Search Results

Search found 7625 results on 305 pages for 'duane fields'.

Page 96/305 | < Previous Page | 92 93 94 95 96 97 98 99 100 101 102 103  | Next Page >

  • Why structs cannot be assigned directly?

    - by becko
    Suppose I have a fully defined struct with tag MyStruct, and suppose that x, y, ..., z are allowed values for its fields. Why is struct MyStruct q = {x,y,..,z}; allowed, but struct MyStruct q; q = {x,y,...,z}; is not allowed? I find this very annoying. In the second case, where I have previously declared q, I need to assign a value to each field, one by one: q.X = x; q.Y = y; ... q.Z = z; where X, Y, ..., Z are the fields of MyStruct. Is there a reason behind this?

    Read the article

  • Using jQuery to POST Form Data to an ASP.NET ASMX AJAX Web Service

    - by Rick Strahl
    The other day I got a question about how to call an ASP.NET ASMX Web Service or PageMethods with the POST data from a Web Form (or any HTML form for that matter). The idea is that you should be able to call an endpoint URL, send it regular urlencoded POST data and then use Request.Form[] to retrieve the posted data as needed. My first reaction was that you can’t do it, because ASP.NET ASMX AJAX services (as well as Page Methods and WCF REST AJAX Services) require that the content POSTed to the server is posted as JSON and sent with an application/json or application/x-javascript content type. IOW, you can’t directly call an ASP.NET AJAX service with regular urlencoded data. Note that there are other ways to accomplish this. You can use ASP.NET MVC and a custom route, an HTTP Handler or separate ASPX page, or even a WCF REST service that’s configured to use non-JSON inputs. However if you want to use an ASP.NET AJAX service (or Page Methods) with a little bit of setup work it’s actually quite easy to capture all the form variables on the client and ship them up to the server. The basic steps needed to make this happen are: Capture form variables into an array on the client with jQuery’s .serializeArray() function Use $.ajax() or my ServiceProxy class to make an AJAX call to the server to send this array On the server create a custom type that matches the .serializeArray() name/value structure Create extension methods on NameValue[] to easily extract form variables Create a [WebMethod] that accepts this name/value type as an array (NameValue[]) This seems like a lot of work but realize that steps 3 and 4 are a one time setup step that can be reused in your entire site or multiple applications. Let’s look at a short example that looks like this as a base form of fields to ship to the server: The HTML for this form looks something like this: <div id="divMessage" class="errordisplay" style="display: none"> </div> <div> <div class="label">Name:</div> <div><asp:TextBox runat="server" ID="txtName" /></div> </div> <div> <div class="label">Company:</div> <div><asp:TextBox runat="server" ID="txtCompany"/></div> </div> <div> <div class="label" ></div> <div> <asp:DropDownList runat="server" ID="lstAttending"> <asp:ListItem Text="Attending" Value="Attending"/> <asp:ListItem Text="Not Attending" Value="NotAttending" /> <asp:ListItem Text="Maybe Attending" Value="MaybeAttending" /> <asp:ListItem Text="Not Sure Yet" Value="NotSureYet" /> </asp:DropDownList> </div> </div> <div> <div class="label">Special Needs:<br /> <small>(check all that apply)</small></div> <div> <asp:ListBox runat="server" ID="lstSpecialNeeds" SelectionMode="Multiple"> <asp:ListItem Text="Vegitarian" Value="Vegitarian" /> <asp:ListItem Text="Vegan" Value="Vegan" /> <asp:ListItem Text="Kosher" Value="Kosher" /> <asp:ListItem Text="Special Access" Value="SpecialAccess" /> <asp:ListItem Text="No Binder" Value="NoBinder" /> </asp:ListBox> </div> </div> <div> <div class="label"></div> <div> <asp:CheckBox ID="chkAdditionalGuests" Text="Additional Guests" runat="server" /> </div> </div> <hr /> <input type="button" id="btnSubmit" value="Send Registration" /> The form includes a few different kinds of form fields including a multi-selection listbox to demonstrate retrieving multiple values. Setting up the Server Side [WebMethod] The [WebMethod] on the server we’re going to call is going to be very simple and just capture the content of these values and echo then back as a formatted HTML string. Obviously this is overly simplistic but it serves to demonstrate the simple point of capturing the POST data on the server in an AJAX callback. public class PageMethodsService : System.Web.Services.WebService { [WebMethod] public string SendRegistration(NameValue[] formVars) { StringBuilder sb = new StringBuilder(); sb.AppendFormat("Thank you {0}, <br/><br/>", HttpUtility.HtmlEncode(formVars.Form("txtName"))); sb.AppendLine("You've entered the following: <hr/>"); foreach (NameValue nv in formVars) { // strip out ASP.NET form vars like _ViewState/_EventValidation if (!nv.name.StartsWith("__")) { if (nv.name.StartsWith("txt") || nv.name.StartsWith("lst") || nv.name.StartsWith("chk")) sb.Append(nv.name.Substring(3)); else sb.Append(nv.name); sb.AppendLine(": " + HttpUtility.HtmlEncode(nv.value) + "<br/>"); } } sb.AppendLine("<hr/>"); string[] needs = formVars.FormMultiple("lstSpecialNeeds"); if (needs == null) sb.AppendLine("No Special Needs"); else { sb.AppendLine("Special Needs: <br/>"); foreach (string need in needs) { sb.AppendLine("&nbsp;&nbsp;" + need + "<br/>"); } } return sb.ToString(); } } The key feature of this method is that it receives a custom type called NameValue[] which is an array of NameValue objects that map the structure that the jQuery .serializeArray() function generates. There are two custom types involved in this: The actual NameValue type and a NameValueExtensions class that defines a couple of extension methods for the NameValue[] array type to allow for single (.Form()) and multiple (.FormMultiple()) value retrieval by name. The NameValue class is as simple as this and simply maps the structure of the array elements of .serializeArray(): public class NameValue { public string name { get; set; } public string value { get; set; } } The extension method class defines the .Form() and .FormMultiple() methods to allow easy retrieval of form variables from the returned array: /// <summary> /// Simple NameValue class that maps name and value /// properties that can be used with jQuery's /// $.serializeArray() function and JSON requests /// </summary> public static class NameValueExtensionMethods { /// <summary> /// Retrieves a single form variable from the list of /// form variables stored /// </summary> /// <param name="formVars"></param> /// <param name="name">formvar to retrieve</param> /// <returns>value or string.Empty if not found</returns> public static string Form(this NameValue[] formVars, string name) { var matches = formVars.Where(nv => nv.name.ToLower() == name.ToLower()).FirstOrDefault(); if (matches != null) return matches.value; return string.Empty; } /// <summary> /// Retrieves multiple selection form variables from the list of /// form variables stored. /// </summary> /// <param name="formVars"></param> /// <param name="name">The name of the form var to retrieve</param> /// <returns>values as string[] or null if no match is found</returns> public static string[] FormMultiple(this NameValue[] formVars, string name) { var matches = formVars.Where(nv => nv.name.ToLower() == name.ToLower()).Select(nv => nv.value).ToArray(); if (matches.Length == 0) return null; return matches; } } Using these extension methods it’s easy to retrieve individual values from the array: string name = formVars.Form("txtName"); or multiple values: string[] needs = formVars.FormMultiple("lstSpecialNeeds"); if (needs != null) { // do something with matches } Using these functions in the SendRegistration method it’s easy to retrieve a few form variables directly (txtName and the multiple selections of lstSpecialNeeds) or to iterate over the whole list of values. Of course this is an overly simple example – in typical app you’d probably want to validate the input data and save it to the database and then return some sort of confirmation or possibly an updated data list back to the client. Since this is a full AJAX service callback realize that you don’t have to return simple string values – you can return any of the supported result types (which are most serializable types) including complex hierarchical objects and arrays that make sense to your client code. POSTing Form Variables from the Client to the AJAX Service To call the AJAX service method on the client is straight forward and requires only use of little native jQuery plus JSON serialization functionality. To start add jQuery and the json2.js library to your page: <script src="Scripts/jquery.min.js" type="text/javascript"></script> <script src="Scripts/json2.js" type="text/javascript"></script> json2.js can be found here (be sure to remove the first line from the file): http://www.json.org/json2.js It’s required to handle JSON serialization for those browsers that don’t support it natively. With those script references in the document let’s hookup the button click handler and call the service: $(document).ready(function () { $("#btnSubmit").click(sendRegistration); }); function sendRegistration() { var arForm = $("#form1").serializeArray(); $.ajax({ url: "PageMethodsService.asmx/SendRegistration", type: "POST", contentType: "application/json", data: JSON.stringify({ formVars: arForm }), dataType: "json", success: function (result) { var jEl = $("#divMessage"); jEl.html(result.d).fadeIn(1000); setTimeout(function () { jEl.fadeOut(1000) }, 5000); }, error: function (xhr, status) { alert("An error occurred: " + status); } }); } The key feature in this code is the $("#form1").serializeArray();  call which serializes all the form fields of form1 into an array. Each form var is represented as an object with a name/value property. This array is then serialized into JSON with: JSON.stringify({ formVars: arForm }) The format for the parameter list in AJAX service calls is an object with one property for each parameter of the method. In this case its a single parameter called formVars and we’re assigning the array of form variables to it. The URL to call on the server is the name of the Service (or ASPX Page for Page Methods) plus the name of the method to call. On return the success callback receives the result from the AJAX callback which in this case is the formatted string which is simply assigned to an element in the form and displayed. Remember the result type is whatever the method returns – it doesn’t have to be a string. Note that ASP.NET AJAX and WCF REST return JSON data as a wrapped object so the result has a ‘d’ property that holds the actual response: jEl.html(result.d).fadeIn(1000); Slightly simpler: Using ServiceProxy.js If you want things slightly cleaner you can use the ServiceProxy.js class I’ve mentioned here before. The ServiceProxy class handles a few things for calling ASP.NET and WCF services more cleanly: Automatic JSON encoding Automatic fix up of ‘d’ wrapper property Automatic Date conversion on the client Simplified error handling Reusable and abstracted To add the service proxy add: <script src="Scripts/ServiceProxy.js" type="text/javascript"></script> and then change the code to this slightly simpler version: <script type="text/javascript"> proxy = new ServiceProxy("PageMethodsService.asmx/"); $(document).ready(function () { $("#btnSubmit").click(sendRegistration); }); function sendRegistration() { var arForm = $("#form1").serializeArray(); proxy.invoke("SendRegistration", { formVars: arForm }, function (result) { var jEl = $("#divMessage"); jEl.html(result).fadeIn(1000); setTimeout(function () { jEl.fadeOut(1000) }, 5000); }, function (error) { alert(error.message); } ); } The code is not very different but it makes the call as simple as specifying the method to call, the parameters to pass and the actions to take on success and error. No more remembering which content type and data types to use and manually serializing to JSON. This code also removes the “d” property processing in the response and provides more consistent error handling in that the call always returns an error object regardless of a server error or a communication error unlike the native $.ajax() call. Either approach works and both are pretty easy. The ServiceProxy really pays off if you use lots of service calls and especially if you need to deal with date values returned from the server  on the client. Summary Making Web Service calls and getting POST data to the server is not always the best option – ASP.NET and WCF AJAX services are meant to work with data in objects. However, in some situations it’s simply easier to POST all the captured form data to the server instead of mapping all properties from the input fields to some sort of message object first. For this approach the above POST mechanism is useful as it puts the parsing of the data on the server and leaves the client code lean and mean. It’s even easy to build a custom model binder on the server that can map the array values to properties on an object generically with some relatively simple Reflection code and without having to manually map form vars to properties and do string conversions. Keep in mind though that other approaches also abound. ASP.NET MVC makes it pretty easy to create custom routes to data and the built in model binder makes it very easy to deal with inbound form POST data in its original urlencoded format. The West Wind West Wind Web Toolkit also includes functionality for AJAX callbacks using plain POST values. All that’s needed is a Method parameter to query/form value to specify the method to be called on the server. After that the content type is completely optional and up to the consumer. It’d be nice if the ASP.NET AJAX Service and WCF AJAX Services weren’t so tightly bound to the content type so that you could more easily create open access service endpoints that can take advantage of urlencoded data that is everywhere in existing pages. It would make it much easier to create basic REST endpoints without complicated service configuration. Ah one can dream! In the meantime I hope this article has given you some ideas on how you can transfer POST data from the client to the server using JSON – it might be useful in other scenarios beyond ASP.NET AJAX services as well. Additional Resources ServiceProxy.js A small JavaScript library that wraps $.ajax() to call ASP.NET AJAX and WCF AJAX Services. Includes date parsing extensions to the JSON object, a global dataFilter for processing dates on all jQuery JSON requests, provides cleanup for the .NET wrapped message format and handles errors in a consistent fashion. Making jQuery Calls to WCF/ASMX with a ServiceProxy Client More information on calling ASMX and WCF AJAX services with jQuery and some more background on ServiceProxy.js. Note the implementation has slightly changed since the article was written. ww.jquery.js The West Wind West Wind Web Toolkit also includes ServiceProxy.js in the West Wind jQuery extension library. This version is slightly different and includes embedded json encoding/decoding based on json2.js.© Rick Strahl, West Wind Technologies, 2005-2010Posted in jQuery  ASP.NET  AJAX  

    Read the article

  • SQL SERVER – Automated Type Conversion using Expressor Studio

    - by pinaldave
    Recently I had an interesting situation during my consultation project. Let me share to you how I solved the problem using Expressor Studio. Consider a situation in which you need to read a field, such as customer_identifier, from a text file and pass that field into a database table. In the source file’s metadata structure, customer_identifier is described as a string; however, in the target database table, customer_identifier is described as an integer. Legitimately, all the source values for customer_identifier are valid numbers, such as “109380”. To implement this in an ETL application, you probably would have hard-coded a type conversion function call, such as: output.customer_identifier=stringToInteger(input.customer_identifier) That wasn’t so bad, was it? For this instance, programming this hard-coded type conversion function call was relatively easy. However, hard-coding, whether type conversion code or other business rule code, almost always means that the application containing hard-coded fields, function calls, and values is: a) specific to an instance of use; b) is difficult to adapt to new situations; and c) doesn’t contain many reusable sub-parts. Therefore, in the long run, applications with hard-coded type conversion function calls don’t scale well. In addition, they increase the overall level of effort and degree of difficulty to write and maintain the ETL applications. To get around the trappings of hard-coding type conversion function calls, developers need an access to smarter typing systems. Expressor Studio product offers this feature exactly, by providing developers with a type conversion automation engine based on type abstraction. The theory behind the engine is quite simple. A user specifies abstract data fields in the engine, and then writes applications against the abstractions (whereas in most ETL software, developers develop applications against the physical model). When a Studio-built application is run, Studio’s engine automatically converts the source type to the abstracted data field’s type and converts the abstracted data field’s type to the target type. The engine can do this because it has a couple of built-in rules for type conversions. So, using the example above, a developer could specify customer_identifier as an abstract data field with a type of integer when using Expressor Studio. Upon reading the string value from the text file, Studio’s type conversion engine automatically converts the source field from the type specified in the source’s metadata structure to the abstract field’s type. At the time of writing the data value to the target database, the engine doesn’t have any work to do because the abstract data type and the target data type are just the same. Had they been different, the engine would have automatically provided the conversion. ?Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Database, Pinal Dave, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQLAuthority News, T SQL, Technology Tagged: SSIS

    Read the article

  • Tricks and Optimizations for you Sitecore website

    - by amaniar
    When working with Sitecore there are some optimizations/configurations I usually repeat in order to make my app production ready. Following is a small list I have compiled from experience, Sitecore documentation, communicating with Sitecore Engineers etc. This is not supposed to be technically complete and might not be fit for all environments.   Simple configurations that can make a difference: 1) Configure Sitecore Caches. This is the most straight forward and sure way of increasing the performance of your website. Data and item cache sizes (/databases/database/ [id=web] ) should be configured as needed. You may start with a smaller number and tune them as needed. <cacheSizes hint="setting"> <data>300MB</data> <items>300MB</items> <paths>5MB</paths> <standardValues>5MB</standardValues> </cacheSizes> Tune the html, registry etc cache sizes for your website.   <cacheSizes> <sites> <website> <html>300MB</html> <registry>1MB</registry> <viewState>10MB</viewState> <xsl>5MB</xsl> </website> </sites> </cacheSizes> Tune the prefetch cache settings under the App_Config/Prefetch/ folder. Sample /App_Config/Prefetch/Web.Config: <configuration> <cacheSize>300MB</cacheSize> <!--preload items that use this template--> <template desc="mytemplate">{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}</template> <!--preload this item--> <item desc="myitem">{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX }</item> <!--preload children of this item--> <children desc="childitems">{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}</children> </configuration> Break your page into sublayouts so you may cache most of them. Read the caching configuration reference: http://sdn.sitecore.net/upload/sitecore6/sc62keywords/cache_configuration_reference_a4.pdf   2) Disable Analytics for the Shell Site <site name="shell" virtualFolder="/sitecore/shell" physicalFolder="/sitecore/shell" rootPath="/sitecore/content" startItem="/home" language="en" database="core" domain="sitecore" loginPage="/sitecore/login" content="master" contentStartItem="/Home" enableWorkflow="true" enableAnalytics="false" xmlControlPage="/sitecore/shell/default.aspx" browserTitle="Sitecore" htmlCacheSize="2MB" registryCacheSize="3MB" viewStateCacheSize="200KB" xslCacheSize="5MB" />   3) Increase the Check Interval for the MemoryMonitorHook so it doesn’t run every 5 seconds (default). <hook type="Sitecore.Diagnostics.MemoryMonitorHook, Sitecore.Kernel"> <param desc="Threshold">800MB</param> <param desc="Check interval">00:05:00</param> <param desc="Minimum time between log entries">00:01:00</param> <ClearCaches>false</ClearCaches> <GarbageCollect>false</GarbageCollect> <AdjustLoadFactor>false</AdjustLoadFactor> </hook>   4) Set Analytics.PeformLookup (Sitecore.Analytics.config) to false if your environment doesn’t have access to the internet or you don’t intend to use reverse DNS lookup. <setting name="Analytics.PerformLookup" value="false" />   5) Set the value of the “Media.MediaLinkPrefix” setting to “-/media”: <setting name="Media.MediaLinkPrefix" value="-/media" /> Add the following line to the customHandlers section: <customHandlers> <handler trigger="-/media/" handler="sitecore_media.ashx" /> <handler trigger="~/media/" handler="sitecore_media.ashx" /> <handler trigger="~/api/" handler="sitecore_api.ashx" /> <handler trigger="~/xaml/" handler="sitecore_xaml.ashx" /> <handler trigger="~/icon/" handler="sitecore_icon.ashx" /> <handler trigger="~/feed/" handler="sitecore_feed.ashx" /> </customHandlers> Link: http://squad.jpkeisala.com/2011/10/sitecore-media-library-performance-optimization-checklist/   6) Performance counters should be disabled in production if not being monitored <setting name="Counters.Enabled" value="false" />   7) Disable Item/Memory/Timing threshold warnings. Due to the nature of this component, it brings no value in production. <!--<processor type="Sitecore.Pipelines.HttpRequest.StartMeasurements, Sitecore.Kernel" />--> <!--<processor type="Sitecore.Pipelines.HttpRequest.StopMeasurements, Sitecore.Kernel"> <TimingThreshold desc="Milliseconds">1000</TimingThreshold> <ItemThreshold desc="Item count">1000</ItemThreshold> <MemoryThreshold desc="KB">10000</MemoryThreshold> </processor>—>   8) The ContentEditor.RenderCollapsedSections setting is a hidden setting in the web.config file, which by default is true. Setting it to false will improve client performance for authoring environments. <setting name="ContentEditor.RenderCollapsedSections" value="false" />   9) Add a machineKey section to your Web.Config file when using a web farm. Link: http://msdn.microsoft.com/en-us/library/ff649308.aspx   10) If you get errors in the log files similar to: WARN Could not create an instance of the counter 'XXX.XXX' (category: 'Sitecore.System') Exception: System.UnauthorizedAccessException Message: Access to the registry key 'Global' is denied. Make sure the ApplicationPool user is a member of the system “Performance Monitor Users” group on the server.   11) Disable WebDAV configurations on the CD Server if not being used. More: http://sitecoreblog.alexshyba.com/2011/04/disable-webdav-in-sitecore.html   12) Change Log4Net settings to only log Errors on content delivery environments to avoid unnecessary logging. <root> <priority value="ERROR" /> <appender-ref ref="LogFileAppender" /> </root>   13) Disable Analytics for any content item that doesn’t add value. For example a page that redirects to another page.   14) When using Web User Controls avoid registering them on the page the asp.net way: <%@ Register Src="~/layouts/UserControls/MyControl.ascx" TagName="MyControl" TagPrefix="uc2" %> Use Sublayout web control instead – This way Sitecore caching could be leveraged <sc:Sublayout ID="ID" Path="/layouts/UserControls/MyControl.ascx" Cacheable="true" runat="server" />   15) Avoid querying for all children recursively when all items are direct children. Sitecore.Context.Database.SelectItems("/sitecore/content/Home//*"); //Use: Sitecore.Context.Database.GetItem("/sitecore/content/Home");   16) On IIS — you enable static & dynamic content compression on CM and CD More: http://technet.microsoft.com/en-us/library/cc754668%28WS.10%29.aspx   17) Enable HTTP Keep-alive and content expiration in IIS.   18) Use GUID’s when accessing items and fields instead of names or paths. Its faster and wont break your code when things get moved or renamed. Context.Database.GetItem("{324DFD16-BD4F-4853-8FF1-D663F6422DFF}") Context.Item.Fields["{89D38A8F-394E-45B0-826B-1A826CF4046D}"]; //is better than Context.Database.GetItem("/Home/MyItem") Context.Item.Fields["FieldName"]   Hope this helps.

    Read the article

  • Do I suffer from encapsulation overuse?

    - by Florenc
    I have noticed something in my code in various projects that seems like code smell to me and something bad to do, but I can't deal with it. While trying to write "clean code" I tend to over-use private methods in order to make my code easier to read. The problem is that the code is indeed cleaner but it's also more difficult to test (yeah I know I can test private methods...) and in general it seems a bad habit to me. Here's an example of a class that reads some data from a .csv file and returns a group of customers (another object with various fields and attributes). public class GroupOfCustomersImporter { //... Call fields .... public GroupOfCustomersImporter(String filePath) { this.filePath = filePath; customers = new HashSet<Customer>(); createCSVReader(); read(); constructTTRP_Instance(); } private void createCSVReader() { //.... } private void read() { //.... Reades the file and initializes the class attributes } private void readFirstLine(String[] inputLine) { //.... Method used by the read() method } private void readSecondLine(String[] inputLine) { //.... Method used by the read() method } private void readCustomerLine(String[] inputLine) { //.... Method used by the read() method } private void constructGroupOfCustomers() { //this.groupOfCustomers = new GroupOfCustomers(**attributes of the class**); } public GroupOfCustomers getConstructedGroupOfCustomers() { return this.GroupOfCustomers; } } As you can see the class has only a constructor which calls some private methods to get the job done, I know that's not a good practice not a good practice in general but I prefer to encapsulate all the functionality in the class instead of making the methods public in which case a client should work this way: GroupOfCustomersImporter importer = new GroupOfCustomersImporter(filepath) importer.createCSVReader(); read(); GroupOfCustomer group = constructGoupOfCustomerInstance(); I prefer this because I don't want to put useless lines of code in the client's side code bothering the client class with implementation details. So, Is this actually a bad habit? If yes, how can I avoid it? Please note that the above is just a simple example. Imagine the same situation happening in something a little bit more complex.

    Read the article

  • Easier ASP.NET MVC Routing

    - by Steve Wilkes
    I've recently refactored the way Routes are declared in an ASP.NET MVC application I'm working on, and I wanted to share part of the system I came up with; a really easy way to declare and keep track of ASP.NET MVC Routes, which then allows you to find the name of the Route which has been selected for the current request. Traditional MVC Route Declaration Traditionally, ASP.NET MVC Routes are added to the application's RouteCollection using overloads of the RouteCollection.MapRoute() method; for example, this is the standard way the default Route which matches /controller/action URLs is created: routes.MapRoute(     "Default",     "{controller}/{action}/{id}",     new { controller = "Home", action = "Index", id = UrlParameter.Optional }); The first argument declares that this Route is to be named 'Default', the second specifies the Route's URL pattern, and the third contains the URL pattern segments' default values. To then write a link to a URL which matches the default Route in a View, you can use the HtmlHelper.RouteLink() method, like this: @ this.Html.RouteLink("Default", new { controller = "Orders", action = "Index" }) ...that substitutes 'Orders' into the {controller} segment of the default Route's URL pattern, and 'Index' into the {action} segment. The {Id} segment was declared optional and isn't specified here. That's about the most basic thing you can do with MVC routing, and I already have reservations: I've duplicated the magic string "Default" between the Route declaration and the use of RouteLink(). This isn't likely to cause a problem for the default Route, but once you get to dozens of Routes the duplication is a pain. There's no easy way to get from the RouteLink() method call to the declaration of the Route itself, so getting the names of the Route's URL parameters correct requires some effort. The call to MapRoute() is quite verbose; with dozens of Routes this gets pretty ugly. If at some point during a request I want to find out the name of the Route has been matched.... and I can't. To get around these issues, I wanted to achieve the following: Make declaring a Route very easy, using as little code as possible. Introduce a direct link between where a Route is declared, where the Route is defined and where the Route's name is used, so I can use Visual Studio's Go To Definition to get from a call to RouteLink() to the declaration of the Route I'm using, making it easier to make sure I use the correct URL parameters. Create a way to access the currently-selected Route's name during the execution of a request. My first step was to come up with a quick and easy syntax for declaring Routes. 1 . An Easy Route Declaration Syntax I figured the easiest way of declaring a route was to put all the information in a single string with a special syntax. For example, the default MVC route would be declared like this: "{controller:Home}/{action:Index}/{Id}*" This contains the same information as the regular way of defining a Route, but is far more compact: The default values for each URL segment are specified in a colon-separated section after the segment name The {Id} segment is declared as optional simply by placing a * after it That's the default route - a pretty simple example - so how about this? routes.MapRoute(     "CustomerOrderList",     "Orders/{customerRef}/{pageNo}",     new { controller = "Orders", action = "List", pageNo = UrlParameter.Optional },     new { customerRef = "^[a-zA-Z0-9]+$", pageNo = "^[0-9]+$" }); This maps to the List action on the Orders controller URLs which: Start with the string Orders/ Then have a {customerRef} set of characters and numbers Then optionally a numeric {pageNo}. And again, it’s quite verbose. Here's my alternative: "Orders/{customerRef:^[a-zA-Z0-9]+$}/{pageNo:^[0-9]+$}*->Orders/List" Quite a bit more brief, and again, containing the same information as the regular way of declaring Routes: Regular expression constraints are declared after the colon separator, the same as default values The target controller and action are specified after the -> The {pageNo} is defined as optional by placing a * after it With an appropriate parser that gave me a nice, compact and clear way to declare routes. Next I wanted to have a single place where Routes were declared and accessed. 2. A Central Place to Declare and Access Routes I wanted all my Routes declared in one, dedicated place, which I would also use for Route names when calling RouteLink(). With this in mind I made a single class named Routes with a series of public, constant fields, each one relating to a particular Route. With this done, I figured a good place to actually declare each Route was in an attribute on the field defining the Route’s name; the attribute would parse the Route definition string and make the resulting Route object available as a property. I then made the Routes class examine its own fields during its static setup, and cache all the attribute-created Route objects in an internal Dictionary. Finally I made Routes use that cache to register the Routes when requested, and to access them later when required. So the Routes class declares its named Routes like this: public static class Routes{     [RouteDefinition("Orders/{customerName}->Orders/Index")]     public const string OrdersCustomerIndex = "OrdersCustomerIndex";     [RouteDefinition("Orders/{customerName}/{orderId:^([0-9]+)$}->Orders/Details")]     public const string OrdersDetails = "OrdersDetails";     [RouteDefinition("{controller:Home}*/{action:Index}*")]     public const string Default = "Default"; } ...which are then used like this: @ this.Html.RouteLink(Routes.Default, new { controller = "Orders", action = "Index" }) Now that using Go To Definition on the Routes.Default constant takes me to where the Route is actually defined, it's nice and easy to quickly check on the parameter names when using RouteLink(). Finally, I wanted to be able to access the name of the current Route during a request. 3. Recovering the Route Name The RouteDefinitionAttribute creates a NamedRoute class; a simple derivative of Route, but with a Name property. When the Routes class examines its fields and caches all the defined Routes, it has access to the name of the Route through the name of the field against which it is defined. It was therefore a pretty easy matter to have Routes give NamedRoute its name when it creates its cache of Routes. This means that the Route which is found in RequestContext.RouteData.Route is now a NamedRoute, and I can recover the Route's name during a request. For visibility, I made NamedRoute.ToString() return the Route name and URL pattern, like this: The screenshot is from an example project I’ve made on bitbucket; it contains all the named route classes and an MVC 3 application which demonstrates their use. I’ve found this way of defining and using Routes much tidier than the default MVC system, and you find it useful too

    Read the article

  • MVC's Html.DropDownList and "There is no ViewData item of type 'IEnumerable<SelectListItem>' that has the key '...'

    - by pjohnson
    ASP.NET MVC's HtmlHelper extension methods take out a lot of the HTML-by-hand drudgery to which MVC re-introduced us former WebForms programmers. Another thing to which MVC re-introduced us is poor documentation, after the excellent documentation for most of the rest of ASP.NET and the .NET Framework which I now realize I'd taken for granted. I'd come to regard using HtmlHelper methods instead of writing HTML by hand as a best practice. When I upgraded a project from MVC 3 to MVC 4, several hidden fields with boolean values broke, because MVC 3 called ToString() on those values implicitly, and MVC 4 threw an exception until you called ToString() explicitly. Fields that used HtmlHelper weren't affected. I then went through dozens of views and manually replaced hidden inputs that had been coded by hand with Html.Hidden calls. So for a dropdown list I was rendering on the initial page as empty, then populating via JavaScript after an AJAX call, I tried to use a HtmlHelper method: @Html.DropDownList("myDropdown") which threw an exception: System.InvalidOperationException: There is no ViewData item of type 'IEnumerable<SelectListItem>' that has the key 'myDropdown'. That's funny--I made no indication I wanted to use ViewData. Why was it looking there? Just render an empty select list for me. When I populated the list with items, it worked, but I didn't want to do that: @Html.DropDownList("myDropdown", new List<SelectListItem>() { new SelectListItem() { Text = "", Value = "" } }) I removed this dummy item in JavaScript after the AJAX call, so this worked fine, but I shouldn't have to give it a list with a dummy item when what I really want is an empty select. A bit of research with JetBrains dotPeek (helpfully recommended by Scott Hanselman) revealed the problem. Html.DropDownList requires some sort of data to render or it throws an error. The documentation hints at this but doesn't make it very clear. Behind the scenes, it checks if you've provided the DropDownList method any data. If you haven't, it looks in ViewData. If it's not there, you get the exception above. In my case, the helper wasn't doing much for me anyway, so I reverted to writing the HTML by hand (I ain't scared), and amended my best practice: When an HTML control has an associated HtmlHelper method and you're populating that control with data on the initial view, use the HtmlHelper method instead of writing by hand.

    Read the article

  • Defining Discovery: Core Concepts

    - by Joe Lamantia
    Discovery tools have had a referencable working definition since at least 2001, when Ben Shneiderman published 'Inventing Discovery Tools: Combining Information Visualization with Data Mining'.  Dr. Shneiderman suggested the combination of the two distinct fields of data mining and information visualization could manifest as new category of tools for discovery, an understanding that remains essentially unaltered over ten years later.  An industry analyst report titled Visual Discovery Tools: Market Segmentation and Product Positioning from March of this year, for example, reads, "Visual discovery tools are designed for visual data exploration, analysis and lightweight data mining." Tools should follow from the activities people undertake (a foundational tenet of activity centered design), however, and Dr. Shneiderman does not in fact describe or define discovery activity or capability. As I read it, discovery is assumed to be the implied sum of the separate fields of visualization and data mining as they were then understood.  As a working definition that catalyzes a field of product prototyping, it's adequate in the short term.  In the long term, it makes the boundaries of discovery both derived and temporary, and leaves a substantial gap in the landscape of core concepts around discovery, making consensus on the nature of most aspects of discovery difficult or impossible to reach.  I think this definitional gap is a major reason that discovery is still an ambiguous product landscape. To help close that gap, I'm suggesting a few definitions of four core aspects of discovery.  These come out of our sustained research into discovery needs and practices, and have the goal of clarifying the relationship between discvoery and other analytical categories.  They are suggested, but should be internally coherent and consistent.   Discovery activity is: "Purposeful sense making activity that intends to arrive at new insights and understanding through exploration and analysis (and for these we have specific defintions as well) of all types and sources of data." Discovery capability is: "The ability of people and organizations to purposefully realize valuable insights that address the full spectrum of business questions and problems by engaging effectively with all types and sources of data." Discovery tools: "Enhance individual and organizational ability to realize novel insights by augmenting and accelerating human sense making to allow engagement with all types of data at all useful scales." Discovery environments: "Enable organizations to undertake effective discovery efforts for all business purposes and perspectives, in an empirical and cooperative fashion." Note: applicability to a world of Big data is assumed - thus the refs to all scales / types / sources - rather than stated explicitly.  I like that Big Data doesn't have to be written into this core set of definitions, b/c I think it's a transitional label - the new version of Web 2.0 - and goes away over time. References and Resources: Inventing Discovery Tools Visual Discovery Tools: Market Segmentation and Product Positioning Logic versus usage: the case for activity-centered design A Taxonomy of Enterprise Search and Discovery

    Read the article

  • ID number for sites [closed]

    - by Jonathan
    Possible Duplicate: please add a key fields to stackauth results It would be easier if sites each had an ID, it help with keeping track of them, not only in a numerical way (which is generally easier and smaller than using name strings). Also changes of site names (such as when a site progresses from beta, or decides it's name is not quite right during beta). Everything else has IDs so why not sites?

    Read the article

  • WordPress plugin for handling User Submitted Posts

    - by Ravish
    User Submitted Posts plugin is a highly useful form, which can be embedded on the desired areas of your WordPress site using a shortcode. User Submitted Posts plugin will allow you to customize the fields in the form like title, or tags. It provides you with useful tools to control uploads. Why you need this? [...] Related posts:Insights WordPress Plugin For Efficient Blogging WordPress User related Plug-ins AddInto Social Bookmarking plugin for WordPress & Blogger

    Read the article

  • Few Steps For Making Your Website SEO Friendly

    Currently going by the dynamics of the internet every web designer of class is expected to be acquainted with or have a basic working knowledge of search engine optimization tools. Web promotion as an optimization tool for enhancing increased traffic to a given site is one skill web designers just like online marketers require in their respective fields to conquer the market.

    Read the article

  • Anatomy of a .NET Assembly - Custom attribute encoding

    - by Simon Cooper
    In my previous post, I covered how field, method, and other types of signatures are encoded in a .NET assembly. Custom attribute signatures differ quite a bit from these, which consequently affects attribute specifications in C#. Custom attribute specifications In C#, you can apply a custom attribute to a type or type member, specifying a constructor as well as the values of fields or properties on the attribute type: public class ExampleAttribute : Attribute { public ExampleAttribute(int ctorArg1, string ctorArg2) { ... } public Type ExampleType { get; set; } } [Example(5, "6", ExampleType = typeof(string))] public class C { ... } How does this specification actually get encoded and stored in an assembly? Specification blob values Custom attribute specification signatures use the same building blocks as other types of signatures; the ELEMENT_TYPE structure. However, they significantly differ from other types of signatures, in that the actual parameter values need to be stored along with type information. There are two types of specification arguments in a signature blob; fixed args and named args. Fixed args are the arguments to the attribute type constructor, named arguments are specified after the constructor arguments to provide a value to a field or property on the constructed attribute type (PropertyName = propValue) Values in an attribute blob are limited to one of the basic types (one of the number types, character, or boolean), a reference to a type, an enum (which, in .NET, has to use one of the integer types as a base representation), or arrays of any of those. Enums and the basic types are easy to store in a blob - you simply store the binary representation. Strings are stored starting with a compressed integer indicating the length of the string, followed by the UTF8 characters. Array values start with an integer indicating the number of elements in the array, then the item values concatentated together. Rather than using a coded token, Type values are stored using a string representing the type name and fully qualified assembly name (for example, MyNs.MyType, MyAssembly, Version=1.0.0.0, Culture=neutral, PublicKeyToken=0123456789abcdef). If the type is in the current assembly or mscorlib then just the type name can be used. This is probably done to prevent direct references between assemblies solely because of attribute specification arguments; assemblies can be loaded in the reflection-only context and attribute arguments still processed, without loading the entire assembly. Fixed and named arguments Each entry in the CustomAttribute metadata table contains a reference to the object the attribute is applied to, the attribute constructor, and the specification blob. The number and type of arguments to the constructor (the fixed args) can be worked out by the method signature referenced by the attribute constructor, and so the fixed args can simply be concatenated together in the blob without any extra type information. Named args are different. These specify the value to assign to a field or property once the attribute type has been constructed. In the CLR, fields and properties can be overloaded just on their type; different fields and properties can have the same name. Therefore, to uniquely identify a field or property you need: Whether it's a field or property (indicated using byte values 0x53 and 0x54, respectively) The field or property type The field or property name After the fixed arg values is a 2-byte number specifying the number of named args in the blob. Each named argument has the above information concatenated together, mostly using the basic ELEMENT_TYPE values, in the same way as a method or field signature. A Type argument is represented using the byte 0x50, and an enum argument is represented using the byte 0x55 followed by a string specifying the name and assembly of the enum type. The named argument property information is followed by the argument value, using the same encoding as fixed args. Boxed objects This would be all very well, were it not for object and object[]. Arguments and properties of type object allow a value of any allowed argument type to be specified. As a result, more information needs to be specified in the blob to interpret the argument bytes as the correct type. So, the argument value is simple prepended with the type of the value by specifying the ELEMENT_TYPE or name of the enum the value represents. For named arguments, a field or property of type object is represented using the byte 0x51, with the actual type specified in the argument value. Some examples... All property signatures start with the 2-byte value 0x0001. Similar to my previous post in the series, names in capitals correspond to a particular byte value in the ELEMENT_TYPE structure. For strings, I'll simply give the string value, rather than the length and UTF8 encoding in the actual blob. I'll be using the following enum and attribute types to demonstrate specification encodings: class AttrAttribute : Attribute { public AttrAttribute() {} public AttrAttribute(Type[] tArray) {} public AttrAttribute(object o) {} public AttrAttribute(MyEnum e) {} public AttrAttribute(ushort x, int y) {} public AttrAttribute(string str, Type type1, Type type2) {} public int Prop1 { get; set; } public object Prop2 { get; set; } public object[] ObjectArray; } enum MyEnum : int { Val1 = 1, Val2 = 2 } Now, some examples: Here, the the specification binds to the (ushort, int) attribute constructor, with fixed args only. The specification blob starts off with a prolog, followed by the two constructor arguments, then the number of named arguments (zero): [Attr(42, 84)] 0x0001 0x002a 0x00000054 0x0000 An example of string and type encoding: [Attr("MyString", typeof(Array), typeof(System.Windows.Forms.Form))] 0x0001 "MyString" "System.Array" "System.Windows.Forms.Form, System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" 0x0000 As you can see, the full assembly specification of a type is only needed if the type isn't in the current assembly or mscorlib. Note, however, that the C# compiler currently chooses to fully-qualify mscorlib types anyway. An object argument (this binds to the object attribute constructor), and two named arguments (a null string is represented by 0xff and the empty string by 0x00) [Attr((ushort)40, Prop1 = 12, Prop2 = "")] 0x0001 U2 0x0028 0x0002 0x54 I4 "Prop1" 0x0000000c 0x54 0x51 "Prop2" STRING 0x00 Right, more complicated now. A type array as a fixed argument: [Attr(new[] { typeof(string), typeof(object) })] 0x0001 0x00000002 // the number of elements "System.String" "System.Object" 0x0000 An enum value, which is simply represented using the underlying value. The CLR works out that it's an enum using information in the attribute constructor signature: [Attr(MyEnum.Val1)] 0x0001 0x00000001 0x0000 And finally, a null array, and an object array as a named argument: [Attr((Type[])null, ObjectArray = new object[] { (byte)2, typeof(decimal), null, MyEnum.Val2 })] 0x0001 0xffffffff 0x0001 0x53 SZARRAY 0x51 "ObjectArray" 0x00000004 U1 0x02 0x50 "System.Decimal" STRING 0xff 0x55 "MyEnum" 0x00000002 As you'll notice, a null object is encoded as a null string value, and a null array is represented using a length of -1 (0xffffffff). How does this affect C#? So, we can now explain why the limits on attribute arguments are so strict in C#. Attribute specification blobs are limited to basic numbers, enums, types, and arrays. As you can see, this is because the raw CLR encoding can only accommodate those types. Special byte patterns have to be used to indicate object, string, Type, or enum values in named arguments; you can't specify an arbitary object type, as there isn't a generalised way of encoding the resulting value in the specification blob. In particular, decimal values can't be encoded, as it isn't a 'built-in' CLR type that has a native representation (you'll notice that decimal constants in C# programs are compiled as several integer arguments to DecimalConstantAttribute). Jagged arrays also aren't natively supported, although you can get around it by using an array as a value to an object argument: [Attr(new object[] { new object[] { new Type[] { typeof(string) } }, 42 })] Finally... Phew! That was a bit longer than I thought it would be. Custom attribute encodings are complicated! Hopefully this series has been an informative look at what exactly goes on inside a .NET assembly. In the next blog posts, I'll be carrying on with the 'Inside Red Gate' series.

    Read the article

  • What prefer a game developer company? UDK experience or c++ game projects?

    - by momboco
    What prefer a game developer company? A developer with experience in UDK engine ? or, a developer with projects made entirely in c++ with a graphics engine like Ogre3D? I think that a coder can demonstrate better his abilities with games made in c++, because it requires a knowledge deeper in many fields. However, currently there is a lot of companies that develop his games with UDK. Now I don't know if is better specialize in a game engine like UDK.

    Read the article

  • Getting started with Document Set in SharePoint2010

    - by ybbest
    Folders are widely used in traditional file based system, in SharePoint world you can create folder in the document library as well. However, there is a new improved feature in SharePoint called Document Set; you can attach metadata to the document set. To get start with Document set, you can perforce the following steps. 1. Go to Site Settings >>Site collection features >>Activate the Document Sets feature. 2. After the Document Sets feature is activated, you will get a new content type called Document Set. 3. Next, we can create a custom content type called Loan Application Document Set that inherited from Document Set Content Type. 4. Then I create a new column called Application Number. 5. Add this field to the loan application content type 6. Create a new Content Type called Loan Contract form that inherited from Document content type. 7. Add the Application Number to the Loan Contract form content type. 8. Create a new Content Type called Loan Application form that inherited from Document content type and add Application Number to it.(The same step as above.) 9.Go to the Loan Application Document Set content type and go to the Document Set Settings. 10. You can define which content type you would like this Document set contains and you can also define the default document for each content type. When you create a new document set, those default documents will get automatically created in the document set. You can also define the Shared field that shared across content types; in my case I define the Application number and description as my shared fields. Finally, you can define the fields that you’d like to show in the document set welcome page. 11. Now create a new document library and attach those content types to the document library and create a new loan application document set. 12. You will see the default document created in the document set.If you updated Application Number on the document set , the field will get updated in the documents inside the document set as well.

    Read the article

  • Cool Enhancements Everyone Can Enjoy

    - by Ruth
    With Release 17, we have a few visual and functional enhancements that make using CRM On Demand that much better for us all. I'll mention a few here, but to get the full outline of these upgrades, I recommend taking 10 minutes to view the Release 17 Usability Transfer of Information course. First and foremost, I find the ability to customize your theme (or skin) pretty cool, but I've said that before. Take a look at the Selecting Your Theme and the Themes - Create Your CRM Style blog articles for more information. My next favorite is the resizeable user interface (UI). CRM On Demand will dynamically fit the device and screen resolution you're using, which includes the resizing of fields, field editors and pop-ups. If you have a wide screen like me, you should appreciate that one very much. To make it easier to see that resized UI, the detail pages got a little face lift. New horizontal lines and other subtle changes make those pages easier to read. Also, those things you need to know, like error messages and inline help are highlighted with a little icon to show the message type. You may not think every change to the detail pages are particularly exciting, but I'm sure you'll enjoy the new Head Up Display, which saves you scrolling time by adding links to related information sections. I like that the head up display travels with me as I move up and down the page...it's like a little friend that takes me where I want to go as fast as possible. You may also really like the fact that the copy record feature is now available for all record types from both detail pages and lists. Your company administrator can choose which fields get copied, so you can maximize your efficiency when creating new records. Lists also got a face lift. Alternating colors in rows make it easier to see your data. Also, the Favorite Lists icon is now on the list itself, so you can save your most useful lists with one click. If you've ever tried to create a new list with 10 columns or more, you'll be happy to hear that the maximum number of columns in a list has increased from 9 to 20. This is great news, but doesn't mean you should include the kitchen sink in your list...excess columns can slow list performance. So choose your columns wisely. Again, these are just a few of my favorite things. Let us know what you think about the new usability features. What are your favorite things?

    Read the article

  • Creating metadata value relationships

    - by kyle.hatlestad
    I was recently asked an question about an interesting use case. They wanted content to be submitted into UCM with a particular ID in a custom metadata field. But they wanted that ID to be translated during submission into an employee name in another metadata field upon submission. My initial thought was that this could be done with a dependent choice list (DCL). One option list field driving the choices in another. But this didn't work in this case for a couple of reasons. First, the number of IDs could potentially be very large. So making that into a drop-down list would not be practical. The preference would be for that field to simply be a text field to type in the ID. Secondly, data could be submitted through different methods other then the web-based check-in form. And without an interface to select the DCL choices, the system needed a way to determine and populate the name field. So instead I went the approach of having the value of the ID field drive the value of the Name field using the derived field approach in my rule. In looking at it though, it was easy to simply copy the value of the ID field into the Name field...but to have it look up and translate the value proved to be the tricky part. So here is the approach I took... First I created my two metadata fields as standard text fields in the Configuration Manager applet. Next I create a table that stores the relationship between the IDs and Names. I then create a View into that table and set the column to the EmployeeID. I now create a new Application Field and set it as an option list using the View I created in the previous step. The reason I create it as an Application field is because I don't need to display the field or store a value in it. I simply need to make use of the option list in the next step... Finally, I create a Rule in which I select the Employee Name field and turn on the 'Is derived field' checkbox. I edit the derived value and add a new condition. Because the option list is a Application field and not an Information field, I can't use the Compute button. Instead, I insert this line directly in the Value field: @getFieldViewValue("EmployeeMapping",#active.xEmployeeID, "EmployeeName") The "EmployeeMapping" parameter designates that the value should be pulled from the EmployeeMapping Application field that I had created in the previous step. The #active.xEmployeeID field is the ID value that should be pulled from what the user entered. "EmployeeName" is the column name in the table which has the value which corresponds to the ID. The extracted name then becomes the value within our Employee Name field. That's it. You can then add additional Rules to make the Name field read-only/hidden on the check-in page and such.

    Read the article

  • Right approach to convert a word document that contains forms in a web app

    - by carlo
    I would know if someone can suggest a good approach to convert a word document that contains forms in a web app, specifically in an application built with WaveMaker.(but I'm curious also with a general approach not strictly dependent on the technology that I have mentioned). For example, if I have a page in a word document, that maps the fields of a user entity, what could be my "programmer approach" to convert it without much use of copy-paste, but with a dynamic methodology ?

    Read the article

  • I want to install and get to building a personal MySQL DB

    - by Ari Hall
    So how do I go from installing MySQL from the Software Center to inputing data into fields and bringing in a comma delimited file? I've only had brief experience with MSAccess and OOo Base a long time ago, so details are appreciated, I just want to get up and running. I have Ubuntu 10.10, 64 bit, if that affects much. If you can link me to a howto that does exactly what I'm looking for, that would work. Again, Thanks!

    Read the article

  • Determining distribution of NULL values

    - by AaronBertrand
    Today on the twitter hash tag #sqlhelp, @leenux_tux asked: How can I figure out the percentage of fields that don't have data ? After further clarification, it turns out he is after what proportion of columns are NULL. Some folks suggested using a data profiling task in SSIS . There may be some validity to that, but I'm still a fan of sticking to T-SQL when I can, so here is how I would approach it: Create a #temp table or @table variable to store the results. Create a cursor that loops through all...(read more)

    Read the article

  • Pre-Conference Sessions at the PASS Summit

    - by andyleonard
    Introduction I have some thoughts on the selection of pre-conference and post-conference session presenters at the PASS Summit. PASS pre-conference and post-conference sessions are $395. Trainers and speakers in the various SQL Server fields (relational engine, business intelligence, etc.) are selected to deliver these day-long seminars before and (now) after each PASS Summit. I have attended a few and the quality and amount of the training easily justifies the $395 price tag. Full Disclosure I've...(read more)

    Read the article

  • ASP.NET 4.0 and the Entity Framework 4 - Part 5 - Using the GridView and the EntityDataSource

    In this article, Vince demonstrates the usage of the GridView control to view, add, update, and delete records using the Entity Framework 4. After providing a short introduction, he provides the steps required to create a web site, entity data model, web form and template fields with the help of relevant source code and screenshots.Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • SQL Server Training in the UK–SSIS, MDX, Admin, MDS, Internals

    - by simonsabin
    If you are looking for SQL Server training they there is no better place to start than a new company Technitrain Its been setup by a fellow MVP and SQLBits Organiser Chris Webb. Why this company rather than any others? Training based on real world experience by the best in the business. The key to Technitrain’s model is not to cram the shelves high with courses and get some average Joe trainers to deliver them. Technitrain bring in world renowned experts in their fields to deliver courses written...(read more)

    Read the article

  • Customizing the Outlook Address Book

    It is possible to change the fields in the Outlook address book to make them a better fit for your organisation. Exchange provides templates for Users, Contacts, Groups, Public Folders, and Mailbox Agents that are downloaded to Outlook. Any changes will be visible in the address book. As usual with Exchange, careful planning before you make changes pays dividends, Ben Lye explains.

    Read the article

  • Is it important for reflection-based serialization maintain consistent field ordering?

    - by Matchlighter
    I just finished writing a packet builder that dynamically loads data into a data stream for eventual network transmission. Each builder operates by finding fields in a given class (and its superclasses) that are marked with a @data annotation. When I finishing my implementation, I remembered that getFields() does not return results in any specific order. Should reflection-based methods for serializing arbitrary data (like my packets) attempt to preserve a specific field ordering (such as alphabetical), and if so, how?

    Read the article

  • Unit testing in Django

    - by acjohnson55
    I'm really struggling to write effective unit tests for a large Django project. I have reasonably good test coverage, but I've come to realize that the tests I've been writing are definitely integration/acceptance tests, not unit tests at all, and I have critical portions of my application that are not being tested effectively. I want to fix this ASAP. Here's my problem. My schema is deeply relational, and heavily time-oriented, giving my model object high internal coupling and lots of state. Many of my model methods query based on time intervals, and I've got a lot of auto_now_add going on in timestamped fields. So take a method that looks like this for example: def summary(self, startTime=None, endTime=None): # ... logic to assign a proper start and end time # if none was provided, probably using datetime.now() objects = self.related_model_set.manager_method.filter(...) return sum(object.key_method(startTime, endTime) for object in objects) How does one approach testing something like this? Here's where I am so far. It occurs to me that the unit testing objective should be given some mocked behavior by key_method on its arguments, is summary correctly filtering/aggregating to produce a correct result? Mocking datetime.now() is straightforward enough, but how can I mock out the rest of the behavior? I could use fixtures, but I've heard pros and cons of using fixtures for building my data (poor maintainability being a con that hits home for me). I could also setup my data through the ORM, but that can be limiting, because then I have to create related objects as well. And the ORM doesn't let you mess with auto_now_add fields manually. Mocking the ORM is another option, but not only is it tricky to mock deeply nested ORM methods, but the logic in the ORM code gets mocked out of the test, and mocking seems to make the test really dependent on the internals and dependencies of the function-under-test. The toughest nuts to crack seem to be the functions like this, that sit on a few layers of models and lower-level functions and are very dependent on the time, even though these functions may not be super complicated. My overall problem is that no matter how I seem to slice it, my tests are looking way more complex than the functions they are testing.

    Read the article

< Previous Page | 92 93 94 95 96 97 98 99 100 101 102 103  | Next Page >