Search Results

Search found 3370 results on 135 pages for 'attack vector'.

Page 94/135 | < Previous Page | 90 91 92 93 94 95 96 97 98 99 100 101  | Next Page >

  • R: How to replace elements of a data.frame?

    - by John
    I'm trying to replace elements of a data.frame containing "#N/A" with "NULL", and I'm running into problems: foo <- data.frame("day"= c(1, 3, 5, 7), "od" = c(0.1, "#N/A", 0.4, 0.8)) indices_of_NAs <- which(foo == "#N/A") replace(foo, indices_of_NAs, "NULL") Error in [<-.data.frame(*tmp*, list, value = "NULL") : new columns would leave holes after existing columns I think that the problem is that my index is treating the data.frame as a vector, but that the replace function is treating it differently somehow, but I'm not sure what the issue is?

    Read the article

  • CodePlex Daily Summary for Friday, January 07, 2011

    CodePlex Daily Summary for Friday, January 07, 2011Popular ReleasesAutoLoL: AutoLoL v1.5.2: Implemented the Auto Updater Fix: Your settings will no longer be cleared with new releases of AutoLoL The mastery Editor and Browser now have their own tabs instead of nested tabs The Browser tab will only show the masteries matching ALL filters instead of just one Added a 'Browse' button in the Mastery Editor tab to open the Masteries Directory The Browser tab now shows a message when there are no mastery files in the Masteries Directory Fix: Fixed the Save As dialog again, for ...Ionics Isapi Rewrite Filter: 2.1 latest stable: V2.1 is stable, and is in maintenance mode. This is v2.1.1.25. It is a bug-fix release. There are no new features. 28629 29172 28722 27626 28074 29164 27659 27900 many documentation updates and fixes proper x64 build environment. This release includes x64 binaries in zip form, but no x64 MSI file. You'll have to manually install x64 servers, following the instructions in the documentation.StyleCop for ReSharper: StyleCop for ReSharper 5.1.14980.000: A considerable amount of work has gone into this release: Huge focus on performance around the violation scanning subsystem: - caching added to reduce IO operations around reading and merging of settings files - caching added to reduce creation of expensive objects Users should notice condsiderable perf boost and a decrease in memory usage. Bug Fixes: - StyleCop's new ObjectBasedEnvironment object does not resolve the StyleCop installation path, thus it does not return the correct path ...VivoSocial: VivoSocial 7.4.1: New release with bug fixes and updates for performance.SSH.NET Library: 2011.1.6: Fixes CommandTimeout default value is fixed to infinite. Port Forwarding feature improvements Memory leaks fixes New Features Add ErrorOccurred event to handle errors that occurred on different thread New and improve SFTP features SftpFile now has more attributes and some operations Most standard operations now available Allow specify encoding for command execution KeyboardInteractiveConnectionInfo class added for "keyboard-interactive" authentication. Add ability to specify bo....NET Extensions - Extension Methods Library for C# and VB.NET: Release 2011.03: Added lot's of new extensions and new projects for MVC and Entity Framework. object.FindTypeByRecursion Int32.InRange String.RemoveAllSpecialCharacters String.IsEmptyOrWhiteSpace String.IsNotEmptyOrWhiteSpace String.IfEmptyOrWhiteSpace String.ToUpperFirstLetter String.GetBytes String.ToTitleCase String.ToPlural DateTime.GetDaysInYear DateTime.GetPeriodOfDay IEnumberable.RemoveAll IEnumberable.Distinct ICollection.RemoveAll IList.Join IList.Match IList.Cast Array.IsNullOrEmpty Array.W...VidCoder: 0.8.0: Added x64 version. Made the audio output preview more detailed and accurate. If the chosen encoder or mixdown is incompatible with the source, the fallback that will be used is displayed. Added "Auto" to the audio mixdown choices. Reworked non-anamorphic size calculation to work better with non-standard pixel aspect ratios and cropping. Reworked Custom anamorphic to be more intuitive and allow display width to be set automatically (Thanks, Statick). Allowing higher bitrates for 6-ch....NET Voice Recorder: Auto-Tune Release: This is the source code and binaries to accompany the article on the Coding 4 Fun website. It is the Auto Tuner release of the .NET Voice Recorder application.BloodSim: BloodSim - 1.3.2.0: - Simulation Log is now automatically disabled and hidden when running 10 or more iterations - Hit and Expertise are now entered by Rating, and include option for a Racial Expertise bonus - Added option for boss to use a periodic magic ability (Dragon Breath) - Added option for boss to periodically Enrage, gaining a Damage/Attack Speed buffASP.NET MVC CMS ( Using CommonLibrary.NET ): CommonLibrary.NET CMS 0.9.5 Alpha: CommonLibrary CMSA simple yet powerful CMS system in ASP.NET MVC 2 using C# 4.0. ActiveRecord based components for Blogs, Widgets, Pages, Parts, Events, Feedback, BlogRolls, Links Includes several widgets ( tag cloud, archives, recent, user cloud, links twitter, blog roll and more ) Built using the http://commonlibrarynet.codeplex.com framework. ( Uses TDD, DDD, Models/Entities, Code Generation ) Can run w/ In-Memory Repositories or Sql Server Database See Documentation tab for Ins...AllNewsManager.NET: AllNewsManager.NET 1.2.1: AllNewsManager.NET 1.2.1 It is a minor update from version 1.2EnhSim: EnhSim 2.2.9 BETA: 2.2.9 BETAThis release supports WoW patch 4.03a at level 85 To use this release, you must have the Microsoft Visual C++ 2010 Redistributable Package installed. This can be downloaded from http://www.microsoft.com/downloads/en/details.aspx?FamilyID=A7B7A05E-6DE6-4D3A-A423-37BF0912DB84 To use the GUI you must have the .NET 4.0 Framework installed. This can be downloaded from http://www.microsoft.com/downloads/en/details.aspx?FamilyID=9cfb2d51-5ff4-4491-b0e5-b386f32c0992 - Added in the Gobl...xUnit.net - Unit Testing for .NET: xUnit.net 1.7 Beta: xUnit.net release 1.7 betaBuild #1533 Important notes for Resharper users: Resharper support has been moved to the xUnit.net Contrib project. Important note for TestDriven.net users: If you are having issues running xUnit.net tests in TestDriven.net, especially on 64-bit Windows, we strongly recommend you upgrade to TD.NET version 3.0 or later. This release adds the following new features: Added support for ASP.NET MVC 3 Added Assert.Equal(double expected, double actual, int precision)...Json.NET: Json.NET 4.0 Release 1: New feature - Added Windows Phone 7 project New feature - Added dynamic support to LINQ to JSON New feature - Added dynamic support to serializer New feature - Added INotifyCollectionChanged to JContainer in .NET 4 build New feature - Added ReadAsDateTimeOffset to JsonReader New feature - Added ReadAsDecimal to JsonReader New feature - Added covariance to IJEnumerable type parameter New feature - Added XmlSerializer style Specified property support New feature - Added ...DbDocument: DbDoc Initial Version: DbDoc Initial versionASP .NET MVC CMS (Content Management System): Atomic CMS 2.1.2: Atomic CMS 2.1.2 release notes Atomic CMS installation guide N2 CMS: 2.1: N2 is a lightweight CMS framework for ASP.NET. It helps you build great web sites that anyone can update. Major Changes Support for auto-implemented properties ({get;set;}, based on contribution by And Poulsen) All-round improvements and bugfixes File manager improvements (multiple file upload, resize images to fit) New image gallery Infinite scroll paging on news Content templates First time with N2? Try the demo site Download one of the template packs (above) and open the proj...Mobile Device Detection and Redirection: 0.1.11.10: IMPORTANT CHANGESThis release changes the way some WURFL capabilities and attributes are exposed to .NET developers. If you cast MobileCapabilities to return some values then please read the Release Note before implementing this release. The following code snippet can be used to access any WURFL capability. For instance, if the device is a tablet: string capability = Request.Browser["is_tablet"]; SummaryNew attributes have been added to the redirect section: originalUrlAsQueryString If se...Wii Backup Fusion: Wii Backup Fusion 1.0: - Norwegian translation - French translation - German translation - WBFS dump for analysis - Scalable full HQ cover - Support for log file - Load game images improved - Support for image splitting - Diff for images after transfer - Support for scrubbing modes - Search functionality for log - Recurse depth for Files/Load - Show progress while downloading game cover - Supports more databases for cover download - Game cover loading routines improvedBlogEngine.NET: BlogEngine.NET 2.0: Get DotNetBlogEngine for 3 Months Free! Click Here for More Info 3 Months FREE – BlogEngine.NET Hosting – Click Here! If you want to set up and start using BlogEngine.NET right away, you should download the Web project. If you want to extend or modify BlogEngine.NET, you should download the source code. If you are upgrading from a previous version of BlogEngine.NET, please take a look at the Upgrading to BlogEngine.NET 2.0 instructions. To get started, be sure to check out our installatio...New Projects9192631770: This project is created for learning .net 3.5 personally. However it may not suffice for anyone to give a start point. (9192631770) is equivalent to 1 sec in atomic clock.AGS: AGSAll-In-One Code Framework Prerelease: All-In-One Code Framework PrereleaseAwait Events with "yield": This is a library that allows you to stop running the code wherever you want in order to await an event using the functionality of "yield" sentence. It's useful when you want to await asynchronous events or when you have to deal with many events in a sequential way.Battle.net SDK: This is a SDK that retrieves it's information from the Battle.Net community site. At the moment blizzard only supports this for World of Warcraft, so that's what our main aim is at the momeen.t C++ Hash Container Benchmark: C++ Hash Container Benchmark for STL map, C++0x unordered map, Boost unordered map, ATL map and ATL hash map for STL wide string and ATL CString.Colour Lovers .NET: A .NET library for the Colour Lovers API.DatingGame: Course to teach high-school aged girls basic T-SQL using a fun scenario - querying to find the hottest boys! Used at Microsoft DigiGirlz and TKP events. Included DDL script, CSV for bcp with data, PPTX, T-SQL Cheat Sheet and teaching tips. Enjoy!do-Dots open .NET SDK: The do-Dots open SDK brings developers a full set of classes that allow to build applications based on do-Dots, a framework for M2M communication. It's developed in C#. EFMVC - ASP.NET MVC 3 and EF Code First: Demo web app using ASP.NET MVC 3 and EF Code FirstGS1: D is a 2D game demo written in C++ and using an API : HAPI for the graphic part and the audio part. All the xml files are handled with tinyXML. It is a vertical scrolling shoot'em up where the player controls a dragon flying in Central Park.GS2: In Zombies, you are a wizard, the most powerful wizard in the world, and two days ago, the Devil forces began to attack our world. The only person capable of stopping them is you, this is why the Devil himself came to you and took your powers. You're now alone, without any weaponIPProvider: DFGiwtfly: ????iwtfly26050: iwtfly2Knowledge Exchange .Net: This is my learning experience with creating an enterprise scale .NET application with tools such as Tortoise SVN, NANT, and Linq to SQLLinqPad Data Context Driver for SharePoint: The SharePoint Data Context Driver for LinqPad makes it easer for SharePoint 2010 Developers to develop, maintain and just play around with Linq To SharePoint statements via LinqPad. It is developed in C# and enables SharePoint 2010 Support to LinqPad.MaxLeafWebSiteK3: MaxLeafWebSiteK3Open ASP.NET CMS: Open ASP.NET 3.5 CMS Plug 'N Play Settings Manager: Plug 'N Play Settings Manager will be an application to configure settings on a windows computer by waiting for a usb thumbstick with a configuration file to be inserted, the application would then read and apply those settings. The early focus will be applying network settings.project windy: Windy - enhanced window manager. windy does window management a breeze. It started as a windows alternative to divvy, but now it has evolved with into its own. Thanks to the generous feedback from you folks. whats different from divvy? - first - its free. - has divvy likeRiaMVVM : MVVM Friendly WCF Ria Services: Simple, light-weight, MVVM friendly access to WCF Ria Services. Written in C# for use with Silverlight 4.SharePoint Designer 2007 Policy: Enable or Disable SharePoint Designer 2007 per site web application and per site colleciton. Spruckus - SharePoint ReUsable Content Keystamp Usage Search: Adds a keystamp to all html type items in the SharePoint Reusable Content list and adds a context item to the reusable content list that will find usages of that reusable content in your site using search.Student Insiders: Student InsidersTea: Tea Web Operator SystemVegas.NET: Projeto teste de TransportadoraXNA 4 Game state management system: XNA 4 Game State Management??????: aa

    Read the article

  • Creating a thematic map

    - by jsharma
    This post describes how to create a simple thematic map, just a state population layer, with no underlying map tile layer. The map shows states color-coded by total population. The map is interactive with info-windows and can be panned and zoomed. The sample code demonstrates the following: Displaying an interactive vector layer with no background map tile layer (i.e. purpose and use of the Universe object) Using a dynamic (i.e. defined via the javascript client API) color bucket style Dynamically changing a layer's rendering style Specifying which attribute value to use in determining the bucket, and hence style, for a feature (FoI) The result is shown in the screenshot below. The states layer was defined, and stored in the user_sdo_themes view of the mvdemo schema, using MapBuilder. The underlying table is defined as SQL> desc states_32775  Name                                      Null?    Type ----------------------------------------- -------- ----------------------------  STATE                                              VARCHAR2(26)  STATE_ABRV                                         VARCHAR2(2) FIPSST                                             VARCHAR2(2) TOTPOP                                             NUMBER PCTSMPLD                                           NUMBER LANDSQMI                                           NUMBER POPPSQMI                                           NUMBER ... MEDHHINC NUMBER AVGHHINC NUMBER GEOM32775 MDSYS.SDO_GEOMETRY We'll use the TOTPOP column value in the advanced (color bucket) style for rendering the states layers. The predefined theme (US_STATES_BI) is defined as follows. SQL> select styling_rules from user_sdo_themes where name='US_STATES_BI'; STYLING_RULES -------------------------------------------------------------------------------- <?xml version="1.0" standalone="yes"?> <styling_rules highlight_style="C.CB_QUAL_8_CLASS_DARK2_1"> <hidden_info> <field column="STATE" name="Name"/> <field column="POPPSQMI" name="POPPSQMI"/> <field column="TOTPOP" name="TOTPOP"/> </hidden_info> <rule column="TOTPOP"> <features style="states_totpop"> </features> <label column="STATE_ABRV" style="T.BLUE_SERIF_10"> 1 </label> </rule> </styling_rules> SQL> The theme definition specifies that the state, poppsqmi, totpop, state_abrv, and geom columns will be queried from the states_32775 table. The state_abrv value will be used to label the state while the totpop value will be used to determine the color-fill from those defined in the states_totpop advanced style. The states_totpop style, which we will not use in our demo, is defined as shown below. SQL> select definition from user_sdo_styles where name='STATES_TOTPOP'; DEFINITION -------------------------------------------------------------------------------- <?xml version="1.0" ?> <AdvancedStyle> <BucketStyle> <Buckets default_style="C.S02_COUNTRY_AREA"> <RangedBucket seq="0" label="10K - 5M" low="10000" high="5000000" style="C.SEQ6_01" /> <RangedBucket seq="1" label="5M - 12M" low="5000001" high="1.2E7" style="C.SEQ6_02" /> <RangedBucket seq="2" label="12M - 20M" low="1.2000001E7" high="2.0E7" style="C.SEQ6_04" /> <RangedBucket seq="3" label="&gt; 20M" low="2.0000001E7" high="5.0E7" style="C.SEQ6_05" /> </Buckets> </BucketStyle> </AdvancedStyle> SQL> The demo defines additional advanced styles via the OM.style object and methods and uses those instead when rendering the states layer.   Now let's look at relevant snippets of code that defines the map extent and zoom levels (i.e. the OM.universe),  loads the states predefined vector layer (OM.layer), and sets up the advanced (color bucket) style. Defining the map extent and zoom levels. function initMap() {   //alert("Initialize map view");     // define the map extent and number of zoom levels.   // The Universe object is similar to the map tile layer configuration   // It defines the map extent, number of zoom levels, and spatial reference system   // well-known ones (like web mercator/google/bing or maps.oracle/elocation are predefined   // The Universe must be defined when there is no underlying map tile layer.   // When there is a map tile layer then that defines the map extent, srid, and zoom levels.      var uni= new OM.universe.Universe(     {         srid : 32775,         bounds : new OM.geometry.Rectangle(                         -3280000, 170000, 2300000, 3200000, 32775),         numberOfZoomLevels: 8     }); The srid specifies the spatial reference system which is Equal-Area Projection (United States). SQL> select cs_name from cs_srs where srid=32775 ; CS_NAME --------------------------------------------------- Equal-Area Projection (United States) The bounds defines the map extent. It is a Rectangle defined using the lower-left and upper-right coordinates and srid. Loading and displaying the states layer This is done in the states() function. The full code is at the end of this post, however here's the snippet which defines the states VectorLayer.     // States is a predefined layer in user_sdo_themes     var  layer2 = new OM.layer.VectorLayer("vLayer2",     {         def:         {             type:OM.layer.VectorLayer.TYPE_PREDEFINED,             dataSource:"mvdemo",             theme:"us_states_bi",             url: baseURL,             loadOnDemand: false         },         boundingTheme:true      }); The first parameter is a layer name, the second is an object literal for a layer config. The config object has two attributes: the first is the layer definition, the second specifies whether the layer is a bounding one (i.e. used to determine the current map zoom and center such that the whole layer is displayed within the map window) or not. The layer config has the following attributes: type - specifies whether is a predefined one, a defined via a SQL query (JDBC), or in a json-format file (DATAPACK) theme - is the predefined theme's name url - is the location of the mapviewer server loadOnDemand - specifies whether to load all the features or just those that lie within the current map window and load additional ones as needed on a pan or zoom The code snippet below dynamically defines an advanced style and then uses it, instead of the 'states_totpop' style, when rendering the states layer. // override predefined rendering style with programmatic one    var theRenderingStyle =      createBucketColorStyle('YlBr5', colorSeries, 'States5', true);   // specify which attribute is used in determining the bucket (i.e. color) to use for the state   // It can be an array because the style could be a chart type (pie/bar)   // which requires multiple attribute columns     // Use the STATE.TOTPOP column (aka attribute) value here    layer2.setRenderingStyle(theRenderingStyle, ["TOTPOP"]); The style itself is defined in the createBucketColorStyle() function. Dynamically defining an advanced style The advanced style used here is a bucket color style, i.e. a color style is associated with each bucket. So first we define the colors and then the buckets.     numClasses = colorSeries[colorName].classes;    // create Color Styles    for (var i=0; i < numClasses; i++)    {         theStyles[i] = new OM.style.Color(                      {fill: colorSeries[colorName].fill[i],                        stroke:colorSeries[colorName].stroke[i],                       strokeOpacity: useGradient? 0.25 : 1                      });    }; numClasses is the number of buckets. The colorSeries array contains the color fill and stroke definitions and is: var colorSeries = { //multi-hue color scheme #10 YlBl. "YlBl3": {   classes:3,                  fill: [0xEDF8B1, 0x7FCDBB, 0x2C7FB8],                  stroke:[0xB5DF9F, 0x72B8A8, 0x2872A6]   }, "YlBl5": {   classes:5,                  fill:[0xFFFFCC, 0xA1DAB4, 0x41B6C4, 0x2C7FB8, 0x253494],                  stroke:[0xE6E6B8, 0x91BCA2, 0x3AA4B0, 0x2872A6, 0x212F85]   }, //multi-hue color scheme #11 YlBr.  "YlBr3": {classes:3,                  fill:[0xFFF7BC, 0xFEC44F, 0xD95F0E],                  stroke:[0xE6DEA9, 0xE5B047, 0xC5360D]   }, "YlBr5": {classes:5,                  fill:[0xFFFFD4, 0xFED98E, 0xFE9929, 0xD95F0E, 0x993404],                  stroke:[0xE6E6BF, 0xE5C380, 0xE58A25, 0xC35663, 0x8A2F04]     }, etc. Next we create the bucket style.    bucketStyleDef = {       numClasses : colorSeries[colorName].classes, //      classification: 'custom',  //since we are supplying all the buckets //      buckets: theBuckets,       classification: 'logarithmic',  // use a logarithmic scale       styles: theStyles,       gradient:  useGradient? 'linear' : 'off' //      gradient:  useGradient? 'radial' : 'off'     };    theBucketStyle = new OM.style.BucketStyle(bucketStyleDef);    return theBucketStyle; A BucketStyle constructor takes a style definition as input. The style definition specifies the number of buckets (numClasses), a classification scheme (which can be equal-ranged, logarithmic scale, or custom), the styles for each bucket, whether to use a gradient effect, and optionally the buckets (required when using a custom classification scheme). The full source for the demo <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> <title>Oracle Maps V2 Thematic Map Demo</title> <script src="http://localhost:8080/mapviewer/jslib/v2/oraclemapsv2.js" type="text/javascript"> </script> <script type="text/javascript"> //var $j = jQuery.noConflict(); var baseURL="http://localhost:8080/mapviewer"; // location of mapviewer OM.gv.proxyEnabled =false; // no mvproxy needed OM.gv.setResourcePath(baseURL+"/jslib/v2/images/"); // location of resources for UI elements like nav panel buttons var map = null; // the client mapviewer object var statesLayer = null, stateCountyLayer = null; // The vector layers for states and counties in a state var layerName="States"; // initial map center and zoom var mapCenterLon = -20000; var mapCenterLat = 1750000; var mapZoom = 2; var mpoint = new OM.geometry.Point(mapCenterLon,mapCenterLat,32775); var currentPalette = null, currentStyle=null; // set an onchange listener for the color palette select list // initialize the map // load and display the states layer $(document).ready( function() { $("#demo-htmlselect").change(function() { var theColorScheme = $(this).val(); useSelectedColorScheme(theColorScheme); }); initMap(); states(); } ); /** * color series from ColorBrewer site (http://colorbrewer2.org/). */ var colorSeries = { //multi-hue color scheme #10 YlBl. "YlBl3": { classes:3, fill: [0xEDF8B1, 0x7FCDBB, 0x2C7FB8], stroke:[0xB5DF9F, 0x72B8A8, 0x2872A6] }, "YlBl5": { classes:5, fill:[0xFFFFCC, 0xA1DAB4, 0x41B6C4, 0x2C7FB8, 0x253494], stroke:[0xE6E6B8, 0x91BCA2, 0x3AA4B0, 0x2872A6, 0x212F85] }, //multi-hue color scheme #11 YlBr. "YlBr3": {classes:3, fill:[0xFFF7BC, 0xFEC44F, 0xD95F0E], stroke:[0xE6DEA9, 0xE5B047, 0xC5360D] }, "YlBr5": {classes:5, fill:[0xFFFFD4, 0xFED98E, 0xFE9929, 0xD95F0E, 0x993404], stroke:[0xE6E6BF, 0xE5C380, 0xE58A25, 0xC35663, 0x8A2F04] }, // single-hue color schemes (blues, greens, greys, oranges, reds, purples) "Purples5": {classes:5, fill:[0xf2f0f7, 0xcbc9e2, 0x9e9ac8, 0x756bb1, 0x54278f], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Blues5": {classes:5, fill:[0xEFF3FF, 0xbdd7e7, 0x68aed6, 0x3182bd, 0x18519C], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Greens5": {classes:5, fill:[0xedf8e9, 0xbae4b3, 0x74c476, 0x31a354, 0x116d2c], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Greys5": {classes:5, fill:[0xf7f7f7, 0xcccccc, 0x969696, 0x636363, 0x454545], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Oranges5": {classes:5, fill:[0xfeedde, 0xfdb385, 0xfd8d3c, 0xe6550d, 0xa63603], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Reds5": {classes:5, fill:[0xfee5d9, 0xfcae91, 0xfb6a4a, 0xde2d26, 0xa50f15], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] } }; function createBucketColorStyle( colorName, colorSeries, rangeName, useGradient) { var theBucketStyle; var bucketStyleDef; var theStyles = []; var theColors = []; var aBucket, aStyle, aColor, aRange; var numClasses ; numClasses = colorSeries[colorName].classes; // create Color Styles for (var i=0; i < numClasses; i++) { theStyles[i] = new OM.style.Color( {fill: colorSeries[colorName].fill[i], stroke:colorSeries[colorName].stroke[i], strokeOpacity: useGradient? 0.25 : 1 }); }; bucketStyleDef = { numClasses : colorSeries[colorName].classes, // classification: 'custom', //since we are supplying all the buckets // buckets: theBuckets, classification: 'logarithmic', // use a logarithmic scale styles: theStyles, gradient: useGradient? 'linear' : 'off' // gradient: useGradient? 'radial' : 'off' }; theBucketStyle = new OM.style.BucketStyle(bucketStyleDef); return theBucketStyle; } function initMap() { //alert("Initialize map view"); // define the map extent and number of zoom levels. // The Universe object is similar to the map tile layer configuration // It defines the map extent, number of zoom levels, and spatial reference system // well-known ones (like web mercator/google/bing or maps.oracle/elocation are predefined // The Universe must be defined when there is no underlying map tile layer. // When there is a map tile layer then that defines the map extent, srid, and zoom levels. var uni= new OM.universe.Universe( { srid : 32775, bounds : new OM.geometry.Rectangle( -3280000, 170000, 2300000, 3200000, 32775), numberOfZoomLevels: 8 }); map = new OM.Map( document.getElementById('map'), { mapviewerURL: baseURL, universe:uni }) ; var navigationPanelBar = new OM.control.NavigationPanelBar(); map.addMapDecoration(navigationPanelBar); } // end initMap function states() { //alert("Load and display states"); layerName = "States"; if(statesLayer) { // states were already visible but the style may have changed // so set the style to the currently selected one var theData = $('#demo-htmlselect').val(); setStyle(theData); } else { // States is a predefined layer in user_sdo_themes var layer2 = new OM.layer.VectorLayer("vLayer2", { def: { type:OM.layer.VectorLayer.TYPE_PREDEFINED, dataSource:"mvdemo", theme:"us_states_bi", url: baseURL, loadOnDemand: false }, boundingTheme:true }); // add drop shadow effect and hover style var shadowFilter = new OM.visualfilter.DropShadow({opacity:0.5, color:"#000000", offset:6, radius:10}); var hoverStyle = new OM.style.Color( {stroke:"#838383", strokeThickness:2}); layer2.setHoverStyle(hoverStyle); layer2.setHoverVisualFilter(shadowFilter); layer2.enableFeatureHover(true); layer2.enableFeatureSelection(false); layer2.setLabelsVisible(true); // override predefined rendering style with programmatic one var theRenderingStyle = createBucketColorStyle('YlBr5', colorSeries, 'States5', true); // specify which attribute is used in determining the bucket (i.e. color) to use for the state // It can be an array because the style could be a chart type (pie/bar) // which requires multiple attribute columns // Use the STATE.TOTPOP column (aka attribute) value here layer2.setRenderingStyle(theRenderingStyle, ["TOTPOP"]); currentPalette = "YlBr5"; var stLayerIdx = map.addLayer(layer2); //alert('State Layer Idx = ' + stLayerIdx); map.setMapCenter(mpoint); map.setMapZoomLevel(mapZoom) ; // display the map map.init() ; statesLayer=layer2; // add rt-click event listener to show counties for the state layer2.addListener(OM.event.MouseEvent.MOUSE_RIGHT_CLICK,stateRtClick); } // end if } // end states function setStyle(styleName) { // alert("Selected Style = " + styleName); // there may be a counties layer also displayed. // that wll have different bucket ranges so create // one style for states and one for counties var newRenderingStyle = null; if (layerName === "States") { if(/3/.test(styleName)) { newRenderingStyle = createBucketColorStyle(styleName, colorSeries, 'States3', false); currentStyle = createBucketColorStyle(styleName, colorSeries, 'Counties3', false); } else { newRenderingStyle = createBucketColorStyle(styleName, colorSeries, 'States5', false); currentStyle = createBucketColorStyle(styleName, colorSeries, 'Counties5', false); } statesLayer.setRenderingStyle(newRenderingStyle, ["TOTPOP"]); if (stateCountyLayer) stateCountyLayer.setRenderingStyle(currentStyle, ["TOTPOP"]); } } // end setStyle function stateRtClick(evt){ var foi = evt.feature; //alert('Rt-Click on State: ' + foi.attributes['_label_'] + // ' with pop ' + foi.attributes['TOTPOP']); // display another layer with counties info // layer may change on each rt-click so create and add each time. var countyByState = null ; // the _label_ attribute of a feature in this case is the state abbreviation // we will use that to query and get the counties for a state var sqlText = "select totpop,geom32775 from counties_32775_moved where state_abrv="+ "'"+foi.getAttributeValue('_label_')+"'"; // alert(sqlText); if (currentStyle === null) currentStyle = createBucketColorStyle('YlBr5', colorSeries, 'Counties5', false); /* try a simple style instead new OM.style.ColorStyle( { stroke: "#B8F4FF", fill: "#18E5F4", fillOpacity:0 } ); */ // remove existing layer if any if(stateCountyLayer) map.removeLayer(stateCountyLayer); countyByState = new OM.layer.VectorLayer("stCountyLayer", {def:{type:OM.layer.VectorLayer.TYPE_JDBC, dataSource:"mvdemo", sql:sqlText, url:baseURL}}); // url:baseURL}, // renderingStyle:currentStyle}); countyByState.setVisible(true); // specify which attribute is used in determining the bucket (i.e. color) to use for the state countyByState.setRenderingStyle(currentStyle, ["TOTPOP"]); var ctLayerIdx = map.addLayer(countyByState); // alert('County Layer Idx = ' + ctLayerIdx); //map.addLayer(countyByState); stateCountyLayer = countyByState; } // end stateRtClick function useSelectedColorScheme(theColorScheme) { if(map) { // code to update renderStyle goes here //alert('will try to change render style'); setStyle(theColorScheme); } else { // do nothing } } </script> </head> <body bgcolor="#b4c5cc" style="height:100%;font-family:Arial,Helvetica,Verdana"> <h3 align="center">State population thematic map </h3> <div id="demo" style="position:absolute; left:68%; top:44px; width:28%; height:100%"> <HR/> <p/> Choose Color Scheme: <select id="demo-htmlselect"> <option value="YlBl3"> YellowBlue3</option> <option value="YlBr3"> YellowBrown3</option> <option value="YlBl5"> YellowBlue5</option> <option value="YlBr5" selected="selected"> YellowBrown5</option> <option value="Blues5"> Blues</option> <option value="Greens5"> Greens</option> <option value="Greys5"> Greys</option> <option value="Oranges5"> Oranges</option> <option value="Purples5"> Purples</option> <option value="Reds5"> Reds</option> </select> <p/> </div> <div id="map" style="position:absolute; left:10px; top:50px; width:65%; height:75%; background-color:#778f99"></div> <div style="position:absolute;top:85%; left:10px;width:98%" class="noprint"> <HR/> <p> Note: This demo uses HTML5 Canvas and requires IE9+, Firefox 10+, or Chrome. No map will show up in IE8 or earlier. </p> </div> </body> </html>

    Read the article

  • CodePlex Daily Summary for Saturday, July 07, 2012

    CodePlex Daily Summary for Saturday, July 07, 2012Popular ReleasesHigLabo: HigLabo_20120706: Breaking change Now HigLabo.Mail require reference to HigLabo.Net. ProtocolType change name to HttpProtocolType in HigLabo.Net project. AsyncCallErrorEventArgs change name to AsyncHttpCallErrorEventArgs. Delete command class in Pop3,Smtp that may not used. Other change Add HigLabo.Net.Ftp project.(Not complete) Create SocketClient that can easily communicate to server by Socket object.ecBlog: ecBlog 0.2: ecBlog alpha realaseTaskScheduler ASP.NET: Release 3 - 1.2.0.0: Release 3 - Version 1.2.0.0 That version was altered only the library: In TaskScheduler was added new properties: UseBackgroundThreads Enables the use of separate threads for each task. StoreThreadsInPool Manager enables to store in the Pool threads that are performing the tasks. OnStopSchedulerAutoCancelThreads Scheduler allows aborting threads when it is stopped. false if the scheduler is not aborted the threads that are running. AutoDeletedExecutedTasks Allows Manager Delete Task afte...DotNetNuke Persian Packages: ??? ?? ???? ????? ???? 6.2.0: *????? ???? ??? ?? ???? 6.2.0 ? ??????? ???? ????? ???? ??? ????? *????? ????? ????? ??? ??? ???? ??? ??????? ??????? - ???? *?????? ???? ??? ?????? ?? ???? ???? ????? ? ?? ??? ?? ???? ???? ?? *????? ????? ????? ????? ????? / ??????? ???? ?? ???? ??? ??? - ???? *???? ???? ???? ????? ? ??????? ??? ??? ??? ?? ???? *????? ????? ???????? ??? ? ??????? ?? ?? ?????? ????? ????????? ????? ?????? - ???? *????? ????? ?????? ????? ?? ???? ?? ?? ?? ???????? ????? ????? ????????? ????? ?????? *???? ?...xUnit.net Contrib: xunitcontrib-resharper 0.6 (RS 7.0, 6.1.1): xunitcontrib release 0.6 (ReSharper runner) This release provides a test runner plugin for Resharper 7.0 (EAP build 82) and 6.1, targetting all versions of xUnit.net. (See the xUnit.net project to download xUnit.net itself.) Copies of the plugin that support previous verions of ReSharper can be downloaded from this release. The plan is to support the latest revisions of the last two paid-for major versions of ReSharper (namely 7.0 and 6.1) Also note that all builds work against ALL VERSIONS...Umbraco CMS: Umbraco 4.8.0 Beta: Whats newuComponents in the core Multi-Node Tree Picker, Multiple Textstring, Slider and XPath Lists Easier Lucene searching built in IFile providers for easier file handling Updated 3rd party libraries Applications / Trees moved out of the database SQL Azure support added Various bug fixes Getting Started A great place to start is with our Getting Started Guide: Getting Started Guide: http://umbraco.codeplex.com/Project/Download/FileDownload.aspx?DownloadId=197051 Make sure to...CODE Framework: 4.0.20704.0: See CODE Framework (.NET) Change Log for changes in this version.?????????? - ????????: All-In-One Code Framework ??? 2012-07-04: http://download.codeplex.com/Project/Download/FileDownload.aspx?ProjectName=1codechs&DownloadId=216140 ???OneCode??????,??????????10????Microsoft OneCode Sample,????4?Windows Base Sample,2?XML Sample?4?ASP.NET Sample。???????????。 ????,?????。http://i3.codeplex.com/Project/Download/FileDownload.aspx?ProjectName=1code&DownloadId=128165 Windows Base Sample CSCheckOSBitness VBCheckOSBitness CSCheckOSVersion VBCheckOSVersion XML Sample CSXPath VBXPath ASP.NET Sample CSASPNETDataPager VBASPNET...xUnit.net - Unit testing framework for C# and .NET (a successor to NUnit): xUnit.net 1.9.1: xUnit.net release 1.9.1Build #1600 Important note for Resharper users: Resharper support has been moved to the xUnit.net Contrib project. Important note for TestDriven.net users: If you are having issues running xUnit.net tests in TestDriven.net, especially on 64-bit Windows, we strongly recommend you upgrade to TD.NET version 3.0 or later. Important note for VS2012 users: The VS2012 runner is in the Visual Studio Gallery now, and should be installed via Tools | Extension Manager from insi...MVC Controls Toolkit: Mvc Controls Toolkit 2.2.0: Added Modified all Mv4 related features to conform with the Mvc4 RC Now all items controls accept any IEnumerable<T>(before just List<T> were accepted by most of controls) retrievalManager class that retrieves automatically data from a data source whenever it catchs events triggered by filtering, sorting, and paging controls move method to the updatesManager to move one child objects from a father to another. The move operation can be undone like the insert, update and delete operatio...IronPython: 2.7.3: On behalf of the IronPython team, I'm happy to announce the final release of IronPython 2.7.3. This release includes everything from IronPython 54498, 62475, and 74478 as well. Like all IronPython 2.7-series releases, .NET 4 is required to install it. Installing this release will replace any existing IronPython 2.7-series installation. The incompatibility with IronRuby has been resolved, and they can once again be installed side-by-side. The biggest improvements in IronPython 2.7.3 are: the...BlackJumboDog: Ver5.6.6: 2012.07.03 Ver5.6.6 (1) ???????????ftp://?????????、????LIST?????Mini SQL Query: Mini SQL Query (v1.0.68.441): Just a bug fix release for when the connections try to refresh after an edit. Make sure you read the Quickstart for an introduction.Microsoft Ajax Minifier: Microsoft Ajax Minifier 4.58: Fix for Issue #18296: provide "ALL" value to the -ignore switch to ignore all error and warning messages. Fix for issue #18293: if encountering EOF before a function declaration or expression is properly closed, throw an appropriate error and don't crash. Adjust the variable-renaming algorithm so it's very specific when renaming variables with the same number of references so a single source file ends up with the same minified names on different platforms. add the ability to specify kno...LogExpert: 1.4 build 4566: This release for the 1.4 version line contains various fixes which have been made some times ago. Until now these fixes were only available in the 1.5 alpha versions. It also contains a fix for: 710. Column finder (press F8 to show) Terminal server issues: Multiple sessions with same user should work now Settings Export/Import available via Settings Dialog still incomple (e.g. tab colors are not saved) maybe I change the file format one day no command line support yet (for importin...CommonLibrary.NET: CommonLibrary.NET 0.9.8.5 - Final Release: A collection of very reusable code and components in C# 4.0 ranging from ActiveRecord, Csv, Command Line Parsing, Configuration, Holiday Calendars, Logging, Authentication, and much more. FluentscriptCommonLibrary.NET 0.9.8 contains a scripting language called FluentScript. Releases notes for FluentScript located at http://fluentscript.codeplex.com/wikipage?action=Edit&title=Release%20Notes&referringTitle=Documentation Fluentscript - 0.9.8.5 - Final ReleaseApplication: FluentScript Versio...SharePoint 2010 Metro UI: SharePoint 2010 Metro UI8: Please review the documentation link for how to install. Installation takes some basic knowledge of how to upload and edit SharePoint Artifact files. Please view the discussions tab for ongoing FAQsnopCommerce. Open source shopping cart (ASP.NET MVC): nopcommerce 2.60: Highlight features & improvements: • Significant performance optimization. • Use AJAX for adding products to the cart. • New flyout mini-shopping cart. • Auto complete suggestions for product searching. • Full-Text support. • EU cookie law support. To see the full list of fixes and changes please visit the release notes page (http://www.nopCommerce.com/releasenotes.aspx).THE NVL Maker: The NVL Maker Ver 3.51: http://download.codeplex.com/Download?ProjectName=nvlmaker&DownloadId=371510 ????:http://115.com/file/beoef05k#THE-NVL-Maker-ver3.51-sim.7z ????:http://www.mediafire.com/file/6tqdwj9jr6eb9qj/THENVLMakerver3.51tra.7z ======================================== ???? ======================================== 3.51 beta ???: ·?????????????????????? ·?????????,?????????0,?????????????????????? ·??????????????????????????? ·?????????????TJS????(EXP??) ·??4:3???,???????????????,??????????? ·?????????...????: ????2.0.3: 1、???????????。 2、????????。 3、????????????。 4、bug??,????。New ProjectsCode Bits: Set of useful code blocks that can be included in your code. Includes NuGet support.Critr: A personal project that takes formatted Excel show logs, parses them and uploads them to small local database for analytics.kb.net: An Open Source Knowledge Base based on SQL Server Express 2012 and .Net 4.0LyncServerExtension: L’objectif de ce projet est l’ajout de la fonctionnalité de délégation patron/secrétaire à Microsoft Lync Server 2010. MVC Web Api 4 Flot: MVC4 Web Api Service Layers for the Flot project on http://code.google.com/p/flot. Until now implemented only the GET method.ostests: testif is web and mobile assessment software. Create interactive tests easily and share them with your colleagues, employees and friends.Pegasus Attack: Pegasus Attack will be a simple shmup style game in the style of Truxton Basic features Multiple levels (text document written, just stores location of enemies) Basic enemies with basic AI (hard-coded, or from a text document) Various bullet types Title screen / Help screen / Control window / In-game game-states / two playable Characters Rainbow Dash and Fluttershy Basic effects (explosion animation) Items (powerups, guns, ...)proLearningEnglish: Apps RDF to build a software for learning English. Users are teachers and pupils in grades 6.Pusher .Net Client: This is a .Net client for Pusher (http://www.pusher.com) allowing .Net clients such as WinForms and Console applications to receive websocket messages.RadEditor Lite for AJAX: RadEditor Lite for AJAX modified from the open source Telerik Free Tool: RadEditor Lite for MOSS 2010. RconLibrary: Battlefield 3 RCON communication library.SharePoint Notes: Simple visual webpart to show list items as notes. Easy to modify, and not really complex.Software Manager: Software Manager is a software package that will help with distribution and licensing of programs that are developed with VB.NET or C#.StoreFramework: this project is a test framework about the codefirst and pocoTwitterRt - Tweet from Windows Metro Apps: Add the ability to tweet from your Metro style (WinRT) application. Binaries at nuget.org/packages/TwitterRt. Discussion at w8isms.blogspot.com.YucadagBlog: e

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • Brute force characters into a textbox in c#

    - by Fred Dunly
    Hey everyone, I am VERY new to programming and the only language I know is C# So I will have to stick with that... I want to make a program that "test passwords" to see how long they would take to break with a basic brute force attack. So what I did was make 2 text boxes. (textbox1 and textbox2) and wrote the program so if the text boxes had the input, a "correct password" label would appear, but i want to write the program so that textbox2 will run a brute force algorithm in it, and when it comes across the correct password, it will stop. I REALLY need help, and if you could just post my attached code with the correct additives in it that would be great. The program so far is extremely simple, but I am very new to this, so. Thanks in advance. private void textBox2_TextChanged(object sender, EventArgs e) { } private void button1_Click(object sender, EventArgs e) { if (textBox2.Text == textBox1.Text) { label1.Text = "Password Correct"; } else { label1.Text = "Password Wrong"; } } private void label1_Click(object sender, EventArgs e) { } } } `

    Read the article

  • C Programming - Convert an integer to binary

    - by leo
    Hi guys - i was hopefully after some tips opposed to solutions as this is homework and i want to solve it myself I am firstly very new to C. In fact i have never done any before, though i have previous java experience from modules at university. I am trying to write a programme that converts a single integer in to binary. I am only allowed to use bitwise operations and no library functions Can anyone possibly suggest some ideas about how i would go about doing this. Obviously i dont want code or anything, just some ideas as to what avenues to explore as currenty i am a little confused and have no plan of attack. Well, make that a lot confused :D thanks very much

    Read the article

  • Move penetrating OBB out of another OBB to resolve collision

    - by Milo
    I'm working on collision resolution for my game. I just need a good way to get an object out of another object if it gets stuck. In this case a car. Here is a typical scenario. The red car is in the green object. How do I correctly get it out so the car can slide along the edge of the object as it should. I tried: if(buildings.size() > 0) { Entity e = buildings.get(0); Vector2D vel = new Vector2D(); vel.x = vehicle.getVelocity().x; vel.y = vehicle.getVelocity().y; vel.normalize(); while(vehicle.getRect().overlaps(e.getRect())) { vehicle.setCenter(vehicle.getCenterX() - vel.x * 0.1f, vehicle.getCenterY() - vel.y * 0.1f); } colided = true; } But that does not work too well. Is there some sort of vector I could calculate to use as the vector to move the car away from the object? Thanks Here is my OBB2D class: public class OBB2D { // Corners of the box, where 0 is the lower left. private Vector2D corner[] = new Vector2D[4]; private Vector2D center = new Vector2D(); private Vector2D extents = new Vector2D(); private RectF boundingRect = new RectF(); private float angle; //Two edges of the box extended away from corner[0]. private Vector2D axis[] = new Vector2D[2]; private double origin[] = new double[2]; public OBB2D(Vector2D center, float w, float h, float angle) { set(center,w,h,angle); } public OBB2D(float left, float top, float width, float height) { set(new Vector2D(left + (width / 2), top + (height / 2)),width,height,0.0f); } public void set(Vector2D center,float w, float h,float angle) { Vector2D X = new Vector2D( (float)Math.cos(angle), (float)Math.sin(angle)); Vector2D Y = new Vector2D((float)-Math.sin(angle), (float)Math.cos(angle)); X = X.multiply( w / 2); Y = Y.multiply( h / 2); corner[0] = center.subtract(X).subtract(Y); corner[1] = center.add(X).subtract(Y); corner[2] = center.add(X).add(Y); corner[3] = center.subtract(X).add(Y); computeAxes(); extents.x = w / 2; extents.y = h / 2; computeDimensions(center,angle); } private void computeDimensions(Vector2D center,float angle) { this.center.x = center.x; this.center.y = center.y; this.angle = angle; boundingRect.left = Math.min(Math.min(corner[0].x, corner[3].x), Math.min(corner[1].x, corner[2].x)); boundingRect.top = Math.min(Math.min(corner[0].y, corner[1].y),Math.min(corner[2].y, corner[3].y)); boundingRect.right = Math.max(Math.max(corner[1].x, corner[2].x), Math.max(corner[0].x, corner[3].x)); boundingRect.bottom = Math.max(Math.max(corner[2].y, corner[3].y),Math.max(corner[0].y, corner[1].y)); } public void set(RectF rect) { set(new Vector2D(rect.centerX(),rect.centerY()),rect.width(),rect.height(),0.0f); } // Returns true if other overlaps one dimension of this. private boolean overlaps1Way(OBB2D other) { for (int a = 0; a < axis.length; ++a) { double t = other.corner[0].dot(axis[a]); // Find the extent of box 2 on axis a double tMin = t; double tMax = t; for (int c = 1; c < corner.length; ++c) { t = other.corner[c].dot(axis[a]); if (t < tMin) { tMin = t; } else if (t > tMax) { tMax = t; } } // We have to subtract off the origin // See if [tMin, tMax] intersects [0, 1] if ((tMin > 1 + origin[a]) || (tMax < origin[a])) { // There was no intersection along this dimension; // the boxes cannot possibly overlap. return false; } } // There was no dimension along which there is no intersection. // Therefore the boxes overlap. return true; } //Updates the axes after the corners move. Assumes the //corners actually form a rectangle. private void computeAxes() { axis[0] = corner[1].subtract(corner[0]); axis[1] = corner[3].subtract(corner[0]); // Make the length of each axis 1/edge length so we know any // dot product must be less than 1 to fall within the edge. for (int a = 0; a < axis.length; ++a) { axis[a] = axis[a].divide((axis[a].length() * axis[a].length())); origin[a] = corner[0].dot(axis[a]); } } public void moveTo(Vector2D center) { Vector2D centroid = (corner[0].add(corner[1]).add(corner[2]).add(corner[3])).divide(4.0f); Vector2D translation = center.subtract(centroid); for (int c = 0; c < 4; ++c) { corner[c] = corner[c].add(translation); } computeAxes(); computeDimensions(center,angle); } // Returns true if the intersection of the boxes is non-empty. public boolean overlaps(OBB2D other) { if(right() < other.left()) { return false; } if(bottom() < other.top()) { return false; } if(left() > other.right()) { return false; } if(top() > other.bottom()) { return false; } if(other.getAngle() == 0.0f && getAngle() == 0.0f) { return true; } return overlaps1Way(other) && other.overlaps1Way(this); } public Vector2D getCenter() { return center; } public float getWidth() { return extents.x * 2; } public float getHeight() { return extents.y * 2; } public void setAngle(float angle) { set(center,getWidth(),getHeight(),angle); } public float getAngle() { return angle; } public void setSize(float w,float h) { set(center,w,h,angle); } public float left() { return boundingRect.left; } public float right() { return boundingRect.right; } public float bottom() { return boundingRect.bottom; } public float top() { return boundingRect.top; } public RectF getBoundingRect() { return boundingRect; } public boolean overlaps(float left, float top, float right, float bottom) { if(right() < left) { return false; } if(bottom() < top) { return false; } if(left() > right) { return false; } if(top() > bottom) { return false; } return true; } };

    Read the article

  • Deferred rendering with VSM - Scaling light depth loses moments

    - by user1423893
    I'm calculating my shadow term using a VSM method. This works correctly when using forward rendered lights but fails with deferred lights. // Shadow term (1 = no shadow) float shadow = 1; // [Light Space -> Shadow Map Space] // Transform the surface into light space and project // NB: Could be done in the vertex shader, but doing it here keeps the // "light shader" abstraction and doesn't limit the number of shadowed lights float4x4 LightViewProjection = mul(LightView, LightProjection); float4 surf_tex = mul(position, LightViewProjection); // Re-homogenize // 'w' component is not used in later calculations so no need to homogenize (it will equal '1' if homogenized) surf_tex.xyz /= surf_tex.w; // Rescale viewport to be [0,1] (texture coordinate system) float2 shadow_tex; shadow_tex.x = surf_tex.x * 0.5f + 0.5f; shadow_tex.y = -surf_tex.y * 0.5f + 0.5f; // Half texel offset //shadow_tex += (0.5 / 512); // Scaled distance to light (instead of 'surf_tex.z') float rescaled_dist_to_light = dist_to_light / LightAttenuation.y; //float rescaled_dist_to_light = surf_tex.z; // [Variance Shadow Map Depth Calculation] // No filtering float2 moments = tex2D(ShadowSampler, shadow_tex).xy; // Flip the moments values to bring them back to their original values moments.x = 1.0 - moments.x; moments.y = 1.0 - moments.y; // Compute variance float E_x2 = moments.y; float Ex_2 = moments.x * moments.x; float variance = E_x2 - Ex_2; variance = max(variance, Bias.y); // Surface is fully lit if the current pixel is before the light occluder (lit_factor == 1) // One-tailed inequality valid if float lit_factor = (rescaled_dist_to_light <= moments.x - Bias.x); // Compute probabilistic upper bound (mean distance) float m_d = moments.x - rescaled_dist_to_light; // Chebychev's inequality float p = variance / (variance + m_d * m_d); p = ReduceLightBleeding(p, Bias.z); // Adjust the light color based on the shadow attenuation shadow *= max(lit_factor, p); This is what I know for certain so far: The lighting is correct if I do not try and calculate the shadow term. (No shadows) The shadow term is correct when calculated using forward rendered lighting. (VSM works with forward rendered lights) With the current rescaled light distance (lightAttenuation.y is the far plane value): float rescaled_dist_to_light = dist_to_light / LightAttenuation.y; The light is correct and the shadow appears to be zoomed in and misses the blurring: When I do not rescale the light and use the homogenized 'surf_tex': float rescaled_dist_to_light = surf_tex.z; the shadows are blurred correctly but the lighting is incorrect and the cube model is no longer lit Why is scaling by the far plane value (LightAttenuation.y) zooming in too far? The only other factor involved is my world pixel position, which is calculated as follows: // [Position] float4 position; // [Screen Position] position.xy = input.PositionClone.xy; // Use 'x' and 'y' components already homogenized for uv coordinates above position.z = tex2D(DepthSampler, texCoord).r; // No need to homogenize 'z' component position.z = 1.0 - position.z; position.w = 1.0; // 1.0 = position.w / position.w // [World Position] position = mul(position, CameraViewProjectionInverse); // Re-homogenize position (xyz AND w, otherwise shadows will bend when camera is close) position.xyz /= position.w; position.w = 1.0; Using the inverse matrix of the camera's view x projection matrix does work for lighting but maybe it is incorrect for shadow calculation? EDIT: Light calculations for shadow including 'dist_to_light' // Work out the light position and direction in world space float3 light_position = float3(LightViewInverse._41, LightViewInverse._42, LightViewInverse._43); // Direction might need to be negated float3 light_direction = float3(-LightViewInverse._31, -LightViewInverse._32, -LightViewInverse._33); // Unnormalized light vector float3 dir_to_light = light_position - position; // Direction from vertex float dist_to_light = length(dir_to_light); // Normalise 'toLight' vector for lighting calculations dir_to_light = normalize(dir_to_light); EDIT2: These are the calculations for the moments (depth) //============================================= //---[Vertex Shaders]-------------------------- //============================================= DepthVSOutput depth_VS( float4 Position : POSITION, uniform float4x4 shadow_view, uniform float4x4 shadow_view_projection) { DepthVSOutput output = (DepthVSOutput)0; // First transform position into world space float4 position_world = mul(Position, World); output.position_screen = mul(position_world, shadow_view_projection); output.light_vec = mul(position_world, shadow_view).xyz; return output; } //============================================= //---[Pixel Shaders]--------------------------- //============================================= DepthPSOutput depth_PS(DepthVSOutput input) { DepthPSOutput output = (DepthPSOutput)0; // Work out the depth of this fragment from the light, normalized to [0, 1] float2 depth; depth.x = length(input.light_vec) / FarPlane; depth.y = depth.x * depth.x; // Flip depth values to avoid floating point inaccuracies depth.x = 1.0f - depth.x; depth.y = 1.0f - depth.y; output.depth = depth.xyxy; return output; } EDIT 3: I have tried the folloiwng: float4 pp; pp.xy = input.PositionClone.xy; // Use 'x' and 'y' components already homogenized for uv coordinates above pp.z = tex2D(DepthSampler, texCoord).r; // No need to homogenize 'z' component pp.z = 1.0 - pp.z; pp.w = 1.0; // 1.0 = position.w / position.w // Determine the depth of the pixel with respect to the light float4x4 LightViewProjection = mul(LightView, LightProjection); float4x4 matViewToLightViewProj = mul(CameraViewProjectionInverse, LightViewProjection); float4 vPositionLightCS = mul(pp, matViewToLightViewProj); float fLightDepth = vPositionLightCS.z / vPositionLightCS.w; // Transform from light space to shadow map texture space. float2 vShadowTexCoord = 0.5 * vPositionLightCS.xy / vPositionLightCS.w + float2(0.5f, 0.5f); vShadowTexCoord.y = 1.0f - vShadowTexCoord.y; // Offset the coordinate by half a texel so we sample it correctly vShadowTexCoord += (0.5f / 512); //g_vShadowMapSize This suffers the same problem as the second picture. I have tried storing the depth based on the view x projection matrix: output.position_screen = mul(position_world, shadow_view_projection); //output.light_vec = mul(position_world, shadow_view); output.light_vec = output.position_screen; depth.x = input.light_vec.z / input.light_vec.w; This gives a shadow that has lots surface acne due to horrible floating point precision errors. Everything is lit correctly though. EDIT 4: Found an OpenGL based tutorial here I have followed it to the letter and it would seem that the uv coordinates for looking up the shadow map are incorrect. The source uses a scaled matrix to get the uv coordinates for the shadow map sampler /// <summary> /// The scale matrix is used to push the projected vertex into the 0.0 - 1.0 region. /// Similar in role to a * 0.5 + 0.5, where -1.0 < a < 1.0. /// <summary> const float4x4 ScaleMatrix = float4x4 ( 0.5, 0.0, 0.0, 0.0, 0.0, -0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.5, 0.5, 0.5, 1.0 ); I had to negate the 0.5 for the y scaling (M22) in order for it to work but the shadowing is still not correct. Is this really the correct way to scale? float2 shadow_tex; shadow_tex.x = surf_tex.x * 0.5f + 0.5f; shadow_tex.y = surf_tex.y * -0.5f + 0.5f; The depth calculations are exactly the same as the source code yet they still do not work, which makes me believe something about the uv calculation above is incorrect.

    Read the article

  • Best Practices for Sanitizing SQL inputs Using JavaScript?

    - by Greg Bulmash
    So, with HTML5 giving us local SQL databases on the client side, if you want to write a select or insert, you no longer have the ability to sanitize third party input by saying $buddski = mysql_real_escape_string($tuddski) because the PHP parser and MySQL bridge are far away. It's a whole new world of SQLite where you compose your queries and parse your results with JavaScript. But while you may not have your whole site's database go down, the user who gets his/her database corrupted or wiped due to a malicious injection attack is going to be rather upset. So, what's the best way, in pure JavaScript, to escape/sanitize your inputs so they will not wreak havoc with your user's built-in database? Scriptlets? specifications? Anyone?

    Read the article

  • Optimizing AES modes on Solaris for Intel Westmere

    - by danx
    Optimizing AES modes on Solaris for Intel Westmere Review AES is a strong method of symmetric (secret-key) encryption. It is a U.S. FIPS-approved cryptographic algorithm (FIPS 197) that operates on 16-byte blocks. AES has been available since 2001 and is widely used. However, AES by itself has a weakness. AES encryption isn't usually used by itself because identical blocks of plaintext are always encrypted into identical blocks of ciphertext. This encryption can be easily attacked with "dictionaries" of common blocks of text and allows one to more-easily discern the content of the unknown cryptotext. This mode of encryption is called "Electronic Code Book" (ECB), because one in theory can keep a "code book" of all known cryptotext and plaintext results to cipher and decipher AES. In practice, a complete "code book" is not practical, even in electronic form, but large dictionaries of common plaintext blocks is still possible. Here's a diagram of encrypting input data using AES ECB mode: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 What's the solution to the same cleartext input producing the same ciphertext output? The solution is to further process the encrypted or decrypted text in such a way that the same text produces different output. This usually involves an Initialization Vector (IV) and XORing the decrypted or encrypted text. As an example, I'll illustrate CBC mode encryption: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ IV >----->(XOR) +------------->(XOR) +---> . . . . | | | | | | | | \/ | \/ | AESKey-->(AES Encryption) | AESKey-->(AES Encryption) | | | | | | | | | \/ | \/ | CipherTextOutput ------+ CipherTextOutput -------+ Block 1 Block 2 The steps for CBC encryption are: Start with a 16-byte Initialization Vector (IV), choosen randomly. XOR the IV with the first block of input plaintext Encrypt the result with AES using a user-provided key. The result is the first 16-bytes of output cryptotext. Use the cryptotext (instead of the IV) of the previous block to XOR with the next input block of plaintext Another mode besides CBC is Counter Mode (CTR). As with CBC mode, it also starts with a 16-byte IV. However, for subsequent blocks, the IV is just incremented by one. Also, the IV ix XORed with the AES encryption result (not the plain text input). Here's an illustration: Block 1 Block 2 PlainTextInput PlainTextInput | | | | \/ \/ AESKey-->(AES Encryption) AESKey-->(AES Encryption) | | | | \/ \/ IV >----->(XOR) IV + 1 >---->(XOR) IV + 2 ---> . . . . | | | | \/ \/ CipherTextOutput CipherTextOutput Block 1 Block 2 Optimization Which of these modes can be parallelized? ECB encryption/decryption can be parallelized because it does more than plain AES encryption and decryption, as mentioned above. CBC encryption can't be parallelized because it depends on the output of the previous block. However, CBC decryption can be parallelized because all the encrypted blocks are known at the beginning. CTR encryption and decryption can be parallelized because the input to each block is known--it's just the IV incremented by one for each subsequent block. So, in summary, for ECB, CBC, and CTR modes, encryption and decryption can be parallelized with the exception of CBC encryption. How do we parallelize encryption? By interleaving. Usually when reading and writing data there are pipeline "stalls" (idle processor cycles) that result from waiting for memory to be loaded or stored to or from CPU registers. Since the software is written to encrypt/decrypt the next data block where pipeline stalls usually occurs, we can avoid stalls and crypt with fewer cycles. This software processes 4 blocks at a time, which ensures virtually no waiting ("stalling") for reading or writing data in memory. Other Optimizations Besides interleaving, other optimizations performed are Loading the entire key schedule into the 128-bit %xmm registers. This is done once for per 4-block of data (since 4 blocks of data is processed, when present). The following is loaded: the entire "key schedule" (user input key preprocessed for encryption and decryption). This takes 11, 13, or 15 registers, for AES-128, AES-192, and AES-256, respectively The input data is loaded into another %xmm register The same register contains the output result after encrypting/decrypting Using SSSE 4 instructions (AESNI). Besides the aesenc, aesenclast, aesdec, aesdeclast, aeskeygenassist, and aesimc AESNI instructions, Intel has several other instructions that operate on the 128-bit %xmm registers. Some common instructions for encryption are: pxor exclusive or (very useful), movdqu load/store a %xmm register from/to memory, pshufb shuffle bytes for byte swapping, pclmulqdq carry-less multiply for GCM mode Combining AES encryption/decryption with CBC or CTR modes processing. Instead of loading input data twice (once for AES encryption/decryption, and again for modes (CTR or CBC, for example) processing, the input data is loaded once as both AES and modes operations occur at in the same function Performance Everyone likes pretty color charts, so here they are. I ran these on Solaris 11 running on a Piketon Platform system with a 4-core Intel Clarkdale processor @3.20GHz. Clarkdale which is part of the Westmere processor architecture family. The "before" case is Solaris 11, unmodified. Keep in mind that the "before" case already has been optimized with hand-coded Intel AESNI assembly. The "after" case has combined AES-NI and mode instructions, interleaved 4 blocks at-a-time. « For the first table, lower is better (milliseconds). The first table shows the performance improvement using the Solaris encrypt(1) and decrypt(1) CLI commands. I encrypted and decrypted a 1/2 GByte file on /tmp (swap tmpfs). Encryption improved by about 40% and decryption improved by about 80%. AES-128 is slighty faster than AES-256, as expected. The second table shows more detail timings for CBC, CTR, and ECB modes for the 3 AES key sizes and different data lengths. » The results shown are the percentage improvement as shown by an internal PKCS#11 microbenchmark. And keep in mind the previous baseline code already had optimized AESNI assembly! The keysize (AES-128, 192, or 256) makes little difference in relative percentage improvement (although, of course, AES-128 is faster than AES-256). Larger data sizes show better improvement than 128-byte data. Availability This software is in Solaris 11 FCS. It is available in the 64-bit libcrypto library and the "aes" Solaris kernel module. You must be running hardware that supports AESNI (for example, Intel Westmere and Sandy Bridge, microprocessor architectures). The easiest way to determine if AES-NI is available is with the isainfo(1) command. For example, $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu No special configuration or setup is needed to take advantage of this software. Solaris libraries and kernel automatically determine if it's running on AESNI-capable machines and execute the correctly-tuned software for the current microprocessor. Summary Maximum throughput of AES cipher modes can be achieved by combining AES encryption with modes processing, interleaving encryption of 4 blocks at a time, and using Intel's wide 128-bit %xmm registers and instructions. References "Block cipher modes of operation", Wikipedia Good overview of AES modes (ECB, CBC, CTR, etc.) "Advanced Encryption Standard", Wikipedia "Current Modes" describes NIST-approved block cipher modes (ECB,CBC, CFB, OFB, CCM, GCM)

    Read the article

  • Implementing a horizontal compass on the iPhone - algorithm?

    - by Andrew Johnson
    A horizontal compass looks something like this if you are facing due East (90 degrees). 85----90---95 If you were facing due 355 degrees northwest, it would look like this: 350----355---0 As you turn the compass, the number should cycle from 0 - 360 - 0 So, my question is, how would you implement a view like this on the iPhone? I had a couple of ideas: Make one long image with all numbers and tick marks, and shift it left/right when the compass heading changes Create pieces of the view as tiles and append them when the compass heading changes. Create a line of tick marks that shifts with the compass heading, and just write numbers on it as needed. How would you attack this problem? Im mainly looking for algorithmic advice, but if you ave code or pseudo-code to demonstrate, that would be helpful too.

    Read the article

  • SQL Query with ORDER BY Part 2

    - by Brett
    Hi SQL'ers, This is a followup question to: SQL Query with ORDER BY But I think the SQL logic is going to be quite different, so I am posting it as separate question. I am trying to extend my sql SELECT query it and having some trouble: I have the table: id type radius ------------------------- 1 type1 0.25 2 type2 0.59 3 type1 0.26 4 type1 0.78 5 type3 0.12 6 type2 0.45 7 type3 0.22 8 type3 0.98 and I am trying to learn how to SELECT the second smallest radius for each given type. So the returned recordset should look like: id type radius ------------------------- 3 type1 0.26 2 type2 0.59 7 type3 0.22 (Note: in the referenced question, I was looking for the lowest radius, not the second lowest radius). I am assuming I have to use LIMIT and OFFSET, but if I use the MIN() won't that return a distinct record containing the minimum radius? Does anyone have any thoughts on how to attack this? Many thanks, Brett

    Read the article

  • Trouble connecting to vsftpd on ubuntu server

    - by littleK
    I have installed Ubuntu Server 10.10 and I am using it to host a domain that I have. I am trying to set up FTP for the server, but I am running into some problems. I have successfully installed vsFTPd and I have opened up ports 20, 21 on my firewall. In my vsFTPd configuration, I have enabled SSL. Every time I try to connect to my server via FTP, I receive a "Connection Refused" error. I have had a little more success with SSL disabled, however the connection process will time out after the LIST command (but it does accept my authentication). Here is my vsFTPd configuration, the SSL stuff is at the bottom: # Example config file /etc/vsftpd.conf # # The default compiled in settings are fairly paranoid. This sample file # loosens things up a bit, to make the ftp daemon more usable. # Please see vsftpd.conf.5 for all compiled in defaults. # # READ THIS: This example file is NOT an exhaustive list of vsftpd options. # Please read the vsftpd.conf.5 manual page to get a full idea of vsftpd's # capabilities. # # # Run standalone? vsftpd can run either from an inetd or as a standalone # daemon started from an initscript. listen=YES # # Run standalone with IPv6? # Like the listen parameter, except vsftpd will listen on an IPv6 socket # instead of an IPv4 one. This parameter and the listen parameter are mutually # exclusive. #listen_ipv6=YES # # Allow anonymous FTP? (Disabled by default) anonymous_enable=NO # # Uncomment this to allow local users to log in. local_enable=YES # # Uncomment this to enable any form of FTP write command. write_enable=YES # # Default umask for local users is 077. You may wish to change this to 022, # if your users expect that (022 is used by most other ftpd's) #local_umask=022 # # Uncomment this to allow the anonymous FTP user to upload files. This only # has an effect if the above global write enable is activated. Also, you will # obviously need to create a directory writable by the FTP user. #anon_upload_enable=YES # # Uncomment this if you want the anonymous FTP user to be able to create # new directories. #anon_mkdir_write_enable=YES # # Activate directory messages - messages given to remote users when they # go into a certain directory. dirmessage_enable=YES # # If enabled, vsftpd will display directory listings with the time # in your local time zone. The default is to display GMT. The # times returned by the MDTM FTP command are also affected by this # option. use_localtime=YES # # Activate logging of uploads/downloads. xferlog_enable=YES # # Make sure PORT transfer connections originate from port 20 (ftp-data). connect_from_port_20=YES # # If you want, you can arrange for uploaded anonymous files to be owned by # a different user. Note! Using "root" for uploaded files is not # recommended! #chown_uploads=YES #chown_username=whoever # # You may override where the log file goes if you like. The default is shown # below. #xferlog_file=/var/log/vsftpd.log # # If you want, you can have your log file in standard ftpd xferlog format. # Note that the default log file location is /var/log/xferlog in this case. #xferlog_std_format=YES # # You may change the default value for timing out an idle session. #idle_session_timeout=600 # # You may change the default value for timing out a data connection. #data_connection_timeout=120 # # It is recommended that you define on your system a unique user which the # ftp server can use as a totally isolated and unprivileged user. #nopriv_user=ftpsecure # # Enable this and the server will recognise asynchronous ABOR requests. Not # recommended for security (the code is non-trivial). Not enabling it, # however, may confuse older FTP clients. #async_abor_enable=YES # # By default the server will pretend to allow ASCII mode but in fact ignore # the request. Turn on the below options to have the server actually do ASCII # mangling on files when in ASCII mode. # Beware that on some FTP servers, ASCII support allows a denial of service # attack (DoS) via the command "SIZE /big/file" in ASCII mode. vsftpd # predicted this attack and has always been safe, reporting the size of the # raw file. # ASCII mangling is a horrible feature of the protocol. #ascii_upload_enable=YES #ascii_download_enable=YES # # You may fully customise the login banner string: #ftpd_banner=Welcome to blah FTP service. # # You may specify a file of disallowed anonymous e-mail addresses. Apparently # useful for combatting certain DoS attacks. #deny_email_enable=YES # (default follows) #banned_email_file=/etc/vsftpd.banned_emails # # You may restrict local users to their home directories. See the FAQ for # the possible risks in this before using chroot_local_user or # chroot_list_enable below. #chroot_local_user=YES # # You may specify an explicit list of local users to chroot() to their home # directory. If chroot_local_user is YES, then this list becomes a list of # users to NOT chroot(). #chroot_local_user=YES #chroot_list_enable=YES # (default follows) #chroot_list_file=/etc/vsftpd.chroot_list # # You may activate the "-R" option to the builtin ls. This is disabled by # default to avoid remote users being able to cause excessive I/O on large # sites. However, some broken FTP clients such as "ncftp" and "mirror" assume # the presence of the "-R" option, so there is a strong case for enabling it. #ls_recurse_enable=YES # # Debian customization # # Some of vsftpd's settings don't fit the Debian filesystem layout by # default. These settings are more Debian-friendly. # # This option should be the name of a directory which is empty. Also, the # directory should not be writable by the ftp user. This directory is used # as a secure chroot() jail at times vsftpd does not require filesystem # access. secure_chroot_dir=/var/run/vsftpd/empty # # This string is the name of the PAM service vsftpd will use. pam_service_name=vsftpd # # This option specifies the location of the RSA certificate to use for SSL # encrypted connections. rsa_cert_file=/etc/ssl/private/vsftpd.pem # SSL ssl_enable=YES allow_anon_ssl=NO force_local_data_ssl=YES force_local_logins_ssl=YES ssl_tlsv1=YES ssl_sslv2=YES ssl_sslv3=YES Thanks!

    Read the article

  • Do I need to store a generic rotation point/radius for rotating around a point other than the origin for object transforms?

    - by Casey
    I'm having trouble implementing a non-origin point rotation. I have a class Transform that stores each component separately in three 3D vectors for position, scale, and rotation. This is fine for local rotations based on the center of the object. The issue is how do I determine/concatenate non-origin rotations in addition to origin rotations. Normally this would be achieved as a Transform-Rotate-Transform for the center rotation followed by a Transform-Rotate-Transform for the non-origin point. The problem is because I am storing the individual components, the final Transform matrix is not calculated until needed by using the individual components to fill an appropriate Matrix. (See GetLocalTransform()) Do I need to store an additional rotation (and radius) for world rotations as well or is there a method of implementation that works while only using the single rotation value? Transform.h #ifndef A2DE_CTRANSFORM_H #define A2DE_CTRANSFORM_H #include "../a2de_vals.h" #include "CMatrix4x4.h" #include "CVector3D.h" #include <vector> A2DE_BEGIN class Transform { public: Transform(); Transform(Transform* parent); Transform(const Transform& other); Transform& operator=(const Transform& rhs); virtual ~Transform(); void SetParent(Transform* parent); void AddChild(Transform* child); void RemoveChild(Transform* child); Transform* FirstChild(); Transform* LastChild(); Transform* NextChild(); Transform* PreviousChild(); Transform* GetChild(std::size_t index); std::size_t GetChildCount() const; std::size_t GetChildCount(); void SetPosition(const a2de::Vector3D& position); const a2de::Vector3D& GetPosition() const; a2de::Vector3D& GetPosition(); void SetRotation(const a2de::Vector3D& rotation); const a2de::Vector3D& GetRotation() const; a2de::Vector3D& GetRotation(); void SetScale(const a2de::Vector3D& scale); const a2de::Vector3D& GetScale() const; a2de::Vector3D& GetScale(); a2de::Matrix4x4 GetLocalTransform() const; a2de::Matrix4x4 GetLocalTransform(); protected: private: a2de::Vector3D _position; a2de::Vector3D _scale; a2de::Vector3D _rotation; std::size_t _curChildIndex; Transform* _parent; std::vector<Transform*> _children; }; A2DE_END #endif Transform.cpp #include "CTransform.h" #include "CVector2D.h" #include "CVector4D.h" A2DE_BEGIN Transform::Transform() : _position(), _scale(1.0, 1.0), _rotation(), _curChildIndex(0), _parent(nullptr), _children() { /* DO NOTHING */ } Transform::Transform(Transform* parent) : _position(), _scale(1.0, 1.0), _rotation(), _curChildIndex(0), _parent(parent), _children() { /* DO NOTHING */ } Transform::Transform(const Transform& other) : _position(other._position), _scale(other._scale), _rotation(other._rotation), _curChildIndex(0), _parent(other._parent), _children(other._children) { /* DO NOTHING */ } Transform& Transform::operator=(const Transform& rhs) { if(this == &rhs) return *this; this->_position = rhs._position; this->_scale = rhs._scale; this->_rotation = rhs._rotation; this->_curChildIndex = 0; this->_parent = rhs._parent; this->_children = rhs._children; return *this; } Transform::~Transform() { _children.clear(); _parent = nullptr; } void Transform::SetParent(Transform* parent) { _parent = parent; } void Transform::AddChild(Transform* child) { if(child == nullptr) return; _children.push_back(child); } void Transform::RemoveChild(Transform* child) { if(_children.empty()) return; _children.erase(std::remove(_children.begin(), _children.end(), child), _children.end()); } Transform* Transform::FirstChild() { if(_children.empty()) return nullptr; return *(_children.begin()); } Transform* Transform::LastChild() { if(_children.empty()) return nullptr; return *(_children.end()); } Transform* Transform::NextChild() { if(_children.empty()) return nullptr; std::size_t s(_children.size()); if(_curChildIndex >= s) { _curChildIndex = s; return nullptr; } return _children[_curChildIndex++]; } Transform* Transform::PreviousChild() { if(_children.empty()) return nullptr; if(_curChildIndex == 0) { return nullptr; } return _children[_curChildIndex--]; } Transform* Transform::GetChild(std::size_t index) { if(_children.empty()) return nullptr; if(index > _children.size()) return nullptr; return _children[index]; } std::size_t Transform::GetChildCount() const { if(_children.empty()) return 0; return _children.size(); } std::size_t Transform::GetChildCount() { return static_cast<const Transform&>(*this).GetChildCount(); } void Transform::SetPosition(const a2de::Vector3D& position) { _position = position; } const a2de::Vector3D& Transform::GetPosition() const { return _position; } a2de::Vector3D& Transform::GetPosition() { return const_cast<a2de::Vector3D&>(static_cast<const Transform&>(*this).GetPosition()); } void Transform::SetRotation(const a2de::Vector3D& rotation) { _rotation = rotation; } const a2de::Vector3D& Transform::GetRotation() const { return _rotation; } a2de::Vector3D& Transform::GetRotation() { return const_cast<a2de::Vector3D&>(static_cast<const Transform&>(*this).GetRotation()); } void Transform::SetScale(const a2de::Vector3D& scale) { _scale = scale; } const a2de::Vector3D& Transform::GetScale() const { return _scale; } a2de::Vector3D& Transform::GetScale() { return const_cast<a2de::Vector3D&>(static_cast<const Transform&>(*this).GetScale()); } a2de::Matrix4x4 Transform::GetLocalTransform() const { Matrix4x4 p((_parent ? _parent->GetLocalTransform() : a2de::Matrix4x4::GetIdentity())); Matrix4x4 t(a2de::Matrix4x4::GetTranslationMatrix(_position)); Matrix4x4 r(a2de::Matrix4x4::GetRotationMatrix(_rotation)); Matrix4x4 s(a2de::Matrix4x4::GetScaleMatrix(_scale)); return (p * t * r * s); } a2de::Matrix4x4 Transform::GetLocalTransform() { return static_cast<const Transform&>(*this).GetLocalTransform(); } A2DE_END

    Read the article

  • RSA encrypted Diffie-Hellman handshake

    - by cmaduro
    Would a RSA encrypted Diffie-Hellman handshake enable secure communication? I'm encrypting communication from a silverlight client to a php webservice. The silverlight client initiates they key agreement by sending the RSA public key encrypted DH parameters to the webservice. Only the webservice has the private key, so a MITM attack is not possible. The webservice sends plain text answer back to the client, and a key is agreed upon. This key is then used to encrypt communication between the webservice and silverlight client with AES, which is also encrypted with the RSA public key. Does anyone see a flaw?

    Read the article

  • How to prevent DOS attacks using image resizing in an ASP.NET application?

    - by Waleed Eissa
    I'm currently developing a site where users can upload images to use as avatars, I know this makes me sound a little paranoid but I was wondering what if a malicious user uploads an image with incredibly large dimensions that will eat the server memory (as a DOS attack), I already have a limit on the file size that can be uploaded (250 k) but even that size can allow for an image with incredibly large dimensions if the image for example is a JPEG that contains one color and created with a very low quality setting. Taking into consideration that the image is uploaded as a bitmap in memory when being resized (ie. not compressed), I wonder if such DOS attacks occur, even to check the image dimensions it has to be uploaded in memory first, did you hear about any attacks that exploited this? Am I too worried?

    Read the article

  • Can't Get Virtual Users Setup in VSFTPD -Tried Everything

    - by N.T.
    Have Ubuntu 11.10 with vsftpd installed and working. Can not get virtual users setup at all? Vsftpd will allow main Ubuntu owner account to login, but nothing else? I've followed several tutorials on adding virtual users, but nothing works? I just need to add 2 virtual users and have them be able to upload files to vsftpd Ubuntu computer from other computers on my Lan network. Everywhere I've looked, people just point toward tutorials on adding virtual users, but that just is NOT working. I've been struggling with this for over a week now! PLEASE Help. Thanks. I'll even give a donation if someone can figure this out. here is the vsftpd.conf file I am using. I copied the original, and make a new one, every time I try a tutorial. So far, none have worked. Here is the vsftpd.conf file I'm using. (I hope this helps?) # Example config file /etc/vsftpd.conf # # The default compiled in settings are fairly paranoid. This sample file # loosens things up a bit, to make the ftp daemon more usable. # Please see vsftpd.conf.5 for all compiled in defaults. # # READ THIS: This example file is NOT an exhaustive list of vsftpd options. # Please read the vsftpd.conf.5 manual page to get a full idea of vsftpd's # capabilities. # # # Run standalone? vsftpd can run either from an inetd or as a standalone # daemon started from an initscript. listen=YES # # Run standalone with IPv6? # Like the listen parameter, except vsftpd will listen on an IPv6 socket # instead of an IPv4 one. This parameter and the listen parameter are mutually # exclusive. #listen_ipv6=YES # # Allow anonymous FTP? (Disabled by default) anonymous_enable=YES # # Uncomment this to allow local users to log in. local_enable=YES # # Uncomment this to enable any form of FTP write command. write_enable=YES # # Default umask for local users is 077. You may wish to change this to 022, # if your users expect that (022 is used by most other ftpd's) local_umask=022 # # Uncomment this to allow the anonymous FTP user to upload files. This only # has an effect if the above global write enable is activated. Also, you will # obviously need to create a directory writable by the FTP user. #anon_upload_enable=YES # # Uncomment this if you want the anonymous FTP user to be able to create # new directories. anon_mkdir_write_enable=YES # # Activate directory messages - messages given to remote users when they # go into a certain directory. dirmessage_enable=YES # # If enabled, vsftpd will display directory listings with the time # in your local time zone. The default is to display GMT. The # times returned by the MDTM FTP command are also affected by this # option. use_localtime=YES # # Activate logging of uploads/downloads. xferlog_enable=YES # # Make sure PORT transfer connections originate from port 20 (ftp-data). connect_from_port_20=YES # # If you want, you can arrange for uploaded anonymous files to be owned by # a different user. Note! Using "root" for uploaded files is not # recommended! #chown_uploads=YES #chown_username=whoever # # You may override where the log file goes if you like. The default is shown # below. #xferlog_file=/var/log/vsftpd.log # # If you want, you can have your log file in standard ftpd xferlog format. # Note that the default log file location is /var/log/xferlog in this case. xferlog_std_format=YES # # You may change the default value for timing out an idle session. #idle_session_timeout=600 # # You may change the default value for timing out a data connection. #data_connection_timeout=120 # # It is recommended that you define on your system a unique user which the # ftp server can use as a totally isolated and unprivileged user. #nopriv_user=ftpsecure # # Enable this and the server will recognise asynchronous ABOR requests. Not # recommended for security (the code is non-trivial). Not enabling it, # however, may confuse older FTP clients. #async_abor_enable=YES # # By default the server will pretend to allow ASCII mode but in fact ignore # the request. Turn on the below options to have the server actually do ASCII # mangling on files when in ASCII mode. # Beware that on some FTP servers, ASCII support allows a denial of service # attack (DoS) via the command "SIZE /big/file" in ASCII mode. vsftpd # predicted this attack and has always been safe, reporting the size of the # raw file. # ASCII mangling is a horrible feature of the protocol. #ascii_upload_enable=YES #ascii_download_enable=YES # # You may fully customise the login banner string: ftpd_banner=Welcome to Sage FTP service. # # You may specify a file of disallowed anonymous e-mail addresses. Apparently # useful for combatting certain DoS attacks. #deny_email_enable=YES # (default follows) #banned_email_file=/etc/vsftpd.banned_emails # # You may restrict local users to their home directories. See the FAQ for # the possible risks in this before using chroot_local_user or # chroot_list_enable below. chroot_local_user=YES # # You may specify an explicit list of local users to chroot() to their home # directory. If chroot_local_user is YES, then this list becomes a list of # users to NOT chroot(). #chroot_local_user=YES #chroot_list_enable=YES # (default follows) #chroot_list_file=/etc/vsftpd.chroot_list # # You may activate the "-R" option to the builtin ls. This is disabled by # default to avoid remote users being able to cause excessive I/O on large # sites. However, some broken FTP clients such as "ncftp" and "mirror" assume # the presence of the "-R" option, so there is a strong case for enabling it. #ls_recurse_enable=YES # # Debian customization # # Some of vsftpd's settings don't fit the Debian filesystem layout by # default. These settings are more Debian-friendly. # # This option should be the name of a directory which is empty. Also, the # directory should not be writable by the ftp user. This directory is used # as a secure chroot() jail at times vsftpd does not require filesystem # access. secure_chroot_dir=/var/run/vsftpd/empty # # This string is the name of the PAM service vsftpd will use. pam_service_name=vsftpd local_root=/media/FilesDrive # # This option specifies the location of the RSA certificate to use for SSL # encrypted connections. rsa_cert_file=/etc/ssl/private/vsftpd.pem

    Read the article

  • How to store generated eigen faces for future face recognition?

    - by user3237134
    My code works in the following manner: 1.First, it obtains several images from the training set 2.After loading these images, we find the normalized faces,mean face and perform several calculation. 3.Next, we ask for the name of an image we want to recognize 4.We then project the input image into the eigenspace, and based on the difference from the eigenfaces we make a decision. 5.Depending on eigen weight vector for each input image we make clusters using kmeans command. Source code i tried: clear all close all clc % number of images on your training set. M=1200; %Chosen std and mean. %It can be any number that it is close to the std and mean of most of the images. um=60; ustd=32; %read and show images(bmp); S=[]; %img matrix for i=1:M str=strcat(int2str(i),'.jpg'); %concatenates two strings that form the name of the image eval('img=imread(str);'); [irow icol d]=size(img); % get the number of rows (N1) and columns (N2) temp=reshape(permute(img,[2,1,3]),[irow*icol,d]); %creates a (N1*N2)x1 matrix S=[S temp]; %X is a N1*N2xM matrix after finishing the sequence %this is our S end %Here we change the mean and std of all images. We normalize all images. %This is done to reduce the error due to lighting conditions. for i=1:size(S,2) temp=double(S(:,i)); m=mean(temp); st=std(temp); S(:,i)=(temp-m)*ustd/st+um; end %show normalized images for i=1:M str=strcat(int2str(i),'.jpg'); img=reshape(S(:,i),icol,irow); img=img'; end %mean image; m=mean(S,2); %obtains the mean of each row instead of each column tmimg=uint8(m); %converts to unsigned 8-bit integer. Values range from 0 to 255 img=reshape(tmimg,icol,irow); %takes the N1*N2x1 vector and creates a N2xN1 matrix img=img'; %creates a N1xN2 matrix by transposing the image. % Change image for manipulation dbx=[]; % A matrix for i=1:M temp=double(S(:,i)); dbx=[dbx temp]; end %Covariance matrix C=A'A, L=AA' A=dbx'; L=A*A'; % vv are the eigenvector for L % dd are the eigenvalue for both L=dbx'*dbx and C=dbx*dbx'; [vv dd]=eig(L); % Sort and eliminate those whose eigenvalue is zero v=[]; d=[]; for i=1:size(vv,2) if(dd(i,i)>1e-4) v=[v vv(:,i)]; d=[d dd(i,i)]; end end %sort, will return an ascending sequence [B index]=sort(d); ind=zeros(size(index)); dtemp=zeros(size(index)); vtemp=zeros(size(v)); len=length(index); for i=1:len dtemp(i)=B(len+1-i); ind(i)=len+1-index(i); vtemp(:,ind(i))=v(:,i); end d=dtemp; v=vtemp; %Normalization of eigenvectors for i=1:size(v,2) %access each column kk=v(:,i); temp=sqrt(sum(kk.^2)); v(:,i)=v(:,i)./temp; end %Eigenvectors of C matrix u=[]; for i=1:size(v,2) temp=sqrt(d(i)); u=[u (dbx*v(:,i))./temp]; end %Normalization of eigenvectors for i=1:size(u,2) kk=u(:,i); temp=sqrt(sum(kk.^2)); u(:,i)=u(:,i)./temp; end % show eigenfaces; for i=1:size(u,2) img=reshape(u(:,i),icol,irow); img=img'; img=histeq(img,255); end % Find the weight of each face in the training set. omega = []; for h=1:size(dbx,2) WW=[]; for i=1:size(u,2) t = u(:,i)'; WeightOfImage = dot(t,dbx(:,h)'); WW = [WW; WeightOfImage]; end omega = [omega WW]; end % Acquire new image % Note: the input image must have a bmp or jpg extension. % It should have the same size as the ones in your training set. % It should be placed on your desktop ed_min=[]; srcFiles = dir('G:\newdatabase\*.jpg'); % the folder in which ur images exists for b = 1 : length(srcFiles) filename = strcat('G:\newdatabase\',srcFiles(b).name); Imgdata = imread(filename); InputImage=Imgdata; InImage=reshape(permute((double(InputImage)),[2,1,3]),[irow*icol,1]); temp=InImage; me=mean(temp); st=std(temp); temp=(temp-me)*ustd/st+um; NormImage = temp; Difference = temp-m; p = []; aa=size(u,2); for i = 1:aa pare = dot(NormImage,u(:,i)); p = [p; pare]; end InImWeight = []; for i=1:size(u,2) t = u(:,i)'; WeightOfInputImage = dot(t,Difference'); InImWeight = [InImWeight; WeightOfInputImage]; end noe=numel(InImWeight); % Find Euclidean distance e=[]; for i=1:size(omega,2) q = omega(:,i); DiffWeight = InImWeight-q; mag = norm(DiffWeight); e = [e mag]; end ed_min=[ed_min MinimumValue]; theta=6.0e+03; %disp(e) z(b,:)=InImWeight; end IDX = kmeans(z,5); clustercount=accumarray(IDX, ones(size(IDX))); disp(clustercount); QUESTIONS: 1.It is working fine for M=50(i.e Training set contains 50 images) but not for M=1200(i.e Training set contains 1200 images).It is not showing any error.There is no output.I waited for 10 min still there is no output. I think it is going infinite loop.What is the problem?Where i was wrong? 2.Instead of running the training set everytime how eigen faces generated are stored so that stored eigen faces are used for future face recoginition for a new input image.So it reduces wastage of time.

    Read the article

  • Is Rails default CSRF protection insecure

    - by schickb
    By default the form post CSRF protection in Rails creates an authenticity token for a user that only changes when the user's session changes. One of our customers did a security audit of our site and flagged that as an issue. The auditor's statement was that if we also had a XSS vulnerability that an attacker could grab another user's authenticity token and make use of it for CSRF attacks until the user's session expired. But is seems to me that if we had an XSS vulnerability like that an attacker could just as easily grab another user's session cookie and login as that user directly. Or even just make call to our REST Api as the user being attacked. No secondary CSRF attack needed. Have I missed something? Is there a real problem with the default CSRF protection in Rails?

    Read the article

  • Multiple Socket Connections

    - by BSchlinker
    I need to write a server which accepts connections from multiple client machines, maintains track of connected clients and sends individual clients data as necessary. Sometimes, all clients may be contacted at once with the same message, other times, it may be one individual client or a group of clients. Since I need confirmation that the clients received the information and don't want to build an ACK structure for a UDP connection, I decided to use a TCP streaming method. However, I've been struggling to understand how to maintain multiple connections and keep them idle. I seem to have three options. Use a fork for each incoming connection to create a separate child process, use pthread_create to create an entire new thread for each process, or use select() to wait on all open socket IDs for a connection. Recommendations as to how to attack this? I've begun working with pthreads but since performance will likely not be an issue, multicore processing is not necessary and perhaps there is a simpler way.

    Read the article

  • Vectorization of matlab code for faster execution

    - by user3237134
    My code works in the following manner: 1.First, it obtains several images from the training set 2.After loading these images, we find the normalized faces,mean face and perform several calculation. 3.Next, we ask for the name of an image we want to recognize 4.We then project the input image into the eigenspace, and based on the difference from the eigenfaces we make a decision. 5.Depending on eigen weight vector for each input image we make clusters using kmeans command. Source code i tried: clear all close all clc % number of images on your training set. M=1200; %Chosen std and mean. %It can be any number that it is close to the std and mean of most of the images. um=60; ustd=32; %read and show images(bmp); S=[]; %img matrix for i=1:M str=strcat(int2str(i),'.jpg'); %concatenates two strings that form the name of the image eval('img=imread(str);'); [irow icol d]=size(img); % get the number of rows (N1) and columns (N2) temp=reshape(permute(img,[2,1,3]),[irow*icol,d]); %creates a (N1*N2)x1 matrix S=[S temp]; %X is a N1*N2xM matrix after finishing the sequence %this is our S end %Here we change the mean and std of all images. We normalize all images. %This is done to reduce the error due to lighting conditions. for i=1:size(S,2) temp=double(S(:,i)); m=mean(temp); st=std(temp); S(:,i)=(temp-m)*ustd/st+um; end %show normalized images for i=1:M str=strcat(int2str(i),'.jpg'); img=reshape(S(:,i),icol,irow); img=img'; end %mean image; m=mean(S,2); %obtains the mean of each row instead of each column tmimg=uint8(m); %converts to unsigned 8-bit integer. Values range from 0 to 255 img=reshape(tmimg,icol,irow); %takes the N1*N2x1 vector and creates a N2xN1 matrix img=img'; %creates a N1xN2 matrix by transposing the image. % Change image for manipulation dbx=[]; % A matrix for i=1:M temp=double(S(:,i)); dbx=[dbx temp]; end %Covariance matrix C=A'A, L=AA' A=dbx'; L=A*A'; % vv are the eigenvector for L % dd are the eigenvalue for both L=dbx'*dbx and C=dbx*dbx'; [vv dd]=eig(L); % Sort and eliminate those whose eigenvalue is zero v=[]; d=[]; for i=1:size(vv,2) if(dd(i,i)>1e-4) v=[v vv(:,i)]; d=[d dd(i,i)]; end end %sort, will return an ascending sequence [B index]=sort(d); ind=zeros(size(index)); dtemp=zeros(size(index)); vtemp=zeros(size(v)); len=length(index); for i=1:len dtemp(i)=B(len+1-i); ind(i)=len+1-index(i); vtemp(:,ind(i))=v(:,i); end d=dtemp; v=vtemp; %Normalization of eigenvectors for i=1:size(v,2) %access each column kk=v(:,i); temp=sqrt(sum(kk.^2)); v(:,i)=v(:,i)./temp; end %Eigenvectors of C matrix u=[]; for i=1:size(v,2) temp=sqrt(d(i)); u=[u (dbx*v(:,i))./temp]; end %Normalization of eigenvectors for i=1:size(u,2) kk=u(:,i); temp=sqrt(sum(kk.^2)); u(:,i)=u(:,i)./temp; end % show eigenfaces; for i=1:size(u,2) img=reshape(u(:,i),icol,irow); img=img'; img=histeq(img,255); end % Find the weight of each face in the training set. omega = []; for h=1:size(dbx,2) WW=[]; for i=1:size(u,2) t = u(:,i)'; WeightOfImage = dot(t,dbx(:,h)'); WW = [WW; WeightOfImage]; end omega = [omega WW]; end % Acquire new image % Note: the input image must have a bmp or jpg extension. % It should have the same size as the ones in your training set. % It should be placed on your desktop ed_min=[]; srcFiles = dir('G:\newdatabase\*.jpg'); % the folder in which ur images exists for b = 1 : length(srcFiles) filename = strcat('G:\newdatabase\',srcFiles(b).name); Imgdata = imread(filename); InputImage=Imgdata; InImage=reshape(permute((double(InputImage)),[2,1,3]),[irow*icol,1]); temp=InImage; me=mean(temp); st=std(temp); temp=(temp-me)*ustd/st+um; NormImage = temp; Difference = temp-m; p = []; aa=size(u,2); for i = 1:aa pare = dot(NormImage,u(:,i)); p = [p; pare]; end InImWeight = []; for i=1:size(u,2) t = u(:,i)'; WeightOfInputImage = dot(t,Difference'); InImWeight = [InImWeight; WeightOfInputImage]; end noe=numel(InImWeight); % Find Euclidean distance e=[]; for i=1:size(omega,2) q = omega(:,i); DiffWeight = InImWeight-q; mag = norm(DiffWeight); e = [e mag]; end ed_min=[ed_min MinimumValue]; theta=6.0e+03; %disp(e) z(b,:)=InImWeight; end IDX = kmeans(z,5); clustercount=accumarray(IDX, ones(size(IDX))); disp(clustercount); Running time for 50 images:Elapsed time is 103.947573 seconds. QUESTIONS: 1.It is working fine for M=50(i.e Training set contains 50 images) but not for M=1200(i.e Training set contains 1200 images).It is not showing any error.There is no output.I waited for 10 min still there is no output. I think it is going infinite loop.What is the problem?Where i was wrong?

    Read the article

< Previous Page | 90 91 92 93 94 95 96 97 98 99 100 101  | Next Page >