method is shown below: 1: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 2: foreach (Employee emp in employees) { 3: if (filter(emp)) { 4: yield return emp; 5: } 6: } 7: } Making the change to our app, we create a new instance of the Filter delegate on line 14 with a target set to the method EmployeeHasEvenId. Running the code will produce the same output. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, filterDelegate); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  37: public class Employee { 38: public int ID { get; set;} 39: public string FirstName { get; set;} 40: public string LastName {get; set;} 41: public string Country { get; set; } 42: } Lets use lambda expressions to inline the contents of the EmployeeHasEvenId method in place of the method. The next code snippet shows this change (see line 15).  For brevity, the Employee class declaration has been skipped. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  The output displays the same two employees.  Our Where method is too restricted since it works with a collection of Employees only. Lets change it so that it works with any IEnumerable<T>. In addition, you may recall from my previous post,  that .NET 3.5 comes with a lot of predefined delegates including public delegate TResult Func<T, TResult>(T arg); We will get rid of our Filter delegate and use the one above instead. We apply these two changes to our code. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14:  15: foreach (Employee emp in filteredEmployees) { 16: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 17: emp.ID, emp.FirstName, emp.LastName, emp.Country); 18: } 19: Console.ReadLine(); 20: } 21: 22: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 23: foreach (var x in source) { 24: if (filter(x)) { 25: yield return x; 26: } 27: } 28: } 29: } We have successfully implemented a way to filter any IEnumerable<T> based on a  filter criteria. Projection Now lets enumerate on the items in the IEnumerable<Employee> we got from the Where method and copy them into a new IEnumerable<EmployeeFormatted>. The EmployeeFormatted class will only have a FullName and ID property. 1: public class EmployeeFormatted { 2: public int ID { get; set; } 3: public string FullName {get; set;} 4: } We could “project” our existing IEnumerable<Employee> into a new collection of IEnumerable<EmployeeFormatted> with the help of a new method. We will call this method Select ;-) 1: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 2: foreach (var emp in employees) { 3: yield return new EmployeeFormatted { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; 7: } 8: } The changes are applied to our app. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14: var formattedEmployees = Select(filteredEmployees); 15:  16: foreach (EmployeeFormatted emp in formattedEmployees) { 17: Console.WriteLine("ID {0} Full_Name {1}", 18: emp.ID, emp.FullName); 19: } 20: Console.ReadLine(); 21: } 22:  23: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 24: foreach (var x in source) { 25: if (filter(x)) { 26: yield return x; 27: } 28: } 29: } 30: 31: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 32: foreach (var emp in employees) { 33: yield return new EmployeeFormatted { 34: ID = emp.ID, 35: FullName = emp.LastName + ", " + emp.FirstName 36: }; 37: } 38: } 39: } 40:  41: public class Employee { 42: public int ID { get; set;} 43: public string FirstName { get; set;} 44: public string LastName {get; set;} 45: public string Country { get; set; } 46: } 47:  48: public class EmployeeFormatted { 49: public int ID { get; set; } 50: public string FullName {get; set;} 51: } Output: ID 2 Full_Name Ashlock, Jim ID 4 Full_Name Anderson, Jill We have successfully selected employees who have an even ID and then shaped our data with the help of the Select method so that the final result is an IEnumerable<EmployeeFormatted>.  Lets make our Select method more generic so that the user is given the freedom to shape what the output would look like. We can do this, like before, with lambda expressions. Our Select method is changed to accept a delegate as shown below. TSource will be the type of data that comes in and TResult will be the type the user chooses (shape of data) as returned from the selector delegate. 1:  2: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 3: foreach (var x in source) { 4: yield return selector(x); 5: } 6: } We see the new changes to our app. On line 15, we use lambda expression to specify the shape of the data. In this case the shape will be of type EmployeeFormatted. 1:  2: public class Program 3: { 4: [STAThread] 5: static void Main(string[] args) 6: { 7: var employees = new List<Employee> { 8: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 9: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 10: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 11: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 12: }; 13:  14: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 15: var formattedEmployees = Select(filteredEmployees, (emp) => 16: new EmployeeFormatted { 17: ID = emp.ID, 18: FullName = emp.LastName + ", " + emp.FirstName 19: }); 20:  21: foreach (EmployeeFormatted emp in formattedEmployees) { 22: Console.WriteLine("ID {0} Full_Name {1}", 23: emp.ID, emp.FullName); 24: } 25: Console.ReadLine(); 26: } 27: 28: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 29: foreach (var x in source) { 30: if (filter(x)) { 31: yield return x; 32: } 33: } 34: } 35: 36: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 37: foreach (var x in source) { 38: yield return selector(x); 39: } 40: } 41: } The code outputs the same result as before. On line 14 we filter our data and on line 15 we project our data. What if we wanted to be more expressive and concise? We could combine both line 14 and 15 into one line as shown below. Assuming you had to perform several operations like this on our collection, you would end up with some very unreadable code! 1: var formattedEmployees = Select(Where(employees, emp => emp.ID % 2 == 0), (emp) => 2: new EmployeeFormatted { 3: ID = emp.ID, 4: FullName = emp.LastName + ", " + emp.FirstName 5: }); A cleaner way to write this would be to give the appearance that the Select and Where methods were part of the IEnumerable<T>. This is exactly what extension methods give us. Extension methods have to be defined in a static class. Let us make the Select and Where extension methods on IEnumerable<T> 1: public static class MyExtensionMethods { 2: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 3: foreach (var x in source) { 4: if (filter(x)) { 5: yield return x; 6: } 7: } 8: } 9: 10: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 11: foreach (var x in source) { 12: yield return selector(x); 13: } 14: } 15: } The creation of the extension method makes the syntax much cleaner as shown below. We can write as many extension methods as we want and keep on chaining them using this technique. 1: var formattedEmployees = employees 2: .Where(emp => emp.ID % 2 == 0) 3: .Select (emp => new EmployeeFormatted { ID = emp.ID, FullName = emp.LastName + ", " + emp.FirstName }); Making these changes and running our code produces the same result. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new EmployeeFormatted { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (EmployeeFormatted emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } 55:  56: public class EmployeeFormatted { 57: public int ID { get; set; } 58: public string FullName {get; set;} 59: } Let’s change our code to return a collection of anonymous types and get rid of the EmployeeFormatted type. We see that the code produces the same output. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (var emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: public static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: public static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } To be more expressive, C# allows us to write our extension method calls as a query expression. Line 16 can be rewritten a query expression like so: 1: var formattedEmployees = from emp in employees 2: where emp.ID % 2 == 0 3: select new { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; When the compiler encounters an expression like the above, it simply rewrites it as calls to our extension methods.  So far we have been using our extension methods. The System.Linq namespace contains several extension methods for objects that implement the IEnumerable<T>. You can see a listing of these methods in the Enumerable class in the System.Linq namespace. Let’s get rid of our extension methods (which I purposefully wrote to be of the same signature as the ones in the Enumerable class) and use the ones provided in the Enumerable class. Our final code is shown below: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; //Added 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 15: }; 16:  17: var formattedEmployees = from emp in employees 18: where emp.ID % 2 == 0 19: select new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: }; 23:  24: foreach (var emp in formattedEmployees) { 25: Console.WriteLine("ID {0} Full_Name {1}", 26: emp.ID, emp.FullName); 27: } 28: Console.ReadLine(); 29: } 30: } 31:  32: public class Employee { 33: public int ID { get; set;} 34: public string FirstName { get; set;} 35: public string LastName {get; set;} 36: public string Country { get; set; } 37: } 38:  39: public class EmployeeFormatted { 40: public int ID { get; set; } 41: public string FullName {get; set;} 42: } This post has shown you a basic overview of LINQ to Objects work by showning you how an expression is converted to a sequence of calls to extension methods when working directly with objects. It gets more interesting when working with LINQ to SQL where an expression tree is constructed – an in memory data representation of the expression. The C# compiler compiles these expressions into code that builds an expression tree at runtime. The provider can then traverse the expression tree and generate the appropriate SQL query. You can read more about expression trees in this MSDN article.

    Read the article

  • Apache FilesMatch regexp: Can it match by the cache buster 10 digit (rails generated) following the filename?

    - by ynkr
    According to the apache FilesMatch docs: The FilesMatch directive provides for access control by filename Basically, I only want to set an expires header for resources that have a 10 digit "cache buster" id appended to the name. So, here is my attempt at such a thing in my httpd.conf <FilesMatch "(jpg|jpeg|png|gif|js|css)\?\d{10}$"> ExpiresActive On ExpiresDefault "now plus 5 minutes" </FilesMatch> And here is an example of a resource I want to match: http://localhost:3000/images/of/elvis/eating-a-bacon-sandwich.png?1306277384 Now obviously my FilesMatch regexp is not matching so I am guessing 1 of 2 things is happening. Either my regexp is wonky or the '?1231231231' cache busting part of the file is not part of what apache considers part of the filename. Can anybody confirm and/or give me a way to cache only those resources that will not persist beyond the next deploy?

    Read the article

  • Myths: Does Deleting the Cache Actually Speed Up Your PC?

    - by The Geek
    Every time you ask somebody with a reasonable level of tech skills what you should do to speed up your PC, they start jabbering on about running ccleaner and clearing the cache. But does the act of clearing a cache really speed things up? Nope. Most people assume that all temporary files are just clutter created by lousy applications, but that isn’t actually the truth. Cache files are created by apps to store commonly used information so it doesn’t have to be generated or downloaded again.    

    Read the article

  • how to add a url cache to ASIHttpRequest

    - by smokey_the_bear
    I'm using ASIHttpRequests and an ASINetworkQueue in an iphone app to retrieve some 100k XML files and a lot of thumbnails from a web service. I'd like to cache the requests in the style of NSURLCache. ASI doesn't seem to support caching as is, and I looked at the code and it drops to C to create the requests, so inserting the NSURLCache layer seemed tricky. What's the best way to implement this?

    Read the article

  • Cache invalidation between two web applications

    - by Muxa
    I need to invalidate cache in a web application when related data is updated in another application (running on the same machine). Both applications use the same database. I know there's SqlCacheDependency. How do is it in terms of performance? Is interprocess communication (e.g. using name pipes) an option in web applications? Does it outperform SqlCacheDependency?

    Read the article

  • Why is the HttpContext.Cache count always zero?

    - by jjr2527
    I set up a few pages with OutputCache profiles and confirmed that they are being cached by using multiple browsers and requests to retrieve the page with a timestamp which matched across all requests. When I try to enumerate the HttpContect.Cache it is always empty. Any ideas what is going on here or where I should be going for this information instead?

    Read the article

  • Access Google Chrome's cache

    - by jldupont
    Is it possible to access Google Chrome's cache from within an extension? I'd like to write an extension that loads a cached version of a page when the online one can't be accessed (e.g. Internet connectivity issue). Updated: I know I could write an NPAPI plugin accessible through an extension to accomplish this but I'd rather not suffer writing one... I am after a solution without resorting to NPAPI, please.

    Read the article

  • Cache in iphone

    - by venkat
    hello friends i am new to networking in iphone.i would like to see some sample code for cache its not based on image.i need for complete url. thanks in advance.

    Read the article

  • Cache SHA1 digest result?

    - by johnathan
    I'm storing several versions of a file based on a digest of the original filename and its version, like this: $filename = sha1($original . ':' . $version); Would it be worth it to cache the digest ($filename) in memcache as a key/value pair (the key being the original + version and value the sha1 hash), or is generating the digest quick enough (for a high traffic php web app)? Thanks, Johnathan

    Read the article

  • Caching and cache invalidation in user controls?

    - by Rishabh Ohri
    HI, In our .aspx pages we have many user controls. each user control executes a sql query. The caching mechanism to be followed is to fragment cache each user control on the page and add the query dependency to the respective queries of the user controls. How to achieve query dependency on fragment cached data for invalidation?

    Read the article

  • Squid change cache key

    - by Ken Struys
    Lets say you want to serve different content from the same url but still want to be able to use squid caching. For example caching a logged in users homepage vs another user. Is there anyway to append a cookie to the request url before throwing it into the squid's cache?

    Read the article

  • ideas for a distributed cache proxy server

    - by Neeraj
    Hi everyone! I am implementing, a distributed cache proxy server.I have an idea of the HTTP and related stuff, so i am rather concentrating on the sub part "Distributed data storage". From some search on web i found that this could be done using Distributed Hash Tables(DHT). I was wondering if there exists some kind of library for this preferably in C/C++. Any better suggestions for the same will also be appreciated.

    Read the article

  • How to cache YUI DataSource?

    - by Matt McCormick
    I'm setting up a YUI DataTable with filtering by following the steps on the YUI site However, I am using JSON as the DataSource ResponseType. When I type in a value to filter, the request will be sent to the server again. I find this to be wasteful as all the data has already been retrieved the first time. Is there a way to cache the initial data returned and then filter only according to that data so another AJAX request does not have to be made?

    Read the article

  • php split array into smaller even arrays

    - by SoulieBaby
    I have a function that is supposed to split my array into smaller, evenly distributed arrays, however it seems to be duplicating my data along the way. If anyone can help me out that'd be great. Here's the original array: Array ( [0] => stdClass Object ( [bid] => 42 [name] => Ray White Mordialloc [imageurl] => sp_raywhite.gif [clickurl] => http://www.raywhite.com/ ) [1] => stdClass Object ( [bid] => 48 [name] => Beachside Osteo [imageurl] => sp_beachside.gif [clickurl] => http://www.beachsideosteo.com.au/ ) [2] => stdClass Object ( [bid] => 53 [name] => Carmotive [imageurl] => sp_carmotive.jpg [clickurl] => http://www.carmotive.com.au/ ) [3] => stdClass Object ( [bid] => 51 [name] => Richmond and Bennison [imageurl] => sp_richmond.jpg [clickurl] => http://www.richbenn.com.au/ ) [4] => stdClass Object ( [bid] => 50 [name] => Letec [imageurl] => sp_letec.jpg [clickurl] => www.letec.biz ) [5] => stdClass Object ( [bid] => 39 [name] => Main Street Mordialloc [imageurl] => main street cafe.jpg [clickurl] => ) [6] => stdClass Object ( [bid] => 40 [name] => Ripponlea Mitsubishi [imageurl] => sp_mitsubishi.gif [clickurl] => ) [7] => stdClass Object ( [bid] => 34 [name] => Adrianos Pizza & Pasta [imageurl] => sp_adrian.gif [clickurl] => ) [8] => stdClass Object ( [bid] => 59 [name] => Pure Sport [imageurl] => sp_psport.jpg [clickurl] => http://www.puresport.com.au/ ) [9] => stdClass Object ( [bid] => 33 [name] => Two Brothers [imageurl] => sp_2brothers.gif [clickurl] => http://www.2brothers.com.au/ ) [10] => stdClass Object ( [bid] => 52 [name] => Mordialloc Travel and Cruise [imageurl] => sp_morditravel.jpg [clickurl] => http://www.yellowpages.com.au/vic/mordialloc/mordialloc-travel-cruise-13492525-listing.html ) [11] => stdClass Object ( [bid] => 57 [name] => Southern Suburbs Physiotherapy Centre [imageurl] => sp_sspc.jpg [clickurl] => http://www.sspc.com.au ) [12] => stdClass Object ( [bid] => 54 [name] => PPM Builders [imageurl] => sp_ppm.jpg [clickurl] => http://www.hotfrog.com.au/Companies/P-P-M-Builders ) [13] => stdClass Object ( [bid] => 36 [name] => Big River [imageurl] => sp_bigriver.gif [clickurl] => ) [14] => stdClass Object ( [bid] => 35 [name] => Bendigo Bank Parkdale / Mentone East [imageurl] => sp_bendigo.gif [clickurl] => http://www.bendigobank.com.au ) [15] => stdClass Object ( [bid] => 56 [name] => Logical Services [imageurl] => sp_logical.jpg [clickurl] => ) [16] => stdClass Object ( [bid] => 58 [name] => Dicount Lollie Shop [imageurl] => new dls logo.jpg [clickurl] => ) [17] => stdClass Object ( [bid] => 46 [name] => Patterson Securities [imageurl] => cmyk patersons_withtag.jpg [clickurl] => ) [18] => stdClass Object ( [bid] => 44 [name] => Mordialloc Personal Trainers [imageurl] => sp_mordipt.gif [clickurl] => # ) [19] => stdClass Object ( [bid] => 37 [name] => Mordialloc Cellar Door [imageurl] => sp_cellardoor.gif [clickurl] => ) [20] => stdClass Object ( [bid] => 41 [name] => Print House Graphics [imageurl] => sp_printhouse.gif [clickurl] => ) [21] => stdClass Object ( [bid] => 55 [name] => 360South [imageurl] => sp_360.jpg [clickurl] => ) [22] => stdClass Object ( [bid] => 43 [name] => Systema [imageurl] => sp_systema.gif [clickurl] => ) [23] => stdClass Object ( [bid] => 38 [name] => Lowe Financial Group [imageurl] => sp_lowe.gif [clickurl] => http://lowefinancial.com/ ) [24] => stdClass Object ( [bid] => 49 [name] => Kim Reed Conveyancing [imageurl] => sp_kimreed.jpg [clickurl] => ) [25] => stdClass Object ( [bid] => 45 [name] => Mordialloc Sporting Club [imageurl] => msc logo.jpg [clickurl] => ) ) Here's the php function which is meant to split the array: function split_array($array, $slices) { $perGroup = floor(count($array) / $slices); $Remainder = count($array) % $slices ; $slicesArray = array(); $i = 0; while( $i < $slices ) { $slicesArray[$i] = array_slice($array, $i * $perGroup, $perGroup); $i++; } if ( $i == $slices ) { if ($Remainder > 0 && $Remainder < $slices) { $z = $i * $perGroup +1; $x = 0; while ($x < $Remainder) { $slicesRemainderArray = array_slice($array, $z, $Remainder+$x); $remainderItems = array_merge($slicesArray[$x],$slicesRemainderArray); $slicesArray[$x] = $remainderItems; $x++; $z++; } } }; return $slicesArray; } Here's the result of the split (it somehow duplicates items from the original array into the smaller arrays): Array ( [0] => Array ( [0] => stdClass Object ( [bid] => 57 [name] => Southern Suburbs Physiotherapy Centre [imageurl] => sp_sspc.jpg [clickurl] => http://www.sspc.com.au ) [1] => stdClass Object ( [bid] => 35 [name] => Bendigo Bank Parkdale / Mentone East [imageurl] => sp_bendigo.gif [clickurl] => http://www.bendigobank.com.au ) [2] => stdClass Object ( [bid] => 38 [name] => Lowe Financial Group [imageurl] => sp_lowe.gif [clickurl] => http://lowefinancial.com/ ) [3] => stdClass Object ( [bid] => 39 [name] => Main Street Mordialloc [imageurl] => main street cafe.jpg [clickurl] => ) [4] => stdClass Object ( [bid] => 48 [name] => Beachside Osteo [imageurl] => sp_beachside.gif [clickurl] => http://www.beachsideosteo.com.au/ ) [5] => stdClass Object ( [bid] => 33 [name] => Two Brothers [imageurl] => sp_2brothers.gif [clickurl] => http://www.2brothers.com.au/ ) [6] => stdClass Object ( [bid] => 40 [name] => Ripponlea Mitsubishi [imageurl] => sp_mitsubishi.gif [clickurl] => ) ) [1] => Array ( [0] => stdClass Object ( [bid] => 44 [name] => Mordialloc Personal Trainers [imageurl] => sp_mordipt.gif [clickurl] => # ) [1] => stdClass Object ( [bid] => 41 [name] => Print House Graphics [imageurl] => sp_printhouse.gif [clickurl] => ) [2] => stdClass Object ( [bid] => 39 [name] => Main Street Mordialloc [imageurl] => main street cafe.jpg [clickurl] => ) [3] => stdClass Object ( [bid] => 48 [name] => Beachside Osteo [imageurl] => sp_beachside.gif [clickurl] => http://www.beachsideosteo.com.au/ ) [4] => stdClass Object ( [bid] => 33 [name] => Two Brothers [imageurl] => sp_2brothers.gif [clickurl] => http://www.2brothers.com.au/ ) [5] => stdClass Object ( [bid] => 40 [name] => Ripponlea Mitsubishi [imageurl] => sp_mitsubishi.gif [clickurl] => ) ) [2] => Array ( [0] => stdClass Object ( [bid] => 56 [name] => Logical Services [imageurl] => sp_logical.jpg [clickurl] => ) [1] => stdClass Object ( [bid] => 43 [name] => Systema [imageurl] => sp_systema.gif [clickurl] => ) [2] => stdClass Object ( [bid] => 48 [name] => Beachside Osteo [imageurl] => sp_beachside.gif [clickurl] => http://www.beachsideosteo.com.au/ ) [3] => stdClass Object ( [bid] => 33 [name] => Two Brothers [imageurl] => sp_2brothers.gif [clickurl] => http://www.2brothers.com.au/ ) [4] => stdClass Object ( [bid] => 40 [name] => Ripponlea Mitsubishi [imageurl] => sp_mitsubishi.gif [clickurl] => ) ) [3] => Array ( [0] => stdClass Object ( [bid] => 53 [name] => Carmotive [imageurl] => sp_carmotive.jpg [clickurl] => http://www.carmotive.com.au/ ) [1] => stdClass Object ( [bid] => 45 [name] => Mordialloc Sporting Club [imageurl] => msc logo.jpg [clickurl] => ) [2] => stdClass Object ( [bid] => 33 [name] => Two Brothers [imageurl] => sp_2brothers.gif [clickurl] => http://www.2brothers.com.au/ ) [3] => stdClass Object ( [bid] => 40 [name] => Ripponlea Mitsubishi [imageurl] => sp_mitsubishi.gif [clickurl] => ) ) [4] => Array ( [0] => stdClass Object ( [bid] => 59 [name] => Pure Sport [imageurl] => sp_psport.jpg [clickurl] => http://www.puresport.com.au/ ) [1] => stdClass Object ( [bid] => 54 [name] => PPM Builders [imageurl] => sp_ppm.jpg [clickurl] => http://www.hotfrog.com.au/Companies/P-P-M-Builders ) [2] => stdClass Object ( [bid] => 40 [name] => Ripponlea Mitsubishi [imageurl] => sp_mitsubishi.gif [clickurl] => ) ) [5] => Array ( [0] => stdClass Object ( [bid] => 46 [name] => Patterson Securities [imageurl] => cmyk patersons_withtag.jpg [clickurl] => ) [1] => stdClass Object ( [bid] => 34 [name] => Adriano's Pizza & Pasta [imageurl] => sp_adrian.gif [clickurl] => # ) ) [6] => Array ( [0] => stdClass Object ( [bid] => 55 [name] => 360South [imageurl] => sp_360.jpg [clickurl] => ) [1] => stdClass Object ( [bid] => 37 [name] => Mordialloc Cellar Door [imageurl] => sp_cellardoor.gif [clickurl] => ) ) [7] => Array ( [0] => stdClass Object ( [bid] => 49 [name] => Kim Reed Conveyancing [imageurl] => sp_kimreed.jpg [clickurl] => ) [1] => stdClass Object ( [bid] => 58 [name] => Dicount Lollie Shop [imageurl] => new dls logo.jpg [clickurl] => ) ) [8] => Array ( [0] => stdClass Object ( [bid] => 51 [name] => Richmond and Bennison [imageurl] => sp_richmond.jpg [clickurl] => http://www.richbenn.com.au/ ) [1] => stdClass Object ( [bid] => 52 [name] => Mordialloc Travel and Cruise [imageurl] => sp_morditravel.jpg [clickurl] => http://www.yellowpages.com.au/vic/mordialloc/mordialloc-travel-cruise-13492525-listing.html ) ) [9] => Array ( [0] => stdClass Object ( [bid] => 50 [name] => Letec [imageurl] => sp_letec.jpg [clickurl] => www.letec.biz ) [1] => stdClass Object ( [bid] => 36 [name] => Big River [imageurl] => sp_bigriver.gif [clickurl] => ) ) ) ^^ As you can see there are duplicates from the original array in the newly created smaller arrays. I thought I could remove the duplicates using a multi-dimensional remove duplicate function but that didn't work. I'm guessing my problem is in the array_split function. Any suggestions? :)

    Read the article

< Previous Page | 87 88 89 90 91 92 93 94 95 96 97 98  | Next Page >