Search Results

Search found 5484 results on 220 pages for 'mod headers'.

Page 94/220 | < Previous Page | 90 91 92 93 94 95 96 97 98 99 100 101  | Next Page >

  • Is it possible to rate limit based on host headers? i.e. not just on ip address

    - by Blankman
    I have a web service endpoint that I am building where people will post an xml file to, and it will really get pounded with over 1K requests per second. Now they are sending in these xml files via http post, but a good majority of them will be rate limited. The problem is, the rate limiting will be done by the web application by looking up the source_id in the xml, and if it is over x requests per minute, it will not be processed further. I was wondering if I could do rate limit checking earlier in the processing somehow and thus save the 50K file going threw the pipeline to my web servers and eating up resources. Could a load balancer make a call out to verify rate usage somehow? If this is possible, I could maybe put the source_id in a host header so even the XML file doesn't have to be parsed and loaded into memory. Is it possible to just look at host headers and not load up the entire 50K xml file into memory? I really appreciate your insights as this takes more knowledge of the entire tcp/ip stack etc.

    Read the article

  • How do I copy the layout from a header of a JTabbedPane onto a JPanel?

    - by Snail
    I have created a "CollapsingPanel"class/sort of a JTabbedPane (code skeleton can be found at http://www.coderanch.com/t/341737/Swing-AWT-SWT-JFace/java/Expand-Collapse-Panels). It is in other words a lot of headers which you click on to show a hidden Panel. At the moment these header-panels are a rectangular box with a LineBorder around them. That is ugly! I'm wondering if there is a way to copy the layout that the JTabbedPane uses for its headers/titles (which is inhierted from Look&Feel I assume) and use it on my JPanel-based headers? So that my headers get a smooth look which is in line with the rest of the program (based on Look&Feel!) instead of looking like alien flat blocks. Illustrated below with the headers nicely circled in green ;) I want to apply the header-look from 2nd picture over the red header JPanel in picture 1: Picture 1: hxxp://img7.imageshack.us/img7/2319/34158982.png - change to http, I got <10 rep :( Pictrue 2: hxxp://img46.imageshack.us/img46/2572/jtabpane.png

    Read the article

  • Perl, module export symbol

    - by Mike
    I'm having trouble understanding how to export a package symbol to a namespace. I've followed the documentation almost identically, but it seems to not know about any of the exporting symbols. mod.pm #!/usr/bin/perl package mod; use strict; use warnings; require Exporter; @ISA = qw(Exporter); @EXPORT=qw($a); our $a=(1); 1; test.pl $ cat test.pl #!/usr/bin/perl use mod; print($a); This is the result of running it $ ./test.pl Global symbol "@ISA" requires explicit package name at mod.pm line 10. Global symbol "@EXPORT" requires explicit package name at mod.pm line 11. Compilation failed in require at ./test.pl line 3. BEGIN failed--compilation aborted at ./test.pl line 3. $ perl -version This is perl, v5.8.4 built for sun4-solaris-64int

    Read the article

  • qt in windows7 environment

    - by sneha
    Hello everyone, i am having problem with running an example from qt which uses win32 libraries when i compile i dnt get any errors but when i run it is not able to open the application (.exe) file in windows 7.but when i compile this example in windowsXP it works fine. can anyone let me know whether i need to change my .pro file inorder to get it worked under windows 7. PLease help me out.thanks in advance. here is my .pro file # ------------------------------------------------- # Project created by QtCreator 2010-04-16T11:45:43 # ------------------------------------------------- QT += network QT += xml QT += opengl TARGET = Application TEMPLATE = app SOURCES += main.cpp \ mainwindow.cpp \ Tools.cpp \ Objects.cpp HEADERS += mainwindow.h \ Tools.h\ Objects.h unix { OBJECTS_DIR = .obj MOC_DIR = .moc } # UNIX installation isEmpty(PREFIX):PREFIX = /usr/local unix { headers.path = $$PREFIX/include/ZIP headers.files = $$HEADERS target.path = $$PREFIX/lib INSTALLS += headers \ target } !mac:x11:LIBS += -ldns_sd win32:LIBS += -ldnssd LIBPATH = C:/Temp/mDNSResponder-107.6/mDNSWindows/DLL/Debug INCLUDEPATH += c:/Temp/mDNSResponder-107.6/mDNSShared

    Read the article

  • how to create a watcher using fsevents in mac osx 10.6

    - by mathan
    I m trying to get file event notifications using fsevents.h file. I m working with Mac OS X 10.6 and XCode 3.1.4 in which i found fsevents.h in four following locations /System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/CarbonCore.framework/Versions/A/Headers/FSEvents.h /Xcode3.1.4/SDKs/MacOSX10.5.sdk/System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/CarbonCore.framework/Versions/A/Headers /Developer/SDKs/MacOSX10.5.sdk/System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/CarbonCore.framework/Versions/A/Headers /Developer/SDKs/MacOSX10.6.sdk/System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/CarbonCore.framework/Versions/A/Headers I have following issues in accessing fsevents.h 1) Out of above four locations which one should be included since fsevents is not getting included unless i put following include syntax include<../../../../Developer/SDKs/MacOSX10.6.sdk/System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/CarbonCore.framework/Versions/A/Headers/fsevents.h 2) Where could I find the function definition whose prototypes are declared in fsevents.h using "extern" keyword

    Read the article

  • How do I export a package symbol to a namespace in Perl?

    - by Mike
    I'm having trouble understanding how to export a package symbol to a namespace. I've followed the documentation almost identically, but it seems to not know about any of the exporting symbols. mod.pm #!/usr/bin/perl package mod; use strict; use warnings; require Exporter; @ISA = qw(Exporter); @EXPORT=qw($a); our $a=(1); 1; test.pl $ cat test.pl #!/usr/bin/perl use mod; print($a); This is the result of running it $ ./test.pl Global symbol "@ISA" requires explicit package name at mod.pm line 10. Global symbol "@EXPORT" requires explicit package name at mod.pm line 11. Compilation failed in require at ./test.pl line 3. BEGIN failed--compilation aborted at ./test.pl line 3. $ perl -version This is perl, v5.8.4 built for sun4-solaris-64int

    Read the article

  • error in encryption program

    - by Raja
    #include<iostream> #include<math.h> #include<string> using namespace std; int gcd(int n,int m) { if(m<=n && n%m ==0) return m; if(n<m) return gcd(m,n); else return gcd(m,n%m); } int REncryptText(char m) { int p = 11, q = 3; int e = 3; int n = p * q; int phi = (p - 1) * (q - 1); int check1 = gcd(e, p - 1); int check2 = gcd(e, q - 1); int check3 = gcd(e, phi); // // Compute d such that ed = 1 (mod phi) //i.e. compute d = e-1 mod phi = 3-1 mod 20 //i.e. find a value for d such that phi divides (ed-1) //i.e. find d such that 20 divides 3d-1. //Simple testing (d = 1, 2, ...) gives d = 7 // double d = Math.Pow(e, -1) % phi; int d = 7; // public key = (n,e) // (33,3) //private key = (n,d) //(33 ,7) double g = pow(m,e); int ciphertext = g %n; // Now say we want to encrypt the message m = 7, c = me mod n = 73 mod 33 = 343 mod 33 = 13. Hence the ciphertext c = 13. //double decrypt = Math.Pow(ciphertext, d) % n; return ciphertext; } int main() { char plaintext[80],str[80]; cout<<" enter the text you want to encrpt"; cin.get(plaintext,79); int l =strlen(plaintext); for ( int i =0 ; i<l ; i++) { char s = plaintext[i]; str[i]=REncryptText(s); } for ( int i =0 ; i<l ; i++) { cout<<"the encryption of string"<<endl; cout<<str[i]; } return 0; }

    Read the article

  • Python having problems writing/reading and testing in a correct format

    - by Ionut
    I’m trying to make a program that will do the following: check if auth_file exists if yes - read file and try to login using data from that file - if data is wrong - request new data if no - request some data and then create the file and fill it with requested data So far: import json import getpass import os import requests filename = ".auth_data" auth_file = os.path.realpath(filename) url = 'http://example.com/api' headers = {'content-type': 'application/json'} def load_auth_file(): try: f = open(auth_file, "r") auth_data = f.read() r = requests.get(url, auth=auth_data, headers=headers) if r.reason == 'OK': return auth_data else: print "Incorrect login..." req_auth() except IOError: f = file(auth_file, "w") f.write(req_auth()) f.close() def req_auth(): user = str(raw_input('Username: ')) password = getpass.getpass('Password: ') auth_data = (user, password) r = requests.get(url, auth=auth_data, headers=headers) if r.reason == 'OK': return user, password elif r.reason == "FORBIDDEN": print "Incorrect login information..." req_auth() return False I have the following problems(understanding and applying the correct way): I can't find a correct way of storing the returned data from req_auth() to auth_file in a format that can be read and used in load_auth file PS: Of course I'm a beginner in Python and I'm sure I have missed some key elements here :(

    Read the article

  • power and modulo on the fly for big numbers

    - by user unknown
    I raise some basis b to the power p and take the modulo m of that. Let's assume b=55170 or 55172 and m=3043839241 (which happens to be the square of 55171). The linux-calculator bc gives the results (we need this for control): echo "p=5606;b=55171;m=b*b;((b-1)^p)%m;((b+1)^p)%m" | bc 2734550616 309288627 Now calculating 55170^5606 gives a somewhat large number, but since I have to do a modulooperation, I can circumvent the usage of BigInt, I thought, because of: (a*b) % c == ((a%c) * (b%c))%c i.e. (9*7) % 5 == ((9%5) * (7%5))%5 => 63 % 5 == (4 * 2) %5 => 3 == 8 % 5 ... and a^d = a^(b+c) = a^b * a^c, therefore I can divide b+c by 2, which gives, for even or odd ds d/2 and d-(d/2), so for 8^5 I can calculate 8^2 * 8^3. So my (defective) method, which always cut's off the divisor on the fly looks like that: def powMod (b: Long, pot: Int, mod: Long) : Long = { if (pot == 1) b % mod else { val pot2 = pot/2 val pm1 = powMod (b, pot, mod) val pm2 = powMod (b, pot-pot2, mod) (pm1 * pm2) % mod } } and feeded with some values, powMod (55170, 5606, 3043839241L) res2: Long = 1885539617 powMod (55172, 5606, 3043839241L) res4: Long = 309288627 As we can see, the second result is exactly the same as the one above, but the first one looks quiet different. I'm doing a lot of such calculations, and they seem to be accurate as long as they stay in the range of Int, but I can't see any error. Using a BigInt works as well, but is way too slow: def calc2 (n: Int, pri: Long) = { val p: BigInt = pri val p3 = p * p val p1 = (p-1).pow (n) % (p3) val p2 = (p+1).pow (n) % (p3) print ("p1: " + p1 + " p2: " + p2) } calc2 (5606, 55171) p1: 2734550616 p2: 309288627 (same result as with bc) Can somebody see the error in powMod?

    Read the article

  • populating on the basis of array elements in php

    - by Avinash
    This is my code. if(in_array("1", $mod)){ $res=array('First Name','Insertion','Last Name','Lead Country');} if(in_array("2", $mod)){ $res=array('Landline No:','Mobile No:','Lead Country');} if(in_array("3", $mod)){ $res=array('City','State','Country','Lead Country');} if(in_array("4", $mod)){ $res=array('Email','Lead Country');} return $res; Upto this it works fine. But if the array contains more than one value say (1,3) I need to return both results of 1 and 3. eg: if the array is like this array([0]=>1 [1]=>3) then $res=array('First Name','Insertion','Last Name','City','State','Country','Lead Country') But if there are 2 lead country only one should be displayed how to do this? Pls help me.

    Read the article

  • how do i get textfield value then combine with regex

    - by klox
    i have this code for get data from textfield: <script type="text/javascript"> var mod=document.getElementById("mod").value; ajax(mod); function callback() { if(ajaxObj(mod) { document.getElementById("divResult").innerHTML=ajaxObj.responseText; }); }; </script> and this one for search character: <script> var str="KD-R435MUN2D"; var matches=str.match(/([EJU]).*(D)/i); if (matches) { var firstletter = matches [1]; var secondletter = matches [2]; var thirdletter = matches [3]; alert(firstletter + secondletter + thirdletter); }else{ alert (":("); } </script> how to combine both?please help...

    Read the article

  • how to change default mailed by : address in php mail()

    - by testkhan
    i have the following code $subject = "Subject Here"; $headers = 'MIME-Version: 1.0' . "\r\n"; $headers .= 'Content-type: text/html; charset=iso-8859-1' . "\r\n"; // Additional headers $headers .= 'From: Domain Name <[email protected]>' . "\r\n"; $to = $email; $body = ' My Message here '; mail($to, $subject, $body, $headers); and it send mail correctly but when i see details in the email in gmail ... it shows from Domain Name to [email protected] date Tue, May 25, 2010 at 12:41 PM subject my subject here mailed-by mars.myhostingcompany.net while i want to show my own address in mailed by section so that it should be mydomain.com instead of mars.myhostingcompany.net

    Read the article

  • php mail not working perfectly with outlook

    - by user1309524
    I have a problem using PHP to send mail. The mail is received by Outlook correctly, but it does not show the "From" address in the e-mail. $subject = $_POST['message_subject']; $message = $_POST['speaker_description']; $email = $_POST['email']; $option = $_POST['sel_reg_options']; $email = substr_replace($email ,"",-1); $headers .= "Content-type: text/html; charset=iso-8859-1\r\n"; $headers .= "From:My Name<[email protected]>\r\n"; $headers .= "Reply-To: Registration of Interest<[email protected]>\r\n"; $headers .= "MIME-Version: 1.0"."\r\n"; $mail_sent = @mail($email,$subject,$message,$headers);

    Read the article

  • Integration Patterns with Azure Service Bus Relay, Part 3.5: Node.js relay

    - by Elton Stoneman
    This is an extension to Part 3 in the IPASBR series, see also: Integration Patterns with Azure Service Bus Relay, Part 1: Exposing the on-premise service Integration Patterns with Azure Service Bus Relay, Part 2: Anonymous full-trust .NET consumer Integration Patterns with Azure Service Bus Relay, Part 3: Anonymous partial-trust consumer In Part 3 I said “there isn't actually a .NET requirement here”, and this post just follows up on that statement. In Part 3 we had an ASP.NET MVC Website making a REST call to an Azure Service Bus service; to show that the REST stuff is really interoperable, in this version we use Node.js to make the secure service call. The code is on GitHub here: IPASBR Part 3.5. The sample code is simpler than Part 3 - rather than code up a UI in Node.js, the sample just relays the REST service call out to Azure. The steps are the same as Part 3: REST call to ACS with the service identity credentials, which returns an SWT; REST call to Azure Service Bus Relay, presenting the SWT; request gets relayed to the on-premise service. In Node.js the authentication step looks like this: var options = { host: acs.namespace() + '-sb.accesscontrol.windows.net', path: '/WRAPv0.9/', method: 'POST' }; var values = { wrap_name: acs.issuerName(), wrap_password: acs.issuerSecret(), wrap_scope: 'http://' + acs.namespace() + '.servicebus.windows.net/' }; var req = https.request(options, function (res) { console.log("statusCode: ", res.statusCode); console.log("headers: ", res.headers); res.on('data', function (d) { var token = qs.parse(d.toString('utf8')); callback(token.wrap_access_token); }); }); req.write(qs.stringify(values)); req.end(); Once we have the token, we can wrap it up into an Authorization header and pass it to the Service Bus call: token = 'WRAP access_token=\"' + swt + '\"'; //... var reqHeaders = { Authorization: token }; var options = { host: acs.namespace() + '.servicebus.windows.net', path: '/rest/reverse?string=' + requestUrl.query.string, headers: reqHeaders }; var req = https.request(options, function (res) { console.log("statusCode: ", res.statusCode); console.log("headers: ", res.headers); response.writeHead(res.statusCode, res.headers); res.on('data', function (d) { var reversed = d.toString('utf8') console.log('svc returned: ' + d.toString('utf8')); response.end(reversed); }); }); req.end(); Running the sample Usual routine to add your own Azure details into Solution Items\AzureConnectionDetails.xml and “Run Custom Tool” on the .tt files. Build and you should be able to navigate to the on-premise service at http://localhost/Sixeyed.Ipasbr.Services/FormatService.svc/rest/reverse?string=abc123 and get a string response, going to the service direct. Install Node.js (v0.8.14 at time of writing), run FormatServiceRelay.cmd, navigate to http://localhost:8013/reverse?string=abc123, and you should get exactly the same response but through Node.js, via Azure Service Bus Relay to your on-premise service. The console logs the WRAP token returned from ACS and the response from Azure Service Bus Relay which it forwards:

    Read the article

  • WebClient on WP7 - Throw "A request with this method cannot have a request body"

    - by Peter Hansen
    If I execute this code in a Consoleapp it works fine: string uriString = "http://url.com/api/v1.0/d/" + Username + "/some?amount=3&offset=0"; WebClient wc = new WebClient(); wc.Headers["Content-Type"] = "application/json"; wc.Headers["Authorization"] = AuthString.Replace("\\", ""); string responseArrayKvitteringer = wc.DownloadString(uriString); Console.WriteLine(responseArrayKvitteringer); But if I move the code to my WP7 project like this: string uriString = "http://url.com/api/v1.0/d/" + Username + "/some?amount=3&offset=0"; WebClient wc = new WebClient(); wc.Headers["Content-Type"] = "application/json"; wc.Headers["Authorization"] = AuthString.Replace("\\", ""); wc.DownloadStringCompleted += new DownloadStringCompletedEventHandler(wc_DownloadStringCompleted); wc.DownloadStringAsync(new Uri(uriString)); void wc_DownloadStringCompleted(object sender, DownloadStringCompletedEventArgs e) { MessageBox.Show(e.Result); } I got the exception: A request with this method cannot have a request body. Why? The solution is to remove the Content-type: string uriString = "http://url.com/api/v1.0/d/" + Username + "/some?amount=3&offset=0"; WebClient wc = new WebClient(); //wc.Headers["Content-Type"] = "application/json"; wc.Headers["Authorization"] = AuthString.Replace("\\", ""); wc.DownloadStringCompleted += new DownloadStringCompletedEventHandler(wc_DownloadStringCompleted); wc.DownloadStringAsync(new Uri(uriString)); void wc_DownloadStringCompleted(object sender, DownloadStringCompletedEventArgs e) { MessageBox.Show(e.Result); }

    Read the article

  • Logging Into a site that uses Live.com authentication with C#

    - by Josh
    I've been trying to automate a log in to a website I frequent, www.bungie.net. The site is associated with Microsoft and Xbox Live, and as such makes uses of the Windows Live ID API when people log in to their site. I am relatively new to creating web spiders/robots, and I worry that I'm misunderstanding some of the most basic concepts. I've simulated logins to other sites such as Facebook and Gmail, but live.com has given me nothing but trouble. Anyways, I've been using Wireshark and the Firefox addon Tamper Data to try and figure out what I need to post, and what cookies I need to include with my requests. As far as I know these are the steps one must follow to log in to this site. 1. Visit https: //login.live.com/login.srf?wa=wsignin1.0&rpsnv=11&ct=1268167141&rver=5.5.4177.0&wp=LBI&wreply=http:%2F%2Fwww.bungie.net%2FDefault.aspx&id=42917 2. Recieve the cookies MSPRequ and MSPOK. 3. Post the values from the form ID "PPSX", the values from the form ID "PPFT", your username, your password all to a changing URL similar to: https: //login.live.com/ppsecure/post.srf?wa=wsignin1.0&rpsnv=11&ct= (there are a few numbers that change at the end of that URL) 4. Live.com returns the user a page with more hidden forms to post. The client then posts the values from the form "ANON", the value from the form "ANONExp" and the values from the form "t" to the URL: http ://www.bung ie.net/Default.aspx?wa=wsignin1.0 5. After posting that data, the user is returned a variety of cookies the most important of which is "BNGAuth" which is the log in cookie for the site. Where I am having trouble is on fifth step, but that doesn't neccesarily mean I've done all the other steps correctly. I post the data from "ANON", "ANONExp" and "t" but instead of being returned a BNGAuth cookie, I'm returned a cookie named "RSPMaybe" and redirected to the home page. When I review the Wireshark log, I noticed something that instantly stood out to me as different between the log when I logged in with Firefox and when my program ran. It could be nothing but I'll include the picture here for you to review. I'm being returned an HTTP packet from the site before I post the data in the fourth step. I'm not sure how this is happening, but it must be a side effect from something I'm doing wrong in the HTTPS steps. ![alt text][1] http://img391.imageshack.us/img391/6049/31394881.gif using System; using System.Collections.Generic; using System.Collections.Specialized; using System.Text; using System.Net; using System.IO; using System.IO.Compression; using System.Security.Cryptography; using System.Security.Cryptography.X509Certificates; using System.Web; namespace SpiderFromScratch { class Program { static void Main(string[] args) { CookieContainer cookies = new CookieContainer(); Uri url = new Uri("https://login.live.com/login.srf?wa=wsignin1.0&rpsnv=11&ct=1268167141&rver=5.5.4177.0&wp=LBI&wreply=http:%2F%2Fwww.bungie.net%2FDefault.aspx&id=42917"); HttpWebRequest http = (HttpWebRequest)HttpWebRequest.Create(url); http.Timeout = 30000; http.UserAgent = "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.8) Gecko/20100202 Firefox/3.5.8 (.NET CLR 3.5.30729)"; http.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"; http.Headers.Add("Accept-Language", "en-us,en;q=0.5"); http.Headers.Add("Accept-Charset", "ISO-8859-1,utf-8;q=0.7,*;q=0.7"); http.Headers.Add("Keep-Alive", "300"); http.Referer = "http://www.bungie.net/"; http.ContentType = "application/x-www-form-urlencoded"; http.CookieContainer = new CookieContainer(); http.Method = WebRequestMethods.Http.Get; HttpWebResponse response = (HttpWebResponse)http.GetResponse(); StreamReader readStream = new StreamReader(response.GetResponseStream()); string HTML = readStream.ReadToEnd(); readStream.Close(); //gets the cookies (they are set in the eighth header) string[] strCookies = response.Headers.GetValues(8); response.Close(); string name, value; Cookie manualCookie; for (int i = 0; i < strCookies.Length; i++) { name = strCookies[i].Substring(0, strCookies[i].IndexOf("=")); value = strCookies[i].Substring(strCookies[i].IndexOf("=") + 1, strCookies[i].IndexOf(";") - strCookies[i].IndexOf("=") - 1); manualCookie = new Cookie(name, "\"" + value + "\""); Uri manualURL = new Uri("http://login.live.com"); http.CookieContainer.Add(manualURL, manualCookie); } //stores the cookies to be used later cookies = http.CookieContainer; //Get the PPSX value string PPSX = HTML.Remove(0, HTML.IndexOf("PPSX")); PPSX = PPSX.Remove(0, PPSX.IndexOf("value") + 7); PPSX = PPSX.Substring(0, PPSX.IndexOf("\"")); //Get this random PPFT value string PPFT = HTML.Remove(0, HTML.IndexOf("PPFT")); PPFT = PPFT.Remove(0, PPFT.IndexOf("value") + 7); PPFT = PPFT.Substring(0, PPFT.IndexOf("\"")); //Get the random URL you POST to string POSTURL = HTML.Remove(0, HTML.IndexOf("https://login.live.com/ppsecure/post.srf?wa=wsignin1.0&rpsnv=11&ct=")); POSTURL = POSTURL.Substring(0, POSTURL.IndexOf("\"")); //POST with cookies http = (HttpWebRequest)HttpWebRequest.Create(POSTURL); http.UserAgent = "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.8) Gecko/20100202 Firefox/3.5.8 (.NET CLR 3.5.30729)"; http.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"; http.Headers.Add("Accept-Language", "en-us,en;q=0.5"); http.Headers.Add("Accept-Charset", "ISO-8859-1,utf-8;q=0.7,*;q=0.7"); http.Headers.Add("Keep-Alive", "300"); http.CookieContainer = cookies; http.Referer = "https://login.live.com/login.srf?wa=wsignin1.0&rpsnv=11&ct=1268158321&rver=5.5.4177.0&wp=LBI&wreply=http:%2F%2Fwww.bungie.net%2FDefault.aspx&id=42917"; http.ContentType = "application/x-www-form-urlencoded"; http.Method = WebRequestMethods.Http.Post; Stream ostream = http.GetRequestStream(); //used to convert strings into bytes System.Text.ASCIIEncoding encoding = new System.Text.ASCIIEncoding(); //Post information byte[] buffer = encoding.GetBytes("PPSX=" + PPSX +"&PwdPad=IfYouAreReadingThisYouHaveTooMuc&login=YOUREMAILGOESHERE&passwd=YOURWORDGOESHERE" + "&LoginOptions=2&PPFT=" + PPFT); ostream.Write(buffer, 0, buffer.Length); ostream.Close(); HttpWebResponse response2 = (HttpWebResponse)http.GetResponse(); readStream = new StreamReader(response2.GetResponseStream()); HTML = readStream.ReadToEnd(); response2.Close(); ostream.Dispose(); foreach (Cookie cookie in response2.Cookies) { Console.WriteLine(cookie.Name + ": "); Console.WriteLine(cookie.Value); Console.WriteLine(cookie.Expires); Console.WriteLine(); } //SET POSTURL value string POSTANON = "http://www.bungie.net/Default.aspx?wa=wsignin1.0"; //Get the ANON value string ANON = HTML.Remove(0, HTML.IndexOf("ANON")); ANON = ANON.Remove(0, ANON.IndexOf("value") + 7); ANON = ANON.Substring(0, ANON.IndexOf("\"")); ANON = HttpUtility.UrlEncode(ANON); //Get the ANONExp value string ANONExp = HTML.Remove(0, HTML.IndexOf("ANONExp")); ANONExp = ANONExp.Remove(0, ANONExp.IndexOf("value") + 7); ANONExp = ANONExp.Substring(0, ANONExp.IndexOf("\"")); ANONExp = HttpUtility.UrlEncode(ANONExp); //Get the t value string t = HTML.Remove(0, HTML.IndexOf("id=\"t\"")); t = t.Remove(0, t.IndexOf("value") + 7); t = t.Substring(0, t.IndexOf("\"")); t = HttpUtility.UrlEncode(t); //POST the Info and Accept the Bungie Cookies http = (HttpWebRequest)HttpWebRequest.Create(POSTANON); http.UserAgent = "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.8) Gecko/20100202 Firefox/3.5.8 (.NET CLR 3.5.30729)"; http.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"; http.Headers.Add("Accept-Language", "en-us,en;q=0.5"); http.Headers.Add("Accept-Encoding", "gzip,deflate"); http.Headers.Add("Accept-Charset", "ISO-8859-1,utf-8;q=0.7,*;q=0.7"); http.Headers.Add("Keep-Alive", "115"); http.CookieContainer = new CookieContainer(); http.ContentType = "application/x-www-form-urlencoded"; http.Method = WebRequestMethods.Http.Post; http.Expect = null; ostream = http.GetRequestStream(); int test = ANON.Length; int test1 = ANONExp.Length; int test2 = t.Length; buffer = encoding.GetBytes("ANON=" + ANON +"&ANONExp=" + ANONExp + "&t=" + t); ostream.Write(buffer, 0, buffer.Length); ostream.Close(); //Here lies the problem, I am not returned the correct cookies. HttpWebResponse response3 = (HttpWebResponse)http.GetResponse(); GZipStream gzip = new GZipStream(response3.GetResponseStream(), CompressionMode.Decompress); readStream = new StreamReader(gzip); HTML = readStream.ReadToEnd(); //gets both cookies string[] strCookies2 = response3.Headers.GetValues(11); response3.Close(); } } } This has given me problems and I've put many hours into learning about HTTP protocols so any help would be appreciated. If there is an article detailing a similar log in to live.com feel free to point the way. I've been looking far and wide for any articles with working solutions. If I could be clearer, feel free to ask as this is my first time using Stack Overflow. Cheers, --Josh

    Read the article

  • Logging Into a site that uses Live.com authentication

    - by Josh
    I've been trying to automate a log in to a website I frequent, www.bungie.net. The site is associated with Microsoft and Xbox Live, and as such makes uses of the Windows Live ID API when people log in to their site. I am relatively new to creating web spiders/robots, and I worry that I'm misunderstanding some of the most basic concepts. I've simulated logins to other sites such as Facebook and Gmail, but live.com has given me nothing but trouble. Anyways, I've been using Wireshark and the Firefox addon Tamper Data to try and figure out what I need to post, and what cookies I need to include with my requests. As far as I know these are the steps one must follow to log in to this site. 1. Visit https: //login.live.com/login.srf?wa=wsignin1.0&rpsnv=11&ct=1268167141&rver=5.5.4177.0&wp=LBI&wreply=http:%2F%2Fwww.bungie.net%2FDefault.aspx&id=42917 2. Recieve the cookies MSPRequ and MSPOK. 3. Post the values from the form ID "PPSX", the values from the form ID "PPFT", your username, your password all to a changing URL similar to: https: //login.live.com/ppsecure/post.srf?wa=wsignin1.0&rpsnv=11&ct= (there are a few numbers that change at the end of that URL) 4. Live.com returns the user a page with more hidden forms to post. The client then posts the values from the form "ANON", the value from the form "ANONExp" and the values from the form "t" to the URL: http ://www.bung ie.net/Default.aspx?wa=wsignin1.0 5. After posting that data, the user is returned a variety of cookies the most important of which is "BNGAuth" which is the log in cookie for the site. Where I am having trouble is on fifth step, but that doesn't neccesarily mean I've done all the other steps correctly. I post the data from "ANON", "ANONExp" and "t" but instead of being returned a BNGAuth cookie, I'm returned a cookie named "RSPMaybe" and redirected to the home page. When I review the Wireshark log, I noticed something that instantly stood out to me as different between the log when I logged in with Firefox and when my program ran. It could be nothing but I'll include the picture here for you to review. I'm being returned an HTTP packet from the site before I post the data in the fourth step. I'm not sure how this is happening, but it must be a side effect from something I'm doing wrong in the HTTPS steps. using System; using System.Collections.Generic; using System.Collections.Specialized; using System.Text; using System.Net; using System.IO; using System.IO.Compression; using System.Security.Cryptography; using System.Security.Cryptography.X509Certificates; using System.Web; namespace SpiderFromScratch { class Program { static void Main(string[] args) { CookieContainer cookies = new CookieContainer(); Uri url = new Uri("https://login.live.com/login.srf?wa=wsignin1.0&rpsnv=11&ct=1268167141&rver=5.5.4177.0&wp=LBI&wreply=http:%2F%2Fwww.bungie.net%2FDefault.aspx&id=42917"); HttpWebRequest http = (HttpWebRequest)HttpWebRequest.Create(url); http.Timeout = 30000; http.UserAgent = "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.8) Gecko/20100202 Firefox/3.5.8 (.NET CLR 3.5.30729)"; http.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"; http.Headers.Add("Accept-Language", "en-us,en;q=0.5"); http.Headers.Add("Accept-Charset", "ISO-8859-1,utf-8;q=0.7,*;q=0.7"); http.Headers.Add("Keep-Alive", "300"); http.Referer = "http://www.bungie.net/"; http.ContentType = "application/x-www-form-urlencoded"; http.CookieContainer = new CookieContainer(); http.Method = WebRequestMethods.Http.Get; HttpWebResponse response = (HttpWebResponse)http.GetResponse(); StreamReader readStream = new StreamReader(response.GetResponseStream()); string HTML = readStream.ReadToEnd(); readStream.Close(); //gets the cookies (they are set in the eighth header) string[] strCookies = response.Headers.GetValues(8); response.Close(); string name, value; Cookie manualCookie; for (int i = 0; i < strCookies.Length; i++) { name = strCookies[i].Substring(0, strCookies[i].IndexOf("=")); value = strCookies[i].Substring(strCookies[i].IndexOf("=") + 1, strCookies[i].IndexOf(";") - strCookies[i].IndexOf("=") - 1); manualCookie = new Cookie(name, "\"" + value + "\""); Uri manualURL = new Uri("http://login.live.com"); http.CookieContainer.Add(manualURL, manualCookie); } //stores the cookies to be used later cookies = http.CookieContainer; //Get the PPSX value string PPSX = HTML.Remove(0, HTML.IndexOf("PPSX")); PPSX = PPSX.Remove(0, PPSX.IndexOf("value") + 7); PPSX = PPSX.Substring(0, PPSX.IndexOf("\"")); //Get this random PPFT value string PPFT = HTML.Remove(0, HTML.IndexOf("PPFT")); PPFT = PPFT.Remove(0, PPFT.IndexOf("value") + 7); PPFT = PPFT.Substring(0, PPFT.IndexOf("\"")); //Get the random URL you POST to string POSTURL = HTML.Remove(0, HTML.IndexOf("https://login.live.com/ppsecure/post.srf?wa=wsignin1.0&rpsnv=11&ct=")); POSTURL = POSTURL.Substring(0, POSTURL.IndexOf("\"")); //POST with cookies http = (HttpWebRequest)HttpWebRequest.Create(POSTURL); http.UserAgent = "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.8) Gecko/20100202 Firefox/3.5.8 (.NET CLR 3.5.30729)"; http.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"; http.Headers.Add("Accept-Language", "en-us,en;q=0.5"); http.Headers.Add("Accept-Charset", "ISO-8859-1,utf-8;q=0.7,*;q=0.7"); http.Headers.Add("Keep-Alive", "300"); http.CookieContainer = cookies; http.Referer = "https://login.live.com/login.srf?wa=wsignin1.0&rpsnv=11&ct=1268158321&rver=5.5.4177.0&wp=LBI&wreply=http:%2F%2Fwww.bungie.net%2FDefault.aspx&id=42917"; http.ContentType = "application/x-www-form-urlencoded"; http.Method = WebRequestMethods.Http.Post; Stream ostream = http.GetRequestStream(); //used to convert strings into bytes System.Text.ASCIIEncoding encoding = new System.Text.ASCIIEncoding(); //Post information byte[] buffer = encoding.GetBytes("PPSX=" + PPSX +"&PwdPad=IfYouAreReadingThisYouHaveTooMuc&login=YOUREMAILGOESHERE&passwd=YOURWORDGOESHERE" + "&LoginOptions=2&PPFT=" + PPFT); ostream.Write(buffer, 0, buffer.Length); ostream.Close(); HttpWebResponse response2 = (HttpWebResponse)http.GetResponse(); readStream = new StreamReader(response2.GetResponseStream()); HTML = readStream.ReadToEnd(); response2.Close(); ostream.Dispose(); foreach (Cookie cookie in response2.Cookies) { Console.WriteLine(cookie.Name + ": "); Console.WriteLine(cookie.Value); Console.WriteLine(cookie.Expires); Console.WriteLine(); } //SET POSTURL value string POSTANON = "http://www.bungie.net/Default.aspx?wa=wsignin1.0"; //Get the ANON value string ANON = HTML.Remove(0, HTML.IndexOf("ANON")); ANON = ANON.Remove(0, ANON.IndexOf("value") + 7); ANON = ANON.Substring(0, ANON.IndexOf("\"")); ANON = HttpUtility.UrlEncode(ANON); //Get the ANONExp value string ANONExp = HTML.Remove(0, HTML.IndexOf("ANONExp")); ANONExp = ANONExp.Remove(0, ANONExp.IndexOf("value") + 7); ANONExp = ANONExp.Substring(0, ANONExp.IndexOf("\"")); ANONExp = HttpUtility.UrlEncode(ANONExp); //Get the t value string t = HTML.Remove(0, HTML.IndexOf("id=\"t\"")); t = t.Remove(0, t.IndexOf("value") + 7); t = t.Substring(0, t.IndexOf("\"")); t = HttpUtility.UrlEncode(t); //POST the Info and Accept the Bungie Cookies http = (HttpWebRequest)HttpWebRequest.Create(POSTANON); http.UserAgent = "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.8) Gecko/20100202 Firefox/3.5.8 (.NET CLR 3.5.30729)"; http.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"; http.Headers.Add("Accept-Language", "en-us,en;q=0.5"); http.Headers.Add("Accept-Encoding", "gzip,deflate"); http.Headers.Add("Accept-Charset", "ISO-8859-1,utf-8;q=0.7,*;q=0.7"); http.Headers.Add("Keep-Alive", "115"); http.CookieContainer = new CookieContainer(); http.ContentType = "application/x-www-form-urlencoded"; http.Method = WebRequestMethods.Http.Post; http.Expect = null; ostream = http.GetRequestStream(); int test = ANON.Length; int test1 = ANONExp.Length; int test2 = t.Length; buffer = encoding.GetBytes("ANON=" + ANON +"&ANONExp=" + ANONExp + "&t=" + t); ostream.Write(buffer, 0, buffer.Length); ostream.Close(); //Here lies the problem, I am not returned the correct cookies. HttpWebResponse response3 = (HttpWebResponse)http.GetResponse(); GZipStream gzip = new GZipStream(response3.GetResponseStream(), CompressionMode.Decompress); readStream = new StreamReader(gzip); HTML = readStream.ReadToEnd(); //gets both cookies string[] strCookies2 = response3.Headers.GetValues(11); response3.Close(); } } } This has given me problems and I've put many hours into learning about HTTP protocols so any help would be appreciated. If there is an article detailing a similar log in to live.com feel free to point the way. I've been looking far and wide for any articles with working solutions. If I could be clearer, feel free to ask as this is my first time using Stack Overflow.

    Read the article

  • Using libcurl to create a valid POST

    - by Haraldo
    static int get( const char * cURL, const char * cParam ) { CURL *handle; CURLcode result; std::string buffer; char errorBuffer[CURL_ERROR_SIZE]; //struct curl_slist *headers = NULL; //headers = curl_slist_append(headers, "Content-Type: Multipart/Related"); //headers = curl_slist_append(headers, "type: text/xml"); // Create our curl handle handle = curl_easy_init(); if( handle ) { curl_easy_setopt(handle, CURLOPT_ERRORBUFFER, errorBuffer); //curl_easy_setopt(handle, CURLOPT_HEADER, 0); //curl_easy_setopt(handle, CURLOPT_HTTPHEADER, headers); curl_easy_setopt(handle, CURLOPT_POST, 1); curl_easy_setopt(handle, CURLOPT_POSTFIELDS, cParam); curl_easy_setopt(handle, CURLOPT_POSTFIELDSIZE, strlen(cParam)); curl_easy_setopt(handle, CURLOPT_FOLLOWLOCATION, 1); curl_easy_setopt(handle, CURLOPT_WRITEFUNCTION, Request::writer); curl_easy_setopt(handle, CURLOPT_WRITEDATA, &buffer); curl_easy_setopt(handle, CURLOPT_USERAGENT, "libcurl-agent/1.0"); curl_easy_setopt(handle, CURLOPT_URL, cURL); result = curl_easy_perform(handle); curl_easy_cleanup(handle); } if( result == CURLE_OK ) { return atoi( buffer.c_str() ); } return 0; } Hi there, first of all I'm having trouble debugging this in visual studio express 2008 so I'm unsure what buffer.c_str() might actually be returning but I am outputting 1 or 0 to the web page being posted to. Therefore I'm expecting the buffer to be one or the other, however I seem to only be returning 0 or equivalent. Does the code above look like it will return what I expect or should my variable types be different? The conversion using "atoi" may be an issue. Any thought would be much appreciated.

    Read the article

  • MediaFileUpload of HTML in UTF-8 encoding using Python and Google-Drive-SDK

    - by Victoria
    Looking for example using MediaFileUpload has a reference to the basic documentation for creating/uploading a file to Google Drive. However, while I have code that creates files, converting from HTML to Google Doc format. It works perfectly when they contain only ASCII characters, but when I add a non-ASCII character, it fails, with the following traceback: Traceback (most recent call last): File "d:\my\py\ckwort.py", line 949, in <module> rids, worker_documents = analyze( meta, gd ) File "d:\my\py\ckwort.py", line 812, in analyze gd.mkdir( **iy ) File "d:\my\py\ckwort.py", line 205, in mkdir self.create( **( kw['subop'])) File "d:\my\py\ckwort.py", line 282, in create media_body=kw['media_body'], File "D:\my\py\gdrive2\oauth2client\util.py", line 120, in positional_wrapper return wrapped(*args, **kwargs) File "D:\my\py\gdrive2\apiclient\http.py", line 676, in execute headers=self.headers) File "D:\my\py\gdrive2\oauth2client\util.py", line 120, in positional_wrapper return wrapped(*args, **kwargs) File "D:\my\py\gdrive2\oauth2client\client.py", line 420, in new_request redirections, connection_type) File "D:\my\py\gdrive2\httplib2\__init__.py", line 1597, in request (response, content) = self._request(conn, authority, uri, request_uri, method, body, headers, redirections, cachekey) File "D:\my\py\gdrive2\httplib2\__init__.py", line 1345, in _request (response, content) = self._conn_request(conn, request_uri, method, body, headers) File "D:\my\py\gdrive2\httplib2\__init__.py", line 1282, in _conn_request conn.request(method, request_uri, body, headers) File "C:\Python27\lib\httplib.py", line 958, in request self._send_request(method, url, body, headers) File "C:\Python27\lib\httplib.py", line 992, in _send_request self.endheaders(body) File "C:\Python27\lib\httplib.py", line 954, in endheaders self._send_output(message_body) File "C:\Python27\lib\httplib.py", line 812, in _send_output msg += message_body UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 in position 370: ordinal not in range(128) I don't find any parameter to use to specify what file encoding should be used by MediaFileUpload (My files are using UTF-8). Am I missing something?

    Read the article

  • mail function not working for yahoo mail id

    - by Akash
    Hello all, I have written a code to send mail on yahoo or gmail.Mail is sending on gmail but i m not seeing any message in yahoo mail. And in gmail i m seeing all html content with message. here is my code... $headers = "From: \"".$from_name."\" <".$from_email.">\n"; $headers .= "To: \"".$to_name."\" <".$to_email.">\n"; $headers .= "Return-Path: <".$from_email.">\n"; $headers .= "MIME-Version: 1.0\n"; $headers .= "Content-Type: text/HTML; charset=ISO-8859-1\n"; // message $message = ' <html> <head> <title>Registration</title> </head> <body> <table><tr> <td> <a href="#'> Click Here To Activate Your account</a> Thanks To visit site.com </td> </tr> </table> </body> </html>'; if(mail('', $subject, $message, $headers)) echo "successfully register !! please check your mail and clik on confirmation link";

    Read the article

  • West Wind WebSurge - an easy way to Load Test Web Applications

    - by Rick Strahl
    A few months ago on a project the subject of load testing came up. We were having some serious issues with a Web application that would start spewing SQL lock errors under somewhat heavy load. These sort of errors can be tough to catch, precisely because they only occur under load and not during typical development testing. To replicate this error more reliably we needed to put a load on the application and run it for a while before these SQL errors would flare up. It’s been a while since I’d looked at load testing tools, so I spent a bit of time looking at different tools and frankly didn’t really find anything that was a good fit. A lot of tools were either a pain to use, didn’t have the basic features I needed, or are extravagantly expensive. In  the end I got frustrated enough to build an initially small custom load test solution that then morphed into a more generic library, then gained a console front end and eventually turned into a full blown Web load testing tool that is now called West Wind WebSurge. I got seriously frustrated looking for tools every time I needed some quick and dirty load testing for an application. If my aim is to just put an application under heavy enough load to find a scalability problem in code, or to simply try and push an application to its limits on the hardware it’s running I shouldn’t have to have to struggle to set up tests. It should be easy enough to get going in a few minutes, so that the testing can be set up quickly so that it can be done on a regular basis without a lot of hassle. And that was the goal when I started to build out my initial custom load tester into a more widely usable tool. If you’re in a hurry and you want to check it out, you can find more information and download links here: West Wind WebSurge Product Page Walk through Video Download link (zip) Install from Chocolatey Source on GitHub For a more detailed discussion of the why’s and how’s and some background continue reading. How did I get here? When I started out on this path, I wasn’t planning on building a tool like this myself – but I got frustrated enough looking at what’s out there to think that I can do better than what’s available for the most common simple load testing scenarios. When we ran into the SQL lock problems I mentioned, I started looking around what’s available for Web load testing solutions that would work for our whole team which consisted of a few developers and a couple of IT guys both of which needed to be able to run the tests. It had been a while since I looked at tools and I figured that by now there should be some good solutions out there, but as it turns out I didn’t really find anything that fit our relatively simple needs without costing an arm and a leg… I spent the better part of a day installing and trying various load testing tools and to be frank most of them were either terrible at what they do, incredibly unfriendly to use, used some terminology I couldn’t even parse, or were extremely expensive (and I mean in the ‘sell your liver’ range of expensive). Pick your poison. There are also a number of online solutions for load testing and they actually looked more promising, but those wouldn’t work well for our scenario as the application is running inside of a private VPN with no outside access into the VPN. Most of those online solutions also ended up being very pricey as well – presumably because of the bandwidth required to test over the open Web can be enormous. When I asked around on Twitter what people were using– I got mostly… crickets. Several people mentioned Visual Studio Load Test, and most other suggestions pointed to online solutions. I did get a bunch of responses though with people asking to let them know what I found – apparently I’m not alone when it comes to finding load testing tools that are effective and easy to use. As to Visual Studio, the higher end skus of Visual Studio and the test edition include a Web load testing tool, which is quite powerful, but there are a number of issues with that: First it’s tied to Visual Studio so it’s not very portable – you need a VS install. I also find the test setup and terminology used by the VS test runner extremely confusing. Heck, it’s complicated enough that there’s even a Pluralsight course on using the Visual Studio Web test from Steve Smith. And of course you need to have one of the high end Visual Studio Skus, and those are mucho Dinero ($$$) – just for the load testing that’s rarely an option. Some of the tools are ultra extensive and let you run analysis tools on the target serves which is useful, but in most cases – just plain overkill and only distracts from what I tend to be ultimately interested in: Reproducing problems that occur at high load, and finding the upper limits and ‘what if’ scenarios as load is ramped up increasingly against a site. Yes it’s useful to have Web app instrumentation, but often that’s not what you’re interested in. I still fondly remember early days of Web testing when Microsoft had the WAST (Web Application Stress Tool) tool, which was rather simple – and also somewhat limited – but easily allowed you to create stress tests very quickly. It had some serious limitations (mainly that it didn’t work with SSL),  but the idea behind it was excellent: Create tests quickly and easily and provide a decent engine to run it locally with minimal setup. You could get set up and run tests within a few minutes. Unfortunately, that tool died a quiet death as so many of Microsoft’s tools that probably were built by an intern and then abandoned, even though there was a lot of potential and it was actually fairly widely used. Eventually the tools was no longer downloadable and now it simply doesn’t work anymore on higher end hardware. West Wind Web Surge – Making Load Testing Quick and Easy So I ended up creating West Wind WebSurge out of rebellious frustration… The goal of WebSurge is to make it drop dead simple to create load tests. It’s super easy to capture sessions either using the built in capture tool (big props to Eric Lawrence, Telerik and FiddlerCore which made that piece a snap), using the full version of Fiddler and exporting sessions, or by manually or programmatically creating text files based on plain HTTP headers to create requests. I’ve been using this tool for 4 months now on a regular basis on various projects as a reality check for performance and scalability and it’s worked extremely well for finding small performance issues. I also use it regularly as a simple URL tester, as it allows me to quickly enter a URL plus headers and content and test that URL and its results along with the ability to easily save one or more of those URLs. A few weeks back I made a walk through video that goes over most of the features of WebSurge in some detail: Note that the UI has slightly changed since then, so there are some UI improvements. Most notably the test results screen has been updated recently to a different layout and to provide more information about each URL in a session at a glance. The video and the main WebSurge site has a lot of info of basic operations. For the rest of this post I’ll talk about a few deeper aspects that may be of interest while also giving a glance at how WebSurge works. Session Capturing As you would expect, WebSurge works with Sessions of Urls that are played back under load. Here’s what the main Session View looks like: You can create session entries manually by individually adding URLs to test (on the Request tab on the right) and saving them, or you can capture output from Web Browsers, Windows Desktop applications that call services, your own applications using the built in Capture tool. With this tool you can capture anything HTTP -SSL requests and content from Web pages, AJAX calls, SOAP or REST services – again anything that uses Windows or .NET HTTP APIs. Behind the scenes the capture tool uses FiddlerCore so basically anything you can capture with Fiddler you can also capture with Web Surge Session capture tool. Alternately you can actually use Fiddler as well, and then export the captured Fiddler trace to a file, which can then be imported into WebSurge. This is a nice way to let somebody capture session without having to actually install WebSurge or for your customers to provide an exact playback scenario for a given set of URLs that cause a problem perhaps. Note that not all applications work with Fiddler’s proxy unless you configure a proxy. For example, .NET Web applications that make HTTP calls usually don’t show up in Fiddler by default. For those .NET applications you can explicitly override proxy settings to capture those requests to service calls. The capture tool also has handy optional filters that allow you to filter by domain, to help block out noise that you typically don’t want to include in your requests. For example, if your pages include links to CDNs, or Google Analytics or social links you typically don’t want to include those in your load test, so by capturing just from a specific domain you are guaranteed content from only that one domain. Additionally you can provide url filters in the configuration file – filters allow to provide filter strings that if contained in a url will cause requests to be ignored. Again this is useful if you don’t filter by domain but you want to filter out things like static image, css and script files etc. Often you’re not interested in the load characteristics of these static and usually cached resources as they just add noise to tests and often skew the overall url performance results. In my testing I tend to care only about my dynamic requests. SSL Captures require Fiddler Note, that in order to capture SSL requests you’ll have to install the Fiddler’s SSL certificate. The easiest way to do this is to install Fiddler and use its SSL configuration options to get the certificate into the local certificate store. There’s a document on the Telerik site that provides the exact steps to get SSL captures to work with Fiddler and therefore with WebSurge. Session Storage A group of URLs entered or captured make up a Session. Sessions can be saved and restored easily as they use a very simple text format that simply stored on disk. The format is slightly customized HTTP header traces separated by a separator line. The headers are standard HTTP headers except that the full URL instead of just the domain relative path is stored as part of the 1st HTTP header line for easier parsing. Because it’s just text and uses the same format that Fiddler uses for exports, it’s super easy to create Sessions by hand manually or under program control writing out to a simple text file. You can see what this format looks like in the Capture window figure above – the raw captured format is also what’s stored to disk and what WebSurge parses from. The only ‘custom’ part of these headers is that 1st line contains the full URL instead of the domain relative path and Host: header. The rest of each header are just plain standard HTTP headers with each individual URL isolated by a separator line. The format used here also uses what Fiddler produces for exports, so it’s easy to exchange or view data either in Fiddler or WebSurge. Urls can also be edited interactively so you can modify the headers easily as well: Again – it’s just plain HTTP headers so anything you can do with HTTP can be added here. Use it for single URL Testing Incidentally I’ve also found this form as an excellent way to test and replay individual URLs for simple non-load testing purposes. Because you can capture a single or many URLs and store them on disk, this also provides a nice HTTP playground where you can record URLs with their headers, and fire them one at a time or as a session and see results immediately. It’s actually an easy way for REST presentations and I find the simple UI flow actually easier than using Fiddler natively. Finally you can save one or more URLs as a session for later retrieval. I’m using this more and more for simple URL checks. Overriding Cookies and Domains Speaking of HTTP headers – you can also overwrite cookies used as part of the options. One thing that happens with modern Web applications is that you have session cookies in use for authorization. These cookies tend to expire at some point which would invalidate a test. Using the Options dialog you can actually override the cookie: which replaces the cookie for all requests with the cookie value specified here. You can capture a valid cookie from a manual HTTP request in your browser and then paste into the cookie field, to replace the existing Cookie with the new one that is now valid. Likewise you can easily replace the domain so if you captured urls on west-wind.com and now you want to test on localhost you can do that easily easily as well. You could even do something like capture on store.west-wind.com and then test on localhost/store which would also work. Running Load Tests Once you’ve created a Session you can specify the length of the test in seconds, and specify the number of simultaneous threads to run each session on. Sessions run through each of the URLs in the session sequentially by default. One option in the options list above is that you can also randomize the URLs so each thread runs requests in a different order. This avoids bunching up URLs initially when tests start as all threads run the same requests simultaneously which can sometimes skew the results of the first few minutes of a test. While sessions run some progress information is displayed: By default there’s a live view of requests displayed in a Console-like window. On the bottom of the window there’s a running total summary that displays where you’re at in the test, how many requests have been processed and what the requests per second count is currently for all requests. Note that for tests that run over a thousand requests a second it’s a good idea to turn off the console display. While the console display is nice to see that something is happening and also gives you slight idea what’s happening with actual requests, once a lot of requests are processed, this UI updating actually adds a lot of CPU overhead to the application which may cause the actual load generated to be reduced. If you are running a 1000 requests a second there’s not much to see anyway as requests roll by way too fast to see individual lines anyway. If you look on the options panel, there is a NoProgressEvents option that disables the console display. Note that the summary display is still updated approximately once a second so you can always tell that the test is still running. Test Results When the test is done you get a simple Results display: On the right you get an overall summary as well as breakdown by each URL in the session. Both success and failures are highlighted so it’s easy to see what’s breaking in your load test. The report can be printed or you can also open the HTML document in your default Web Browser for printing to PDF or saving the HTML document to disk. The list on the right shows you a partial list of the URLs that were fired so you can look in detail at the request and response data. The list can be filtered by success and failure requests. Each list is partial only (at the moment) and limited to a max of 1000 items in order to render reasonably quickly. Each item in the list can be clicked to see the full request and response data: This particularly useful for errors so you can quickly see and copy what request data was used and in the case of a GET request you can also just click the link to quickly jump to the page. For non-GET requests you can find the URL in the Session list, and use the context menu to Test the URL as configured including any HTTP content data to send. You get to see the full HTTP request and response as well as a link in the Request header to go visit the actual page. Not so useful for a POST as above, but definitely useful for GET requests. Finally you can also get a few charts. The most useful one is probably the Request per Second chart which can be accessed from the Charts menu or shortcut. Here’s what it looks like:   Results can also be exported to JSON, XML and HTML. Keep in mind that these files can get very large rather quickly though, so exports can end up taking a while to complete. Command Line Interface WebSurge runs with a small core load engine and this engine is plugged into the front end application I’ve shown so far. There’s also a command line interface available to run WebSurge from the Windows command prompt. Using the command line you can run tests for either an individual URL (similar to AB.exe for example) or a full Session file. By default when it runs WebSurgeCli shows progress every second showing total request count, failures and the requests per second for the entire test. A silent option can turn off this progress display and display only the results. The command line interface can be useful for build integration which allows checking for failures perhaps or hitting a specific requests per second count etc. It’s also nice to use this as quick and dirty URL test facility similar to the way you’d use Apache Bench (ab.exe). Unlike ab.exe though, WebSurgeCli supports SSL and makes it much easier to create multi-URL tests using either manual editing or the WebSurge UI. Current Status Currently West Wind WebSurge is still in Beta status. I’m still adding small new features and tweaking the UI in an attempt to make it as easy and self-explanatory as possible to run. Documentation for the UI and specialty features is also still a work in progress. I plan on open-sourcing this product, but it won’t be free. There’s a free version available that provides a limited number of threads and request URLs to run. A relatively low cost license  removes the thread and request limitations. Pricing info can be found on the Web site – there’s an introductory price which is $99 at the moment which I think is reasonable compared to most other for pay solutions out there that are exorbitant by comparison… The reason code is not available yet is – well, the UI portion of the app is a bit embarrassing in its current monolithic state. The UI started as a very simple interface originally that later got a lot more complex – yeah, that never happens, right? Unless there’s a lot of interest I don’t foresee re-writing the UI entirely (which would be ideal), but in the meantime at least some cleanup is required before I dare to publish it :-). The code will likely be released with version 1.0. I’m very interested in feedback. Do you think this could be useful to you and provide value over other tools you may or may not have used before? I hope so – it already has provided a ton of value for me and the work I do that made the development worthwhile at this point. You can leave a comment below, or for more extensive discussions you can post a message on the West Wind Message Board in the WebSurge section Microsoft MVPs and Insiders get a free License If you’re a Microsoft MVP or a Microsoft Insider you can get a full license for free. Send me a link to your current, official Microsoft profile and I’ll send you a not-for resale license. Send any messages to [email protected]. Resources For more info on WebSurge and to download it to try it out, use the following links. West Wind WebSurge Home Download West Wind WebSurge Getting Started with West Wind WebSurge Video© Rick Strahl, West Wind Technologies, 2005-2014Posted in ASP.NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • Turn-around time in PHP

    - by user73409
    Is there any one who had tried to build/convert a php version of the Excel method in computing Turn-around time(excluding holidays, weekends and non-business hours)? Excel Turn-around Time Computation: =(NETWORKDAYS(A2,B2,H$1:H$10)-1)*("17:00"-"8:00")+IF(NETWORKDAYS(B2,B2,H$1:H$10),MEDIAN(MOD(B2,1),"17:00","8:00"),"17:00")-MEDIAN(NETWORKDAYS(A2,A2,H$1:H$10)*MOD(A2,1),"17:00","8:00") :REF-URL[http://www.mrexcel.com/forum/excel-questions/514097-i-need-formual-calculate-turn-around-time.html] Thanks.

    Read the article

  • Any advice for dynamic music control?

    - by Assembler
    I would like to be able to dynamically progress the score, and affect the volume levels of separate channels within the music. How could I do this? From my experience with mod music (olden days Amiga music, Mod Tracker, Scream Tracker, Fast Tracker II, Impulse Tracker etc etc), I believe this is the best way to tackle the problem, to allow the music to move from one loop to another, without anything mixed down. I want to do this in AS3, and am considering pulling apart Flod to make this happen

    Read the article

  • How to reliably categorize HTTP sessions in proxy to corresponding browser' windows/tabs user is viewing?

    - by Jehonathan
    I was using the Fiddler core .Net library as a local proxy to record the user activity in web. However I ended up with a problem which seems dirty to solve. I have a web browser say Google Chrome, and the user opened like 10 different tabs each with different web URLs. The problem is that the proxy records all the HTTP session initiated by each pages separately, causing me to figure out using my intelligence the tab which the corresponding HTTP session belonged to. I understand that this is because of the stateless nature of HTTP protocol. However I am just wondering is there an easy way to do this? I ended up with below c# code for that in Fiddler. Still its not a reliable solution due to the heuristics. This is a modification of the sample project bundled with Fiddler core for .NET 4. Basically what it does is filtering HTTP sessions initiated in last few seconds to find the first request or switching to another page made by the same tab in browser. It almost works, but not seems to be a universal solution. Fiddler.FiddlerApplication.AfterSessionComplete += delegate(Fiddler.Session oS) { //exclude other HTTP methods if (oS.oRequest.headers.HTTPMethod == "GET" || oS.oRequest.headers.HTTPMethod == "POST") //exclude other HTTP Status codes if (oS.oResponse.headers.HTTPResponseStatus == "200 OK" || oS.oResponse.headers.HTTPResponseStatus == "304 Not Modified") { //exclude other MIME responses (allow only text/html) var accept = oS.oRequest.headers.FindAll("Accept"); if (accept != null) { if(accept.Count>0) if (accept[0].Value.Contains("text/html")) { //exclude AJAX if (!oS.oRequest.headers.Exists("X-Requested-With")) { //find the referer for this request var referer = oS.oRequest.headers.FindAll("Referer"); //if no referer then assume this as a new request and display the same if(referer!=null) { //if no referer then assume this as a new request and display the same if (referer.Count > 0) { //lock the sessions Monitor.Enter(oAllSessions); //filter further using the response if (oS.oResponse.MIMEType == string.Empty || oS.oResponse.MIMEType == "text/html") //get all previous sessions with the same process ID this session request if(oAllSessions.FindAll(a=>a.LocalProcessID == oS.LocalProcessID) //get all previous sessions within last second (assuming the new tab opened initiated multiple sessions other than parent) .FindAll(z => (z.Timers.ClientBeginRequest > oS.Timers.ClientBeginRequest.AddSeconds(-1))) //get all previous sessions that belongs to the same port of the current session .FindAll(b=>b.port == oS.port ).FindAll(c=>c.clientIP ==oS.clientIP) //get all previus sessions with the same referrer URL of the current session .FindAll(y => referer[0].Value.Equals(y.fullUrl)) //get all previous sessions with the same host name of the current session .FindAll(m=>m.hostname==oS.hostname).Count==0 ) //if count ==0 that means this is the parent request Console.WriteLine(oS.fullUrl); //unlock sessions Monitor.Exit(oAllSessions); } else Console.WriteLine(oS.fullUrl); } else Console.WriteLine(oS.fullUrl); Console.WriteLine(); } } } } };

    Read the article

< Previous Page | 90 91 92 93 94 95 96 97 98 99 100 101  | Next Page >