Search Results

Search found 3456 results on 139 pages for 'vector art'.

Page 93/139 | < Previous Page | 89 90 91 92 93 94 95 96 97 98 99 100  | Next Page >

  • R: optimal way of computing the "product" of two vectors

    - by Musa
    Hi, Let's assume that I have a vector r <- rnorm(4) and a matrix W of dimension 20000*200 for example: W <- matrix(rnorm(20000*200),20000,200) I want to compute a new matrix M of dimension 5000*200 such that m11 <- r%*%W[1:4,1], m21 <- r%*%W[5:8,1], m12 <- r%*%W[1:4,2] etc. (i.e. grouping rows 4-by-4 and computing the product). What's the optimal (speed,memory) way of doing this? Thanks in advance.

    Read the article

  • in R, how can i save the value of "print"

    - by alex
    in R , when i use "print", i can see all the values, but how can i save this as a vector for example, in for loop, for (i in 1:10), i want the value of A , when i= 1,2,3,4..... but if i use the x=A, it only have the final value of A which is the value when i = 10. so , how can i save the vaule in print(A)

    Read the article

  • C++ return object

    - by Pauff
    I have a class that has a vector of objects. What do I need to do to return one of this objects and change it outside the class, keeping the changings? Is it possible to do with regular pointers? Is there a standard procedure? (And yes, my background is in Java.)

    Read the article

  • R: How to replace elements of a data.frame?

    - by John
    I'm trying to replace elements of a data.frame containing "#N/A" with "NULL", and I'm running into problems: foo <- data.frame("day"= c(1, 3, 5, 7), "od" = c(0.1, "#N/A", 0.4, 0.8)) indices_of_NAs <- which(foo == "#N/A") replace(foo, indices_of_NAs, "NULL") Error in [<-.data.frame(*tmp*, list, value = "NULL") : new columns would leave holes after existing columns I think that the problem is that my index is treating the data.frame as a vector, but that the replace function is treating it differently somehow, but I'm not sure what the issue is?

    Read the article

  • Creating a thematic map

    - by jsharma
    This post describes how to create a simple thematic map, just a state population layer, with no underlying map tile layer. The map shows states color-coded by total population. The map is interactive with info-windows and can be panned and zoomed. The sample code demonstrates the following: Displaying an interactive vector layer with no background map tile layer (i.e. purpose and use of the Universe object) Using a dynamic (i.e. defined via the javascript client API) color bucket style Dynamically changing a layer's rendering style Specifying which attribute value to use in determining the bucket, and hence style, for a feature (FoI) The result is shown in the screenshot below. The states layer was defined, and stored in the user_sdo_themes view of the mvdemo schema, using MapBuilder. The underlying table is defined as SQL> desc states_32775  Name                                      Null?    Type ----------------------------------------- -------- ----------------------------  STATE                                              VARCHAR2(26)  STATE_ABRV                                         VARCHAR2(2) FIPSST                                             VARCHAR2(2) TOTPOP                                             NUMBER PCTSMPLD                                           NUMBER LANDSQMI                                           NUMBER POPPSQMI                                           NUMBER ... MEDHHINC NUMBER AVGHHINC NUMBER GEOM32775 MDSYS.SDO_GEOMETRY We'll use the TOTPOP column value in the advanced (color bucket) style for rendering the states layers. The predefined theme (US_STATES_BI) is defined as follows. SQL> select styling_rules from user_sdo_themes where name='US_STATES_BI'; STYLING_RULES -------------------------------------------------------------------------------- <?xml version="1.0" standalone="yes"?> <styling_rules highlight_style="C.CB_QUAL_8_CLASS_DARK2_1"> <hidden_info> <field column="STATE" name="Name"/> <field column="POPPSQMI" name="POPPSQMI"/> <field column="TOTPOP" name="TOTPOP"/> </hidden_info> <rule column="TOTPOP"> <features style="states_totpop"> </features> <label column="STATE_ABRV" style="T.BLUE_SERIF_10"> 1 </label> </rule> </styling_rules> SQL> The theme definition specifies that the state, poppsqmi, totpop, state_abrv, and geom columns will be queried from the states_32775 table. The state_abrv value will be used to label the state while the totpop value will be used to determine the color-fill from those defined in the states_totpop advanced style. The states_totpop style, which we will not use in our demo, is defined as shown below. SQL> select definition from user_sdo_styles where name='STATES_TOTPOP'; DEFINITION -------------------------------------------------------------------------------- <?xml version="1.0" ?> <AdvancedStyle> <BucketStyle> <Buckets default_style="C.S02_COUNTRY_AREA"> <RangedBucket seq="0" label="10K - 5M" low="10000" high="5000000" style="C.SEQ6_01" /> <RangedBucket seq="1" label="5M - 12M" low="5000001" high="1.2E7" style="C.SEQ6_02" /> <RangedBucket seq="2" label="12M - 20M" low="1.2000001E7" high="2.0E7" style="C.SEQ6_04" /> <RangedBucket seq="3" label="&gt; 20M" low="2.0000001E7" high="5.0E7" style="C.SEQ6_05" /> </Buckets> </BucketStyle> </AdvancedStyle> SQL> The demo defines additional advanced styles via the OM.style object and methods and uses those instead when rendering the states layer.   Now let's look at relevant snippets of code that defines the map extent and zoom levels (i.e. the OM.universe),  loads the states predefined vector layer (OM.layer), and sets up the advanced (color bucket) style. Defining the map extent and zoom levels. function initMap() {   //alert("Initialize map view");     // define the map extent and number of zoom levels.   // The Universe object is similar to the map tile layer configuration   // It defines the map extent, number of zoom levels, and spatial reference system   // well-known ones (like web mercator/google/bing or maps.oracle/elocation are predefined   // The Universe must be defined when there is no underlying map tile layer.   // When there is a map tile layer then that defines the map extent, srid, and zoom levels.      var uni= new OM.universe.Universe(     {         srid : 32775,         bounds : new OM.geometry.Rectangle(                         -3280000, 170000, 2300000, 3200000, 32775),         numberOfZoomLevels: 8     }); The srid specifies the spatial reference system which is Equal-Area Projection (United States). SQL> select cs_name from cs_srs where srid=32775 ; CS_NAME --------------------------------------------------- Equal-Area Projection (United States) The bounds defines the map extent. It is a Rectangle defined using the lower-left and upper-right coordinates and srid. Loading and displaying the states layer This is done in the states() function. The full code is at the end of this post, however here's the snippet which defines the states VectorLayer.     // States is a predefined layer in user_sdo_themes     var  layer2 = new OM.layer.VectorLayer("vLayer2",     {         def:         {             type:OM.layer.VectorLayer.TYPE_PREDEFINED,             dataSource:"mvdemo",             theme:"us_states_bi",             url: baseURL,             loadOnDemand: false         },         boundingTheme:true      }); The first parameter is a layer name, the second is an object literal for a layer config. The config object has two attributes: the first is the layer definition, the second specifies whether the layer is a bounding one (i.e. used to determine the current map zoom and center such that the whole layer is displayed within the map window) or not. The layer config has the following attributes: type - specifies whether is a predefined one, a defined via a SQL query (JDBC), or in a json-format file (DATAPACK) theme - is the predefined theme's name url - is the location of the mapviewer server loadOnDemand - specifies whether to load all the features or just those that lie within the current map window and load additional ones as needed on a pan or zoom The code snippet below dynamically defines an advanced style and then uses it, instead of the 'states_totpop' style, when rendering the states layer. // override predefined rendering style with programmatic one    var theRenderingStyle =      createBucketColorStyle('YlBr5', colorSeries, 'States5', true);   // specify which attribute is used in determining the bucket (i.e. color) to use for the state   // It can be an array because the style could be a chart type (pie/bar)   // which requires multiple attribute columns     // Use the STATE.TOTPOP column (aka attribute) value here    layer2.setRenderingStyle(theRenderingStyle, ["TOTPOP"]); The style itself is defined in the createBucketColorStyle() function. Dynamically defining an advanced style The advanced style used here is a bucket color style, i.e. a color style is associated with each bucket. So first we define the colors and then the buckets.     numClasses = colorSeries[colorName].classes;    // create Color Styles    for (var i=0; i < numClasses; i++)    {         theStyles[i] = new OM.style.Color(                      {fill: colorSeries[colorName].fill[i],                        stroke:colorSeries[colorName].stroke[i],                       strokeOpacity: useGradient? 0.25 : 1                      });    }; numClasses is the number of buckets. The colorSeries array contains the color fill and stroke definitions and is: var colorSeries = { //multi-hue color scheme #10 YlBl. "YlBl3": {   classes:3,                  fill: [0xEDF8B1, 0x7FCDBB, 0x2C7FB8],                  stroke:[0xB5DF9F, 0x72B8A8, 0x2872A6]   }, "YlBl5": {   classes:5,                  fill:[0xFFFFCC, 0xA1DAB4, 0x41B6C4, 0x2C7FB8, 0x253494],                  stroke:[0xE6E6B8, 0x91BCA2, 0x3AA4B0, 0x2872A6, 0x212F85]   }, //multi-hue color scheme #11 YlBr.  "YlBr3": {classes:3,                  fill:[0xFFF7BC, 0xFEC44F, 0xD95F0E],                  stroke:[0xE6DEA9, 0xE5B047, 0xC5360D]   }, "YlBr5": {classes:5,                  fill:[0xFFFFD4, 0xFED98E, 0xFE9929, 0xD95F0E, 0x993404],                  stroke:[0xE6E6BF, 0xE5C380, 0xE58A25, 0xC35663, 0x8A2F04]     }, etc. Next we create the bucket style.    bucketStyleDef = {       numClasses : colorSeries[colorName].classes, //      classification: 'custom',  //since we are supplying all the buckets //      buckets: theBuckets,       classification: 'logarithmic',  // use a logarithmic scale       styles: theStyles,       gradient:  useGradient? 'linear' : 'off' //      gradient:  useGradient? 'radial' : 'off'     };    theBucketStyle = new OM.style.BucketStyle(bucketStyleDef);    return theBucketStyle; A BucketStyle constructor takes a style definition as input. The style definition specifies the number of buckets (numClasses), a classification scheme (which can be equal-ranged, logarithmic scale, or custom), the styles for each bucket, whether to use a gradient effect, and optionally the buckets (required when using a custom classification scheme). The full source for the demo <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> <title>Oracle Maps V2 Thematic Map Demo</title> <script src="http://localhost:8080/mapviewer/jslib/v2/oraclemapsv2.js" type="text/javascript"> </script> <script type="text/javascript"> //var $j = jQuery.noConflict(); var baseURL="http://localhost:8080/mapviewer"; // location of mapviewer OM.gv.proxyEnabled =false; // no mvproxy needed OM.gv.setResourcePath(baseURL+"/jslib/v2/images/"); // location of resources for UI elements like nav panel buttons var map = null; // the client mapviewer object var statesLayer = null, stateCountyLayer = null; // The vector layers for states and counties in a state var layerName="States"; // initial map center and zoom var mapCenterLon = -20000; var mapCenterLat = 1750000; var mapZoom = 2; var mpoint = new OM.geometry.Point(mapCenterLon,mapCenterLat,32775); var currentPalette = null, currentStyle=null; // set an onchange listener for the color palette select list // initialize the map // load and display the states layer $(document).ready( function() { $("#demo-htmlselect").change(function() { var theColorScheme = $(this).val(); useSelectedColorScheme(theColorScheme); }); initMap(); states(); } ); /** * color series from ColorBrewer site (http://colorbrewer2.org/). */ var colorSeries = { //multi-hue color scheme #10 YlBl. "YlBl3": { classes:3, fill: [0xEDF8B1, 0x7FCDBB, 0x2C7FB8], stroke:[0xB5DF9F, 0x72B8A8, 0x2872A6] }, "YlBl5": { classes:5, fill:[0xFFFFCC, 0xA1DAB4, 0x41B6C4, 0x2C7FB8, 0x253494], stroke:[0xE6E6B8, 0x91BCA2, 0x3AA4B0, 0x2872A6, 0x212F85] }, //multi-hue color scheme #11 YlBr. "YlBr3": {classes:3, fill:[0xFFF7BC, 0xFEC44F, 0xD95F0E], stroke:[0xE6DEA9, 0xE5B047, 0xC5360D] }, "YlBr5": {classes:5, fill:[0xFFFFD4, 0xFED98E, 0xFE9929, 0xD95F0E, 0x993404], stroke:[0xE6E6BF, 0xE5C380, 0xE58A25, 0xC35663, 0x8A2F04] }, // single-hue color schemes (blues, greens, greys, oranges, reds, purples) "Purples5": {classes:5, fill:[0xf2f0f7, 0xcbc9e2, 0x9e9ac8, 0x756bb1, 0x54278f], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Blues5": {classes:5, fill:[0xEFF3FF, 0xbdd7e7, 0x68aed6, 0x3182bd, 0x18519C], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Greens5": {classes:5, fill:[0xedf8e9, 0xbae4b3, 0x74c476, 0x31a354, 0x116d2c], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Greys5": {classes:5, fill:[0xf7f7f7, 0xcccccc, 0x969696, 0x636363, 0x454545], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Oranges5": {classes:5, fill:[0xfeedde, 0xfdb385, 0xfd8d3c, 0xe6550d, 0xa63603], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Reds5": {classes:5, fill:[0xfee5d9, 0xfcae91, 0xfb6a4a, 0xde2d26, 0xa50f15], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] } }; function createBucketColorStyle( colorName, colorSeries, rangeName, useGradient) { var theBucketStyle; var bucketStyleDef; var theStyles = []; var theColors = []; var aBucket, aStyle, aColor, aRange; var numClasses ; numClasses = colorSeries[colorName].classes; // create Color Styles for (var i=0; i < numClasses; i++) { theStyles[i] = new OM.style.Color( {fill: colorSeries[colorName].fill[i], stroke:colorSeries[colorName].stroke[i], strokeOpacity: useGradient? 0.25 : 1 }); }; bucketStyleDef = { numClasses : colorSeries[colorName].classes, // classification: 'custom', //since we are supplying all the buckets // buckets: theBuckets, classification: 'logarithmic', // use a logarithmic scale styles: theStyles, gradient: useGradient? 'linear' : 'off' // gradient: useGradient? 'radial' : 'off' }; theBucketStyle = new OM.style.BucketStyle(bucketStyleDef); return theBucketStyle; } function initMap() { //alert("Initialize map view"); // define the map extent and number of zoom levels. // The Universe object is similar to the map tile layer configuration // It defines the map extent, number of zoom levels, and spatial reference system // well-known ones (like web mercator/google/bing or maps.oracle/elocation are predefined // The Universe must be defined when there is no underlying map tile layer. // When there is a map tile layer then that defines the map extent, srid, and zoom levels. var uni= new OM.universe.Universe( { srid : 32775, bounds : new OM.geometry.Rectangle( -3280000, 170000, 2300000, 3200000, 32775), numberOfZoomLevels: 8 }); map = new OM.Map( document.getElementById('map'), { mapviewerURL: baseURL, universe:uni }) ; var navigationPanelBar = new OM.control.NavigationPanelBar(); map.addMapDecoration(navigationPanelBar); } // end initMap function states() { //alert("Load and display states"); layerName = "States"; if(statesLayer) { // states were already visible but the style may have changed // so set the style to the currently selected one var theData = $('#demo-htmlselect').val(); setStyle(theData); } else { // States is a predefined layer in user_sdo_themes var layer2 = new OM.layer.VectorLayer("vLayer2", { def: { type:OM.layer.VectorLayer.TYPE_PREDEFINED, dataSource:"mvdemo", theme:"us_states_bi", url: baseURL, loadOnDemand: false }, boundingTheme:true }); // add drop shadow effect and hover style var shadowFilter = new OM.visualfilter.DropShadow({opacity:0.5, color:"#000000", offset:6, radius:10}); var hoverStyle = new OM.style.Color( {stroke:"#838383", strokeThickness:2}); layer2.setHoverStyle(hoverStyle); layer2.setHoverVisualFilter(shadowFilter); layer2.enableFeatureHover(true); layer2.enableFeatureSelection(false); layer2.setLabelsVisible(true); // override predefined rendering style with programmatic one var theRenderingStyle = createBucketColorStyle('YlBr5', colorSeries, 'States5', true); // specify which attribute is used in determining the bucket (i.e. color) to use for the state // It can be an array because the style could be a chart type (pie/bar) // which requires multiple attribute columns // Use the STATE.TOTPOP column (aka attribute) value here layer2.setRenderingStyle(theRenderingStyle, ["TOTPOP"]); currentPalette = "YlBr5"; var stLayerIdx = map.addLayer(layer2); //alert('State Layer Idx = ' + stLayerIdx); map.setMapCenter(mpoint); map.setMapZoomLevel(mapZoom) ; // display the map map.init() ; statesLayer=layer2; // add rt-click event listener to show counties for the state layer2.addListener(OM.event.MouseEvent.MOUSE_RIGHT_CLICK,stateRtClick); } // end if } // end states function setStyle(styleName) { // alert("Selected Style = " + styleName); // there may be a counties layer also displayed. // that wll have different bucket ranges so create // one style for states and one for counties var newRenderingStyle = null; if (layerName === "States") { if(/3/.test(styleName)) { newRenderingStyle = createBucketColorStyle(styleName, colorSeries, 'States3', false); currentStyle = createBucketColorStyle(styleName, colorSeries, 'Counties3', false); } else { newRenderingStyle = createBucketColorStyle(styleName, colorSeries, 'States5', false); currentStyle = createBucketColorStyle(styleName, colorSeries, 'Counties5', false); } statesLayer.setRenderingStyle(newRenderingStyle, ["TOTPOP"]); if (stateCountyLayer) stateCountyLayer.setRenderingStyle(currentStyle, ["TOTPOP"]); } } // end setStyle function stateRtClick(evt){ var foi = evt.feature; //alert('Rt-Click on State: ' + foi.attributes['_label_'] + // ' with pop ' + foi.attributes['TOTPOP']); // display another layer with counties info // layer may change on each rt-click so create and add each time. var countyByState = null ; // the _label_ attribute of a feature in this case is the state abbreviation // we will use that to query and get the counties for a state var sqlText = "select totpop,geom32775 from counties_32775_moved where state_abrv="+ "'"+foi.getAttributeValue('_label_')+"'"; // alert(sqlText); if (currentStyle === null) currentStyle = createBucketColorStyle('YlBr5', colorSeries, 'Counties5', false); /* try a simple style instead new OM.style.ColorStyle( { stroke: "#B8F4FF", fill: "#18E5F4", fillOpacity:0 } ); */ // remove existing layer if any if(stateCountyLayer) map.removeLayer(stateCountyLayer); countyByState = new OM.layer.VectorLayer("stCountyLayer", {def:{type:OM.layer.VectorLayer.TYPE_JDBC, dataSource:"mvdemo", sql:sqlText, url:baseURL}}); // url:baseURL}, // renderingStyle:currentStyle}); countyByState.setVisible(true); // specify which attribute is used in determining the bucket (i.e. color) to use for the state countyByState.setRenderingStyle(currentStyle, ["TOTPOP"]); var ctLayerIdx = map.addLayer(countyByState); // alert('County Layer Idx = ' + ctLayerIdx); //map.addLayer(countyByState); stateCountyLayer = countyByState; } // end stateRtClick function useSelectedColorScheme(theColorScheme) { if(map) { // code to update renderStyle goes here //alert('will try to change render style'); setStyle(theColorScheme); } else { // do nothing } } </script> </head> <body bgcolor="#b4c5cc" style="height:100%;font-family:Arial,Helvetica,Verdana"> <h3 align="center">State population thematic map </h3> <div id="demo" style="position:absolute; left:68%; top:44px; width:28%; height:100%"> <HR/> <p/> Choose Color Scheme: <select id="demo-htmlselect"> <option value="YlBl3"> YellowBlue3</option> <option value="YlBr3"> YellowBrown3</option> <option value="YlBl5"> YellowBlue5</option> <option value="YlBr5" selected="selected"> YellowBrown5</option> <option value="Blues5"> Blues</option> <option value="Greens5"> Greens</option> <option value="Greys5"> Greys</option> <option value="Oranges5"> Oranges</option> <option value="Purples5"> Purples</option> <option value="Reds5"> Reds</option> </select> <p/> </div> <div id="map" style="position:absolute; left:10px; top:50px; width:65%; height:75%; background-color:#778f99"></div> <div style="position:absolute;top:85%; left:10px;width:98%" class="noprint"> <HR/> <p> Note: This demo uses HTML5 Canvas and requires IE9+, Firefox 10+, or Chrome. No map will show up in IE8 or earlier. </p> </div> </body> </html>

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • How to install plesk using YUM on centOS 5 ?

    - by Tom
    Hi, i have a vps running centOS 5.4 LAMP and i want to install Plesk panel, so i've installed ART packages using SSH like they said here : http://www.atomicorp.com/channels/plesk/ , i tried to execute : yum install plesk but i got : Loaded plugins: fastestmirror Loading mirror speeds from cached hostfile * addons: mirrors.netdna.com * atomic: www5.atomicorp.com * base: yum.singlehop.com * extras: mirror.steadfast.net * updates: www.gtlib.gatech.edu atomic | 1.9 kB 00:00 atomic/primary_db | 425 kB 00:00 Setting up Install Process No package plesk available. Nothing to do Means that no package called "plesk" found. the question is what's the command to install Plesk in my vps or is there another "easy" way to do it, because i'm not really pro in sys administration :) Thanks

    Read the article

  • Adding multiple gradients to object in Adobe Illustrator

    - by Vass
    Hi, I have an object which is a path (a nose to be specific). Now I want both a linear gradient and a radial gradient to be added to the object. So these must be separate gradient objects I guess, and I can't find a way to add multiple separate gradients to a complete path so do I duplicate the object and then apply a new gradient to each object? And what would the layer transparency features look like? Would the 'normal' overlay of the layers work? I am afraid of multiple shadows creating double dark regions, but maybe that is as its supposed to be if you think in terms of classical art and draw shadows in terms of each light obstruction.

    Read the article

  • How to convert an image to a .dwg file

    - by erikric
    My girlfriend is making an art project where she is having an image printed and cut out on a metal plate. The firm responsible for doing this is demanding a .dwg file (and something called polyline; some sort of setting maybe?). Neither of us have heard about this file format, and I find the information about it quite confusing. Most pages seem to link to some schetchy "FooToBarConverter" software, that I frankly don't trust. Could someone please enlighten us on what we need to do, or point to some safe and preferably free software that could do this? (An explanation of the dwg format and the polyline thing would also be much appreciated)

    Read the article

  • Ultra Low Latency Linux Distribution or Kernel

    - by Zanlor
    I'd like to know if there are any linux distributions that are focused on low latency networking. The area I'm working in is algorithmic trading, and extremely low latency comms between machines is a must. The current h/w we're using is 10g ethernet, we're looking into things like infiniband RDMA and Voltaire VMA I've googled around, and have only been able to find tidbtits of kernel patches, command line options and hardware suggestions. I'm looking for a complete solution, specially built kernel, kernel bypass features, essentially all the goodies rolled up into one package - does such a thing even exist? I ask as a lot of this stuff seems to be a black art, people keep secret what they know works etc.

    Read the article

  • Ultra Low Latency Linux Distribution or Kernel

    - by Zanler
    I'd like to know if there are any linux distributions that are focused on low latency networking. The area I'm working in is algorithmic trading, and extremely low latency comms between machines is a must. The current h/w we're using is 10g ethernet, we're looking into things like infiniband RDMA and Voltaire VMA I've googled around, and have only been able to find tidbtits of kernel patches, command line options and hardware suggestions. I'm looking for a complete solution, specially built kernel, kernel bypass features, essentially all the goodies rolled up into one package - does such a thing even exist? I ask as a lot of this stuff seems to be a black art, people keep secret what they know works etc.

    Read the article

  • How to add a 'second elbow' to an 'elbow arrow connector' in Powerpoint 2007?

    - by ricebowl
    I'm trying to put together a relatively complex flow-chart thing -as part of a University assignment (health-related, and gosh, does my university love all things Microsoft Office...). Because of the way the chart progresses I have to connect two objects with a 'double elbow' version of the 'elbow arrow connector.' I accept that perhaps this complexity means I should redesign the chart, but I've tried and failed to simplify things already. If you'll pardon my ASCII art, this is what I have: +----------------+ | 1 | | | +-------+--------+ | | +-------+--------+ /\ |2 +--------|-----/ 3\ +----------------+ \ / \/ Shape 1 should connect to shape 3, currently the line doing so passes behind shape 2. The diagram below shows what I'd prefer, and, frankly, what I need to happen. +----------------+ | 1 | | | +-------+--------+ | +-----------+ +----------------+ | /\ |2 | +--/ 3\ +----------------+ \ / \/ Having explored the various right-click options I'm either being blind and not seeing it, or...well, I'm hoping it's just me being blind and/or stupid, frankly. If anyone has any suggestions they'd be gratefully received. I'm working with WinXP and Office 2007 (at the university, I run on Ubuntu at home, which possibly explains why I'm missing something potentially simple)...

    Read the article

  • what software will rip a CD to flac files in one step?

    - by jcollum
    I'm using EAC to rip files to FLAC. Seems fine. But for a large amount of CDs (200 or so) the process is a little labor intensive. There's 4 or 5 clicks in there that seem extraneous -- EAC seems to want to rip the CD to a set of WAV files then (after all those files are ripped) I have to select "Process WAV files" (I'd get it exact, but EAC is occupied right now). I'd like to send all of it to FLAC files in just a few steps: get cddb info, select art, rip. Is there a way to do this with EAC that I'm missing? Haven't been able to find anything on the web that explains this. Is there a better program for this?

    Read the article

  • How can I convert audio files to this format?

    - by jeffamaphone
    I have a bunch of audio files that are named .wav but it seems not all .wavs are created equal. For example: $ file * file1.wav: RIFF (little-endian) data, WAVE audio, Microsoft PCM, 16 bit, stereo 44100 Hz file2.wav: Audio file with ID3 version 2.2.0, contains: MPEG ADTS, layer III, v1, 160 kbps, 44.1 kHz, JntStereo file3.wav: Claris clip art? file4.wav: Audio file with ID3 version 2.2.0, contains: MPEG ADTS, layer III, v1, 160 kbps, 44.1 kHz, JntStereo And for good measure, a non-wav: file5.m4a: ISO Media, MPEG v4 system, iTunes AAC-LC I would like to convert all of these files to the format that file1.wav is: RIFF (little-endian) data, WAVE audio, Microsoft PCM, 16 bit, stereo 44100 Hz What is the proper set of arguments to pass to afconvert to make that happen?

    Read the article

  • Music tagging software more consistent than Tag&Rename?

    - by Billy ONeal
    A few years ago I spent an insane amount of time using the excellent Tag&Rename program. However, I find that for random, inexplicable reasons, some music tools simply disregard my tags, drop or destroy the album art, or have strange handling around some characters. For example, "AC/DC" is poorly handled by most music players when I use Tag&Rename to write the tags. And if I write the tag in iTunes, Winamp seems to not like it, vice versa, and neither of those work with Amarok. Is there a piece of software that works like Tag&Rename but is more compatible, or is there a way to ensure Tag&Rename writes more compatible tags?

    Read the article

  • Word 2007 Smart Arts - how deep can I go?

    - by Franz
    In Office Word 2007, I want to use a Smart Art to create a hierarchical diagram for an organization. I want to use the one called "simple radial" (at least that's my word-to-word translation from German - it's the one with the circle in the middle and other circles around it, attached by lines). However, it seems to only support one level of depth (at least for circles). Everything else just becomes a bulleted list inside of the circle. Is there any way to accomplish this in Word 2007? Else: are there any other free tools to do this? I also want to add some other shapes. Again: I want to accomplish a star-like structure with a total of 4 depth levels. Thanks for your responses in advance!

    Read the article

  • Does the Wacom Bamboo Pen Tablet's Pen have an Eraser?

    - by Vervious
    I'm thinking about getting one of the cheaper Wacom tablets to start doing some "hobby"-ish digital art. Right now I think the Bamboo tablets are the best choice, especially the Pen only one, but after reading reviews it seems like the pen with the Bamboo pen doesn't have an eraser. Can anyone verify this? If it doesn't include a digital eraser I would consider this an enormous downside. Does the Bamboo Pen & Touch have a pen with an eraser? If it does, I would think about it but honestly I don't want the "touch" part considering how terrible it seems to be compared to a normal trackpad. And finally, are there any new Bamboos or something related coming out in the future? I'd like a pen-only tablet (with an eraser) that's cheap and portable and nothing seems to satisfy yet. EDIT: The main question (the eraser one) is talking about the Bamboo Pen CTL460 http://www.wacom.com/bamboo/bamboo_pen.php

    Read the article

  • Laptop stopped recognizing USB hard drive

    - by vahokif
    Hi, My Packard Bell EasyNote TX86 laptop stopped recognizing my 1 TB Toshiba Store Art hard drive. It worked fine until now, and it still works on other computers. Other USB devices (including storage) work, and I've tried plugging it in every port, to no avail. When I plug it in it spins up, but Windows doesn't react at all (it's not in disk management), Linux doesn't write anything in dmesg and I can't see it in BIOS setup. I didn't use it at all today, apart from plugging it into a freshly-installed Windows 7 machine once (where it worked). What can I do? Which device is to blame here? EDIT: One more thing. I unplugged the drive while the laptop was hibernated. Google says this might be the problem and it might have something to do with resetting the USB Host Controller.

    Read the article

  • Retuning voice in full song so that singer is on-tune

    - by Dan W
    I have some potentially great songs which are spoilt by singers who sing out of tune. Is there any easy to use (and hopefully cheap) software that 'corrects' the song so that they're not off-tune anymore? I don't mind too much if the backing is somewhat affected too, if the state-of-the-art isn't quite there yet. I've heard of auto-tune of course, but as far as I know, that's before the song is put together (i.e. the singer's voice as an individual track, before it's mixed with the backing).

    Read the article

  • Does exist an MKV meta tag / metadata editor?

    - by Vittorio
    Hi, I'm looking for an MKV meta tag editor, I'm using PLEX Media Server and PLEX Media Center on my iMac to see movies. PLEX is great because it automatically find and name all my movie library with year, director, gender, original title, description, movie poter art, etc. Unfortunately, it saves all the data only on a app DB file without edit any tag on the MKV files. A 20% of the movies needs to be fixed or PLEX needs help to find exactly the movie name, so if I need to move all my library elsewere, I need to do all the tagging work again. So, does exists MKV meta tag editor? Oh I'm a Mac user

    Read the article

  • How to convert an image to a .dwg file

    - by erikric
    My girlfriend is making an art project where she is having an image printed and cut out on a metal plate. The firm responsible for doing this is demanding a .dwg file (and something called polyline; some sort of setting maybe?). Neither of us have heard about this file format, and I find the information about it quite confusing. Most pages seem to link to some schetchy "FooToBarConverter" software, that I frankly don't trust. Could someone please enlighten us on what we need to do, or point to some safe and preferably free software that could do this? (An explanation of the dwg format and the polyline thing would also be much appreciated)

    Read the article

< Previous Page | 89 90 91 92 93 94 95 96 97 98 99 100  | Next Page >