Search Results

Search found 758 results on 31 pages for 'sparc t3'.

Page 1/31 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • ?SPARC T4?????????????·???? : Netra SPARC T4-1

    - by user13138700
    ?SPARC T4???????????????·??????? Netra SPARC T4-1 ???? Netra SPARC T4-2 ?2012?1?10??????????3?15??????????????(????) ?????????? Netra SPARC T4-1 ? 4core ???( T4 ???????? 4core ???)(*)???????????????????????????(*)( Netra SPARC T4-1 ?????? 4core ???? 8core ????????) ??? prtdiag ????? pginfo ??????????????? 8????/1core ???? prtdiag ????????4core=32???????????????pginfo ?????????????????core ???????????????????? # ./prtdiag -v System Configuration: Oracle Corporation sun4v Netra SPARC T4-1 ???????: 130560 M ??? ================================ ?? CPU ================================ CPU ID Frequency Implementation Status ------ --------- ---------------------- ------- 0 2848 MHz SPARC-T4 on-line 1 2848 MHz SPARC-T4 on-line 2 2848 MHz SPARC-T4 on-line 3 2848 MHz SPARC-T4 on-line 4 2848 MHz SPARC-T4 on-line 5 2848 MHz SPARC-T4 on-line 6 2848 MHz SPARC-T4 on-line 7 2848 MHz SPARC-T4 on-line 8 2848 MHz SPARC-T4 on-line 9 2848 MHz SPARC-T4 on-line 10 2848 MHz SPARC-T4 on-line 11 2848 MHz SPARC-T4 on-line 12 2848 MHz SPARC-T4 on-line 13 2848 MHz SPARC-T4 on-line 14 2848 MHz SPARC-T4 on-line 15 2848 MHz SPARC-T4 on-line 16 2848 MHz SPARC-T4 on-line 17 2848 MHz SPARC-T4 on-line 18 2848 MHz SPARC-T4 on-line 19 2848 MHz SPARC-T4 on-line 20 2848 MHz SPARC-T4 on-line 21 2848 MHz SPARC-T4 on-line 22 2848 MHz SPARC-T4 on-line 23 2848 MHz SPARC-T4 on-line 24 2848 MHz SPARC-T4 on-line 25 2848 MHz SPARC-T4 on-line 26 2848 MHz SPARC-T4 on-line 27 2848 MHz SPARC-T4 on-line 28 2848 MHz SPARC-T4 on-line 29 2848 MHz SPARC-T4 on-line 30 2848 MHz SPARC-T4 on-line 31 2848 MHz SPARC-T4 on-line ======================= Physical Memory Configuration ======================== ???? # pginfo -p -T 0 (System [system,chip]) CPUs: 0-31 `-- 3 (Data_Pipe_to_memory [system,chip]) CPUs: 0-31 |-- 2 (Floating_Point_Unit [core]) CPUs: 0-7 | `-- 1 (Integer_Pipeline [core]) CPUs: 0-7 |-- 5 (Floating_Point_Unit [core]) CPUs: 8-15 | `-- 4 (Integer_Pipeline [core]) CPUs: 8-15 |-- 7 (Floating_Point_Unit [core]) CPUs: 16-23 | `-- 6 (Integer_Pipeline [core]) CPUs: 16-23 `-- 9 (Floating_Point_Unit [core]) CPUs: 24-31 `-- 8 (Integer_Pipeline [core]) CPUs: 24-31 T4 ????????????????????????????????????????????????? T3 ?????(S2 core)?????T4 ?????(S3 core)?????????????5???????????? T3 ?????(S2 core)?????????????????????????(????????)?????????????????????????????????????????????·???????????????????????????????????????? ????T4 ????????????????????????????T4 ??????????·??????? Netra SPARC T4-1 4core ????????????????????????????????????T3 ???????????????????????????? ?????????Netra SPARC T4-1 ??????????????? Netra SPARC T4-1 ?? Computing 1 x SPARC T4 4?? 32???? or 8 ?? 64 ???? 2.85GHz CPU (1?????8????) 16 x DDR3 DIMM (?? 256GB ?????16GB DIMM ???) I/O and Storage 3 x Low Profile PCI-Express Gen2 ???? (2 x 10Gb Ethernet XAUI ???????) 2 x Full-height Half-length PCI-Express Gen2 ???? 4 x 10/100/1000 Ethernet ???????? 4 x 2.5” SAS2 HDD 4 x USB ??? (?? 2, ?? 2) RAS and Management and Power Supply ???? (RAID????), ????PSU ?????????? ILOM?????????????? 2N (1+1) , AC ???? DC ?? Support OS Oracle Solaris 10 10/9, 9/10, 8/11, Oracle Solaris 11 11/11 Oracle VM Server for SPARC 2.1 (LDoms) ???? ??? NEBS Level3?? ??????21” 19”(EIA-310D),23”,24”,600mm????? ?????(?????)????????? ????SPARC T4 ????????SPARC T4 ?????????????????????????(4???)???????????? Oracle OpenWorld Tokyo 2012 ?3??(4/4(?)?4/5(?)?4/6(?))?????????????????????&?????????????????SPARC T4 ?????????????????????????????????·?????????????????SPARC T4 ???????????????????!? Oracle OpenWorld Tokyo 2012 http://www.oracle.com/openworld/jp-ja/index.html ????·???????????? 4/6(?) Develop D3-13 (14:00 - 14:45) ???????????49 ??? ?????? 7264 ???????????????

    Read the article

  • SPARC T4 ??????: SPARC T4 ??????????!!

    - by user13138700
    ?? 2011 ? 9 ?? SPARC T4 CPU ???????? SPARC T4 ????????????????2011??10?????????????????????????? ????????????????????SPARC T4 ?????????????????????????????????????????????????????????? SPARC T4 CPU ???? SPARC T4 ?????????????????????????????????? ??????????????????????4/4, 4/5, 4/6 ? 3???????? Oracle Open World 2012 ???????? Oracle Open World 2012 Tokyo ?? Oracle ?????&????? ??? Oracle Solaris ????????????·????????? SPARC&Solaris ??????????????SPARC&Solaris ????????????????????????????????????????????????????????????????????????? Oracle OpenWorld Tokyo 2012 ???? URL http://www.oracle.com/openworld/jp-ja/index.html ?????? 7264 ??????????????? ????Oracle Open World 2012 Tokyo ?????????????????????????SPARC T4 ????? ????????????????? SPARC T4 ????????? SPARC T3 ????????(S2??)??????????????????????????(S3??)??????????????????? ???????" T " ???????????????(?)?????? SPARC T1/T2/T3 ???????????????????????????(????????)????????????????????????? ?SPARC T4 ????????????????????????????? ?SPARC T4 ???????DB?????????????????????????????? ???????????????? ????????????????????????????????????????????? ???? SPARC T3 ???????????????????????????2???????????? ????????????????????????????????????????????????????? ?????????????? SPARC T4 ????????????????????????????????????SPARC T4 ????????? SPARC T4 ??????????????????????????????????????????? ?????????????? T4 ??????????????????? SPARC ???????????????????????????????????????????????????????????????????&??????????? ?????????????????????????????????????????????????????????Web?????????????DB?????????????????????????????????????? (????????????) ???????????? SPARC T4 ????????????????????????????? < T4 ???????? > ??? SPARC ??(S3??)??? x5??????????????????? x2????????????????????? Crypto (?????)?????????? ?????????????????????????/???????????????? ?????? 1, 2,& 4 ??????????? < T4 ????? ??????? > 8x SPARC S3 ?? (64????/???) 4MB ?? L3 ????? (8???/16???) 8x9 ????? 4x DDR3 ??????????? @6.4Gbps 6x ?????????? @9.6Gbps 2x8 PCIe 2.0 (5GTS) 2x10Gb XAUI ??????? < S3???????????? > ALU : Arithmetic Logic Unit BRU : Branch Logic Unit FGU : Flouting-point Graphics Unit IRF : Integer Register File FRF : Flouting-point Register File WRF : Working Register File MMU : Memory Management Unit LSU : Load Store Unit Crypto(SPU) : Streaming Processing Unit TRU : Trap Logic Unit < S3????????? > ????? 8????/?? ?????? Out-of-Order ?? 16???????????????? ????????????? ???????????? ??????? ????????? 64???? ITLB ? 128???? DTLB 64KB 4??? L1 ?????????????? 128KB 8??? ???? L2 ????? < T4 ???????? vs T3 ???????? > T4 ????????????? Out-Of-Order ???? Pick ???????? In-Order ?? Pick ?????? Commit ??????? Out-Of-Order ?? Commit ?????? In-Order ?? < T4 ?????????? > ???????????vs????????????????????????????? ????????Active??????????????????? ???????????????????????? ??????????????????? < T4vsT1/T2/T3 ??????? > SPARC T4 ???? T3????????Web??????????? DB?????????????????????????????? ????????????????????SPARC T4 ?????&Solaris ?????????????(????????)??????????????????????????????????????????????????????????!!? ????Oracle Open World 2012 Tokyo ????????????????SPARC T4 ?????????????????????? 4/4, 4/5, 4/6 ?3????????????????????????????????????????????????????????????????????????????????????? ????????????????? URL http://www.oracle.com/openworld/jp-ja/exhibit/index.html

    Read the article

  • Oracle TimesTen In-Memory Database Performance on SPARC T4-2

    - by Brian
    The Oracle TimesTen In-Memory Database is optimized to run on Oracle's SPARC T4 processor platforms running Oracle Solaris 11 providing unsurpassed scalability, performance, upgradability, protection of investment and return on investment. The following demonstrate the value of combining Oracle TimesTen In-Memory Database with SPARC T4 servers and Oracle Solaris 11: On a Mobile Call Processing test, the 2-socket SPARC T4-2 server outperforms: Oracle's SPARC Enterprise M4000 server (4 x 2.66 GHz SPARC64 VII+) by 34%. Oracle's SPARC T3-4 (4 x 1.65 GHz SPARC T3) by 2.7x, or 5.4x per processor. Utilizing the TimesTen Performance Throughput Benchmark (TPTBM), the SPARC T4-2 server protects investments with: 2.1x the overall performance of a 4-socket SPARC Enterprise M4000 server in read-only mode and 1.5x the performance in update-only testing. This is 4.2x more performance per processor than the SPARC64 VII+ 2.66 GHz based system. 10x more performance per processor than the SPARC T2+ 1.4 GHz server. 1.6x better performance per processor than the SPARC T3 1.65 GHz based server. In replication testing, the two socket SPARC T4-2 server is over 3x faster than the performance of a four socket SPARC Enterprise T5440 server in both asynchronous replication environment and the highly available 2-Safe replication. This testing emphasizes parallel replication between systems. Performance Landscape Mobile Call Processing Test Performance System Processor Sockets/Cores/Threads Tps SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 218,400 M4000 SPARC64 VII+, 2.66 GHz 4 16 32 162,900 SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 80,400 TimesTen Performance Throughput Benchmark (TPTBM) Read-Only System Processor Sockets/Cores/Threads Tps SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 7.9M SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 6.5M M4000 SPARC64 VII+, 2.66 GHz 4 16 32 3.1M T5440 SPARC T2+, 1.4 GHz 4 32 256 3.1M TimesTen Performance Throughput Benchmark (TPTBM) Update-Only System Processor Sockets/Cores/Threads Tps SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 547,800 M4000 SPARC64 VII+, 2.66 GHz 4 16 32 363,800 SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 240,500 TimesTen Replication Tests System Processor Sockets/Cores/Threads Asynchronous 2-Safe SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 38,024 13,701 SPARC T5440 SPARC T2+, 1.4 GHz 4 32 256 11,621 4,615 Configuration Summary Hardware Configurations: SPARC T4-2 server 2 x SPARC T4 processors, 2.85 GHz 256 GB memory 1 x 8 Gbs FC Qlogic HBA 1 x 6 Gbs SAS HBA 4 x 300 GB internal disks Sun Storage F5100 Flash Array (40 x 24 GB flash modules) 1 x Sun Fire X4275 server configured as COMSTAR head SPARC T3-4 server 4 x SPARC T3 processors, 1.6 GHz 512 GB memory 1 x 8 Gbs FC Qlogic HBA 8 x 146 GB internal disks 1 x Sun Fire X4275 server configured as COMSTAR head SPARC Enterprise M4000 server 4 x SPARC64 VII+ processors, 2.66 GHz 128 GB memory 1 x 8 Gbs FC Qlogic HBA 1 x 6 Gbs SAS HBA 2 x 146 GB internal disks Sun Storage F5100 Flash Array (40 x 24 GB flash modules) 1 x Sun Fire X4275 server configured as COMSTAR head Software Configuration: Oracle Solaris 11 11/11 Oracle TimesTen 11.2.2.4 Benchmark Descriptions TimesTen Performance Throughput BenchMark (TPTBM) is shipped with TimesTen and measures the total throughput of the system. The workload can test read-only, update-only, delete and insert operations as required. Mobile Call Processing is a customer-based workload for processing calls made by mobile phone subscribers. The workload has a mixture of read-only, update, and insert-only transactions. The peak throughput performance is measured from multiple concurrent processes executing the transactions until a peak performance is reached via saturation of the available resources. Parallel Replication tests using both asynchronous and 2-Safe replication methods. For asynchronous replication, transactions are processed in batches to maximize the throughput capabilities of the replication server and network. In 2-Safe replication, also known as no data-loss or high availability, transactions are replicated between servers immediately emphasizing low latency. For both environments, performance is measured in the number of parallel replication servers and the maximum transactions-per-second for all concurrent processes. See Also SPARC T4-2 Server oracle.com OTN Oracle TimesTen In-Memory Database oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 1 October 2012.

    Read the article

  • Introducing Oracle VM Server for SPARC

    - by Honglin Su
    As you are watching Oracle's Virtualization Strategy Webcast and exploring the great virtualization offerings of Oracle VM product line, I'd like to introduce Oracle VM Server for SPARC --  highly efficient, enterprise-class virtualization solution for Sun SPARC Enterprise Systems with Chip Multithreading (CMT) technology. Oracle VM Server for SPARC, previously called Sun Logical Domains, leverages the built-in SPARC hypervisor to subdivide supported platforms' resources (CPUs, memory, network, and storage) by creating partitions called logical (or virtual) domains. Each logical domain can run an independent operating system. Oracle VM Server for SPARC provides the flexibility to deploy multiple Oracle Solaris operating systems simultaneously on a single platform. Oracle VM Server also allows you to create up to 128 virtual servers on one system to take advantage of the massive thread scale offered by the CMT architecture. Oracle VM Server for SPARC integrates both the industry-leading CMT capability of the UltraSPARC T1, T2 and T2 Plus processors and the Oracle Solaris operating system. This combination helps to increase flexibility, isolate workload processing, and improve the potential for maximum server utilization. Oracle VM Server for SPARC delivers the following: Leading Price/Performance - The low-overhead architecture provides scalable performance under increasing workloads without additional license cost. This enables you to meet the most aggressive price/performance requirement Advanced RAS - Each logical domain is an entirely independent virtual machine with its own OS. It supports virtual disk mutipathing and failover as well as faster network failover with link-based IP multipathing (IPMP) support. Moreover, it's fully integrated with Solaris FMA (Fault Management Architecture), which enables predictive self healing. CPU Dynamic Resource Management (DRM) - Enable your resource management policy and domain workload to trigger the automatic addition and removal of CPUs. This ability helps you to better align with your IT and business priorities. Enhanced Domain Migrations - Perform domain migrations interactively and non-interactively to bring more flexibility to the management of your virtualized environment. Improve active domain migration performance by compressing memory transfers and taking advantage of cryptographic acceleration hardware. These methods provide faster migration for load balancing, power saving, and planned maintenance. Dynamic Crypto Control - Dynamically add and remove cryptographic units (aka MAU) to and from active domains. Also, migrate active domains that have cryptographic units. Physical-to-virtual (P2V) Conversion - Quickly convert an existing SPARC server running the Oracle Solaris 8, 9 or 10 OS into a virtualized Oracle Solaris 10 image. Use this image to facilitate OS migration into the virtualized environment. Virtual I/O Dynamic Reconfiguration (DR) - Add and remove virtual I/O services and devices without needing to reboot the system. CPU Power Management - Implement power saving by disabling each core on a Sun UltraSPARC T2 or T2 Plus processor that has all of its CPU threads idle. Advanced Network Configuration - Configure the following network features to obtain more flexible network configurations, higher performance, and scalability: Jumbo frames, VLANs, virtual switches for link aggregations, and network interface unit (NIU) hybrid I/O. Official Certification Based On Real-World Testing - Use Oracle VM Server for SPARC with the most sophisticated enterprise workloads under real-world conditions, including Oracle Real Application Clusters (RAC). Affordable, Full-Stack Enterprise Class Support - Obtain worldwide support from Oracle for the entire virtualization environment and workloads together. The support covers hardware, firmware, OS, virtualization, and the software stack. SPARC Server Virtualization Oracle offers a full portfolio of virtualization solutions to address your needs. SPARC is the leading platform to have the hard partitioning capability that provides the physical isolation needed to run independent operating systems. Many customers have already used Oracle Solaris Containers for application isolation. Oracle VM Server for SPARC provides another important feature with OS isolation. This gives you the flexibility to deploy multiple operating systems simultaneously on a single Sun SPARC T-Series server with finer granularity for computing resources.  For SPARC CMT processors, the natural level of granularity is an execution thread, not a time-sliced microsecond of execution resources. Each CPU thread can be treated as an independent virtual processor. The scheduler is naturally built into the CPU for lower overhead and higher performance. Your organizations can couple Oracle Solaris Containers and Oracle VM Server for SPARC with the breakthrough space and energy savings afforded by Sun SPARC Enterprise systems with CMT technology to deliver a more agile, responsive, and low-cost environment. Management with Oracle Enterprise Manager Ops Center The Oracle Enterprise Manager Ops Center Virtualization Management Pack provides full lifecycle management of virtual guests, including Oracle VM Server for SPARC and Oracle Solaris Containers. It helps you streamline operations and reduce downtime. Together, the Virtualization Management Pack and the Ops Center Provisioning and Patch Automation Pack provide an end-to-end management solution for physical and virtual systems through a single web-based console. This solution automates the lifecycle management of physical and virtual systems and is the most effective systems management solution for Oracle's Sun infrastructure. Ease of Deployment with Configuration Assistant The Oracle VM Server for SPARC Configuration Assistant can help you easily create logical domains. After gathering the configuration data, the Configuration Assistant determines the best way to create a deployment to suit your requirements. The Configuration Assistant is available as both a graphical user interface (GUI) and terminal-based tool. Oracle Solaris Cluster HA Support The Oracle Solaris Cluster HA for Oracle VM Server for SPARC data service provides a mechanism for orderly startup and shutdown, fault monitoring and automatic failover of the Oracle VM Server guest domain service. In addition, applications that run on a logical domain, as well as its resources and dependencies can be controlled and managed independently. These are managed as if they were running in a classical Solaris Cluster hardware node. Supported Systems Oracle VM Server for SPARC is supported on all Sun SPARC Enterprise Systems with CMT technology. UltraSPARC T2 Plus Systems ·   Sun SPARC Enterprise T5140 Server ·   Sun SPARC Enterprise T5240 Server ·   Sun SPARC Enterprise T5440 Server ·   Sun Netra T5440 Server ·   Sun Blade T6340 Server Module ·   Sun Netra T6340 Server Module UltraSPARC T2 Systems ·   Sun SPARC Enterprise T5120 Server ·   Sun SPARC Enterprise T5220 Server ·   Sun Netra T5220 Server ·   Sun Blade T6320 Server Module ·   Sun Netra CP3260 ATCA Blade Server Note that UltraSPARC T1 systems are supported on earlier versions of the software.Sun SPARC Enterprise Systems with CMT technology come with the right to use (RTU) of Oracle VM Server, and the software is pre-installed. If you have the systems under warranty or with support, you can download the software and system firmware as well as their updates. Oracle Premier Support for Systems provides fully-integrated support for your server hardware, firmware, OS, and virtualization software. Visit oracle.com/support for information about Oracle's support offerings for Sun systems. For more information about Oracle's virtualization offerings, visit oracle.com/virtualization.

    Read the article

  • New Netra SPARC T3 Servers

    - by Ferhat Hatay
    Today at the Mobile World Congress 2011, Oracle announced two new carrier-grade NEBS Level 3- certified servers: Oracle’s Netra SPARC T3-1 rackmount server and Oracle’s Netra SPARC T3-1BA ATCA blade server bringing the performance, scalability and power efficiency of the newest SPARC T3 processor to the communications market.    The Netra SPARC T3-1 server enclosure has a compact 20inch-deep carrier-grade rack-optimized design The new Netra SPARC T3 servers further expand Oracle’s complete portfolio for the communications industry, which includes carrier-grade servers, storage and application software to run operations support systems and service delivery platforms with easy migration capabilities and unmatched investment protection via the binary compatibility guarantee of the Oracle Solaris operating system. With advanced reliability, networking and security features built-in to Oracle Solaris – the most widely deployed carrier-grade OS – the systems announced today are uniquely suited for mission-critical core network infrastructure and service delivery. The world’s first carrier-grade system using the 16-core, 128-thread SPARC T3 processor, the Netra SPARC T3-1 server supports 2x the I/O bandwidth, 2x the memory and is 35 percent faster than the previous generation. With integrated on-chip 10 Gigabit Ethernet, on-chip cryptographic acceleration, and built-in, no-cost Oracle VM Server for SPARC and Oracle Solaris Containers for virtualization, the Netra SPARC T3-1 server is an ideal platform for consolidation, offering 128 virtual systems in a single server. As the next generation Netra SPARC ATCA blade, Netra SPARC T3-1BA ATCA blade server brings the PICMG 3.0 compatibility, NEBS Level 3 Certification, ETSI compliance and the Netra business practices to the customer solution. The Netra SPARC T3-1BA ATCA blade server can be mixed in the Sun Netra CT900 blade chassis with other ATCA UltraSPARC and x86 blades.     The Netra SPARC T3-1BA ATCA blade server   The Netra SPARC T3-1BA ATCA blade server delivers industry-leading scalability, density and cost efficiency with up to 36 SPARC T3 processors (3456 processing threads) in a single rack – a 50 percent increase over the previous generation. The Netra SPARC T3-1BA blade server also offers high-bandwidth and high-capacity I/O, with greater memory capacity to tackle the increasing business demands of the communications industry. For service providers faced with the rapid growth of broadband networks and the dramatic surge in global smartphone adoption, the new Netra SPARC T3 systems deliver continuous availability with massive scalability, tested and certified to run in the harshest conditions. More information Oracle’s Sun Netra Servers Scaling Throughput and Managing TCO with Oracle’s Netra SPARC T3-1 Servers Enabling End-to-End 10 Gigabit Ethernet in Oracle's Sun Netra ATCA Product Family Data Sheet: Netra SPARC T3-1BA ATCA Blade Server Data Sheet: Netra SPARC T3-1 Server Oracle Solaris: The Carrier Grade Operating System

    Read the article

  • DB2 on SPARC T3 Tuning Tips

    - by cherry.shu(at)oracle.com
    With the new self tuning feature in DB2 V9.x, a lot of database parameters are set to automatic in DB2 v9.7 by default so that DB2 can adjust the values as needed. Most should work fine without manual tweaks. But for transaction workload on SPARC T3 systems, two parameters need to be adjust manually to achieve optimal performance. DATABASE_MEMORY: When this parameter is set to AUTOMATIC and SELF_TUNING_MEM is set to ON, DB2 will allocate small page size (64KB) for all memory allocation, and expands and shrinks the memory as needed. In order to take advantage of the large page size (up to 256MB) supported by the SPARC T3, we need to manually set the size of the DATABASE_MEMORY so that DB2 can use 256MB page size for its buffer pools which are implemented as ISM segments. I know this sounds strange as it seems that you turn a switch and it ends up controlling another function. pmap(1M) output can verify the page sizes used by DB2 db2sysc process. NUM_IOCLEANERS: This parameter defines the number of page cleaners. The default value of this parameter is AUTOMATIC, which is calculated based on the number of available CPUs and the number of logical partitions. On a SPARC T3 system where there are over a hundred of virtual CPUs and single DB2 partition, DB2 would set it to #CPUs - 1. This would lead to too many page cleaners to compete flushing to disks and cause aio mutex lock contentions. So we need to decrease the value for it. The good practice is to set the value to the number of physical devices that are used by the database table space containers.

    Read the article

  • Power Management with Oracle VM Server for SPARC

    - by Honglin Su
    With the introduction of Oracle VM Server for SPARC 2.2, it includes power management features which can be set via the service processor (ILOM) of the supported SPARC T-Series systems. Watch this video to learn about the hardware power savings capabilities available on SPARC T4 systems, and how Oracle VM Server for SPARC makes use of them. The video will show you how to choose a power management policy and set a power cap. For more information, read the OTN technical article "How to Use the Power Management Controls on SPARC Servers".

    Read the article

  • SPARC SuperCluster Papers

    - by user12616590
    Oracle has been publishing white papers that describe uses and characteristics of the SPARC SuperCluster product. Here are just a few: A Technical Overview of the Oracle SPARC SuperCluster T4-4SPARC SuperCluster T4-4 is a high performance, multi-purpose engineered system that has been designed, tested and integrated to run a wide array of enterprise applications. It is well suited for multi-tier enterprise applications with Web, database and application components. This 20-page paper discusses the components and technical characteristics of this product. SPARC SuperCluster T4-4 Platform Security Principles and CapabilitiesThe security capabilities designed into the SPARC SuperCluster, and architectural, deployment, and operational best practices for taking advantage of them. Consolidating Oracle E-Business Suite on Oracle’s SPARC SuperClusterThis Oracle Optimized Solution describes the implementation and use of SPARC SuperCluster as a consolidation platform for E-Business Suite in 30 pages. Oracle Optimized Solution for Oracle PeopleSoft Human Capital Management on SPARC SuperClusterThe Oracle Optimized Solution for PeopleSoft Human Capital Management on SPARC SuperCluster is the industry's only proven, tested, applications-to-disk solution that maintains excellence managing absences, optimizing collaborative activities, streamlining knowledge and honing processes; 31 pages. I hope you find some of those papers useful.

    Read the article

  • SPARC T4-4 Beats 8-CPU IBM POWER7 on TPC-H @3000GB Benchmark

    - by Brian
    Oracle's SPARC T4-4 server delivered a world record TPC-H @3000GB benchmark result for systems with four processors. This result beats eight processor results from IBM (POWER7) and HP (x86). The SPARC T4-4 server also delivered better performance per core than these eight processor systems from IBM and HP. Comparisons below are based upon system to system comparisons, highlighting Oracle's complete software and hardware solution. This database world record result used Oracle's Sun Storage 2540-M2 arrays (rotating disk) connected to a SPARC T4-4 server running Oracle Solaris 11 and Oracle Database 11g Release 2 demonstrating the power of Oracle's integrated hardware and software solution. The SPARC T4-4 server based configuration achieved a TPC-H scale factor 3000 world record for four processor systems of 205,792 QphH@3000GB with price/performance of $4.10/QphH@3000GB. The SPARC T4-4 server with four SPARC T4 processors (total of 32 cores) is 7% faster than the IBM Power 780 server with eight POWER7 processors (total of 32 cores) on the TPC-H @3000GB benchmark. The SPARC T4-4 server is 36% better in price performance compared to the IBM Power 780 server on the TPC-H @3000GB Benchmark. The SPARC T4-4 server is 29% faster than the IBM Power 780 for data loading. The SPARC T4-4 server is up to 3.4 times faster than the IBM Power 780 server for the Refresh Function. The SPARC T4-4 server with four SPARC T4 processors is 27% faster than the HP ProLiant DL980 G7 server with eight x86 processors on the TPC-H @3000GB benchmark. The SPARC T4-4 server is 52% faster than the HP ProLiant DL980 G7 server for data loading. The SPARC T4-4 server is up to 3.2 times faster than the HP ProLiant DL980 G7 for the Refresh Function. The SPARC T4-4 server achieved a peak IO rate from the Oracle database of 17 GB/sec. This rate was independent of the storage used, as demonstrated by the TPC-H @3000TB benchmark which used twelve Sun Storage 2540-M2 arrays (rotating disk) and the TPC-H @1000TB benchmark which used four Sun Storage F5100 Flash Array devices (flash storage). [*] The SPARC T4-4 server showed linear scaling from TPC-H @1000GB to TPC-H @3000GB. This demonstrates that the SPARC T4-4 server can handle the increasingly larger databases required of DSS systems. [*] The SPARC T4-4 server benchmark results demonstrate a complete solution of building Decision Support Systems including data loading, business questions and refreshing data. Each phase usually has a time constraint and the SPARC T4-4 server shows superior performance during each phase. [*] The TPC believes that comparisons of results published with different scale factors are misleading and discourages such comparisons. Performance Landscape The table lists the leading TPC-H @3000GB results for non-clustered systems. TPC-H @3000GB, Non-Clustered Systems System Processor P/C/T – Memory Composite(QphH) $/perf($/QphH) Power(QppH) Throughput(QthH) Database Available SPARC Enterprise M9000 3.0 GHz SPARC64 VII+ 64/256/256 – 1024 GB 386,478.3 $18.19 316,835.8 471,428.6 Oracle 11g R2 09/22/11 SPARC T4-4 3.0 GHz SPARC T4 4/32/256 – 1024 GB 205,792.0 $4.10 190,325.1 222,515.9 Oracle 11g R2 05/31/12 SPARC Enterprise M9000 2.88 GHz SPARC64 VII 32/128/256 – 512 GB 198,907.5 $15.27 182,350.7 216,967.7 Oracle 11g R2 12/09/10 IBM Power 780 4.1 GHz POWER7 8/32/128 – 1024 GB 192,001.1 $6.37 210,368.4 175,237.4 Sybase 15.4 11/30/11 HP ProLiant DL980 G7 2.27 GHz Intel Xeon X7560 8/64/128 – 512 GB 162,601.7 $2.68 185,297.7 142,685.6 SQL Server 2008 10/13/10 P/C/T = Processors, Cores, Threads QphH = the Composite Metric (bigger is better) $/QphH = the Price/Performance metric in USD (smaller is better) QppH = the Power Numerical Quantity QthH = the Throughput Numerical Quantity The following table lists data load times and refresh function times during the power run. TPC-H @3000GB, Non-Clustered Systems Database Load & Database Refresh System Processor Data Loading(h:m:s) T4Advan RF1(sec) T4Advan RF2(sec) T4Advan SPARC T4-4 3.0 GHz SPARC T4 04:08:29 1.0x 67.1 1.0x 39.5 1.0x IBM Power 780 4.1 GHz POWER7 05:51:50 1.5x 147.3 2.2x 133.2 3.4x HP ProLiant DL980 G7 2.27 GHz Intel Xeon X7560 08:35:17 2.1x 173.0 2.6x 126.3 3.2x Data Loading = database load time RF1 = power test first refresh transaction RF2 = power test second refresh transaction T4 Advan = the ratio of time to T4 time Complete benchmark results found at the TPC benchmark website http://www.tpc.org. Configuration Summary and Results Hardware Configuration: SPARC T4-4 server 4 x SPARC T4 3.0 GHz processors (total of 32 cores, 128 threads) 1024 GB memory 8 x internal SAS (8 x 300 GB) disk drives External Storage: 12 x Sun Storage 2540-M2 array storage, each with 12 x 15K RPM 300 GB drives, 2 controllers, 2 GB cache Software Configuration: Oracle Solaris 11 11/11 Oracle Database 11g Release 2 Enterprise Edition Audited Results: Database Size: 3000 GB (Scale Factor 3000) TPC-H Composite: 205,792.0 QphH@3000GB Price/performance: $4.10/QphH@3000GB Available: 05/31/2012 Total 3 year Cost: $843,656 TPC-H Power: 190,325.1 TPC-H Throughput: 222,515.9 Database Load Time: 4:08:29 Benchmark Description The TPC-H benchmark is a performance benchmark established by the Transaction Processing Council (TPC) to demonstrate Data Warehousing/Decision Support Systems (DSS). TPC-H measurements are produced for customers to evaluate the performance of various DSS systems. These queries and updates are executed against a standard database under controlled conditions. Performance projections and comparisons between different TPC-H Database sizes (100GB, 300GB, 1000GB, 3000GB, 10000GB, 30000GB and 100000GB) are not allowed by the TPC. TPC-H is a data warehousing-oriented, non-industry-specific benchmark that consists of a large number of complex queries typical of decision support applications. It also includes some insert and delete activity that is intended to simulate loading and purging data from a warehouse. TPC-H measures the combined performance of a particular database manager on a specific computer system. The main performance metric reported by TPC-H is called the TPC-H Composite Query-per-Hour Performance Metric (QphH@SF, where SF is the number of GB of raw data, referred to as the scale factor). QphH@SF is intended to summarize the ability of the system to process queries in both single and multiple user modes. The benchmark requires reporting of price/performance, which is the ratio of the total HW/SW cost plus 3 years maintenance to the QphH. A secondary metric is the storage efficiency, which is the ratio of total configured disk space in GB to the scale factor. Key Points and Best Practices Twelve Sun Storage 2540-M2 arrays were used for the benchmark. Each Sun Storage 2540-M2 array contains 12 15K RPM drives and is connected to a single dual port 8Gb FC HBA using 2 ports. Each Sun Storage 2540-M2 array showed 1.5 GB/sec for sequential read operations and showed linear scaling, achieving 18 GB/sec with twelve Sun Storage 2540-M2 arrays. These were stand alone IO tests. The peak IO rate measured from the Oracle database was 17 GB/sec. Oracle Solaris 11 11/11 required very little system tuning. Some vendors try to make the point that storage ratios are of customer concern. However, storage ratio size has more to do with disk layout and the increasing capacities of disks – so this is not an important metric in which to compare systems. The SPARC T4-4 server and Oracle Solaris efficiently managed the system load of over one thousand Oracle Database parallel processes. Six Sun Storage 2540-M2 arrays were mirrored to another six Sun Storage 2540-M2 arrays on which all of the Oracle database files were placed. IO performance was high and balanced across all the arrays. The TPC-H Refresh Function (RF) simulates periodical refresh portion of Data Warehouse by adding new sales and deleting old sales data. Parallel DML (parallel insert and delete in this case) and database log performance are a key for this function and the SPARC T4-4 server outperformed both the IBM POWER7 server and HP ProLiant DL980 G7 server. (See the RF columns above.) See Also Transaction Processing Performance Council (TPC) Home Page Ideas International Benchmark Page SPARC T4-4 Server oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Sun Storage 2540-M2 Array oracle.com OTN Disclosure Statement TPC-H, QphH, $/QphH are trademarks of Transaction Processing Performance Council (TPC). For more information, see www.tpc.org. SPARC T4-4 205,792.0 QphH@3000GB, $4.10/QphH@3000GB, available 5/31/12, 4 processors, 32 cores, 256 threads; IBM Power 780 QphH@3000GB, 192,001.1 QphH@3000GB, $6.37/QphH@3000GB, available 11/30/11, 8 processors, 32 cores, 128 threads; HP ProLiant DL980 G7 162,601.7 QphH@3000GB, $2.68/QphH@3000GB available 10/13/10, 8 processors, 64 cores, 128 threads.

    Read the article

  • World Record Oracle E-Business Consolidated Workload on SPARC T4-2

    - by Brian
    Oracle set a World Record for the Oracle E-Business Suite Standard Medium multiple-online module benchmark using Oracle's SPARC T4-2 and SPARC T4-4 servers which ran the application and database. Oracle's SPARC T4 servers demonstrate performance leadership and world-record results on Oracle E-Business Suite Applications R12 OLTP benchmark by publishing the first result using multiple concurrent online application modules with Oracle Database 11g Release 2 running Solaris.   This results shows that a multi-tier configuration of SPARC T4 servers running the Oracle E-Business Suite R12.1.2 application and Oracle Database 11g Release 2 is capable of supporting 4,100 online users with outstanding response-times, executing a mix of complex transactions consolidating 4 Oracle E-Business modules (iProcurement, Order Management, Customer Service and HR Self-Service).   The SPARC T4-2 server in the application tier utilized about 65% and the SPARC T4-4 server in the database tier utilized about 30%, providing significant headroom for additional Oracle E-Business Suite R12.1.2 processing modules, more online users, and future growth.   Oracle E-Business Suite Applications were run in Oracle Solaris Containers on SPARC T4 servers and provides a consolidation platform for multiple E-Business instances.   Performance Landscape Multiple Online Modules (Self-Service, Order-Management, iProcurement, Customer-Service) Medium Configuration System Users AverageResponse Time 90th PercentileResponse Time SPARC T4-2 4,100 2.08 sec 2.52 sec Configuration Summary Application Tier Configuration: 1 x SPARC T4-2 server 2 x SPARC T4 processors, 2.85 GHz 256 GB memory 3 x 300 GB internal disks Oracle Solaris 10 Oracle E-Business Suite 12.1.2 Database Tier Configuration: 1 x SPARC T4-4 server 4 x SPARC T4 processors, 3.0 GHz 256 GB memory 2 x 300 GB internal disks Oracle Solaris 10 Oracle Solaris Containers Oracle Database 11g Release 2 Storage Configuration: 1 x Sun Storage F5100 Flash Array (80 x 24 GB flash modules) Benchmark Description The Oracle R12 E-Business Suite Standard Benchmark combines online transaction execution by simulated users with multiple online concurrent modules to model a typical scenario for a global enterprise. The online component exercises the common UI flows which are most frequently used by a majority of our customers. This benchmark utilized four concurrent flows of OLTP transactions, for Order to Cash, iProcurement, Customer Service and HR Self-Service and measured the response times. The selected flows model simultaneous business activities inclusive of managing customers, services, products and employees. See Also Oracle R12 E-Business Suite Standard Benchmark Results Oracle R12 E-Business Suite Standard Benchmark Overview Oracle R12 E-Business Benchmark Description E-Business Suite Applications R2 (R12.1.2) Online Benchmark - Using Oracle Database 11g on Oracle's SPARC T4-2 and Oracle's SPARC T4-4 Servers oracle.com SPARC T4-2 Server oracle.com OTN SPARC T4-4 Server oracle.com OTN Oracle E-Business Suite oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Oracle E-Business Suite R12 medium multiple-online module benchmark, SPARC T4-2, SPARC T4, 2.85 GHz, 2 chips, 16 cores, 128 threads, 256 GB memory, SPARC T4-4, SPARC T4, 3.0 GHz, 4 chips, 32 cores, 256 threads, 256 GB memory, average response time 2.08 sec, 90th percentile response time 2.52 sec, Oracle Solaris 10, Oracle Solaris Containers, Oracle E-Business Suite 12.1.2, Oracle Database 11g Release 2, Results as of 9/30/2012.

    Read the article

  • Improved Performance on PeopleSoft Combined Benchmark using SPARC T4-4

    - by Brian
    Oracle's SPARC T4-4 server running Oracle's PeopleSoft HCM 9.1 combined online and batch benchmark achieved a world record 18,000 concurrent users experiencing subsecond response time while executing a PeopleSoft Payroll batch job of 500,000 employees in 32.4 minutes. This result was obtained with a SPARC T4-4 server running Oracle Database 11g Release 2, a SPARC T4-4 server running PeopleSoft HCM 9.1 application server and a SPARC T4-2 server running Oracle WebLogic Server in the web tier. The SPARC T4-4 server running the application tier used Oracle Solaris Zones which provide a flexible, scalable and manageable virtualization environment. The average CPU utilization on the SPARC T4-2 server in the web tier was 17%, on the SPARC T4-4 server in the application tier it was 59%, and on the SPARC T4-4 server in the database tier was 47% (online and batch) leaving significant headroom for additional processing across the three tiers. The SPARC T4-4 server used for the database tier hosted Oracle Database 11g Release 2 using Oracle Automatic Storage Management (ASM) for database files management with I/O performance equivalent to raw devices. Performance Landscape Results are presented for the PeopleSoft HRMS Self-Service and Payroll combined benchmark. The new result with 128 streams shows significant improvement in the payroll batch processing time with little impact on the self-service component response time. PeopleSoft HRMS Self-Service and Payroll Benchmark Systems Users Ave Response Search (sec) Ave Response Save (sec) Batch Time (min) Streams SPARC T4-2 (web) SPARC T4-4 (app) SPARC T4-4 (db) 18,000 0.988 0.539 32.4 128 SPARC T4-2 (web) SPARC T4-4 (app) SPARC T4-4 (db) 18,000 0.944 0.503 43.3 64 The following results are for the PeopleSoft HRMS Self-Service benchmark that was previous run. The results are not directly comparable with the combined results because they do not include the payroll component. PeopleSoft HRMS Self-Service 9.1 Benchmark Systems Users Ave Response Search (sec) Ave Response Save (sec) Batch Time (min) Streams SPARC T4-2 (web) SPARC T4-4 (app) 2x SPARC T4-2 (db) 18,000 1.048 0.742 N/A N/A The following results are for the PeopleSoft Payroll benchmark that was previous run. The results are not directly comparable with the combined results because they do not include the self-service component. PeopleSoft Payroll (N.A.) 9.1 - 500K Employees (7 Million SQL PayCalc, Unicode) Systems Users Ave Response Search (sec) Ave Response Save (sec) Batch Time (min) Streams SPARC T4-4 (db) N/A N/A N/A 30.84 96 Configuration Summary Application Configuration: 1 x SPARC T4-4 server with 4 x SPARC T4 processors, 3.0 GHz 512 GB memory Oracle Solaris 11 11/11 PeopleTools 8.52 PeopleSoft HCM 9.1 Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 031 Java Platform, Standard Edition Development Kit 6 Update 32 Database Configuration: 1 x SPARC T4-4 server with 4 x SPARC T4 processors, 3.0 GHz 256 GB memory Oracle Solaris 11 11/11 Oracle Database 11g Release 2 PeopleTools 8.52 Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 031 Micro Focus Server Express (COBOL v 5.1.00) Web Tier Configuration: 1 x SPARC T4-2 server with 2 x SPARC T4 processors, 2.85 GHz 256 GB memory Oracle Solaris 11 11/11 PeopleTools 8.52 Oracle WebLogic Server 10.3.4 Java Platform, Standard Edition Development Kit 6 Update 32 Storage Configuration: 1 x Sun Server X2-4 as a COMSTAR head for data 4 x Intel Xeon X7550, 2.0 GHz 128 GB memory 1 x Sun Storage F5100 Flash Array (80 flash modules) 1 x Sun Storage F5100 Flash Array (40 flash modules) 1 x Sun Fire X4275 as a COMSTAR head for redo logs 12 x 2 TB SAS disks with Niwot Raid controller Benchmark Description This benchmark combines PeopleSoft HCM 9.1 HR Self Service online and PeopleSoft Payroll batch workloads to run on a unified database deployed on Oracle Database 11g Release 2. The PeopleSoft HRSS benchmark kit is a Oracle standard benchmark kit run by all platform vendors to measure the performance. It's an OLTP benchmark where DB SQLs are moderately complex. The results are certified by Oracle and a white paper is published. PeopleSoft HR SS defines a business transaction as a series of HTML pages that guide a user through a particular scenario. Users are defined as corporate Employees, Managers and HR administrators. The benchmark consist of 14 scenarios which emulate users performing typical HCM transactions such as viewing paycheck, promoting and hiring employees, updating employee profile and other typical HCM application transactions. All these transactions are well-defined in the PeopleSoft HR Self-Service 9.1 benchmark kit. This benchmark metric is the weighted average response search/save time for all the transactions. The PeopleSoft 9.1 Payroll (North America) benchmark demonstrates system performance for a range of processing volumes in a specific configuration. This workload represents large batch runs typical of a ERP environment during a mass update. The benchmark measures five application business process run times for a database representing large organization. They are Paysheet Creation, Payroll Calculation, Payroll Confirmation, Print Advice forms, and Create Direct Deposit File. The benchmark metric is the cumulative elapsed time taken to complete the Paysheet Creation, Payroll Calculation and Payroll Confirmation business application processes. The benchmark metrics are taken for each respective benchmark while running simultaneously on the same database back-end. Specifically, the payroll batch processes are started when the online workload reaches steady state (the maximum number of online users) and overlap with online transactions for the duration of the steady state. Key Points and Best Practices Two PeopleSoft Domain sets with 200 application servers each on a SPARC T4-4 server were hosted in 2 separate Oracle Solaris Zones to demonstrate consolidation of multiple application servers, ease of administration and performance tuning. Each Oracle Solaris Zone was bound to a separate processor set, each containing 15 cores (total 120 threads). The default set (1 core from first and third processor socket, total 16 threads) was used for network and disk interrupt handling. This was done to improve performance by reducing memory access latency by using the physical memory closest to the processors and offload I/O interrupt handling to default set threads, freeing up cpu resources for Application Servers threads and balancing application workload across 240 threads. A total of 128 PeopleSoft streams server processes where used on the database node to complete payroll batch job of 500,000 employees in 32.4 minutes. See Also Oracle PeopleSoft Benchmark White Papers oracle.com SPARC T4-2 Server oracle.com OTN SPARC T4-4 Server oracle.com OTN PeopleSoft Enterprise Human Capital Managementoracle.com OTN PeopleSoft Enterprise Human Capital Management (Payroll) oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 8 November 2012.

    Read the article

  • World Record Siebel PSPP Benchmark on SPARC T4 Servers

    - by Brian
    Oracle's SPARC T4 servers set a new World Record for Oracle's Siebel Platform Sizing and Performance Program (PSPP) benchmark suite. The result used Oracle's Siebel Customer Relationship Management (CRM) Industry Applications Release 8.1.1.4 and Oracle Database 11g Release 2 running Oracle Solaris on three SPARC T4-2 and two SPARC T4-1 servers. The SPARC T4 servers running the Siebel PSPP 8.1.1.4 workload which includes Siebel Call Center and Order Management System demonstrates impressive throughput performance of the SPARC T4 processor by achieving 29,000 users. This is the first Siebel PSPP 8.1.1.4 benchmark supporting 29,000 concurrent users with a rate of 239,748 Business Transactions/hour. The benchmark demonstrates vertical and horizontal scalability of Siebel CRM Release 8.1.1.4 on SPARC T4 servers. Performance Landscape Systems Txn/hr Users Call Center Order Management Response Times (sec) 1 x SPARC T4-1 (1 x SPARC T4 2.85 GHz) – Web 3 x SPARC T4-2 (2 x SPARC T4 2.85 GHz) – App/Gateway 1 x SPARC T4-1 (1 x SPARC T4 2.85 GHz) – DB 239,748 29,000 0.165 0.925 Oracle: Call Center + Order Management Transactions: 197,128 + 42,620 Users: 20300 + 8700 Configuration Summary Web Server Configuration: 1 x SPARC T4-1 server 1 x SPARC T4 processor, 2.85 GHz 128 GB memory Oracle Solaris 10 8/11 iPlanet Web Server 7 Application Server Configuration: 3 x SPARC T4-2 servers, each with 2 x SPARC T4 processor, 2.85 GHz 256 GB memory 3 x 300 GB SAS internal disks Oracle Solaris 10 8/11 Siebel CRM 8.1.1.5 SIA Database Server Configuration: 1 x SPARC T4-1 server 1 x SPARC T4 processor, 2.85 GHz 128 GB memory Oracle Solaris 11 11/11 Oracle Database 11g Release 2 (11.2.0.2) Storage Configuration: 1 x Sun Storage F5100 Flash Array 80 x 24 GB flash modules Benchmark Description Siebel 8.1 PSPP benchmark includes Call Center and Order Management: Siebel Financial Services Call Center – Provides the most complete solution for sales and service, allowing customer service and telesales representatives to provide superior customer support, improve customer loyalty, and increase revenues through cross-selling and up-selling. High-level description of the use cases tested: Incoming Call Creates Opportunity, Quote and Order and Incoming Call Creates Service Request . Three complex business transactions are executed simultaneously for specific number of concurrent users. The ratios of these 3 scenarios were 30%, 40%, 30% respectively, which together were totaling 70% of all transactions simulated in this benchmark. Between each user operation and the next one, the think time averaged approximately 10, 13, and 35 seconds respectively. Siebel Order Management – Oracle's Siebel Order Management allows employees such as salespeople and call center agents to create and manage quotes and orders through their entire life cycle. Siebel Order Management can be tightly integrated with back-office applications allowing users to perform tasks such as checking credit, confirming availability, and monitoring the fulfillment process. High-level description of the use cases tested: Order & Order Items Creation and Order Updates. Two complex Order Management transactions were executed simultaneously for specific number of concurrent users concurrently with aforementioned three Call Center scenarios above. The ratio of these 2 scenarios was 50% each, which together were totaling 30% of all transactions simulated in this benchmark. Between each user operation and the next one, the think time averaged approximately 20 and 67 seconds respectively. Key Points and Best Practices No processor cores or cache were activated or deactivated on the SPARC T-Series systems to achieve special benchmark effects. See Also Siebel White Papers SPARC T4-1 Server oracle.com OTN SPARC T4-2 Server oracle.com OTN Siebel CRM oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 30 September 2012.

    Read the article

  • Oracle/Sun ?????? - SPARC SuperCluster T4-4

    - by user12798668
    SPARC SuperCluster T4-4 ?????????? SPARC SuperCluster ? 2010?12?????·???????????????????? 2011 ? 9 ?? SPARC T4 ???????????? SPARC SuperCluster T4-4 ????????????????SPARC SuperCluster ??????????·??????????????????????????? SPARC T4 CPU ? 4 ????? SPARC T4-4 ??????????????????????·????????????????????? Exadata ????????????? Oracle Exadata Storage Server ????????????? Java ????????? Exalogic ????????????? Exalogic Software ???????????????????????? Solaris 10 ??? 11 ??????????????????????? SPARC SuperCluster ? ???????????????????? ???????????????????????SPARC SuperCluster ? Oracle/Sun ???????????????????????????????????? SPARC SuperCluster ??????????? 2(Half Rack ?) or 4(Full Rack ?) x SPARC T4-4 ???? 3 (Half Rack ?) or 6 (Full Rack ?) x Exadata Storage Server X2-2 1 x ZFS Storage Appliance 7320 ?????? 3 x Sun DataCenter InfiniBand Switch 36 1 x Ethernet Management Switch 42U Rack (2 x PDU) SPARC SuperCluster ????????????? OS: Oracle Solaris 11 ??? 10 ???: Oracle VM Server for SPARC ??? Oracle Solaris Zones ??: Oracle Enterprise Manager Ops Center ??? Grid Control ???????: Oracle Solaris Cluster ??? Oracle Clusterware ??????: Oracle ?????? 11g R2 (11.2.0.3) ???????????? ??????: Exalogic Software ???? Oracle WebLogic Server, Coherence ????????: Oracle Solaris 11 ??? 10 ????????? Oracle ???? ISV????????????? SPARC SuperCluster ???????·??????????????????????? ???????????????????????????????????????? ??????????????????????????????????????????? ??????????????????????????????????????? ???????????????????? SPARC SuperCluster ??????????????????????????????? ??????????? SuperCluster ?????????????Oracle OpenWorld Tokyo 2012 ????????????????????! 4 ? 5 ?????????????????????????????? Oracle OpenWorld Tokyo 2012 ??????????? SPARC SuperCluster ???????????????? ????????????????? 4/5(?) ????????? G2-01 ?SPARC SuperCluster ????????????????? Ops Center ????????????????(11:50 - 13:20) 4/5(?) S2-42 ???UNIX?????????? - SPARC SuperCluster? (16:30 - 17:15) 4/5(?) S2-53 ?Oracle E-Business Suite?????????????????? ??/??????????????????????”SPARC SuperCluster”?(17:40 - 18:25) ???????????!! Oracle OpenWorld Tokyo 2012 ???? URL http://www.oracle.com/openworld/jp-ja/index.html ?????? 7264 ???????????????

    Read the article

  • Learn more about SPARC by listening to our newly recorded podcasts

    - by Cinzia Mascanzoni
    Please listen to our newly recorded series of four podcasts focused on SPARC. The topics are: How SPARC T4 Servers Open New Opportunities SPARC Roadmap and SPARC T4 Architecture Highlights SPARC T4 For Installed Base Refresh and Consolidation SPARC T4 – How Does it Stack up Against the Competition? Rob Ludeman, from SPARC Product Management, and Thomas Ressler, WWA&C Alliances Consultant, are your hosts. The intent is to continue to help you understand how to position and sell SPARC/T4 into your customer architecture.Details on how to access these podcasts can be found here.

    Read the article

  • SPARC T4-4 Delivers World Record First Result on PeopleSoft Combined Benchmark

    - by Brian
    Oracle's SPARC T4-4 servers running Oracle's PeopleSoft HCM 9.1 combined online and batch benchmark achieved World Record 18,000 concurrent users while executing a PeopleSoft Payroll batch job of 500,000 employees in 43.32 minutes and maintaining online users response time at < 2 seconds. This world record is the first to run online and batch workloads concurrently. This result was obtained with a SPARC T4-4 server running Oracle Database 11g Release 2, a SPARC T4-4 server running PeopleSoft HCM 9.1 application server and a SPARC T4-2 server running Oracle WebLogic Server in the web tier. The SPARC T4-4 server running the application tier used Oracle Solaris Zones which provide a flexible, scalable and manageable virtualization environment. The average CPU utilization on the SPARC T4-2 server in the web tier was 17%, on the SPARC T4-4 server in the application tier it was 59%, and on the SPARC T4-4 server in the database tier was 35% (online and batch) leaving significant headroom for additional processing across the three tiers. The SPARC T4-4 server used for the database tier hosted Oracle Database 11g Release 2 using Oracle Automatic Storage Management (ASM) for database files management with I/O performance equivalent to raw devices. This is the first three tier mixed workload (online and batch) PeopleSoft benchmark also processing PeopleSoft payroll batch workload. Performance Landscape PeopleSoft HR Self-Service and Payroll Benchmark Systems Users Ave Response Search (sec) Ave Response Save (sec) Batch Time (min) Streams SPARC T4-2 (web) SPARC T4-4 (app) SPARC T4-2 (db) 18,000 0.944 0.503 43.32 64 Configuration Summary Application Configuration: 1 x SPARC T4-4 server with 4 x SPARC T4 processors, 3.0 GHz 512 GB memory 5 x 300 GB SAS internal disks 1 x 100 GB and 2 x 300 GB internal SSDs 2 x 10 Gbe HBA Oracle Solaris 11 11/11 PeopleTools 8.52 PeopleSoft HCM 9.1 Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 031 Java Platform, Standard Edition Development Kit 6 Update 32 Database Configuration: 1 x SPARC T4-4 server with 4 x SPARC T4 processors, 3.0 GHz 256 GB memory 3 x 300 GB SAS internal disks Oracle Solaris 11 11/11 Oracle Database 11g Release 2 Web Tier Configuration: 1 x SPARC T4-2 server with 2 x SPARC T4 processors, 2.85 GHz 256 GB memory 2 x 300 GB SAS internal disks 1 x 100 GB internal SSD Oracle Solaris 11 11/11 PeopleTools 8.52 Oracle WebLogic Server 10.3.4 Java Platform, Standard Edition Development Kit 6 Update 32 Storage Configuration: 1 x Sun Server X2-4 as a COMSTAR head for data 4 x Intel Xeon X7550, 2.0 GHz 128 GB memory 1 x Sun Storage F5100 Flash Array (80 flash modules) 1 x Sun Storage F5100 Flash Array (40 flash modules) 1 x Sun Fire X4275 as a COMSTAR head for redo logs 12 x 2 TB SAS disks with Niwot Raid controller Benchmark Description This benchmark combines PeopleSoft HCM 9.1 HR Self Service online and PeopleSoft Payroll batch workloads to run on a unified database deployed on Oracle Database 11g Release 2. The PeopleSoft HRSS benchmark kit is a Oracle standard benchmark kit run by all platform vendors to measure the performance. It's an OLTP benchmark where DB SQLs are moderately complex. The results are certified by Oracle and a white paper is published. PeopleSoft HR SS defines a business transaction as a series of HTML pages that guide a user through a particular scenario. Users are defined as corporate Employees, Managers and HR administrators. The benchmark consist of 14 scenarios which emulate users performing typical HCM transactions such as viewing paycheck, promoting and hiring employees, updating employee profile and other typical HCM application transactions. All these transactions are well-defined in the PeopleSoft HR Self-Service 9.1 benchmark kit. This benchmark metric is the weighted average response search/save time for all the transactions. The PeopleSoft 9.1 Payroll (North America) benchmark demonstrates system performance for a range of processing volumes in a specific configuration. This workload represents large batch runs typical of a ERP environment during a mass update. The benchmark measures five application business process run times for a database representing large organization. They are Paysheet Creation, Payroll Calculation, Payroll Confirmation, Print Advice forms, and Create Direct Deposit File. The benchmark metric is the cumulative elapsed time taken to complete the Paysheet Creation, Payroll Calculation and Payroll Confirmation business application processes. The benchmark metrics are taken for each respective benchmark while running simultaneously on the same database back-end. Specifically, the payroll batch processes are started when the online workload reaches steady state (the maximum number of online users) and overlap with online transactions for the duration of the steady state. Key Points and Best Practices Two Oracle PeopleSoft Domain sets with 200 application servers each on a SPARC T4-4 server were hosted in 2 separate Oracle Solaris Zones to demonstrate consolidation of multiple application servers, ease of administration and performance tuning. Each Oracle Solaris Zone was bound to a separate processor set, each containing 15 cores (total 120 threads). The default set (1 core from first and third processor socket, total 16 threads) was used for network and disk interrupt handling. This was done to improve performance by reducing memory access latency by using the physical memory closest to the processors and offload I/O interrupt handling to default set threads, freeing up cpu resources for Application Servers threads and balancing application workload across 240 threads. See Also Oracle PeopleSoft Benchmark White Papers oracle.com SPARC T4-2 Server oracle.com OTN SPARC T4-4 Server oracle.com OTN PeopleSoft Enterprise Human Capital Management oracle.com OTN PeopleSoft Enterprise Human Capital Management (Payroll) oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Oracle's PeopleSoft HR and Payroll combined benchmark, www.oracle.com/us/solutions/benchmark/apps-benchmark/peoplesoft-167486.html, results 09/30/2012.

    Read the article

  • Multiple OpenSSL vulnerabilities in Sun SPARC Enterprise M-series XCP Firmware

    - by RitwikGhoshal
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2008-5077 Improper Input Validation vulnerability 5.8 OpenSSL in XCP1113 Firmware Sun SPARC Enterprise M3000 SPARC: 14216085 Sun SPARC Enterprise M4000 SPARC: 14216091 Sun SPARC Enterprise M5000 SPARC: 14216093 Sun SPARC Enterprise M8000 SPARC: 14216096 Sun SPARC Enterprise M9000 SPARC: 14216098 CVE-2008-7270 Cryptographic Issues vulnerability 4.3 CVE-2009-0590 Improper Restriction of Operations within the Bounds of a Memory Buffer vulnerability 5.0 CVE-2009-3245 Improper Input Validation vulnerability 10.0 CVE-2010-4180 Cipher suite downgrade vulnerability 4.3 This notification describes vulnerabilities fixed in third-party components that are included in Oracle's product distributions.Information about vulnerabilities affecting Oracle products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • SPARC M7 Chip - 32 cores - Mind Blowing performance

    - by Angelo-Oracle
    The M7 Chip Oracle just announced its Next Generation Processor at the HotChips HC26 conference. As the Tech Lead in our Systems Division's Partner group, I had a front row seat to the extraordinary price performance advantage of Oracle current T5 and M6 based systems. Partner after partner tested  these systems and were impressed with it performance. Just read some of the quotes to see what our partner has been saying about our hardware. We just announced our next generation processor, the M7. This has 32 cores (up from 16-cores in T5 and 12-cores in M6). With 20 nm technology  this is our most advanced processor. The processor has more cores than anything else in the industry today. After the Sun acquisition Oracle has released 5 processors in 4 years and this is the 6th.  The S4 core  The M7 is built using the foundation of the S4 core. This is the next generation core technology. Like its predecessor, the S4 has 8 dynamic threads. It increases the frequency while maintaining the Pipeline depth. Each core has its own fine grain power estimator that keeps the core within its power envelop in 250 nano-sec granularity. Each core also includes Software in Silicon features for Application Acceleration Support. Each core includes features to improve Application Data Integrity, with almost no performance loss. The core also allows using part of the Virtual Address to store meta-data.  User-Level Synchronization Instructions are also part of the S4 core. Each core has 16 KB Instruction and 16 KB Data L1 cache. The Core Clusters  The cores on the M7 chip are organized in sets of 4-core clusters. The core clusters share  L2 cache.  All four cores in the complex share 256 KB of 4 way set associative L2 Instruction Cache, with over 1/2 TB/s of throughput. Two cores share 256 KB of 8 way set associative L2 Data Cache, with over 1/2 TB/s of throughput. With this innovative Core Cluster architecture, the M7 doubles core execution bandwidth. to maximize per-thread performance.  The Chip  Each  M7 chip has 8 sets of these core-clusters. The chip has 64 MB on-chip L3 cache. This L3 caches is shared among all the cores and is partitioned into 8 x 8 MB chunks. Each chunk is  8-way set associative cache. The aggregate bandwidth for the L3 cache on the chip is over 1.6TB/s. Each chip has 4 DDR4 memory controllers and can support upto 16 DDR4 DIMMs, allowing for 2 TB of RAM/chip. The chip also includes 4 internal links of PCIe Gen3 I/O controllers.  Each chip has 7 coherence links, allowing for 8 of these chips to be connected together gluelessly. Also 32 of these chips can be connected in an SMP configuration. A potential system with 32 chips will have 1024 cores and 8192 threads and 64 TB of RAM.  Software in Silicon The M7 chip has many built in Application Accelerators in Silicon. These features will be exposed to our Software partners using the SPARC Accelerator Program.  The M7  has built-in logic to decompress data at the speed of memory access. This means that applications can directly work on compressed data in memory increasing the data access rates. The VA Masking feature allows the use of part of the virtual address to store meta-data.  Realtime Application Data Integrity The Realtime Application Data Integrity feature helps applications safeguard against invalid, stale memory reference and buffer overflows. The first 4-bits if the Pointer can be used to store a version number and this version number is also maintained in the memory & cache lines. When a pointer accesses memory the hardware checks to make sure the two versions match. A SEGV signal is raised when there is a mismatch. This feature can be used by the Database, applications and the OS.  M7 Database In-Memory Query Accelerator The M7 chip also includes a In-Silicon Query Engines.  These accelerate tasks that work on In-Memory Columnar Vectors. Oracle In-Memory options stores data in Column Format. The M7 Query Engine can speed up In-Memory Format Conversion, Value and Range Comparisons and Set Membership lookups. This engine can work on Compressed data - this means not only are we accelerating the query performance but also increasing the memory bandwidth for queries.  SPARC Accelerated Program  At the Hotchips conference we also introduced the SPARC Accelerated Program to provide our partners and third part developers access to all the goodness of the M7's SPARC Application Acceleration features. Please get in touch with us if you are interested in knowing more about this program. 

    Read the article

  • The SPARC SuperCluster

    - by Karoly Vegh
    Oracle has been providing a lead in the Engineered Systems business for quite a while now, in accordance with the motto "Hardware and Software Engineered to Work Together." Indeed it is hard to find a better definition of these systems.  Allow me to summarize the idea. It is:  Build a compute platform optimized to run your technologies Develop application aware, intelligently caching storage components Take an impressively fast network technology interconnecting it with the compute nodes Tune the application to scale with the nodes to yet unseen performance Reduce the amount of data moving via compression Provide this all in a pre-integrated single product with a single-pane management interface All these ideas have been around in IT for quite some time now. The real Oracle advantage is adding the last one to put these all together. Oracle has built quite a portfolio of Engineered Systems, to run its technologies - and run those like they never ran before. In this post I'll focus on one of them that serves as a consolidation demigod, a multi-purpose engineered system.  As you probably have guessed, I am talking about the SPARC SuperCluster. It has many great features inherited from its predecessors, and it adds several new ones. Allow me to pick out and elaborate about some of the most interesting ones from a technological point of view.  I. It is the SPARC SuperCluster T4-4. That is, as compute nodes, it includes SPARC T4-4 servers that we learned to appreciate and respect for their features: The SPARC T4 CPUs: Each CPU has 8 cores, each core runs 8 threads. The SPARC T4-4 servers have 4 sockets. That is, a single compute node can in parallel, simultaneously  execute 256 threads. Now, a full-rack SPARC SuperCluster has 4 of these servers on board. Remember the keyword demigod.  While retaining the forerunner SPARC T3's exceptional throughput, the SPARC T4 CPUs raise the bar with single performance too - a humble 5x better one than their ancestors.  actually, the SPARC T4 CPU cores run in both single-threaded and multi-threaded mode, and switch between these two on-the-fly, fulfilling not only single-threaded OR multi-threaded applications' needs, but even mixed requirements (like in database workloads!). Data security, anyone? Every SPARC T4 CPU core has a built-in encryption engine, that is, encryption algorithms cast into silicon.  A PCI controller right on the chip for customers who need I/O performance.  Built-in, no-cost Virtualization:  Oracle VM for SPARC (the former LDoms or Logical Domains) is not a server-emulation virtualization technology but rather a serverpartitioning one, the hypervisor runs in the server firmware, and all the VMs' HW resources (I/O, CPU, memory) are accessed natively, without performance overhead.  This enables customers to run a number of Solaris 10 and Solaris 11 VMs separated, independent of each other within a physical server II. For Database performance, it includes Exadata Storage Cells - one of the main reasons why the Exadata Database Machine performs at diabolic speed. What makes them important? They provide DB backend storage for your Oracle Databases to run on the SPARC SuperCluster, that is what they are built and tuned for DB performance.  These storage cells are SQL-aware.  That is, if a SPARC T4 database compute node executes a query, it doesn't simply request tons of raw datablocks from the storage, filters the received data, and throws away most of it where the statement doesn't apply, but provides the SQL query to the storage node too. The storage cell software speaks SQL, that is, it is able to prefilter and through that transfer only the relevant data. With this, the traffic between database nodes and storage cells is reduced immensely. Less I/O is a good thing - as they say, all the CPUs of the world do one thing just as fast as any other - and that is waiting for I/O.  They don't only pre-filter, but also provide data preprocessing features - e.g. if a DB-node requests an aggregate of data, they can calculate it, and handover only the results, not the whole set. Again, less data to transfer.  They support the magical HCC, (Hybrid Columnar Compression). That is, data can be stored in a precompressed form on the storage. Less data to transfer.  Of course one can't simply rely on disks for performance, there is Flash Storage included there for caching.  III. The low latency, high-speed backbone network: InfiniBand, that interconnects all the members with: Real High Speed: 40 Gbit/s. Full Duplex, of course. Oh, and a really low latency.  RDMA. Remote Direct Memory Access. This technology allows the DB nodes to do exactly that. Remotely, directly placing SQL commands into the Memory of the storage cells. Dodging all the network-stack bottlenecks, avoiding overhead, placing requests directly into the process queue.  You can also run IP over InfiniBand if you please - that's the way the compute nodes can communicate with each other.  IV. Including a general-purpose storage too: the ZFSSA, which is a unified storage, providing NAS and SAN access too, with the following features:  NFS over RDMA over InfiniBand. Nothing is faster network-filesystem-wise.  All the ZFS features onboard, hybrid storage pools, compression, deduplication, snapshot, replication, NFS and CIFS shares Storageheads in a HA-Cluster configuration providing availability of the data  DTrace Live Analytics in a web-based Administration UI Being a general purpose application data storage for your non-database applications running on the SPARC SuperCluster over whichever protocol they prefer, easily replicating, snapshotting, cloning data for them.  There's a lot of great technology included in Oracle's SPARC SuperCluster, we have talked its interior through. As for external scalability: you can start with a half- of full- rack SPARC SuperCluster, and scale out to several racks - that is, stacking not separate full-rack SPARC SuperClusters, but extending always one large instance of the size of several full-racks. Yes, over InfiniBand network. Add racks as you grow.  What technologies shall run on it? SPARC SuperCluster is a general purpose scaleout consolidation/cloud environment. You can run Oracle Databases with RAC scaling, or Oracle Weblogic (end enjoy the SPARC T4's advantages to run Java). Remember, Oracle technologies have been integrated with the Oracle Engineered Systems - this is the Oracle on Oracle advantage. But you can run other software environments such as SAP if you please too. Run any application that runs on Oracle Solaris 10 or Solaris 11. Separate them in Virtual Machines, or even Oracle Solaris Zones, monitor and manage those from a central UI. Here the key takeaways once again: The SPARC SuperCluster: Is a pre-integrated Engineered System Contains SPARC T4-4 servers with built-in virtualization, cryptography, dynamic threading Contains the Exadata storage cells that intelligently offload the burden of the DB-nodes  Contains a highly available ZFS Storage Appliance, that provides SAN/NAS storage in a unified way Combines all these elements over a high-speed, low-latency backbone network implemented with InfiniBand Can grow from a single half-rack to several full-rack size Supports the consolidation of hundreds of applications To summarize: All these technologies are great by themselves, but the real value is like in every other Oracle Engineered System: Integration. All these technologies are tuned to perform together. Together they are way more than the sum of all - and a careful and actually very time consuming integration process is necessary to orchestrate all these for performance. The SPARC SuperCluster's goal is to enable infrastructure operations and offer a pre-integrated solution that can be architected and delivered in hours instead of months of evaluations and tests. The tedious and most importantly time and resource consuming part of the work - testing and evaluating - has been done.  Now go, provide services.   -- charlie  

    Read the article

  • SAP Applications Certified for Oracle SPARC SuperCluster

    - by Javier Puerta
    SAP applications are now certified for use with the Oracle SPARC SuperCluster T4-4, a general-purpose engineered system designed for maximum simplicity, efficiency, reliability, and performance. "The Oracle SPARC SuperCluster is an ideal platform for consolidating SAP applications and infrastructure," says Ganesh Ramamurthy, vice president of engineering, Oracle. "Because the SPARC SuperCluster is a pre-integrated engineered system, it enables data center managers to dramatically reduce their time to production for SAP applications to a fraction of what a build-it-yourself approach requires and radically cuts operating and maintenance costs." SAP infrastructure and applications based on the SAP NetWeaver technology platform 6.4 and above and certified with Oracle Database 11g Release 2, such as the SAP ERP application and SAP NetWeaver Business Warehouse, can now be deployed using the SPARC SuperCluster T4 4. The SPARC SuperCluster T4-4 provides an optimized platform for SAP environments that can reduce configuration times by up to 75 percent, reduce operating costs up to 50 percent, can improve query performance by up to 10x, and can improve daily data loading up to 4x. The Oracle SPARC SuperCluster T4-4 is the world's fastest general purpose engineered system, delivering high performance, availability, scalability, and security to support and consolidate multi-tier enterprise applications with Web, database, and application components. The SPARC SuperCluster T4-4 combines Oracle's SPARC T4-4 servers running Oracle Solaris 11 with the database optimization of Oracle Exadata, the accelerated processing of Oracle Exalogic Elastic Cloud software, and the high throughput and availability of Oracle's Sun ZFS Storage Appliance all on a high-speed InfiniBand backplane. Part of Oracle's engineered systems family, the SPARC SuperCluster T4-4 demonstrates Oracle's unique ability to innovate and optimize at every layer of technology to simplify data center operations, drive down costs, and accelerate business innovation. For more details, refer to Our press release Datasheet: Oracle's SPARC SuperCluster T4-4 (PDF) Datasheet: Oracle's SPARC SuperCluster Now Supported by SAP (PDF) Video Podcast: Oracle's SPARC SuperCluster (MP4)

    Read the article

  • Public Solaris/SPARC roadmap until 2015

    - by Karim Berrah
    It now public, and give you a nice overview on what's going on, where Oracle is going with Solaris and SPARC processors. It's now available from here. What can we lean from this roadmap ? well, if you look carefully: Oracle is announcing Solaris 11 this year. The release date should be ... check OOW11 Solaris 10 updates should still be released in 2012 (remember, released in 2005). Check the Solaris lifecycle to understand how long is Solaris to stay side by side with Solaris 11. in 2011, a great 3x Single Strand improvement for the T-Series. Some thing great under preparation. Probably revealed at Oracle Open World 2011. Good news for ISVs ! in 2012, a great 6x Troughput improvement for the M-Serie ! How can this be done ? .... Nearly everything on the SPARC/SOLARIS level is said through the public roadmap,but as you know the evil is in the details ;)

    Read the article

  • Interesting articles and blogs on SPARC T4

    - by mv
    Interesting articles and blogs on SPARC T4 processor   I have consolidated all the interesting information I could get on SPARC T4 processor and its hardware cryptographic capabilities.  Hope its useful. 1. Advantages of SPARC T4 processor  Most important points in this T4 announcement are : "The SPARC T4 processor was designed from the ground up for high speed security and has a cryptographic stream processing unit (SPU) integrated directly into each processor core. These accelerators support 16 industry standard security ciphers and enable high speed encryption at rates 3 to 5 times that of competing processors. By integrating encryption capabilities directly inside the instruction pipeline, the SPARC T4 processor eliminates the performance and cost barriers typically associated with secure computing and makes it possible to deliver high security levels without impacting the user experience." Data Sheet has more details on these  : "New on-chip Encryption Instruction Accelerators with direct non-privileged support for 16 industry-standard cryptographic algorithms plus random number generation in each of the eight cores: AES, Camellia, CRC32c, DES, 3DES, DH, DSA, ECC, Kasumi, MD5, RSA, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512" I ran "isainfo -v" command on Solaris 11 Sparc T4-1 system. It shows the new instructions as expected  : $ isainfo -v 64-bit sparcv9 applications crc32c cbcond pause mont mpmul sha512 sha256 sha1 md5 camellia kasumi des aes ima hpc vis3 fmaf asi_blk_init vis2 vis popc 32-bit sparc applications crc32c cbcond pause mont mpmul sha512 sha256 sha1 md5 camellia kasumi des aes ima hpc vis3 fmaf asi_blk_init vis2 vis popc v8plus div32 mul32  2.  Dan Anderson's Blog have some interesting points about how these can be used : "New T4 crypto instructions include: aes_kexpand0, aes_kexpand1, aes_kexpand2,         aes_eround01, aes_eround23, aes_eround01_l, aes_eround_23_l, aes_dround01, aes_dround23, aes_dround01_l, aes_dround_23_l.       Having SPARC T4 hardware crypto instructions is all well and good, but how do we access it ?      The software is available with Solaris 11 and is used automatically if you are running Solaris a SPARC T4.  It is used internally in the kernel through kernel crypto modules.  It is available in user space through the PKCS#11 library." 3.   Dans' Blog on Where's the Crypto Libraries? Although this was written in 2009 but still is very useful  "Here's a brief tour of the major crypto libraries shown in the digraph:   The libpkcs11 library contains the PKCS#11 API (C_\*() functions, such as C_Initialize()). That in turn calls library pkcs11_softtoken or pkcs11_kernel, for userland or kernel crypto providers. The latter is used mostly for hardware-assisted cryptography (such as n2cp for Niagara2 SPARC processors), as that is performed more efficiently in kernel space with the "kCF" module (Kernel Crypto Framework). Additionally, for Solaris 10, strong crypto algorithms were split off in separate libraries, pkcs11_softtoken_extra libcryptoutil contains low-level utility functions to help implement cryptography. libsoftcrypto (OpenSolaris and Solaris Nevada only) implements several symmetric-key crypto algorithms in software, such as AES, RC4, and DES3, and the bignum library (used for RSA). libmd implements MD5, SHA, and SHA2 message digest algorithms" 4. Difference in T3 and T4 Diagram in this blog is good and self explanatory. Jeff's blog also highlights the differences  "The T4 servers have improved crypto acceleration, described at https://blogs.oracle.com/DanX/entry/sparc_t4_openssl_engine. It is "just built in" so administrators no longer have to assign crypto accelerator units to domains - it "just happens". Every physical or virtual CPU on a SPARC-T4 has full access to hardware based crypto acceleration at all times. .... For completeness sake, it's worth noting that the T4 adds more crypto algorithms, and accelerates Camelia, CRC32c, and more SHA-x." 5. About performance counters In this blog, performance counters are explained : "Note that unlike T3 and before, T4 crypto doesn't require kernel modules like ncp or n2cp, there is no visibility of crypto hardware with kstats or cryptoadm. T4 does provide hardware counters for crypto operations.  You can see these using cpustat: cpustat -c pic0=Instr_FGU_crypto 5 You can check the general crypto support of the hardware and OS with the command "isainfo -v". Since T4 crypto's implementation now allows direct userland access, there are no "crypto units" visible to cryptoadm.  " For more details refer Martin's blog as well. 6. How to turn off  SPARC T4 or Intel AES-NI crypto acceleration  I found this interesting blog from Darren about how to turn off  SPARC T4 or Intel AES-NI crypto acceleration. "One of the new Solaris 11 features of the linker/loader is the ability to have a single ELF object that has multiple different implementations of the same functions that are selected at runtime based on the capabilities of the machine.   The alternate to this is having the application coded to call getisax(2) system call and make the choice itself.  We use this functionality of the linker/loader when we build the userland libraries for the Solaris Cryptographic Framework (specifically libmd.so and libsoftcrypto.so) The Solaris linker/loader allows control of a lot of its functionality via environment variables, we can use that to control the version of the cryptographic functions we run.  To do this we simply export the LD_HWCAP environment variable with values that tell ld.so.1 to not select the HWCAP section matching certain features even if isainfo says they are present.  This will work for consumers of the Solaris Cryptographic Framework that use the Solaris PKCS#11 libraries or use libmd.so interfaces directly.  For SPARC T4 : export LD_HWCAP="-aes -des -md5 -sha256 -sha512 -mont -mpul" .. For Intel systems with AES-NI support: export LD_HWCAP="-aes"" Note that LD_HWCAP is explained in  http://docs.oracle.com/cd/E23823_01/html/816-5165/ld.so.1-1.html "LD_HWCAP, LD_HWCAP_32, and LD_HWCAP_64 -  Identifies an alternative hardware capabilities value... A “-” prefix results in the capabilities that follow being removed from the alternative capabilities." 7. Whitepaper on SPARC T4 Servers—Optimized for End-to-End Data Center Computing This Whitepaper on SPARC T4 Servers—Optimized for End-to-End Data Center Computing explains more details.  It has DTrace scripts which may come in handy : "To ensure the hardware-assisted cryptographic acceleration is configured to use and working with the security scenarios, it is recommended to use the following Solaris DTrace script. #!/usr/sbin/dtrace -s pid$1:libsoftcrypto:yf*:entry, pid$target:libsoftcrypto:rsa*:entry, pid$1:libmd:yf*:entry { @[probefunc] = count(); } tick-1sec { printa(@ops); trunc(@ops); }" Note that I have slightly modified the D Script to have RSA "libsoftcrypto:rsa*:entry" as well as per recommendations from Chi-Chang Lin. 8. References http://www.oracle.com/us/corporate/features/sparc-t4-announcement-494846.html http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/sparc-t4-1-ds-487858.pdf https://blogs.oracle.com/DanX/entry/sparc_t4_openssl_engine https://blogs.oracle.com/DanX/entry/where_s_the_crypto_libraries https://blogs.oracle.com/darren/entry/howto_turn_off_sparc_t4 http://docs.oracle.com/cd/E23823_01/html/816-5165/ld.so.1-1.html   https://blogs.oracle.com/hardware/entry/unleash_the_power_of_cryptography https://blogs.oracle.com/cmt/entry/t4_crypto_cheat_sheet https://blogs.oracle.com/martinm/entry/t4_performance_counters_explained  https://blogs.oracle.com/jsavit/entry/no_mau_required_on_a http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/sparc-t4-business-wp-524472.pdf

    Read the article

  • Multiple vulnerabilities in Network Time Protocol (NTP)

    - by chandan
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2009-0021 Improper Authentication vulnerability 5.0 Firmware SPARC T3-4 SPARC: 147317-01 SPARC T3-2 SPARC: 147316-01 SPARC T3-1B SPARC: 147318-01 SPARC T3-1 SPARC: 147315-01 Netra SPARC T3-1B SPARC: 147320-01 Netra SPARC T3-1 SPARC: 147319-01 Netra SPARC T3-1BA SPARC: 144609-07 CVE-2009-0159 Buffer Overflow vulnerability 6.8 CVE-2009-3563 Denial of Service (DoS) vulnerability 6.4 This notification describes vulnerabilities fixed in third-party components that are included in Sun's product distribution.Information about vulnerabilities affecting Oracle Sun products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • World Record Oracle Business Intelligence Benchmark on SPARC T4-4

    - by Brian
    Oracle's SPARC T4-4 server configured with four SPARC T4 3.0 GHz processors delivered the first and best performance of 25,000 concurrent users on Oracle Business Intelligence Enterprise Edition (BI EE) 11g benchmark using Oracle Database 11g Release 2 running on Oracle Solaris 10. A SPARC T4-4 server running Oracle Business Intelligence Enterprise Edition 11g achieved 25,000 concurrent users with an average response time of 0.36 seconds with Oracle BI server cache set to ON. The benchmark data clearly shows that the underlying hardware, SPARC T4 server, and the Oracle BI EE 11g (11.1.1.6.0 64-bit) platform scales within a single system supporting 25,000 concurrent users while executing 415 transactions/sec. The benchmark demonstrated the scalability of Oracle Business Intelligence Enterprise Edition 11g 11.1.1.6.0, which was deployed in a vertical scale-out fashion on a single SPARC T4-4 server. Oracle Internet Directory configured on SPARC T4 server provided authentication for the 25,000 Oracle BI EE users with sub-second response time. A SPARC T4-4 with internal Solid State Drive (SSD) using the ZFS file system showed significant I/O performance improvement over traditional disk for the Web Catalog activity. In addition, ZFS helped get past the UFS limitation of 32767 sub-directories in a Web Catalog directory. The multi-threaded 64-bit Oracle Business Intelligence Enterprise Edition 11g and SPARC T4-4 server proved to be a successful combination by providing sub-second response times for the end user transactions, consuming only half of the available CPU resources at 25,000 concurrent users, leaving plenty of head room for increased load. The Oracle Business Intelligence on SPARC T4-4 server benchmark results demonstrate that comprehensive BI functionality built on a unified infrastructure with a unified business model yields best-in-class scalability, reliability and performance. Oracle BI EE 11g is a newer version of Business Intelligence Suite with richer and superior functionality. Results produced with Oracle BI EE 11g benchmark are not comparable to results with Oracle BI EE 10g benchmark. Oracle BI EE 11g is a more difficult benchmark to run, exercising more features of Oracle BI. Performance Landscape Results for the Oracle BI EE 11g version of the benchmark. Results are not comparable to the Oracle BI EE 10g version of the benchmark. Oracle BI EE 11g Benchmark System Number of Users Response Time (sec) 1 x SPARC T4-4 (4 x SPARC T4 3.0 GHz) 25,000 0.36 Results for the Oracle BI EE 10g version of the benchmark. Results are not comparable to the Oracle BI EE 11g version of the benchmark. Oracle BI EE 10g Benchmark System Number of Users 2 x SPARC T5440 (4 x SPARC T2+ 1.6 GHz) 50,000 1 x SPARC T5440 (4 x SPARC T2+ 1.6 GHz) 28,000 Configuration Summary Hardware Configuration: SPARC T4-4 server 4 x SPARC T4-4 processors, 3.0 GHz 128 GB memory 4 x 300 GB internal SSD Storage Configuration: "> Sun ZFS Storage 7120 16 x 146 GB disks Software Configuration: Oracle Solaris 10 8/11 Oracle Solaris Studio 12.1 Oracle Business Intelligence Enterprise Edition 11g (11.1.1.6.0) Oracle WebLogic Server 10.3.5 Oracle Internet Directory 11.1.1.6.0 Oracle Database 11g Release 2 Benchmark Description Oracle Business Intelligence Enterprise Edition (Oracle BI EE) delivers a robust set of reporting, ad-hoc query and analysis, OLAP, dashboard, and scorecard functionality with a rich end-user experience that includes visualization, collaboration, and more. The Oracle BI EE benchmark test used five different business user roles - Marketing Executive, Sales Representative, Sales Manager, Sales Vice-President, and Service Manager. These roles included a maximum of 5 different pre-built dashboards. Each dashboard page had an average of 5 reports in the form of a mix of charts, tables and pivot tables, returning anywhere from 50 rows to approximately 500 rows of aggregated data. The test scenario also included drill-down into multiple levels from a table or chart within a dashboard. The benchmark test scenario uses a typical business user sequence of dashboard navigation, report viewing, and drill down. For example, a Service Manager logs into the system and navigates to his own set of dashboards using Service Manager. The BI user selects the Service Effectiveness dashboard, which shows him four distinct reports, Service Request Trend, First Time Fix Rate, Activity Problem Areas, and Cost Per Completed Service Call spanning 2002 to 2005. The user then proceeds to view the Customer Satisfaction dashboard, which also contains a set of 4 related reports, drills down on some of the reports to see the detail data. The BI user continues to view more dashboards – Customer Satisfaction and Service Request Overview, for example. After navigating through those dashboards, the user logs out of the application. The benchmark test is executed against a full production version of the Oracle Business Intelligence 11g Applications with a fully populated underlying database schema. The business processes in the test scenario closely represent a real world customer scenario. See Also SPARC T4-4 Server oracle.com OTN Oracle Business Intelligence oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN WebLogic Suite oracle.com OTN Oracle Solaris oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 30 September 2012.

    Read the article

  • World Record Performance on PeopleSoft Enterprise Financials Benchmark on SPARC T4-2

    - by Brian
    Oracle's SPARC T4-2 server achieved World Record performance on Oracle's PeopleSoft Enterprise Financials 9.1 executing 20 Million Journals lines in 8.92 minutes on Oracle Database 11g Release 2 running on Oracle Solaris 11. This is the first result published on this version of the benchmark. The SPARC T4-2 server was able to process 20 million general ledger journal edit and post batch jobs in 8.92 minutes on this benchmark that reflects a large customer environment that utilizes a back-end database of nearly 500 GB. This benchmark demonstrates that the SPARC T4-2 server with PeopleSoft Financials 9.1 can easily process 100 million journal lines in less than 1 hour. The SPARC T4-2 server delivered more than 146 MB/sec of IO throughput with Oracle Database 11g running on Oracle Solaris 11. Performance Landscape Results are presented for PeopleSoft Financials Benchmark 9.1. Results obtained with PeopleSoft Financials Benchmark 9.1 are not comparable to the the previous version of the benchmark, PeopleSoft Financials Benchmark 9.0, due to significant change in data model and supports only batch. PeopleSoft Financials Benchmark, Version 9.1 Solution Under Test Batch (min) SPARC T4-2 (2 x SPARC T4, 2.85 GHz) 8.92 Results from PeopleSoft Financials Benchmark 9.0. PeopleSoft Financials Benchmark, Version 9.0 Solution Under Test Batch (min) Batch with Online (min) SPARC Enterprise M4000 (Web/App) SPARC Enterprise M5000 (DB) 33.09 34.72 SPARC T3-1 (Web/App) SPARC Enterprise M5000 (DB) 35.82 37.01 Configuration Summary Hardware Configuration: 1 x SPARC T4-2 server 2 x SPARC T4 processors, 2.85 GHz 128 GB memory Storage Configuration: 1 x Sun Storage F5100 Flash Array (for database and redo logs) 2 x Sun Storage 2540-M2 arrays and 2 x Sun Storage 2501-M2 arrays (for backup) Software Configuration: Oracle Solaris 11 11/11 SRU 7.5 Oracle Database 11g Release 2 (11.2.0.3) PeopleSoft Financials 9.1 Feature Pack 2 PeopleSoft Supply Chain Management 9.1 Feature Pack 2 PeopleSoft PeopleTools 8.52 latest patch - 8.52.03 Oracle WebLogic Server 10.3.5 Java Platform, Standard Edition Development Kit 6 Update 32 Benchmark Description The PeopleSoft Enterprise Financials 9.1 benchmark emulates a large enterprise that processes and validates a large number of financial journal transactions before posting the journal entry to the ledger. The validation process certifies that the journal entries are accurate, ensuring that ChartFields values are valid, debits and credits equal out, and inter/intra-units are balanced. Once validated, the entries are processed, ensuring that each journal line posts to the correct target ledger, and then changes the journal status to posted. In this benchmark, the Journal Edit & Post is set up to edit and post both Inter-Unit and Regular multi-currency journals. The benchmark processes 20 million journal lines using AppEngine for edits and Cobol for post processes. See Also Oracle PeopleSoft Benchmark White Papers oracle.com SPARC T4-2 Server oracle.com OTN PeopleSoft Financial Management oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 1 October 2012.

    Read the article

  • Solaris WANboot & Jumpstart SPARC/x86

    - by watain
    I need to setup a Solaris WANboot and a Solaris jumpstart server for both SPARC and x86 architectures. Can I setup both on a single machine (SPARC or x86) or do I need a separate SPARC and x86 machine to jumpstart a SPARC respectively a x86 client? As far as I know the architecture of a WANboot server doesn't matter, as long as the correct Solaris flash archive is used. Best regards

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >