Search Results

Search found 24560 results on 983 pages for 'memory model'.

Page 93/983 | < Previous Page | 89 90 91 92 93 94 95 96 97 98 99 100  | Next Page >

  • Pass ng-model and place-holder value into directive

    - by Zen
    I have a segment of code needs to be reuse a lot, there for I want to just create a directive for it. <div class="btn-group"> <div class="input-group"> <div class="has-feedback"> <input type="text" class="form-control" placeholder="BLAH BLAH" ng-model="model"> <span class="times form-control-feedback" ng-click="model=''" ng-show="model.length > 0"></span> </div> </div> </div> I want to use this code as template in directive. Create a directive used as follow: <div search-Field ng-model="model" placeholder="STRING"></div> to replace to old html, ng-model and placeholder will be as variables. angular.module('searchField', []) .directive('searchField', [function () { return { scope: { placeholder: '@', ngModel: '=' }, templateUrl: 'Partials/_SearchInputGroup.html' } }]); Is it the way of doing it?

    Read the article

  • How does Backbone.js connect View to Model

    - by William Sham
    I am trying to learn backbone.js through the following example. Then I got stuck at the point ItemView = Backbone.View.extend why you can use this.model.get? I thought this is referring to the instance of ItemView that would be created. Then why would ItemView has a model property at all?!! (function($){ var Item = Backbone.Model.extend({ defaults: { part1: 'hello', part2: 'world' } }); var List = Backbone.Collection.extend({ model: Item }); var ItemView = Backbone.View.extend({ tagName: 'li', initialize: function(){ _.bindAll(this, 'render'); }, render: function(){ $(this.el).html('<span>'+this.model.get('part1')+' '+this.model.get('part2')+'</span>'); return this; } }); var ListView = Backbone.View.extend({ el: $('body'), events: { 'click button#add': 'addItem' }, initialize: function(){ _.bindAll(this, 'render', 'addItem', 'appendItem'); this.collection = new List(); this.collection.bind('add', this.appendItem); this.counter = 0; this.render(); }, render: function(){ $(this.el).append("<button id='add'>Add list item</button>"); $(this.el).append("<ul></ul>"); _(this.collection.models).each(function(item){ appendItem(item); }, this); }, addItem: function(){ this.counter++; var item = new Item(); item.set({ part2: item.get('part2') + this.counter }); this.collection.add(item); }, appendItem: function(item){ var itemView = new ItemView({ model: item }); $('ul', this.el).append(itemView.render().el); } }); var listView = new ListView(); })(jQuery);

    Read the article

  • Freeing of allocated memory in Solaris/Linux

    - by user355159
    Hi, I have written a small program and compiled it under Solaris/Linux platform to measure the performance of applying this code to my application. The program is written in such a way, initially using sbrk(0) system call, i have taken base address of the heap region. After that i have allocated an 1.5GB of memory using malloc system call, Then i used memcpy system call to copy 1.5GB of content to the allocated memory area. Then, I freed the allocated memory. After freeing, i used again sbrk(0) system call to view the heap size. This is where i little confused. In solaris, eventhough, i freed the memory allocated (of nearly 1.5GB) the heap size of the process is huge. But i run the same application in linux, after freeing, i found that the heap size of the process is equal to the size of the heap memory before allocation of 1.5GB. I know Solaris does not frees memory immediately, but i don't know how to tune the solaris kernel to immediately free the memory after free() system call. Also, please explain why the same problem does not comes under Linux? Can anyone help me out of this? Thanks, Santhosh.

    Read the article

  • How to properly cast a global memory array using the uint4 vector in CUDA to increase memory throughput?

    - by charis
    There are generally two techniques to increase the memory throughput of the global memory on a CUDA kernel; memory accesses coalescence and accessing words of at least 4 bytes. With the first technique accesses to the same memory segment by threads of the same half-warp are coalesced to fewer transactions while be accessing words of at least 4 bytes this memory segment is effectively increased from 32 bytes to 128. To access 16-byte instead of 1-byte words when there are unsigned chars stored in the global memory, the uint4 vector is commonly used by casting the memory array to uint4: uint4 *text4 = ( uint4 * ) d_text; var = text4[i]; In order to extract the 16 chars from var, i am currently using bitwise operations. For example: s_array[j * 16 + 0] = var.x & 0x000000FF; s_array[j * 16 + 1] = (var.x >> 8) & 0x000000FF; s_array[j * 16 + 2] = (var.x >> 16) & 0x000000FF; s_array[j * 16 + 3] = (var.x >> 24) & 0x000000FF; My question is, is it possible to recast var (or for that matter *text4) to unsigned char in order to avoid the additional overhead of the bitwise operations?

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

  • Inside Red Gate - Ricky Leeks

    - by Simon Cooper
    So, one of our profilers has a problem. Red Gate produces two .NET profilers - ANTS Performance Profiler (APP) and ANTS Memory Profiler (AMP). Both products help .NET developers solve problems they are virtually guaranteed to encounter at some point in their careers - slow code, and high memory usage, respectively. Everyone understands slow code - the symptoms are very obvious (an operation takes 2 hours when it should take 10 seconds), you know when you've solved it (the same operation now takes 15 seconds), and everyone understands how you can use a profiler like APP to help solve your particular problem. High memory usage is a much more subtle and misunderstood concept. How can .NET have memory leaks? The garbage collector, and how the CLR uses and frees memory, is one of the most misunderstood concepts in .NET. There's hundreds of blog posts out there covering various aspects of the GC and .NET memory, some of them helpful, some of them confusing, and some of them are just plain wrong. There's a lot of misconceptions out there. And, if you have got an application that uses far too much memory, it can be hard to wade through all the contradictory information available to even get an idea as to what's going on, let alone trying to solve it. That's where a memory profiler, like AMP, comes into play. Unfortunately, that's not the end of the issue. .NET memory management is a large, complicated, and misunderstood problem. Even armed with a profiler, you need to understand what .NET is doing with your objects, how it processes them, and how it frees them, to be able to use the profiler effectively to solve your particular problem. And that's what's wrong with AMP - even with all the thought, designs, UX sessions, and research we've put into AMP itself, some users simply don't have the knowledge required to be able to understand what AMP is telling them about how their application uses memory, and so they have problems understanding & solving their memory problem. Ricky Leeks This is where Ricky Leeks comes in. Created by one of the many...colourful...people in Red Gate, he headlines and promotes several tutorials, pages, and articles all with information on how .NET memory management actually works, with the goal to help educate developers on .NET memory management. And educating us all on how far you can push various vegetable-based puns. This, in turn, not only helps them understand and solve any memory issues they may be having, but helps them proactively code against such memory issues in their existing code. Ricky's latest outing is an interview on .NET Rocks, providing information on the Top 5 .NET Memory Management Gotchas, along with information on a free ebook on .NET Memory Management. Don't worry, there's loads more vegetable-based jokes where those came from...

    Read the article

  • xsltproc killed, out of memory

    - by David Parks
    I'm trying to split up a 13GB xml file into small ~50MB xml files with this XSLT style sheet. But this process kills xsltproc after I see it taking up over 1.7GB of memory (that's the total on the system). Is there any way to deal with huge XML files with xsltproc? Can I change my style sheet? Or should I use a different processor? Or am I just S.O.L.? <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0" xmlns:exsl="http://exslt.org/common" extension-element-prefixes="exsl" xmlns:fn="http://www.w3.org/2005/xpath-functions"> <xsl:output method="xml" indent="yes"/> <xsl:strip-space elements="*"/> <xsl:param name="block-size" select="75000"/> <xsl:template match="/"> <xsl:copy> <xsl:apply-templates select="mysqldump/database/table_data/row[position() mod $block-size = 1]" /> </xsl:copy> </xsl:template> <xsl:template match="row"> <exsl:document href="chunk-{position()}.xml"> <add> <xsl:for-each select=". | following-sibling::row[position() &lt; $block-size]" > <doc> <xsl:for-each select="field"> <field> <xsl:attribute name="name"><xsl:value-of select="./@name"/></xsl:attribute> <xsl:value-of select="."/> </field> <xsl:text>&#xa;</xsl:text> </xsl:for-each> </doc> </xsl:for-each> </add> </exsl:document> </xsl:template>

    Read the article

  • runtime error: invalid memory address or nil pointer dereference

    - by Klink
    I want to learn OpenGL 3.0 with golang. But when i try to compile some code, i get many errors. package main import ( "os" //"errors" "fmt" //gl "github.com/chsc/gogl/gl33" //"github.com/jteeuwen/glfw" "github.com/go-gl/gl" "github.com/go-gl/glfw" "runtime" "time" ) var ( width int = 640 height int = 480 ) var ( points = []float32{0.0, 0.8, -0.8, -0.8, 0.8, -0.8} ) func initScene() { gl.Init() gl.ClearColor(0.0, 0.5, 1.0, 1.0) gl.Enable(gl.CULL_FACE) gl.Viewport(0, 0, 800, 600) } func glfwInitWindowContext() { if err := glfw.Init(); err != nil { fmt.Fprintf(os.Stderr, "glfw_Init: %s\n", err) glfw.Terminate() } glfw.OpenWindowHint(glfw.FsaaSamples, 1) glfw.OpenWindowHint(glfw.WindowNoResize, 1) if err := glfw.OpenWindow(width, height, 0, 0, 0, 0, 32, 0, glfw.Windowed); err != nil { fmt.Fprintf(os.Stderr, "glfw_Window: %s\n", err) glfw.CloseWindow() } glfw.SetSwapInterval(1) glfw.SetWindowTitle("Title") } func drawScene() { for glfw.WindowParam(glfw.Opened) == 1 { gl.Clear(gl.COLOR_BUFFER_BIT) vertexShaderSrc := `#version 120 attribute vec2 coord2d; void main(void) { gl_Position = vec4(coord2d, 0.0, 1.0); }` vertexShader := gl.CreateShader(gl.VERTEX_SHADER) vertexShader.Source(vertexShaderSrc) vertexShader.Compile() fragmentShaderSrc := `#version 120 void main(void) { gl_FragColor[0] = 0.0; gl_FragColor[1] = 0.0; gl_FragColor[2] = 1.0; }` fragmentShader := gl.CreateShader(gl.FRAGMENT_SHADER) fragmentShader.Source(fragmentShaderSrc) fragmentShader.Compile() program := gl.CreateProgram() program.AttachShader(vertexShader) program.AttachShader(fragmentShader) program.Link() attribute_coord2d := program.GetAttribLocation("coord2d") program.Use() //attribute_coord2d.AttribPointer(size, typ, normalized, stride, pointer) attribute_coord2d.EnableArray() attribute_coord2d.AttribPointer(0, 3, false, 0, &(points[0])) //gl.DrawArrays(gl.TRIANGLES, 0, len(points)) gl.DrawArrays(gl.TRIANGLES, 0, 3) glfw.SwapBuffers() inputHandler() time.Sleep(100 * time.Millisecond) } } func inputHandler() { glfw.Enable(glfw.StickyKeys) if glfw.Key(glfw.KeyEsc) == glfw.KeyPress { //gl.DeleteBuffers(2, &uiVBO[0]) glfw.Terminate() } if glfw.Key(glfw.KeyF2) == glfw.KeyPress { glfw.SetWindowTitle("Title2") fmt.Println("Changed to 'Title2'") fmt.Println(len(points)) } if glfw.Key(glfw.KeyF1) == glfw.KeyPress { glfw.SetWindowTitle("Title1") fmt.Println("Changed to 'Title1'") } } func main() { runtime.LockOSThread() glfwInitWindowContext() initScene() drawScene() } And after that: panic: runtime error: invalid memory address or nil pointer dereference [signal 0xb code=0x1 addr=0x0 pc=0x41bc6f74] goroutine 1 [syscall]: github.com/go-gl/gl._Cfunc_glDrawArrays(0x4, 0x7f8500000003) /tmp/go-build463568685/github.com/go-gl/gl/_obj/_cgo_defun.c:610 +0x2f github.com/go-gl/gl.DrawArrays(0x4, 0x3, 0x0, 0x45bd70) /tmp/go-build463568685/github.com/go-gl/gl/_obj/gl.cgo1.go:1922 +0x33 main.drawScene() /home/klink/Dev/Go/gogl/gopher/exper.go:85 +0x1e6 main.main() /home/klink/Dev/Go/gogl/gopher/exper.go:116 +0x27 goroutine 2 [syscall]: created by runtime.main /build/buildd/golang-1/src/pkg/runtime/proc.c:221 exit status 2

    Read the article

  • Domain Models (PHP)

    - by Calum Bulmer
    I have been programming in PHP for several years and have, in the past, adopted methods of my own to handle data within my applications. I have built my own MVC, in the past, and have a reasonable understanding of OOP within php but I know my implementation needs some serious work. In the past I have used an is-a relationship between a model and a database table. I now know after doing some research that this is not really the best way forward. As far as I understand it I should create models that don't really care about the underlying database (or whatever storage mechanism is to be used) but only care about their actions and their data. From this I have established that I can create models of lets say for example a Person an this person object could have some Children (human children) that are also Person objects held in an array (with addPerson and removePerson methods, accepting a Person object). I could then create a PersonMapper that I could use to get a Person with a specific 'id', or to save a Person. This could then lookup the relationship data in a lookup table and create the associated child objects for the Person that has been requested (if there are any) and likewise save the data in the lookup table on the save command. This is now pushing the limits to my knowledge..... What if I wanted to model a building with different levels and different rooms within those levels? What if I wanted to place some items in those rooms? Would I create a class for building, level, room and item with the following structure. building can have 1 or many level objects held in an array level can have 1 or many room objects held in an array room can have 1 or many item objects held in an array and mappers for each class with higher level mappers using the child mappers to populate the arrays (either on request of the top level object or lazy load on request) This seems to tightly couple the different objects albeit in one direction (ie. a floor does not need to be in a building but a building can have levels) Is this the correct way to go about things? Within the view I am wanting to show a building with an option to select a level and then show the level with an option to select a room etc.. but I may also want to show a tree like structure of items in the building and what level and room they are in. I hope this makes sense. I am just struggling with the concept of nesting objects within each other when the general concept of oop seems to be to separate things. If someone can help it would be really useful. Many thanks

    Read the article

  • Insufficient memory issue during Build Process Customization

    - by jehan
    Normal 0 false false false EN-US ZH-CN X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} When customizing the Build Process Template in Workflow designer, I came across the OutOfMemoryException errors while performing Save as Image and Copy operations: "Insufficient memory to continue execution of program"   Normal 0 false false false EN-US ZH-CN X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} There is a fix available on Microsoft Connect  which has resolved the issue.

    Read the article

  • Hadoop, NOSQL, and the Relational Model

    - by Phil Factor
    (Guest Editorial for the IT Pro/SysAdmin Newsletter)Whereas Relational Databases fit the world of commerce like a glove, it is useless to pretend that they are a perfect fit for all human endeavours. Although, with SQL Server, we’ve made great strides with indexing text, in processing spatial data and processing markup, there is still a problem in dealing efficiently with large volumes of ephemeral semi-structured data. Key-value stores such as Cassandra, Project Voldemort, and Riak are of great value for ephemeral data, and seem of equal value as a data-feed that provides aggregations to an RDBMS. However, the Document databases such as MongoDB and CouchDB are ideal for semi-structured data for which no fixed schema exists; analytics and logging are obvious examples. NoSQL products, such as MongoDB, tackle the semi-structured data problem with panache. MongoDB is designed with a simple document-oriented data model that scales horizontally across multiple servers. It doesn’t impose a schema, and relies on the application to enforce the data structure. This is another take on the old ‘EAV’ problem (where you don’t know in advance all the attributes of a particular entity) It uses a clever replica set design that allows automatic failover, and uses journaling for data durability. It allows indexing and ad-hoc querying. However, for SQL Server users, the obvious choice for handling semi-structured data is Apache Hadoop. There will soon be an ODBC Driver for Apache Hive .and an Add-in for Excel. Additionally, there are now two Hadoop-based connectors for SQL Server; the Apache Hadoop connector for SQL Server 2008 R2, and the SQL Server Parallel Data Warehouse (PDW) connector. We can connect to Hadoop process the semi-structured data and then store it in SQL Server. For one steeped in the culture of Relational SQL Databases, I might be expected to throw up my hands in the air in a gesture of contempt for a technology that was, judging by the overblown journalism on the subject, about to make my own profession as archaic as the Saggar makers bottom knocker (a potter’s assistant who helped the saggar maker to make the bottom of the saggar by placing clay in a metal hoop and bashing it). However, on the contrary, I find that I'm delighted with the advances made by the NoSQL databases in the past few years. Having the flow of ideas from the NoSQL providers will knock any trace of complacency out of the providers of Relational Databases and inspire them into back-fitting some features, such as horizontal scaling, with sharding and automatic failover into SQL-based RDBMSs. It will do the breed a power of good to benefit from all this lateral thinking.

    Read the article

  • How to move packages from the live image to a pool on the disc?

    - by int_ua
    Currently I'm using UCK and trying to make Edubuntu 12.04.1 DVD launch installer on 256Mb RAM: How to install Edubuntu on a system with low memory (256 Mb)? I was reading release notes for 12.10 and noticed that Language packs have now been moved off from the live image to a pool on the disc. How can I move other packages correctly so they would be available to the live system and for installation without network access?

    Read the article

  • Two bugs you should be aware of

    - by AaronBertrand
    In the past 24 hours I have come across two bugs that can be quite problematic in certain environments. LPIM issue with SetFileIoOverlappedRange Last night the CSS team posted a blog entry detailing a potential issue with Lock Pages in Memory and Windows' SetFileIoOverlappedRange API. I tweeted about it at the time, but thought it could use a little more treatment. The potential symptoms can vary, but include the following (as quoted from the blog post): Wide ranging in SQL from invalid write location,...(read more)

    Read the article

  • How best to look up objects by label?

    - by dsollen
    I am writing the server backed by a pre-written API. I'm going to get a number of strings representing ports, signals, paths, etc etc etc. I need to look up the object associated with a given label, these objects are all in memory (no sql magic to do this for me). My question is, how best do I associate a given unique label with the mutable object it represents? I have enough objects that looking through every signal or every port to find the one that matches is possible, but may be slightly too slow. To be honest the direct 'look at every object' method is probably good enough for so small a body of objects and anything else is premature optimization, but I still am curious what the proper solution would be if I thought my signals were going to grow a bit larger. As I see it there are two options available. First would be to to create a 'store' that is a simple map between object and label. I could have it so that every time I call addObject the object is automatically saved into a hashmap or the like. This works, but relies on my properly adding and deleting each object so the map doesn't grow indefinitely. The biggest issue to me is that this involves having some hidden static map in my ModelObject class that just feels...wrong somehow. The other option is to have some method that can interpret the labels. All of these labels are derived from the underlying objects. So I can look at the signal label, for instance, and say "these 20 characters are the port" to figure out what port I need. This would allow me to quickly figure out what I need. However, if the label method is changed the translateLabelToObject method needs to be updated as well or everything breaks. Which solution is cleaner, or possibly a cleaner solution than either of above? For the record I'm working with sufficient number of variables to make direct comparison a little slow, but not enough to be concerned about memory overhead, written in java. All objects that have labels I need to look up extend the same parent class.

    Read the article

  • Should Business Interfaces be part of the Model layer?

    - by Mik378
    In an oriented-services enterprise application, isn't it an antipattern to mix Service APIs (containing interface that external users depends on) with Model objects (entities, custom exceptions objects etc...) ? According to me, Services should only depends on Model layer but never mixed with it. In fact, my colleague told me that it doesn't make sense to separate it since client need both. (model and service interfaces) But I notice that everytime a client asks for some changes, like adding a new method in some interface (means a new service), Model layer has to be also delivered... Thus, client who has not interested by this "addition" is constrained to be concerned by this update of Model... and in a large enterprise application, this kind of delivery is known to be very risked... What is the best practice ? Separate services(only interfaces so) and model objects or mix it ?

    Read the article

  • Ubuntu 12.04 tilts when trying to open large excel file with libreoffice or matlab

    - by user1565754
    I have an xlsx-file of size 27.3MB and when I try to open it either in Libreoffice or Matlab the whole system slows down My processor is AMD Sempron(tm) 140 Processor (should be about 2.7Ghz) Memory I have about 1.7GB Any ideas? I opened this file in Windows no problem...of course it took a few seconds to load but Ubuntu freezes with this file completely...smaller files of size 3MB, 5MB etc open just fine... thnx for support =)

    Read the article

  • iPhone app memory leak with UIImage animation? Problem testing on device

    - by user157733
    I have an animation which works fine in the simulator but crashes on the device. I am getting the following error... Program received signal: “0”. The Debugger has exited due to signal 10 (SIGBUS) A bit of investigating suggests that the UIImages are not getting released and I have a memory leak. I am new to this so can someone tell me if this is the likely cause? If you could also tell me how to solve it then that would be amazing. The images are 480px x 480px and about 25kb each. My code is below... NSArray *rainImages = [NSArray arrayWithObjects: [UIImage imageNamed:@"rain-loop0001.png"], [UIImage imageNamed:@"rain-loop0002.png"], [UIImage imageNamed:@"rain-loop0003.png"], [UIImage imageNamed:@"rain-loop0004.png"], [UIImage imageNamed:@"rain-loop0005.png"], [UIImage imageNamed:@"rain-loop0006.png"], //more looping images [UIImage imageNamed:@"rain-loop0045.png"], [UIImage imageNamed:@"rain-loop0046.png"], [UIImage imageNamed:@"rain-loop0047.png"], [UIImage imageNamed:@"rain-loop0048.png"], [UIImage imageNamed:@"rain-loop0049.png"], [UIImage imageNamed:@"rain-loop0050.png"], nil]; rainImage.animationImages = rainImages; rainImage.animationDuration = 4.15/2; rainImage.animationRepeatCount = 0; [rainImage startAnimating]; [rainImage release]; Thanks

    Read the article

  • Memory Leaks when touching UITableViewCells and poping off view.

    - by Falcon
    Hi All, I'm currently having a problem where the leaks tool is reporting a slew of memory leaks after clicking on cells within a UITableView and then hitting the back button and popping off the view. Majority of the leaks reported can not be traced back to any specific location in my code, they are: Leaked Object # Address Size Responsible Library Responsible Frame NSCFArray 2 < multiple > 64 UIKit -[UITouch(UITouchInternal) UITouch 2 < multiple > 128 GraphicsServices PurpleEventCallback Malloc 48 Bytes 2 < multiple > 96 Foundation -[NSCFArray insertObject:atIndex:] UIDelayedAction 2 < multiple > 96 UIKit -[UILongPressGestureRecognizer startTimer] NSCFArray 2 < multiple > 64 UIKit -[UILongPressGestureRecognizer touchesBegan:withEvent:] Malloc 32 Bytes 2 < multiple > 64 Foundation -[NSCFArray insertObject:atIndex:] Malloc 16 Bytes 2 < multiple > 32 Foundation -[NSCFSet unionSet:] Now I have commented out all my code in any touch event functions that I have written and it still leaks if I click on the cell a few times and then hit the back button to return to the previous view. Any ideas on what might actually be the problem here? Thanks,

    Read the article

  • How can I create objects based on dump file memory in a WinDbg extension?

    - by pj4533
    I work on a large application, and frequently use WinDbg to diagnose issues based on a DMP file from a customer. I have written a few small extensions for WinDbg that have proved very useful for pulling bits of information out of DMP files. In my extension code I find myself dereferencing c++ class objects in the same way, over and over, by hand. For example: Address = GetExpression("somemodule!somesymbol"); ReadMemory(Address, &addressOfPtr, sizeof(addressOfPtr), &cb); // get the actual address ReadMemory(addressOfObj, &addressOfObj, sizeof(addressOfObj), &cb); ULONG offset; ULONG addressOfField; GetFieldOffset("somemodule!somesymbolclass", "somefield", &offset); ReadMemory(addressOfObj+offset, &addressOfField, sizeof(addressOfField), &cb); That works well, but as I have written more extensions, with greater functionality (and accessing more complicated objects in our applications DMP files), I have longed for a better solution. I have access to the source of our own application of course, so I figure there should be a way to copy an object out of a DMP file and use that memory to create an actual object in the debugger extension that I can call functions on (by linking in dlls from our application). This would save me the trouble of pulling things out of the DMP by hand. Is this even possible? I tried obvious things like creating a new object in the extension, then overwriting it with a big ReadMemory directly from the DMP file. This seemed to put the data in the right fields, but freaked out when I tried to call a function. I figure I am missing something...maybe c++ pulls some vtable funky-ness that I don't know about? My code looks similar to this: SomeClass* thisClass = SomeClass::New(); ReadMemory(addressOfObj, &(*thisClass), sizeof(*thisClass), &cb);

    Read the article

  • Is there a way to customize how the value for a custom Model Field is displayed in a template?

    - by Jordan Reiter
    I am storing dates as an integer field in the format YYYYMMDD, where month or day is optional. I have the following function for formatting the number: def flexibledateformat(value): import datetime, re try: value = str(int(value)) except: return None match = re.match(r'(\d{4})(\d\d)(\d\d)$',str(value)) if match: year_val, month_val, day_val = [int(v) for v in match.groups()] if day_val: return datetime.datetime.strftime(datetime.date(year_val,month_val,day_val),'%b %e, %Y') elif month_val: return datetime.datetime.strftime(datetime.date(year_val,month_val,1),'%B %Y') else: return str(year_val) Which results in the following outputs: >>> flexibledateformat(20100415) 'Apr 15, 2010' >>> flexibledateformat(20100400) 'April 2010' >>> flexibledateformat(20100000) '2010' So I'm wondering if there's a function I can add under the model field class that would automatically call flexibledateformat. So if there's a record r = DataRecord(name='foo',date=20100400) when processed in the form the value would be 20100400 but when output in a template using {{ r.date }} it shows up as "April 2010". Further clarification I do normally use datetime for storing date/time values. In this specific case, I need to record non-specific dates: "x happened in 2009", "y happened sometime in June 1996". The easiest way to do this while still preserving most of the functionality of a date field, including sorting and filtering, is by using an integer in the format of yyyymmdd. That is why I am using an IntegerField instead of a DateTimeField. This is what I would like to happen: I store what I call a "Flexible Date" in a FlexibleDateField as an integer with the format yyyymmdd. I render a form that includes a FlexibleDateField, and the value remains an integer so that functions necessary for validating it and rendering it in widgets work correctly. I call it in a template, as in {{ object.flexibledate }} and it is formatted according to the flexibledateformat rules: 20100416 - April 16, 2010; 20100400 - April 2010; 20100000 - 2010. This also applies when I'm not calling it directly, such as when it's used as a header in admin (http://example.org/admin/app_name/model_name/). I'm not aware if these specific things are possible.

    Read the article

  • [Database] How to model this one-to-one relation?

    - by pbean
    I have several entities which respresent different types of users who need to be able to log in to a particular system. Additionally, they have different types of information associated with them. For example: a "general user", which has an e-mail address and "admin user", which has a workstation number (note that this a hypothetical case). Both entities also share common properties like first name, surname, address and telephone number. Finally, they naturally need to have a (unique) user name and a password to log in. In the application, the user just has to fill in his user name and password, and the functionality of the application changes slightly according to the type of the user. You can imagine that the username needs to be unique for this work. How should I model this effectively? I can't just create two tables, because then I can't force a unique constaint on the user name. I also can't put them all in just one table, because they have different types of specific information associated to them. I think I might need 3 seperate tables, one for "users" (with user name and password), one for the "general users" and another one for the "admin users", but how would the relations between these work? Or is there another solution? (By the way, the target DBMS is MySQL, so I don't think generalization is supported in the database system itself).

    Read the article

  • Will this class cause memory leaks, and does it need a dispose method? (asp.net vb)

    - by Phil
    Here is the class to export a gridview to an excel sheet: Imports System Imports System.Data Imports System.Configuration Imports System.IO Imports System.Web Imports System.Web.Security Imports System.Web.UI Imports System.Web.UI.WebControls Imports System.Web.UI.WebControls.WebParts Imports System.Web.UI.HtmlControls Namespace ExcelExport Public NotInheritable Class GVExportUtil Private Sub New() End Sub Public Shared Sub Export(ByVal fileName As String, ByVal gv As GridView) HttpContext.Current.Response.Clear() HttpContext.Current.Response.AddHeader("content-disposition", String.Format("attachment; filename={0}", fileName)) HttpContext.Current.Response.ContentType = "application/ms-excel" Dim sw As StringWriter = New StringWriter Dim htw As HtmlTextWriter = New HtmlTextWriter(sw) Dim table As Table = New Table table.GridLines = GridLines.Vertical If (Not (gv.HeaderRow) Is Nothing) Then GVExportUtil.PrepareControlForExport(gv.HeaderRow) table.Rows.Add(gv.HeaderRow) End If For Each row As GridViewRow In gv.Rows GVExportUtil.PrepareControlForExport(row) table.Rows.Add(row) Next If (Not (gv.FooterRow) Is Nothing) Then GVExportUtil.PrepareControlForExport(gv.FooterRow) table.Rows.Add(gv.FooterRow) End If table.RenderControl(htw) HttpContext.Current.Response.Write(sw.ToString) HttpContext.Current.Response.End() End Sub Private Shared Sub PrepareControlForExport(ByVal control As Control) Dim i As Integer = 0 Do While (i < control.Controls.Count) Dim current As Control = control.Controls(i) If (TypeOf current Is LinkButton) Then control.Controls.Remove(current) control.Controls.AddAt(i, New LiteralControl(CType(current, LinkButton).Text)) ElseIf (TypeOf current Is ImageButton) Then control.Controls.Remove(current) control.Controls.AddAt(i, New LiteralControl(CType(current, ImageButton).AlternateText)) ElseIf (TypeOf current Is HyperLink) Then control.Controls.Remove(current) control.Controls.AddAt(i, New LiteralControl(CType(current, HyperLink).Text)) ElseIf (TypeOf current Is DropDownList) Then control.Controls.Remove(current) control.Controls.AddAt(i, New LiteralControl(CType(current, DropDownList).SelectedItem.Text)) ElseIf (TypeOf current Is CheckBox) Then control.Controls.Remove(current) control.Controls.AddAt(i, New LiteralControl(CType(current, CheckBox).Checked)) End If If current.HasControls Then GVExportUtil.PrepareControlForExport(current) End If i = (i + 1) Loop End Sub End Class End Namespace Will this class cause memory leaks? And does anything here need to be disposed of? The code is working but I am getting frequent crashes of the app pool when it is in use. Thanks.

    Read the article

  • Will this class cause memory leaks, and does anything need disposing of? (asp.net vb)

    - by Phil
    Here is the class to export a gridview to an excel sheet: Imports System Imports System.Data Imports System.Configuration Imports System.IO Imports System.Web Imports System.Web.Security Imports System.Web.UI Imports System.Web.UI.WebControls Imports System.Web.UI.WebControls.WebParts Imports System.Web.UI.HtmlControls Namespace ExcelExport Public NotInheritable Class GVExportUtil Private Sub New() End Sub Public Shared Sub Export(ByVal fileName As String, ByVal gv As GridView) HttpContext.Current.Response.Clear() HttpContext.Current.Response.AddHeader("content-disposition", String.Format("attachment; filename={0}", fileName)) HttpContext.Current.Response.ContentType = "application/ms-excel" Dim sw As StringWriter = New StringWriter Dim htw As HtmlTextWriter = New HtmlTextWriter(sw) Dim table As Table = New Table table.GridLines = GridLines.Vertical If (Not (gv.HeaderRow) Is Nothing) Then GVExportUtil.PrepareControlForExport(gv.HeaderRow) table.Rows.Add(gv.HeaderRow) End If For Each row As GridViewRow In gv.Rows GVExportUtil.PrepareControlForExport(row) table.Rows.Add(row) Next If (Not (gv.FooterRow) Is Nothing) Then GVExportUtil.PrepareControlForExport(gv.FooterRow) table.Rows.Add(gv.FooterRow) End If table.RenderControl(htw) HttpContext.Current.Response.Write(sw.ToString) HttpContext.Current.Response.End() End Sub Private Shared Sub PrepareControlForExport(ByVal control As Control) Dim i As Integer = 0 Do While (i < control.Controls.Count) Dim current As Control = control.Controls(i) If (TypeOf current Is LinkButton) Then control.Controls.Remove(current) control.Controls.AddAt(i, New LiteralControl(CType(current, LinkButton).Text)) ElseIf (TypeOf current Is ImageButton) Then control.Controls.Remove(current) control.Controls.AddAt(i, New LiteralControl(CType(current, ImageButton).AlternateText)) ElseIf (TypeOf current Is HyperLink) Then control.Controls.Remove(current) control.Controls.AddAt(i, New LiteralControl(CType(current, HyperLink).Text)) ElseIf (TypeOf current Is DropDownList) Then control.Controls.Remove(current) control.Controls.AddAt(i, New LiteralControl(CType(current, DropDownList).SelectedItem.Text)) ElseIf (TypeOf current Is CheckBox) Then control.Controls.Remove(current) control.Controls.AddAt(i, New LiteralControl(CType(current, CheckBox).Checked)) End If If current.HasControls Then GVExportUtil.PrepareControlForExport(current) End If i = (i + 1) Loop End Sub End Class End Namespace Will this class cause memory leaks? And does anything here need to be disposed of? The code is working but I am getting the app pool falling over frequently when it is in use. Thanks.

    Read the article

  • Python: Does one of these examples waste more memory?

    - by orokusaki
    In a Django view function which uses manual transaction committing, I have: context = RequestContext(request, data) transaction.commit() return render_to_response('basic.html', data, context) # Returns a Django ``HttpResponse`` object which is similar to a dictionary. I think it is a better idea to do this: context = RequestContext(request, data) response = render_to_response('basic.html', data, context) transaction.commit() return response If the page isn't rendered correctly in the second version, the transaction is rolled back. This seems like the logical way of doing it albeit there won't likely be many exceptions at that point in the function when the application is in production. But... I fear that this might cost more and this will be replete through a number of functions since the application is heavy with custom transaction handling, so now is the time to figure out. If the HttpResponse instance is in memory already (at the point of render_to_response()), then what does another reference cost? When the function ends, doesn't the reference (response variable) go away so that when Django is done converting the HttpResponse into a string for output Python can immediately garbage collect it? Is there any reason I would want to use the first version (other than "It's 1 less line of code.")?

    Read the article

  • How to do an additional search on archive in rails if record not found, by extending model?

    - by Nick Gorbikoff
    Hello, I was wondering if somebody knows an elegant solution to the following: Suppose I have a table that holds orders, with a bunch of data. So I'm at 1M records, and searches begin to take time. So I want to speed it up by archiving some data that is more than 3 years old - saving it into a table called orders-archive, and then purging them from the orders table. So if we need to research something or customer wants to pull older information - they still can, but 99% of the lookups are done on the orders no older than a year and a half - so there is no reason to keep looking through older data all the time. These move & purge operations can be then croned to be done on a weekly basis. I already did some tests and I know that I will slash my search times by about 4 times. So far so good, right? However I was thinking about how to implement older archival lookups and the only reasonable thing I can think of is some sort of if-else If not found in orders, do a search in orders-archive. However - I have about 20 tables that I want to archive and god knows how many searches / finds are done through out the code, that I don't want to modify. So I was wondering if there is an elegant rails-way solution to this problem, by extending a model somehow? Has anyone dealt with similar case before? Thank you.

    Read the article

< Previous Page | 89 90 91 92 93 94 95 96 97 98 99 100  | Next Page >