Search Results

Search found 28896 results on 1156 pages for 'simple greeter'.

Page 98/1156 | < Previous Page | 94 95 96 97 98 99 100 101 102 103 104 105  | Next Page >

  • Require password to login to Nexus 7

    - by gnudoc
    The default behavior in the Nexus 7 Image is to log straight in to the default user's desktop, bypassing the lightdm greeter. This seems like an acceptable behavior for testing the core but it's clearly insecure. I've changed the default password and would like lightdm to actually require the password to be entered, rather than just having a button that says "login". I've turned automatic login on and off in System Settings ? User Accounts but this doesn't help. Any suggestions?

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • Advantages of SQL Backup Pro

    - by Grant Fritchey
    Getting backups of your databases in place is a fundamental issue for protection of the business. Yes, I said business, not data, not databases, but business. Because of a lack of good, tested, backups, companies have gone completely out of business or suffered traumatic financial loss. That’s just a simple fact (outlined with a few examples here). So you want to get backups right. That’s a big part of why we make Red Gate SQL Backup Pro work the way it does. Yes, you could just use native backups, but you’ll be missing a few advantages that we provide over and above what you get out of the box from Microsoft. Let’s talk about them. Guidance If you’re a hard-core DBA with 20+ years of experience on every version of SQL Server and several other data platforms besides, you may already know what you need in order to get a set of tested backups in place. But, if you’re not, maybe a little help would be a good thing. To set up backups for your servers, we supply a wizard that will step you through the entire process. It will also act to guide you down good paths. For example, if your databases are in Full Recovery, you should set up transaction log backups to run on a regular basis. When you choose a transaction log backup from the Backup Type you’ll see that only those databases that are in Full Recovery will be listed: This makes it very easy to be sure you have a log backup set up for all the databases you should and none of the databases where you won’t be able to. There are other examples of guidance throughout the product. If you have the responsibility of managing backups but very little knowledge or time, we can help you out. Throughout the software you’ll notice little green question marks. You can see two in the screen above and more in each of the screens in other topics below this one. Clicking on these will open a window with additional information about the topic in question which should help to guide you through some of the tougher decisions you may have to make while setting up your backup jobs. Here’s an example: Backup Copies As a part of the wizard you can choose to make a copy of your backup on your network. This process runs as part of the Red Gate SQL Backup engine. It will copy your backup, after completing the backup so it doesn’t cause any additional blocking or resource use within the backup process, to the network location you define. Creating a copy acts as a mechanism of protection for your backups. You can then backup that copy or do other things with it, all without affecting the original backup file. This requires either an additional backup or additional scripting to get it done within the native Microsoft backup engine. Offsite Storage Red Gate offers you the ability to immediately copy your backup to the cloud as a further, off-site, protection of your backups. It’s a service we provide and expose through the Backup wizard. Your backup will complete first, just like with the network backup copy, then an asynchronous process will copy that backup to cloud storage. Again, this is built right into the wizard or even the command line calls to SQL Backup, so it’s part a single process within your system. With native backup you would need to write additional scripts, possibly outside of T-SQL, to make this happen. Before you can use this with your backups you’ll need to do a little setup, but it’s built right into the product to get this done. You’ll be directed to the web site for our hosted storage where you can set up an account. Compression If you have SQL Server 2008 Enterprise, or you’re on SQL Server 2008R2 or greater and you have a Standard or Enterprise license, then you have backup compression. It’s built right in and works well. But, if you need even more compression then you might want to consider Red Gate SQL Backup Pro. We offer four levels of compression within the product. This means you can get a little compression faster, or you can just sacrifice some CPU time and get even more compression. You decide. For just a simple example I backed up AdventureWorks2012 using both methods of compression. The resulting file from native was 53mb. Our file was 33mb. That’s a file that is smaller by 38%, not a small number when we start talking gigabytes. We even provide guidance here to help you determine which level of compression would be right for you and your system: So for this test, if you wanted maximum compression with minimum CPU use you’d probably want to go with Level 2 which gets you almost as much compression as Level 3 but will use fewer resources. And that compression is still better than the native one by 10%. Restore Testing Backups are vital. But, a backup is just a file until you restore it. How do you know that you can restore that backup? Of course, you’ll use CHECKSUM to validate that what was read from disk during the backup process is what gets written to the backup file. You’ll also use VERIFYONLY to check that the backup header and the checksums on the backup file are valid. But, this doesn’t do a complete test of the backup. The only complete test is a restore. So, what you really need is a process that tests your backups. This is something you’ll have to schedule separately from your backups, but we provide a couple of mechanisms to help you out here. First, when you create a backup schedule, all done through our wizard which gives you as much guidance as you get when running backups, you get the option of creating a reminder to create a job to test your restores. You can enable this or disable it as you choose when creating your scheduled backups. Once you’re ready to schedule test restores for your databases, we have a wizard for this as well. After you choose the databases and restores you want to test, all configurable for automation, you get to decide if you’re going to restore to a specified copy or to the original database: If you’re doing your tests on a new server (probably the best choice) you can just overwrite the original database if it’s there. If not, you may want to create a new database each time you test your restores. Another part of validating your backups is ensuring that they can pass consistency checks. So we have DBCC built right into the process. You can even decide how you want DBCC run, which error messages to include, limit or add to the checks being run. With this you could offload some DBCC checks from your production system so that you only run the physical checks on your production box, but run the full check on this backup. That makes backup testing not just a general safety process, but a performance enhancer as well: Finally, assuming the tests pass, you can delete the database, leave it in place, or delete it regardless of the tests passing. All this is automated and scheduled through the SQL Agent job on your servers. Running your databases through this process will ensure that you don’t just have backups, but that you have tested backups. Single Point of Management If you have more than one server to maintain, getting backups setup could be a tedious process. But, with Red Gate SQL Backup Pro you can connect to multiple servers and then manage all your databases and all your servers backups from a single location. You’ll be able to see what is scheduled, what has run successfully and what has failed, all from a single interface without having to connect to different servers. Log Shipping Wizard If you want to set up log shipping as part of a disaster recovery process, it can frequently be a pain to get configured correctly. We supply a wizard that will walk you through every step of the process including setting up alerts so you’ll know should your log shipping fail. Summary You want to get your backups right. As outlined above, Red Gate SQL Backup Pro will absolutely help you there. We supply a number of processes and functionalities above and beyond what you get with SQL Server native. Plus, with our guidance, hints and reminders, you will get your backups set up in a way that protects your business.

    Read the article

  • Mr Flibble: As Seen Through a Lens, Darkly

    - by Phil Factor
    One of the rewarding things about getting involved with Simple-Talk has been in meeting and working with some pretty daunting talents. I’d like to say that Dom Reed’s talents are at the end of the visible spectrum, but then there is Richard, who pops up on national radio occasionally, presenting intellectual programs, Andrew, master of the ukulele, with his pioneering local history work, and Tony with marathon running and his past as a university lecturer. However, Dom, who is Red Gate’s head of creative design and who did the preliminary design work for Simple-Talk, has taken the art photography to an extreme that was impossible before Photoshop. He’s not the first person to take a photograph of himself every day for two years, but he is definitely the first to weave the results into a frightening narrative that veers from comedy to pathos, using all the arts of Photoshop to create a fictional character, Mr Flibble.   Have a look at some of the Flickr pages. Uncle Spike The B-Men – Woolverine The 2011 BoyZ iN Sink reunion tour turned out to be their last Error 404 – Flibble not found Mr Flibble is not a normal type of alter-ego. We generally prefer to choose bronze age warriors of impossibly magnificent physique and stamina; superheroes who bestride the world, scorning the forces of evil and anarchy in a series noble and righteous quests. Not so Dom, whose Mr Flibble is vulnerable, and laid low by an addiction to toxic substances. His work has gained an international cult following and is used as course material by several courses in photography. Although his work was for a while ignored by the more conventional world of ‘art’ photography they became famous through the internet. His photos have received well over a million views on Flickr. It was definitely time to turn this work into a book, because the whole sequence of images has its maximum effect when seen in sequence. He has a Kickstarter project page, one of the first following the recent UK launch of the crowdfunding platform. The publication of the book should be a major event and the £45 I shall divvy up will be one of the securest investments I shall ever make. The local news in Cambridge picked up on the project and I can quote from the report by the excellent Cabume website , the source of Tech news from the ‘Cambridge cluster’ Put really simply Mr Flibble likes to dress up and take pictures of himself. One of the benefits of a split personality, however is that Mr Flibble is supported in his endeavour by Reed’s top notch photography skills, supreme mastery of Photoshop and unflinching dedication to the cause. The duo have collaborated to take a picture every day for the past 730-plus days. It is not a big surprise that neither Mr Flibble nor Reed watches any TV: In addition to his full-time role at Cambridge software house,Red Gate Software as head of creativity and the two to five hours a day he spends taking the Mr Flibble shots, Reed also helps organise the . And now Reed is using Kickstarter to see if the world is ready for a Mr Flibble coffee table book. Judging by the early response it is. At the time of writing, just a few days after it went live, ‘I Drink Lead Paint: An absurd photography book by Mr Flibble’ had raised £1,545 of the £10,000 target it needs to raise by the Friday 30 November deadline from 37 backers. Following the standard Kickstarter template, Reed is offering a series of rewards based on the amount pledged, ranging from a Mr Flibble desktop wallpaper for pledges of £5 or more to a signed copy of the book for pledges of £45 or more, right up to a starring role in the book for £1,500. Mr Flibble is unquestionably one of the more deranged Kickstarter hopefuls, but don’t think for a second that he doesn’t have a firm grasp on the challenges he faces on the road to immortalisation on 150 gsm stock. Under the section ‘risks and challenges’ on his Kickstarter page his statement begins: “An angry horde of telepathic iguanas discover the world’s last remaining stock of vintage lead paint and hold me to ransom. Gosh how I love to guzzle lead paint. Anyway… faced with such brazen bravado, I cower at the thought of taking on their combined might and die a sad and lonely Flibble deprived of my one and only true liquid love.” At which point, Reed manages to wrestle away the keyboard, giving him the opportunity to present slightly more cogent analysis of the obstacles the project must still overcome. We asked Reed a few questions about Mr Flibble’s Kickstarter adventure and felt that his responses were worth publishing in full: Firstly, how did you manage it – holding down a full time job and also conceiving and executing these ideas on a daily basis? I employed a small team of ferocious gerbils to feed me ideas on a daily basis. Whilst most of their ideas were incomprehensibly rubbish and usually revolved around food, just occasionally they’d give me an idea like my B-Men series. As a backup plan though, I found that the best way to generate ideas was to actually start taking photos. If I were to stand in front of the camera, pull a silly face, place a vegetable on my head or something else equally stupid, the resulting photo of that would typically spark an idea when I came to look at it. Sitting around idly trying to think of an idea was doomed to result in no ideas. I admit that I really struggled with time. I’m proud that I never missed a day, but it was definitely hard when you were late from work, tired or doing something socially on the same day. I don’t watch TV, which I guess really helps, because I’d frequently be spending 2-5 hours taking and processing the photos every day. Are there any overlaps between software development and creative thinking? Software is an inherently creative business and the speed that it moves ensures you always have to find solutions to new things. Everyone in the team needs to be a problem solver. Has it helped me specifically with my photography? Probably. Working within teams that continually need to figure out new stuff keeps the brain feisty I suppose, and I guess I’m continually exposed to a lot of possible sources of inspiration. How specifically will this Kickstarter project allow you to test the commercial appeal of your work and do you plan to get the book into shops? It’s taken a while to be confident saying it, but I know that people like the work that I do. I’ve had well over a million views of my pictures, many humbling comments and I know I’ve garnered some loyal fans out there who anticipate my next photo. For me, this Kickstarter is about seeing if there’s worth to my work beyond just making people smile. In an online world where there’s an abundance of freely available content, can you hope to receive anything from what you do, or would people just move onto the next piece of content if you happen to ask for some support? A book has been the single-most requested thing that people have asked me to produce and it’s something that I feel would showcase my work well. It’s just hard to convince people in the publishing industry just now to take any kind of risk – they’ve been hit hard. If I can show that people would like my work enough to buy a book, then it sends a pretty clear picture that publishers might hear, or it gives me the confidence enough to invest in myself a bit more – hard to do when you’re riddled with self-doubt! I’d love to see my work in the shops, yes. I could see it being the thing that someone flips through idly as they’re Christmas shopping and recognizing that it’d be just the perfect gift for their difficult to buy for friend or relative. That said, working in the software industry means I’m clearly aware of how I could use technology to distribute my work, but I can’t deny that there’s something very appealing to having a physical thing to hold in your hands. If the project is successful is there a chance that it could become a full-time job? At the moment that seems like a distant dream, as should this be successful, there are many more steps I’d need to take to reach any kind of business viability. Kickstarter seems exactly that – a way for people to help kick start me into something that could take off. If people like my work and want me to succeed with it, then taking a look at my Kickstarter page (and hopefully pledging a bit of support) would make my elbows blush considerably. So there is is. An opportunity to open the wallet just a bit to ensure that one of the more unusual talents sees the light in the format it deserves.  

    Read the article

  • quick look at: dm_db_index_physical_stats

    - by fatherjack
    A quick look at the key data from this dmv that can help a DBA keep databases performing well and systems online as the users need them. When the dynamic management views relating to index statistics became available in SQL Server 2005 there was much hype about how they can help a DBA keep their servers running in better health than ever before. This particular view gives an insight into the physical health of the indexes present in a database. Whether they are use or unused, complete or missing some columns is irrelevant, this is simply the physical stats of all indexes; disabled indexes are ignored however. In it’s simplest form this dmv can be executed as:   The results from executing this contain a record for every index in every database but some of the columns will be NULL. The first parameter is there so that you can specify which database you want to gather index details on, rather than scan every database. Simply specifying DB_ID() in place of the first NULL achieves this. In order to avoid the NULLS, or more accurately, in order to choose when to have the NULLS you need to specify a value for the last parameter. It takes one of 4 values – DEFAULT, ‘SAMPLED’, ‘LIMITED’ or ‘DETAILED’. If you execute the dmv with each of these values you can see some interesting details in the times taken to complete each step. DECLARE @Start DATETIME DECLARE @First DATETIME DECLARE @Second DATETIME DECLARE @Third DATETIME DECLARE @Finish DATETIME SET @Start = GETDATE() SELECT * FROM [sys].[dm_db_index_physical_stats](DB_ID(), NULL, NULL, NULL, DEFAULT) AS ddips SET @First = GETDATE() SELECT * FROM [sys].[dm_db_index_physical_stats](DB_ID(), NULL, NULL, NULL, 'SAMPLED') AS ddips SET @Second = GETDATE() SELECT * FROM [sys].[dm_db_index_physical_stats](DB_ID(), NULL, NULL, NULL, 'LIMITED') AS ddips SET @Third = GETDATE() SELECT * FROM [sys].[dm_db_index_physical_stats](DB_ID(), NULL, NULL, NULL, 'DETAILED') AS ddips SET @Finish = GETDATE() SELECT DATEDIFF(ms, @Start, @First) AS [DEFAULT] , DATEDIFF(ms, @First, @Second) AS [SAMPLED] , DATEDIFF(ms, @Second, @Third) AS [LIMITED] , DATEDIFF(ms, @Third, @Finish) AS [DETAILED] Running this code will give you 4 result sets; DEFAULT will have 12 columns full of data and then NULLS in the remainder. SAMPLED will have 21 columns full of data. LIMITED will have 12 columns of data and the NULLS in the remainder. DETAILED will have 21 columns full of data. So, from this we can deduce that the DEFAULT value (the same one that is also applied when you query the view using a NULL parameter) is the same as using LIMITED. Viewing the final result set has some details that are worth noting: Running queries against this view takes significantly longer when using the SAMPLED and DETAILED values in the last parameter. The duration of the query is directly related to the size of the database you are working in so be careful running this on big databases unless you have tried it on a test server first. Let’s look at the data we get back with the DEFAULT value first of all and then progress to the extra information later. We know that the first parameter that we supply has to be a database id and for the purposes of this blog we will be providing that value with the DB_ID function. We could just as easily put a fixed value in there or a function such as DB_ID (‘AnyDatabaseName’). The first columns we get back are database_id and object_id. These are pretty explanatory and we can wrap those in some code to make things a little easier to read: SELECT DB_NAME([ddips].[database_id]) AS [DatabaseName] , OBJECT_NAME([ddips].[object_id]) AS [TableName] … FROM [sys].[dm_db_index_physical_stats](DB_ID(), NULL, NULL, NULL, NULL) AS ddips  gives us   SELECT DB_NAME([ddips].[database_id]) AS [DatabaseName] , OBJECT_NAME([ddips].[object_id]) AS [TableName], [i].[name] AS [IndexName] , ….. FROM [sys].[dm_db_index_physical_stats](DB_ID(), NULL, NULL, NULL, NULL) AS ddips INNER JOIN [sys].[indexes] AS i ON [ddips].[index_id] = [i].[index_id] AND [ddips].[object_id] = [i].[object_id]     These handily tie in with the next parameters in the query on the dmv. If you specify an object_id and an index_id in these then you get results limited to either the table or the specific index. Once again we can place a  function in here to make it easier to work with a specific table. eg. SELECT * FROM [sys].[dm_db_index_physical_stats] (DB_ID(), OBJECT_ID(‘AdventureWorks2008.Person.Address’) , 1, NULL, NULL) AS ddips   Note: Despite me showing that functions can be placed directly in the parameters for this dmv, best practice recommends that functions are not used directly in the function as it is possible that they will fail to return a valid object ID. To be certain of not passing invalid values to this function, and therefore setting an automated process off on the wrong path, declare variables for the OBJECT_IDs and once they have been validated, use them in the function: DECLARE @db_id SMALLINT; DECLARE @object_id INT; SET @db_id = DB_ID(N’AdventureWorks_2008′); SET @object_id = OBJECT_ID(N’AdventureWorks_2008.Person.Address’); IF @db_id IS NULL BEGINPRINT N’Invalid database’; ENDELSE IF @object_id IS NULL BEGINPRINT N’Invalid object’; ENDELSE BEGINSELECT * FROM sys.dm_db_index_physical_stats (@db_id, @object_id, NULL, NULL , ‘LIMITED’); END; GO In cases where the results of querying this dmv don’t have any effect on other processes (i.e. simply viewing the results in the SSMS results area)  then it will be noticed when the results are not consistent with the expected results and in the case of this blog this is the method I have used. So, now we can relate the values in these columns to something that we recognise in the database lets see what those other values in the dmv are all about. The next columns are: We’ll skip partition_number, index_type_desc, alloc_unit_type_desc, index_depth and index_level  as this is a quick look at the dmv and they are pretty self explanatory. The final columns revealed by querying this view in the DEFAULT mode are avg_fragmentation_in_percent. This is the amount that the index is logically fragmented. It will show NULL when the dmv is queried in SAMPLED mode. fragment_count. The number of pieces that the index is broken into. It will show NULL when the dmv is queried in SAMPLED mode. avg_fragment_size_in_pages. The average size, in pages, of a single fragment in the leaf level of the IN_ROW_DATA allocation unit. It will show NULL when the dmv is queried in SAMPLED mode. page_count. Total number of index or data pages in use. OK, so what does this give us? Well, there is an obvious correlation between fragment_count, page_count and avg_fragment_size-in_pages. We see that an index that takes up 27 pages and is in 3 fragments has an average fragment size of 9 pages (27/3=9). This means that for this index there are 3 separate places on the hard disk that SQL Server needs to locate and access to gather the data when it is requested by a DML query. If this index was bigger than 72KB then having it’s data in 3 pieces might not be too big an issue as each piece would have a significant piece of data to read and the speed of access would not be too poor. If the number of fragments increases then obviously the amount of data in each piece decreases and that means the amount of work for the disks to do in order to retrieve the data to satisfy the query increases and this would start to decrease performance. This information can be useful to keep in mind when considering the value in the avg_fragmentation_in_percent column. This is arrived at by an internal algorithm that gives a value to the logical fragmentation of the index taking into account the multiple files, type of allocation unit and the previously mentioned characteristics if index size (page_count) and fragment_count. Seeing an index with a high avg_fragmentation_in_percent value will be a call to action for a DBA that is investigating performance issues. It is possible that tables will have indexes that suffer from rapid increases in fragmentation as part of normal daily business and that regular defragmentation work will be needed to keep it in good order. In other cases indexes will rarely become fragmented and therefore not need rebuilding from one end of the year to another. Keeping this in mind DBAs need to use an ‘intelligent’ process that assesses key characteristics of an index and decides on the best, if any, defragmentation method to apply should be used. There is a simple example of this in the sample code found in the Books OnLine content for this dmv, in example D. There are also a couple of very popular solutions created by SQL Server MVPs Michelle Ufford and Ola Hallengren which I would wholly recommend that you review for much further detail on how to care for your SQL Server indexes. Right, let’s get back on track then. Querying the dmv with the fifth parameter value as ‘DETAILED’ takes longer because it goes through the index and refreshes all data from every level of the index. As this blog is only a quick look a we are going to skate right past ghost_record_count and version_ghost_record_count and discuss avg_page_space_used_in_percent, record_count, min_record_size_in_bytes, max_record_size_in_bytes and avg_record_size_in_bytes. We can see from the details below that there is a correlation between the columns marked. Column 1 (Page_Count) is the number of 8KB pages used by the index, column 2 is how full each page is (how much of the 8KB has actual data written on it), column 3 is how many records are recorded in the index and column 4 is the average size of each record. This approximates to: ((Col1*8) * 1024*(Col2/100))/Col3 = Col4*. avg_page_space_used_in_percent is an important column to review as this indicates how much of the disk that has been given over to the storage of the index actually has data on it. This value is affected by the value given for the FILL_FACTOR parameter when creating an index. avg_record_size_in_bytes is important as you can use it to get an idea of how many records are in each page and therefore in each fragment, thus reinforcing how important it is to keep fragmentation under control. min_record_size_in_bytes and max_record_size_in_bytes are exactly as their names set them out to be. A detail of the smallest and largest records in the index. Purely offered as a guide to the DBA to better understand the storage practices taking place. So, keeping an eye on avg_fragmentation_in_percent will ensure that your indexes are helping data access processes take place as efficiently as possible. Where fragmentation recurs frequently then potentially the DBA should consider; the fill_factor of the index in order to leave space at the leaf level so that new records can be inserted without causing fragmentation so rapidly. the columns used in the index should be analysed to avoid new records needing to be inserted in the middle of the index but rather always be added to the end. * – it’s approximate as there are many factors associated with things like the type of data and other database settings that affect this slightly.  Another great resource for working with SQL Server DMVs is Performance Tuning with SQL Server Dynamic Management Views by Louis Davidson and Tim Ford – a free ebook or paperback from Simple Talk. Disclaimer – Jonathan is a Friend of Red Gate and as such, whenever they are discussed, will have a generally positive disposition towards Red Gate tools. Other tools are often available and you should always try others before you come back and buy the Red Gate ones. All code in this blog is provided “as is” and no guarantee, warranty or accuracy is applicable or inferred, run the code on a test server and be sure to understand it before you run it on a server that means a lot to you or your manager.

    Read the article

  • Pub banter - content strategy at the ballot box?

    - by Roger Hart
    Last night, I was challenged to explain (and defend) content strategy. Three sheets to the wind after a pub quiz, this is no simple task, but I hope I acquitted myself passably. I say "hope" because there was a really interesting question I couldn't answer to my own satisfaction. I wonder if any of you folks out there in the ethereal internet hive-mind can help me out? A friend - a rather concrete thinker who mathematically models complex biological systems for a living - pointed out that my examples were largely routed in business-to-business web sales and support. He challenged me with: Say you've got a political website, so your goal is to have somebody read it and vote for you - how do you measure the effectiveness of that content? Well, you would. umm. Oh dear. I guess what we're talking about here, to yank it back to my present comfort zone, is a sales process where your point of conversion is off the site. The political example is perhaps a little below the belt, since what you can and can't do, and what data you can and can't collect is so restricted. You can't throw up a "How did you hear about this election?" questionnaire in the polling booth. Exit polls don't pull in your browsing history and site session information. Not everyone fatuously tweets and geo-tags each moment of their lives. Oh, and folks lie. The business example might be easier to attack. You could have, say, a site for a farm shop that only did over the counter sales. Either way, it's tricky. I fell back on some of the work I've done usability testing and benchmarking documentation, and suggested similar, quick and dirty, small sample qualitative UX trials. I'm not wholly sure that was right. Any thoughts? How might we measure and curate for this kind of discontinuous conversion?

    Read the article

  • ReSharper C# Live Template for Declaring Routed Event

    - by Bart Read
    Here's another WPF ReSharper Live Template for you. This one is for declaring standalone routed events of any type. Again, it's pretty simple:        #region $EVENTNAME$ Routed Event       public static readonly RoutedEvent $EVENTNAME$Event = EventManager.RegisterRoutedEvent(            "$EVENTNAME$",           RoutingStrategy.$ROUTINGSTRATEGY$,           typeof( $EVENTHANDLERDELEGATE$ ),           typeof( $DECLARINGTYPE$ ) );       public event $EVENTHANDLERDELEGATE$ $EVENTNAME$       {           add { AddHandler( $EVENTNAME$Event, value ); }           remove { RemoveHandler( $EVENTNAME$Event, value ); }       }       protected virtual void On$EVENTNAME$()       {           RaiseEvent( new $EVENTARGSTYPE$( $EVENTNAME$Event, this ) );           $END$       }       #endregion Here are my previous posts along the same lines: ReSharper C# Live Template for Read-Only Dependency Property and Routed Event Boilerplate ReSharper C# Live Template for Dependency Property and Property Change Routed Event Boilerplate Code Enjoy! Technorati Tags: resharper,live template,c#,routed event,wpf,boilerplate,code generation

    Read the article

  • .NET vs Windows 8: Rematch!

    - by Simon Cooper
    So, although you will be able to use your existing .NET skills to develop Metro apps, it turns out Microsoft are limiting Visual Studio 2011 Express to Metro-only. From the Express website: Visual Studio 11 Express for Windows 8 provides tools for Metro style app development. To create desktop apps, you need to use Visual Studio 11 Professional, or higher. Oh dear. To develop any sort of non-Metro application, you will need to pay for at least VS Professional. I suspect Microsoft (or at least, certain groups within Microsoft) have a very explicit strategy in mind. By making VS Express Metro-only, developers who don't want to pay for Professional will be forced to make their simple one-shot or open-source application in Metro. This increases the number of applications available for Windows 8 and Windows mobile devices, which in turn make those platforms more attractive for consumers. When you use the free VS 11 Express, instead of paying Microsoft, you provide them a service by making applications for Metro, which in turn makes Microsoft's mobile offering more attractive to consumers, increasing their market share. Of course, it remains to be seen if developers forced to jump onto the Metro bandwagon will simply jump ship to Android or iOS instead. At least, that's what I think is going on. With Microsoft, who really knows?

    Read the article

  • Search SSIS packages for table/column references

    - by Nigel Rivett
    A lot of companies now use TFS or some other system and keep all their packages in a single project. This means that a copy of all the packages will end up on your local disk. There is major failing with SSIS that it is sometimes quite difficult to find what a package is actually doing, what it accesses and what it affects. This is a simple dos script which will search through all packages in a folder for a string and write the names of found packages to an output file. Just copy the text to a .bat file (I use aaSearch.bat) in the folder with all the package scripts Change the output filename (twice), change the find string value and run it in a dos window. It works on any text file type so you can also search store procedure scripts – but there are easier ways of doing that. echo. > aaSearch_factSales.txt for /f “delims=” %%a in (‘dir /B /s *.dtsx’) do call :subr “%%a” goto:EOF :subr findstr “factSales” %1 if %ERRORLEVEL% NEQ 1 echo %1 >> aaSearch_factSales.txt goto:EOF

    Read the article

  • Why unhandled exceptions are useful

    - by Simon Cooper
    It’s the bane of most programmers’ lives – an unhandled exception causes your application or webapp to crash, an ugly dialog gets displayed to the user, and they come complaining to you. Then, somehow, you need to figure out what went wrong. Hopefully, you’ve got a log file, or some other way of reporting unhandled exceptions (obligatory employer plug: SmartAssembly reports an application’s unhandled exceptions straight to you, along with the entire state of the stack and variables at that point). If not, you have to try and replicate it yourself, or do some psychic debugging to try and figure out what’s wrong. However, it’s good that the program crashed. Or, more precisely, it is correct behaviour. An unhandled exception in your application means that, somewhere in your code, there is an assumption that you made that is actually invalid. Coding assumptions Let me explain a bit more. Every method, every line of code you write, depends on implicit assumptions that you have made. Take this following simple method, that copies a collection to an array and includes an item if it isn’t in the collection already, using a supplied IEqualityComparer: public static T[] ToArrayWithItem( ICollection<T> coll, T obj, IEqualityComparer<T> comparer) { // check if the object is in collection already // using the supplied comparer foreach (var item in coll) { if (comparer.Equals(item, obj)) { // it's in the collection already // simply copy the collection to an array // and return it T[] array = new T[coll.Count]; coll.CopyTo(array, 0); return array; } } // not in the collection // copy coll to an array, and add obj to it // then return it T[] array = new T[coll.Count+1]; coll.CopyTo(array, 0); array[array.Length-1] = obj; return array; } What’s all the assumptions made by this fairly simple bit of code? coll is never null comparer is never null coll.CopyTo(array, 0) will copy all the items in the collection into the array, in the order defined for the collection, starting at the first item in the array. The enumerator for coll returns all the items in the collection, in the order defined for the collection comparer.Equals returns true if the items are equal (for whatever definition of ‘equal’ the comparer uses), false otherwise comparer.Equals, coll.CopyTo, and the coll enumerator will never throw an exception or hang for any possible input and any possible values of T coll will have less than 4 billion items in it (this is a built-in limit of the CLR) array won’t be more than 2GB, both on 32 and 64-bit systems, for any possible values of T (again, a limit of the CLR) There are no threads that will modify coll while this method is running and, more esoterically: The C# compiler will compile this code to IL according to the C# specification The CLR and JIT compiler will produce machine code to execute the IL on the user’s computer The computer will execute the machine code correctly That’s a lot of assumptions. Now, it could be that all these assumptions are valid for the situations this method is called. But if this does crash out with an exception, or crash later on, then that shows one of the assumptions has been invalidated somehow. An unhandled exception shows that your code is running in a situation which you did not anticipate, and there is something about how your code runs that you do not understand. Debugging the problem is the process of learning more about the new situation and how your code interacts with it. When you understand the problem, the solution is (usually) obvious. The solution may be a one-line fix, the rewrite of a method or class, or a large-scale refactoring of the codebase, but whatever it is, the fix for the crash will incorporate the new information you’ve gained about your own code, along with the modified assumptions. When code is running with an assumption or invariant it depended on broken, then the result is ‘undefined behaviour’. Anything can happen, up to and including formatting the entire disk or making the user’s computer sentient and start doing a good impression of Skynet. You might think that those can’t happen, but at Halting problem levels of generality, as soon as an assumption the code depended on is broken, the program can do anything. That is why it’s important to fail-fast and stop the program as soon as an invariant is broken, to minimise the damage that is done. What does this mean in practice? To start with, document and check your assumptions. As with most things, there is a level of judgement required. How you check and document your assumptions depends on how the code is used (that’s some more assumptions you’ve made), how likely it is a method will be passed invalid arguments or called in an invalid state, how likely it is the assumptions will be broken, how expensive it is to check the assumptions, and how bad things are likely to get if the assumptions are broken. Now, some assumptions you can assume unless proven otherwise. You can safely assume the C# compiler, CLR, and computer all run the method correctly, unless you have evidence of a compiler, CLR or processor bug. You can also assume that interface implementations work the way you expect them to; implementing an interface is more than simply declaring methods with certain signatures in your type. The behaviour of those methods, and how they work, is part of the interface contract as well. For example, for members of a public API, it is very important to document your assumptions and check your state before running the bulk of the method, throwing ArgumentException, ArgumentNullException, InvalidOperationException, or another exception type as appropriate if the input or state is wrong. For internal and private methods, it is less important. If a private method expects collection items in a certain order, then you don’t necessarily need to explicitly check it in code, but you can add comments or documentation specifying what state you expect the collection to be in at a certain point. That way, anyone debugging your code can immediately see what’s wrong if this does ever become an issue. You can also use DEBUG preprocessor blocks and Debug.Assert to document and check your assumptions without incurring a performance hit in release builds. On my coding soapbox… A few pet peeves of mine around assumptions. Firstly, catch-all try blocks: try { ... } catch { } A catch-all hides exceptions generated by broken assumptions, and lets the program carry on in an unknown state. Later, an exception is likely to be generated due to further broken assumptions due to the unknown state, causing difficulties when debugging as the catch-all has hidden the original problem. It’s much better to let the program crash straight away, so you know where the problem is. You should only use a catch-all if you are sure that any exception generated in the try block is safe to ignore. That’s a pretty big ask! Secondly, using as when you should be casting. Doing this: (obj as IFoo).Method(); or this: IFoo foo = obj as IFoo; ... foo.Method(); when you should be doing this: ((IFoo)obj).Method(); or this: IFoo foo = (IFoo)obj; ... foo.Method(); There’s an assumption here that obj will always implement IFoo. If it doesn’t, then by using as instead of a cast you’ve turned an obvious InvalidCastException at the point of the cast that will probably tell you what type obj actually is, into a non-obvious NullReferenceException at some later point that gives you no information at all. If you believe obj is always an IFoo, then say so in code! Let it fail-fast if not, then it’s far easier to figure out what’s wrong. Thirdly, document your assumptions. If an algorithm depends on a non-trivial relationship between several objects or variables, then say so. A single-line comment will do. Don’t leave it up to whoever’s debugging your code after you to figure it out. Conclusion It’s better to crash out and fail-fast when an assumption is broken. If it doesn’t, then there’s likely to be further crashes along the way that hide the original problem. Or, even worse, your program will be running in an undefined state, where anything can happen. Unhandled exceptions aren’t good per-se, but they give you some very useful information about your code that you didn’t know before. And that can only be a good thing.

    Read the article

  • SPUtility.SendMail and the 2048 Character Limit

    - by Damon
    We were in the middle of testing a web part responsible for gathering information from visitors to our Client's website and emailing it to someone responsible for responding to the request.  During testing, however, it was brought to our attention that the message was cutting off at 2048 characters.  Now, 2048 is one of those numbers that is usually indicative of some computational limit, but I was hopeful that Microsoft had thought through the possibility of emailing more than 2048 characters from SharePoint.  Luckily I was right. and wrong. As it turns out, SPUtility.SendMail is not limited to any specific character limit as far as I can tell.  However, each LINE of text that you send via SendMail cannot exceed 2048 characters.  Since we were sending an HTML email it was constructed entirely without line breaks, far exceeding the 2048 character limit and ultimately helping to educate me about this obscure technical limitation whose only benefit thus far is offering me something to rant about on my blog.  The fix is simple, just put in a carriage return and a line break often enough to avoid going past the 2048 character limit.  I'm sure someone can present a great technical reason for the 2048 character limit, but it seems fairly arbitrary since the "\r\n" that got appended to the string are ultimately just characters too.

    Read the article

  • .NET vs Windows 8: Rematch!

    - by Simon Cooper
    So, although you will be able to use your existing .NET skills to develop Metro apps, it turns out Microsoft are limiting Visual Studio 2011 Express to Metro-only. From the Express website: Visual Studio 11 Express for Windows 8 provides tools for Metro style app development. To create desktop apps, you need to use Visual Studio 11 Professional, or higher. Oh dear. To develop any sort of non-Metro application, you will need to pay for at least VS Professional. I suspect Microsoft (or at least, certain groups within Microsoft) have a very explicit strategy in mind. By making VS Express Metro-only, developers who don't want to pay for Professional will be forced to make their simple one-shot or open-source application in Metro. This increases the number of applications available for Windows 8 and Windows mobile devices, which in turn make those platforms more attractive for consumers. When you use the free VS 11 Express, instead of paying Microsoft, you provide them a service by making applications for Metro, which in turn makes Microsoft's mobile offering more attractive to consumers, increasing their market share. Of course, it remains to be seen if developers forced to jump onto the Metro bandwagon will simply jump ship to Android or iOS instead. At least, that's what I think is going on. With Microsoft, who really knows?

    Read the article

  • ASP.NET MVC Cookbook - public review

    - by asiemer
    I have recently started writing another book.  The topic of this book is ASP.NET MVC.  This book differs from my previous book in that rather than working towards building one project from end to end - this book will demonstrate specific topics from end to end.  It is a recipe book (hence the cookbook name) and will be part of the Packt Publishing cookbook series.  An example recipe in this book might be how to consume JSON, creating a master /details page, jquery modal popups, custom ActionResults, etc.  Basically anything recipe oriented around the topic of ASP.NET MVC might be acceptable.  If you are interested in helping out with the review process you can join the "ASP.NET MVC 2 Cookbook-review" group on Google here: http://groups.google.com/group/aspnet-mvc-2-cookbook-review Currently the suggested TOC for the project is listed.  Also, chapters 1, 2, and most of 8 are posted.  Chapter 5 should be available tonight or tomorrow. In addition to reporting any errors that you might find (much appreciated), I am very interested in hearing about recipes that you want included, expanded, or removed (as being redundant or overly simple).  Any input is appreciated!  Hearing user feedback after the book is complete is a little late in my opinion (unless it is positive feedback of course). Thank you!

    Read the article

  • Help with ejb 3, weblogic and spring.

    - by berserkpi
    So,hi there. I've created a simple EJB3 test project, the code is simple: @Stateless @Remote( { ISumaSimple.class }) public class SumaSimpleBean implements ISumaSimple { /** * Default constructor. */ public SumaSimpleBean() { // TODO Auto-generated constructor stub } @Override public int sumar(int a, int b) { // TODO Auto-generated method stub return a + b; } } public interface ISumaSimple { public int sumar(int a, int b); } Ok, my client is a stand alone spring aplication which configuration is: <bean id="sumaSimpleServicio" class="org.springframework.jndi.JndiObjectFactoryBean"> <property name="jndiEnvironment"> <props> <prop key="java.naming.factory.initial"> org.apache.openejb.client.RemoteInitialContextFactory </prop> <prop key="java.naming.provider.url"> ejbd://localhost:4201 </prop> </props> </property> <property name="jndiName" value="SumaSimpleBeanRemote" /> </bean> <bean id="clienteService" class="qtx.cliente.simple.ClienteService"> <property name="sumaSimpleServicio" ref="sumaSimpleServicio"></property> </bean> All worked smoothly, but then I tried deploying using weblogic 10.3, I just changed these values: weblogic.jndi.WLInitialContextFactory t3://localhost:7010 In weblogic jndi tree my ejb is under: SimpleEJB3SimpleEJB_jarSumaSimple3_ISumaSimple Of course I added wlclient.jar to my spring client classpath. I think I am missing something in weblogic case, but dunno. My spring client is throwing this exception: Caused by: org.springframework.beans.TypeMismatchException: Failed to convert property value of type [qtx.ejb.simple._SumaSimple3_gwze0z_ISumaSimpleIntf_Stub] to required type [qtx.servicio.simple.ISumaSimple] for property 'sumaSimpleServicio'; nested exception is java.lang.IllegalArgumentException: Cannot convert value of type [qtx.ejb.simple._SumaSimple3_gwze0z_ISumaSimpleIntf_Stub] to required type [qtx.servicio.simple.ISumaSimple] for property 'sumaSimpleServicio': no matching editors or conversion strategy found at org.springframework.beans.BeanWrapperImpl.convertForProperty(BeanWrapperImpl.java:391) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.convertForProperty(AbstractAutowireCapableBeanFactory.java:1288) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.applyPropertyValues(AbstractAutowireCapableBeanFactory.java:1249) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.populateBean(AbstractAutowireCapableBeanFactory.java:1010) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:472) ... 14 more Caused by: java.lang.IllegalArgumentException: Cannot convert value of type [qtx.ejb.simple._SumaSimple3_gwze0z_ISumaSimpleIntf_Stub] to required type [qtx.servicio.simple.ISumaSimple] for property 'sumaSimpleServicio': no matching editors or conversion strategy found at org.springframework.beans.TypeConverterDelegate.convertIfNecessary(TypeConverterDelegate.java:219) at org.springframework.beans.TypeConverterDelegate.convertIfNecessary(TypeConverterDelegate.java:138) at org.springframework.beans.BeanWrapperImpl.convertForProperty(BeanWrapperImpl.java:386) ... 18 more Any help would be appreciated.

    Read the article

  • Inside the Concurrent Collections: ConcurrentDictionary

    - by Simon Cooper
    Using locks to implement a thread-safe collection is rather like using a sledgehammer - unsubtle, easy to understand, and tends to make any other tool redundant. Unlike the previous two collections I looked at, ConcurrentStack and ConcurrentQueue, ConcurrentDictionary uses locks quite heavily. However, it is careful to wield locks only where necessary to ensure that concurrency is maximised. This will, by necessity, be a higher-level look than my other posts in this series, as there is quite a lot of code and logic in ConcurrentDictionary. Therefore, I do recommend that you have ConcurrentDictionary open in a decompiler to have a look at all the details that I skip over. The problem with locks There's several things to bear in mind when using locks, as encapsulated by the lock keyword in C# and the System.Threading.Monitor class in .NET (if you're unsure as to what lock does in C#, I briefly covered it in my first post in the series): Locks block threads The most obvious problem is that threads waiting on a lock can't do any work at all. No preparatory work, no 'optimistic' work like in ConcurrentQueue and ConcurrentStack, nothing. It sits there, waiting to be unblocked. This is bad if you're trying to maximise concurrency. Locks are slow Whereas most of the methods on the Interlocked class can be compiled down to a single CPU instruction, ensuring atomicity at the hardware level, taking out a lock requires some heavy lifting by the CLR and the operating system. There's quite a bit of work required to take out a lock, block other threads, and wake them up again. If locks are used heavily, this impacts performance. Deadlocks When using locks there's always the possibility of a deadlock - two threads, each holding a lock, each trying to aquire the other's lock. Fortunately, this can be avoided with careful programming and structured lock-taking, as we'll see. So, it's important to minimise where locks are used to maximise the concurrency and performance of the collection. Implementation As you might expect, ConcurrentDictionary is similar in basic implementation to the non-concurrent Dictionary, which I studied in a previous post. I'll be using some concepts introduced there, so I recommend you have a quick read of it. So, if you were implementing a thread-safe dictionary, what would you do? The naive implementation is to simply have a single lock around all methods accessing the dictionary. This would work, but doesn't allow much concurrency. Fortunately, the bucketing used by Dictionary allows a simple but effective improvement to this - one lock per bucket. This allows different threads modifying different buckets to do so in parallel. Any thread making changes to the contents of a bucket takes the lock for that bucket, ensuring those changes are thread-safe. The method that maps each bucket to a lock is the GetBucketAndLockNo method: private void GetBucketAndLockNo( int hashcode, out int bucketNo, out int lockNo, int bucketCount) { // the bucket number is the hashcode (without the initial sign bit) // modulo the number of buckets bucketNo = (hashcode & 0x7fffffff) % bucketCount; // and the lock number is the bucket number modulo the number of locks lockNo = bucketNo % m_locks.Length; } However, this does require some changes to how the buckets are implemented. The 'implicit' linked list within a single backing array used by the non-concurrent Dictionary adds a dependency between separate buckets, as every bucket uses the same backing array. Instead, ConcurrentDictionary uses a strict linked list on each bucket: This ensures that each bucket is entirely separate from all other buckets; adding or removing an item from a bucket is independent to any changes to other buckets. Modifying the dictionary All the operations on the dictionary follow the same basic pattern: void AlterBucket(TKey key, ...) { int bucketNo, lockNo; 1: GetBucketAndLockNo( key.GetHashCode(), out bucketNo, out lockNo, m_buckets.Length); 2: lock (m_locks[lockNo]) { 3: Node headNode = m_buckets[bucketNo]; 4: Mutate the node linked list as appropriate } } For example, when adding another entry to the dictionary, you would iterate through the linked list to check whether the key exists already, and add the new entry as the head node. When removing items, you would find the entry to remove (if it exists), and remove the node from the linked list. Adding, updating, and removing items all follow this pattern. Performance issues There is a problem we have to address at this point. If the number of buckets in the dictionary is fixed in the constructor, then the performance will degrade from O(1) to O(n) when a large number of items are added to the dictionary. As more and more items get added to the linked lists in each bucket, the lookup operations will spend most of their time traversing a linear linked list. To fix this, the buckets array has to be resized once the number of items in each bucket has gone over a certain limit. (In ConcurrentDictionary this limit is when the size of the largest bucket is greater than the number of buckets for each lock. This check is done at the end of the TryAddInternal method.) Resizing the bucket array and re-hashing everything affects every bucket in the collection. Therefore, this operation needs to take out every lock in the collection. Taking out mutiple locks at once inevitably summons the spectre of the deadlock; two threads each hold a lock, and each trying to acquire the other lock. How can we eliminate this? Simple - ensure that threads never try to 'swap' locks in this fashion. When taking out multiple locks, always take them out in the same order, and always take out all the locks you need before starting to release them. In ConcurrentDictionary, this is controlled by the AcquireLocks, AcquireAllLocks and ReleaseLocks methods. Locks are always taken out and released in the order they are in the m_locks array, and locks are all released right at the end of the method in a finally block. At this point, it's worth pointing out that the locks array is never re-assigned, even when the buckets array is increased in size. The number of locks is fixed in the constructor by the concurrencyLevel parameter. This simplifies programming the locks; you don't have to check if the locks array has changed or been re-assigned before taking out a lock object. And you can be sure that when a thread takes out a lock, another thread isn't going to re-assign the lock array. This would create a new series of lock objects, thus allowing another thread to ignore the existing locks (and any threads controlling them), breaking thread-safety. Consequences of growing the array Just because we're using locks doesn't mean that race conditions aren't a problem. We can see this by looking at the GrowTable method. The operation of this method can be boiled down to: private void GrowTable(Node[] buckets) { try { 1: Acquire first lock in the locks array // this causes any other thread trying to take out // all the locks to block because the first lock in the array // is always the one taken out first // check if another thread has already resized the buckets array // while we were waiting to acquire the first lock 2: if (buckets != m_buckets) return; 3: Calculate the new size of the backing array 4: Node[] array = new array[size]; 5: Acquire all the remaining locks 6: Re-hash the contents of the existing buckets into array 7: m_buckets = array; } finally { 8: Release all locks } } As you can see, there's already a check for a race condition at step 2, for the case when the GrowTable method is called twice in quick succession on two separate threads. One will successfully resize the buckets array (blocking the second in the meantime), when the second thread is unblocked it'll see that the array has already been resized & exit without doing anything. There is another case we need to consider; looking back at the AlterBucket method above, consider the following situation: Thread 1 calls AlterBucket; step 1 is executed to get the bucket and lock numbers. Thread 2 calls GrowTable and executes steps 1-5; thread 1 is blocked when it tries to take out the lock in step 2. Thread 2 re-hashes everything, re-assigns the buckets array, and releases all the locks (steps 6-8). Thread 1 is unblocked and continues executing, but the calculated bucket and lock numbers are no longer valid. Between calculating the correct bucket and lock number and taking out the lock, another thread has changed where everything is. Not exactly thread-safe. Well, a similar problem was solved in ConcurrentStack and ConcurrentQueue by storing a local copy of the state, doing the necessary calculations, then checking if that state is still valid. We can use a similar idea here: void AlterBucket(TKey key, ...) { while (true) { Node[] buckets = m_buckets; int bucketNo, lockNo; GetBucketAndLockNo( key.GetHashCode(), out bucketNo, out lockNo, buckets.Length); lock (m_locks[lockNo]) { // if the state has changed, go back to the start if (buckets != m_buckets) continue; Node headNode = m_buckets[bucketNo]; Mutate the node linked list as appropriate } break; } } TryGetValue and GetEnumerator And so, finally, we get onto TryGetValue and GetEnumerator. I've left these to the end because, well, they don't actually use any locks. How can this be? Whenever you change a bucket, you need to take out the corresponding lock, yes? Indeed you do. However, it is important to note that TryGetValue and GetEnumerator don't actually change anything. Just as immutable objects are, by definition, thread-safe, read-only operations don't need to take out a lock because they don't change anything. All lockless methods can happily iterate through the buckets and linked lists without worrying about locking anything. However, this does put restrictions on how the other methods operate. Because there could be another thread in the middle of reading the dictionary at any time (even if a lock is taken out), the dictionary has to be in a valid state at all times. Every change to state has to be made visible to other threads in a single atomic operation (all relevant variables are marked volatile to help with this). This restriction ensures that whatever the reading threads are doing, they never read the dictionary in an invalid state (eg items that should be in the collection temporarily removed from the linked list, or reading a node that has had it's key & value removed before the node itself has been removed from the linked list). Fortunately, all the operations needed to change the dictionary can be done in that way. Bucket resizes are made visible when the new array is assigned back to the m_buckets variable. Any additions or modifications to a node are done by creating a new node, then splicing it into the existing list using a single variable assignment. Node removals are simply done by re-assigning the node's m_next pointer. Because the dictionary can be changed by another thread during execution of the lockless methods, the GetEnumerator method is liable to return dirty reads - changes made to the dictionary after GetEnumerator was called, but before the enumeration got to that point in the dictionary. It's worth listing at this point which methods are lockless, and which take out all the locks in the dictionary to ensure they get a consistent view of the dictionary: Lockless: TryGetValue GetEnumerator The indexer getter ContainsKey Takes out every lock (lockfull?): Count IsEmpty Keys Values CopyTo ToArray Concurrent principles That covers the overall implementation of ConcurrentDictionary. I haven't even begun to scratch the surface of this sophisticated collection. That I leave to you. However, we've looked at enough to be able to extract some useful principles for concurrent programming: Partitioning When using locks, the work is partitioned into independant chunks, each with its own lock. Each partition can then be modified concurrently to other partitions. Ordered lock-taking When a method does need to control the entire collection, locks are taken and released in a fixed order to prevent deadlocks. Lockless reads Read operations that don't care about dirty reads don't take out any lock; the rest of the collection is implemented so that any reading thread always has a consistent view of the collection. That leads us to the final collection in this little series - ConcurrentBag. Lacking a non-concurrent analogy, it is quite different to any other collection in the class libraries. Prepare your thinking hats!

    Read the article

  • Down Tools Week Cometh: Kissing Goodbye to CVs/Resumes and Cover Letters

    - by Bart Read
    I haven't blogged about what I'm doing in my (not so new) temporary role as Red Gate's technical recruiter, mostly because it's been routine, business as usual stuff, and because I've been trying to understand the role by doing it. I think now though the time has come to get a little more radical, so I'm going to tell you why I want to largely eliminate CVs/resumes and cover letters from the application process for some of our technical roles, and why I think that might be a good thing for candidates (and for us). I have a terrible confession to make, or at least it's a terrible confession for a recruiter: I don't really like CV sifting, or reading cover letters, and, unless I've misread the mood around here, neither does anybody else. It's dull, it's time-consuming, and it's somewhat soul destroying because, when all is said and done, you're being paid to be incredibly judgemental about people based on relatively little information. I feel like I've dirtied myself by saying that - I mean, after all, it's a core part of my job - but it sucks, it really does. (And, of course, the truth is I'm still a software engineer at heart, and I'm always looking for ways to do things better.) On the flip side, I've never met anyone who likes writing their CV. It takes hours and hours of faffing around and massaging it into shape, and the whole process is beset by a gnawing anxiety, frustration, and insecurity. All you really want is a chance to demonstrate your skills - not just talk about them - and how do you do that in a CV or cover letter? Often the best candidates will include samples of their work (a portfolio, screenshots, links to websites, product downloads, etc.), but sometimes this isn't possible, or may not be appropriate, or you just don't think you're allowed because of what your school/university careers service has told you (more commonly an issue with grads, obviously). And what are we actually trying to find out about people with all of this? I think the common criteria are actually pretty basic: Smart Gets things done (thanks for these two Joel) Not an a55hole* (sorry, have to get around Simple Talk's swear filter - and thanks to Professor Robert I. Sutton for this one) *Of course, everyone has off days, and I don't honestly think we're too worried about somebody being a bit grumpy every now and again. We can do a bit better than this in the context of the roles I'm talking about: we can be more specific about what "gets things done" means, at least in part. For software engineers and interns, the non-exhaustive meaning of "gets things done" is: Excellent coder For test engineers, the non-exhaustive meaning of "gets things done" is: Good at finding problems in software Competent coder Team player, etc., to me, are covered by "not an a55hole". I don't expect people to be the life and soul of the party, or a wild extrovert - that's not what team player means, and it's not what "not an a55hole" means. Some of our best technical staff are quiet, introverted types, but they're still pleasant to work with. My problem is that I don't think the initial sift really helps us find out whether people are smart and get things done with any great efficacy. It's better than nothing, for sure, but it's not as good as it could be. It's also contentious, and potentially unfair/inequitable - if you want to get an idea of what I mean by this, check out the background information section at the bottom. Before I go any further, let's look at the Red Gate recruitment process for technical staff* as it stands now: (LOTS of) People apply for jobs. All these applications go through a brutal process of manual sifting, which eliminates between 75 and 90% of them, depending upon the role, and the time of year**. Depending upon the role, those who pass the sift will be sent an assessment or telescreened. For the purposes of this blog post I'm only interested in those that are sent some sort of programming assessment, or bug hunt. This means software engineers, test engineers, and software interns, which are the roles for which I receive the most applications. The telescreen tends to be reserved for project or product managers. Those that pass the assessment are invited in for first interview. This interview is mostly about assessing their technical skills***, although we're obviously on the look out for cultural fit red flags as well. If the first interview goes well we'll invite candidates back for a second interview. This is where team/cultural fit is really scoped out. We also use this interview to dive more deeply into certain areas of their skillset, and explore any concerns that may have come out of the first interview (these obviously won't have been serious or obvious enough to cause a rejection at that point, but are things we do need to look into before we'd consider making an offer). We might subsequently invite them in for lunch before we make them an offer. This tends to happen when we're recruiting somebody for a specific team and we'd like them to meet all the people they'll be working with directly. It's not an interview per se, but can prove pivotal if they don't gel with the team. Anyone who's made it this far will receive an offer from us. *We have a slightly quirky definition of "technical staff" as it relates to the technical recruiter role here. It includes software engineers, test engineers, software interns, user experience specialists, technical authors, project managers, product managers, and development managers, but does not include product support or information systems roles. **For example, the quality of graduate applicants overall noticeably drops as the academic year wears on, which is not to say that by now there aren't still stars in there, just that they're fewer and further between. ***Some organisations prefer to assess for team fit first, but I think assessing technical skills is a more effective initial filter - if they're the nicest person in the world, but can't cut a line of code they're not going to work out. Now, as I suggested in the title, Red Gate's Down Tools Week is upon us once again - next week in fact - and I had proposed as a project that we refactor and automate the first stage of marking our programming assessments. Marking assessments, and in fact organising the marking of them, is a somewhat time-consuming process, and we receive many assessment solutions that just don't make the cut, for whatever reason. Whilst I don't think it's possible to fully automate marking, I do think it ought to be possible to run a suite of automated tests over each candidate's solution to see whether or not it behaves correctly and, if it does, move on to a manual stage where we examine the code for structure, decomposition, style, readability, maintainability, etc. Obviously it's possible to use tools to generate potentially helpful metrics for some of these indices as well. This would obviously reduce the marking workload, and would provide candidates with quicker feedback about whether they've been successful - though I do wonder if waiting a tactful interval before sending a (nicely written) rejection might be wise. I duly scrawled out a picture of my ideal process, which looked like this: The problem is, as soon as I'd roughed it out, I realised that fundamentally it wasn't an ideal process at all, which explained the gnawing feeling of cognitive dissonance I'd been wrestling with all week, whilst I'd been trying to find time to do this. Here's what I mean. Automated assessment marking, and the associated infrastructure around that, makes it much easier for us to deal with large numbers of assessments. This means we can be much more permissive about who we send assessments out to or, in other words, we can give more candidates the opportunity to really demonstrate their skills to us. And this leads to a question: why not give everyone the opportunity to demonstrate their skills, to show that they're smart and can get things done? (Two or three of us even discussed this in the down tools week hustings earlier this week.) And isn't this a lot simpler than the alternative we'd been considering? (FYI, this was automated CV/cover letter sifting by some form of textual analysis to ideally eliminate the worst 50% or so of applications based on an analysis of the 20,000 or so historical applications we've received since 2007 - definitely not the basic keyword analysis beloved of recruitment agencies, since this would eliminate hardly anyone who was awful, but definitely would eliminate stellar Oxbridge candidates - #fail - or some nightmarishly complex Google-like system where we profile all our currently employees, only to realise that we're never going to get representative results because we don't have a statistically significant sample size in any given role - also #fail.) No, I think the new way is better. We let people self-select. We make them the masters (or mistresses) of their own destiny. We give applicants the power - we put their fate in their hands - by giving them the chance to demonstrate their skills, which is what they really want anyway, instead of requiring that they spend hours and hours creating a CV and cover letter that I'm going to evaluate for suitability, and make a value judgement about, in approximately 1 minute (give or take). It doesn't matter what university you attended, it doesn't matter if you had a bad year when you took your A-levels - here's your chance to shine, so take it and run with it. (As a side benefit, we cut the number of applications we have to sift by something like two thirds.) WIN! OK, yeah, sounds good, but will it actually work? That's an excellent question. My gut feeling is yes, and I'll justify why below (and hopefully have gone some way towards doing that above as well), but what I'm proposing here is really that we run an experiment for a period of time - probably a couple of months or so - and measure the outcomes we see: How many people apply? (Wouldn't be surprised or alarmed to see this cut by a factor of ten.) How many of them submit a good assessment? (More/less than at present?) How much overhead is there for us in dealing with these assessments compared to now? What are the success and failure rates at each interview stage compared to now? How many people are we hiring at the end of it compared to now? I think it'll work because I hypothesize that, amongst other things: It self-selects for people who really want to work at Red Gate which, at the moment, is something I have to try and assess based on their CV and cover letter - but if you're not that bothered about working here, why would you complete the assessment? Candidates who would submit a shoddy application probably won't feel motivated to do the assessment. Candidates who would demonstrate good attention to detail in their CV/cover letter will demonstrate good attention to detail in the assessment. In general, only the better candidates will complete and submit the assessment. Marking assessments is much less work so we'll be able to deal with any increase that we see (hopefully we will see). There are obviously other questions as well: Is plagiarism going to be a problem? Is there any way we can detect/discourage potential plagiarism? How do we assess candidates' education and experience? What about their ability to communicate in writing? Do we still want them to submit a CV afterwards if they pass assessment? Do we want to offer them the opportunity to tell us a bit about why they'd like the job when they submit their assessment? How does this affect our relationship with recruitment agencies we might use to hire for these roles? So, what's the objective for next week's Down Tools Week? Pretty simple really - we want to implement this process for the Graduate Software Engineer and Software Engineer positions that you can find on our website. I will be joined by a crack team of our best developers (Kevin Boyle, and new Red-Gater, Sam Blackburn), and recruiting hostess with the mostest Laura McQuillen, and hopefully a couple of others as well - if I can successfully twist more arms before Monday.* Hopefully by next Friday our experiment will be up and running, and we may have changed the way Red Gate recruits software engineers for good! Stay tuned and we'll let you know how it goes! *I'm going to play dirty by offering them beer and chocolate during meetings. Some background information: how agonising over the initial CV/cover letter sift helped lead us to bin it off entirely The other day I was agonising about the new university/good degree grade versus poor A-level results issue, and decided to canvas for other opinions to see if there was something I could do that was fairer than my current approach, which is almost always to reject. This generated quite an involved discussion on our Yammer site: I'm sure you can glean a pretty good impression of my own educational prejudices from that discussion as well, although I'm very open to changing my opinion - hopefully you've already figured that out from reading the rest of this post. Hopefully you can also trace a logical path from agonising about sifting to, "Uh, hang on, why on earth are we doing this anyway?!?" Technorati Tags: recruitment,hr,developers,testers,red gate,cv,resume,cover letter,assessment,sea change

    Read the article

  • So it comes to PASS…

    - by Tony Davis
    How does your company gauge the benefit of attending a technical conference? What's the best change you made as a direct result of attendance? It's time again for the PASS Summit and I, like most people go with a set of general goals for enhancing technical knowledge; to learn more about PowerShell, to drill into SQL Server performance tuning techniques, and so on. Most will write up a brief report on the event for the rest of the team. Ideally, however, it will go a bit further than that; each conference should result in a specific improvement to one of your systems, or in the way you do your job. As co-editor of Simple-talk.com, and responsible for the majority of our SQL books, my “high level” goals don't vary much from conference to conference. I'm always on the lookout for good new authors. I target interesting new technologies and tools and try to learn more. I return with a list of actions, new articles to commission, and potential new authors. Three years ago, however, I started setting myself the goal of implementing “one new thing” after each conference. After one, I adopted Kanban for managing my workload, a technique that places strict limits on “work in progress” and makes the overall workload, and backlog, highly visible. After another I trialled a community book project. At PASS 2010, one of my general goals was to delve deeper into SQL Server transaction log mechanics, but on top of that, I set a specific goal of writing something useful on the topic. I started a Stairway series and, ultimately, it's turned into a book! If you're attending the PASS Summit this year, take some time to consider what specific improvement or change you'll implement as a result. Also, try to drop by the Red Gate booth (#101). During the Vendor event on Wednesday evening, Gail Shaw and I will be there to discuss, and hand out copies of the book. Cheers, Tony.  

    Read the article

  • Exceptional DBA Awards 2011

    - by Rebecca Amos
    From today, we’re accepting nominations for the 2011 Exceptional DBA Awards. DBAs make a vital contribution to the running of the companies they work for, and the Exceptional DBA Awards aim to acknowledge this and make this contribution more widely known. Check out our new website for all the info: www.exceptionaldba.com  Being an exceptional DBA doesn’t mean you have to sleep at the office, or know everything there is to know about SQL Server; who ever could? It means that you make an effort to make your servers secure and reliable, and to make your users’ lives easier. Maybe you’ve helped a junior colleague learn something new about server backups? Or cancelled your coffee break to get a database back online? Or contributed to a forum post on performance monitoring? All of these actions show that you might be an exceptional DBA. So have a think about the tasks you do every day that already make you exceptional – and then get started on your entry! You just need to answer a few questions on our website about your experience as a DBA, some of your biggest achievements, and any other activities you participate in within the SQL Server community. Anyone who is currently working as a SQL Server database administrator can enter, or be nominated by someone else. We’ve got four fantastic judges for the Awards, who you’ll be familiar with already: Brent Ozar, Brad McGehee, Rodney Landrum and Steve Jones. They’ll pick five finalists, and then we’ll ask the SQL Server community to vote for their winner. Not only could you win the respect and recognition of peers and colleagues, but the prizes also include full conference registration for the 2011 PASS Summit in Seattle (where the awards ceremony will take place), four nights' hotel accommodation, and $300 towards travel expenses. The winner will get a copy of Red Gate’s SQL DBA Bundle – and they’ll also be featured here, on Simple-Talk. So what are you waiting for? Chances are you’ve already made a small effort for someone today that means you might be an exceptional DBA. Visit the website now, and start writing your entry – or nominate your favourite DBA to enter: www.exceptionaldba.com

    Read the article

  • Fair Comments

    - by Tony Davis
    To what extent is good code self-documenting? In one of the most entertaining sessions I saw at the recent PASS summit, Jeremiah Peschka (blog | twitter) got a laugh out of a sleepy post-lunch audience with the following remark: "Some developers say good code is self-documenting; I say, get off my team" I silently applauded the sentiment. It's not that all comments are useful, but that I mistrust the basic premise that "my code is so clearly written, it doesn't need any comments". I've read many pieces describing the road to self-documenting code, and my problem with most of them is that they feed the myth that comments in code are a sign of weakness. They aren't; in fact, used correctly I'd say they are essential. Regardless of how far intelligent naming can get you in describing what the code does, or how well any accompanying unit tests can explain to your fellow developers why it works that way, it's no excuse not to document fully the public interfaces to your code. Maybe I just mixed with the wrong crowd while learning my favorite language, but when I open a stored procedure I lose the will even to read it unless I see a big Phil Factor- or Jeff Moden-style header summarizing in plain English what the code does, how it fits in to the broader application, and a usage example. This public interface describes the high-level process and should explain the role of the code, clearly, for fellow developers, language non-experts, and even any non-technical stake holders in the project. When you step into the body of the code, the low-level details, then I agree that the rules are somewhat different; especially when code is subject to frequent refactoring that can quickly render comments redundant or misleading. At their worst, here, inline comments are sticking plaster to cover up the scars caused by poor naming conventions, failure in clarity when mapping a complex domain into code, or just by not entirely understanding the problem (/ this is the clever part). If you design and refactor your code carefully so that it is as simple as possible, your functions do one thing only, you avoid having two completely different algorithms in the same piece of code, and your functions, classes and variables are intelligently named, then, yes, the need for inline comments should be minimal. And yet, even given this, I'd still argue that many languages (T-SQL certainly being one) just don't lend themselves to readability when performing even moderately-complex tasks. If the algorithm is complex, I still like to see the occasional helpful comment. Please, therefore, be as liberal as you see fit in the detail of the comments you apply to this editorial, for like code it is bound to increase its' clarity and usefulness. Cheers, Tony.

    Read the article

  • Introducing Glimpse – Firebug for your server

    - by Neil Davidson
    Here at Red Gate, we spend every waking hour trying to wow .NET and SQL developers with great products.  Every so often, though, we find something out in the wild which knocks our socks off by taking “ingeniously simple” to a whole new level.  That’s what a little community led by developers Nik Molnar and Anthony van der Hoorn has done with the open source tool Glimpse. Glimpse describes itself as ‘Firebug for the server.’  You drop the NuGet package into your ASP.NET project, and then — like magic* — your web pages will bare every detail of their execution.  Even by our high standards, it was trivial to get running: if you can use NuGet, you’re already there. You get all that lovely detail without changing any code. Our feelings go beyond respect for the developers who designed and wrote Glimpse; we’re thrilled that Nik and Anthony have come to work for Red Gate full-time. They’re going to stay in control of the project and keep doing open source development work on Glimpse.  In the medium term, we’re hoping to make paid-for products which plug into the free open source framework, especially in areas like performance profiling where we already have some deep technology.  First, though, Glimpse needs to get from beta to a v1. Given the breakneck pace of new development, this should only be a month or so away. Supporting an open source project is a first for Red Gate, so we’re going to be working with Nik and Anthony, with the Glimpse community and even with other vendors to figure out what ‘great’ looks like from the a user perspective.  Only one thing is certain: this technology deserves a wider audience than the 40,000 people who have already downloaded it, so please have a look and tell us what you think. You can hear more about what the Glimpse developers think on the Glimpse blog, and there are plenty more technical facts over at our product manager’s blog. If you have any questions or queries, please tweet with the #glimpse hashtag or contact the Glimpse team directly on [email protected]. [*That’s ”magic” in the Arthur C. Clarke “sufficiently advanced technology” sense, of course] Neil Davidson co-founder and Joint CEO Red Gate Software http://twitter.com/neildavidson    

    Read the article

  • What is Database Continuous Integration?

    - by David Atkinson
    Although not everyone is practicing continuous integration, many have at least heard of the concept. A recent poll on www.simple-talk.com indicates that 40% of respondents are employing the technique. It is widely accepted that the earlier issues are identified in the development process, the lower the cost to the development process. The worst case scenario, of course, is for the bug to be found by the customer following the product release. A number of Agile development best practices have evolved to combat this problem early in the development process, including pair programming, code inspections and unit testing. Continuous integration is one such Agile concept that tackles the problem at the point of committing a change to source control. This can alternatively be run on a regular schedule. This triggers a sequence of events that compiles the code and performs a variety of tests. Often the continuous integration process is regarded as a build validation test, and if issues were to be identified at this stage, the testers would simply not 'waste their time ' and touch the build at all. Such a ‘broken build’ will trigger an alert and the development team’s number one priority should be to resolve the issue. How application code is compiled and tested as part of continuous integration is well understood. However, this isn’t so clear for databases. Indeed, before I cover the mechanics of implementation, we need to decide what we mean by database continuous integration. For me, database continuous integration can be implemented as one or more of the following: 1)      Your application code is being compiled and tested. You therefore need a database to be maintained at the corresponding version. 2)      Just as a valid application should compile, so should the database. It should therefore be possible to build a new database from scratch. 3)     Likewise, it should be possible to generate an upgrade script to take your already deployed databases to the latest version. I will be covering these in further detail in future blogs. In the meantime, more information can be found in the whitepaper linked off www.red-gate.com/ci If you have any questions, feel free to contact me directly or post a comment to this blog post.

    Read the article

  • Interviews: Going Beyond the Technical Quiz

    - by Tony Davis
    All developers will be familiar with the basic format of a technical interview. After a bout of CV-trawling to gauge basic experience, strengths and weaknesses, the interview turns technical. The whiteboard takes center stage and the challenge is set to design a function or query, or solve what on the face of it might seem a disarmingly simple programming puzzle. Most developers will have experienced those few panic-stricken moments, when one’s mind goes as blank as the whiteboard, before un-popping the marker pen, and hopefully one’s mental functions, to work through the problem. It is a way to probe the candidate’s knowledge of basic programming structures and techniques and to challenge their critical thinking. However, these challenges or puzzles, often devised by some of the smartest brains in the development team, have a tendency to become unnecessarily ‘tricksy’. They often seem somewhat academic in nature. While the candidate straight out of IT school might breeze through the construction of a Markov chain, a candidate with bags of practical experience but less in the way of formal training could become nonplussed. Also, a whiteboard and a marker pen make up only a very small part of the toolkit that a programmer will use in everyday work. I remember vividly my first job interview, for a position as technical editor. It went well, but after the usual CV grilling and technical questions, I was only halfway there. Later, they sat me alongside a team of editors, in front of a computer loaded with MS Word and copy of SQL Server Query Analyzer, and my task was to edit a real chapter for a real SQL Server book that they planned to publish, including validating and testing all the code. It was a tough challenge but I came away with a sound knowledge of the sort of work I’d do, and its context. It makes perfect sense, yet my impression is that many organizations don’t do this. Indeed, it is only relatively recently that Red Gate started to move over to this model for developer interviews. Now, instead of, or perhaps in addition to, the whiteboard challenges, the candidate can expect to sit with their prospective team, in front of Visual Studio, loaded with all the useful tools in the developer’s kit (ReSharper and so on) and asked to, for example, analyze and improve a real piece of software. The same principles should apply when interviewing for a database positon. In addition to the usual questions challenging the candidate’s knowledge of such things as b-trees, object permissions, database recovery models, and so on, sit the candidate down with the other database developers or DBAs. Arm them with a copy of Management Studio, and a few other tools, then challenge them to discover the flaws in a stored procedure, and improve its performance. Or present them with a corrupt database and ask them to get the database back online, and discover the cause of the corruption.

    Read the article

  • Subterranean IL: Fault exception handlers

    - by Simon Cooper
    Fault event handlers are one of the two handler types that aren't available in C#. It behaves exactly like a finally, except it is only run if control flow exits the block due to an exception being thrown. As an example, take the following method: .method public static void FaultExample(bool throwException) { .try { ldstr "Entering try block" call void [mscorlib]System.Console::WriteLine(string) ldarg.0 brfalse.s NormalReturn ThrowException: ldstr "Throwing exception" call void [mscorlib]System.Console::WriteLine(string) newobj void [mscorlib]System.Exception::.ctor() throw NormalReturn: ldstr "Leaving try block" call void [mscorlib]System.Console::WriteLine(string) leave.s Return } fault { ldstr "Fault handler" call void [mscorlib]System.Console::WriteLine(string) endfault } Return: ldstr "Returning from method" call void [mscorlib]System.Console::WriteLine(string) ret } If we pass true to this method the following gets printed: Entering try block Throwing exception Fault handler and the exception gets passed up the call stack. So, the exception gets thrown, the fault handler gets run, and the exception propagates up the stack afterwards in the normal way. If we pass false, we get the following: Entering try block Leaving try block Returning from method Because we are leaving the .try using a leave.s instruction, and not throwing an exception, the fault handler does not get called. Fault handlers and C# So why were these not included in C#? It seems a pretty simple feature; one extra keyword that compiles in exactly the same way, and with the same semantics, as a finally handler. If you think about it, the same behaviour can be replicated using a normal catch block: try { throw new Exception(); } catch { // fault code goes here throw; } The catch block only gets run if an exception is thrown, and the exception gets rethrown and propagates up the call stack afterwards; exactly like a fault block. The only complications that occur is when you want to add a fault handler to a try block with existing catch handlers. Then, you either have to wrap the try in another try: try { try { // ... } catch (DirectoryNotFoundException) { // ... // leave.s as normal... } catch (IOException) { // ... throw; } } catch { // fault logic throw; } or separate out the fault logic into another method and call that from the appropriate handlers: try { // ... } catch (DirectoryNotFoundException ) { // ... } catch (IOException ioe) { // ... HandleFaultLogic(); throw; } catch (Exception e) { HandleFaultLogic(); throw; } To be fair, the number of times that I would have found a fault handler useful is minimal. Still, it's quite annoying knowing such functionality exists, but you're not able to access it from C#. Fortunately, there are some easy workarounds one can use instead. Next time: filter handlers.

    Read the article

  • Hype and LINQ

    - by Tony Davis
    "Tired of querying in antiquated SQL?" I blinked in astonishment when I saw this headline on the LinqPad site. Warming to its theme, the site suggests that what we need is to "kiss goodbye to SSMS", and instead use LINQ, a modern query language! Elsewhere, there is an article entitled "Why LINQ beats SQL". The designers of LINQ, along with many DBAs, would, I'm sure, cringe with embarrassment at the suggestion that LINQ and SQL are, in any sense, competitive ways of doing the same thing. In fact what LINQ really is, at last, is an efficient, declarative language for C# and VB programmers to access or manipulate data in objects, local data stores, ORMs, web services, data repositories, and, yes, even relational databases. The fact is that LINQ is essentially declarative programming in a .NET language, and so in many ways encourages developers into a "SQL-like" mindset, even though they are not directly writing SQL. In place of imperative logic and loops, it uses various expressions, operators and declarative logic to build up an "expression tree" describing only what data is required, not the operations to be performed to get it. This expression tree is then parsed by the language compiler, and the result, when used against a relational database, is a SQL string that, while perhaps not always perfect, is often correctly parameterized and certainly no less "optimal" than what is achieved when a developer applies blunt, imperative logic to the SQL language. From a developer standpoint, it is a mistake to consider LINQ simply as a substitute means of querying SQL Server. The strength of LINQ is that that can be used to access any data source, for which a LINQ provider exists. Microsoft supplies built-in providers to access not just SQL Server, but also XML documents, .NET objects, ADO.NET datasets, and Entity Framework elements. LINQ-to-Objects is particularly interesting in that it allows a declarative means to access and manipulate arrays, collections and so on. Furthermore, as Michael Sorens points out in his excellent article on LINQ, there a whole host of third-party LINQ providers, that offers a simple way to get at data in Excel, Google, Flickr and much more, without having to learn a new interface or language. Of course, the need to be generic enough to deal with a range of data sources, from something as mundane as a text file to as esoteric as a relational database, means that LINQ is a compromise and so has inherent limitations. However, it is a powerful and beautifully compact language and one that, at least in its "query syntax" guise, is accessible to developers and DBAs alike. Perhaps there is still hope that LINQ can fulfill Phil Factor's lobster-induced fantasy of a language that will allow us to "treat all data objects, whether Word files, Excel files, XML, relational databases, text files, HTML files, registry files, LDAPs, Outlook and so on, in the same logical way, as linked databases, and extract the metadata, create the entities and relationships in the same way, and use the same SQL syntax to interrogate, create, read, write and update them." Cheers, Tony.

    Read the article

  • Subterranean IL: Volatile

    - by Simon Cooper
    This time, we'll be having a look at the volatile. prefix instruction, and one of the differences between volatile in IL and C#. The volatile. prefix volatile is a tricky one, as there's varying levels of documentation on it. From what I can see, it has two effects: It prevents caching of the load or store value; rather than reading or writing to a cached version of the memory location (say, the processor register or cache), it forces the value to be loaded or stored at the 'actual' memory location, so it is then immediately visible to other threads. It forces a memory barrier at the prefixed instruction. This ensures instructions don't get re-ordered around the volatile instruction. This is slightly more complicated than it first seems, and only seems to matter on certain architectures. For more details, Joe Duffy has a blog post going into the details. For this post, I'll be concentrating on the first aspect of volatile. Caching field accesses To demonstrate this, I created a simple multithreaded IL program. It boils down to the following code: .class public Holder { .field public static class Holder holder .field public bool stop .method public static specialname void .cctor() { newobj instance void Holder::.ctor() stsfld class Holder Holder::holder ret }}.method private static void Main() { .entrypoint // Thread t = new Thread(new ThreadStart(DoWork)) // t.Start() // Thread.Sleep(2000) // Console.WriteLine("Stopping thread...") ldsfld class Holder Holder::holder ldc.i4.1 stfld bool Holder::stop call instance void [mscorlib]System.Threading.Thread::Join() ret}.method private static void DoWork() { ldsfld class Holder Holder::holder // while (!Holder.holder.stop) {} DoWork: dup ldfld bool Holder::stop brfalse DoWork pop ret} If you compile and run this code, you'll find that the call to Thread.Join() never returns - the DoWork spinlock is reading a cached version of Holder.stop, which is never being updated with the new value set by the Main method. Adding volatile to the ldfld fixes this: dupvolatile.ldfld bool Holder::stopbrfalse DoWork The volatile ldfld forces the field access to read direct from heap memory, which is then updated by the main thread, rather than using a cached copy. volatile in C# This highlights one of the differences between IL and C#. In IL, volatile only applies to the prefixed instruction, whereas in C#, volatile is specified on a field to indicate that all accesses to that field should be volatile (interestingly, there's no mention of the 'no caching' aspect of volatile in the C# spec; it only focuses on the memory barrier aspect). Furthermore, this information needs to be stored within the assembly somehow, as such a field might be accessed directly from outside the assembly, but there's no concept of a 'volatile field' in IL! How this information is stored with the field will be the subject of my next post.

    Read the article

< Previous Page | 94 95 96 97 98 99 100 101 102 103 104 105  | Next Page >