Search Results

Search found 24 results on 1 pages for 'statemachine'.

Page 1/1 | 1 

  • statemachine, conditional transitions

    - by astropanic
    I'm currently using Workflow. class Link < ActiveRecord::Base include Workflow workflow do state :new do event :process, :transitions_to => :checking #checking http_response_code & content_type end state :checking do event :process, :transitions_to => :fetching_links # fetching all links end state :fetching_links do event :process, :transitions_to => :checking #ready for next check end end end Now, I can do: l = Link.new l.process! l.process! l.process! l.process! # n times l.process! (in a loop, or cron job for example) But it can happens, some link will not respond or give me an invalid response durning the checking process. How I can conditionally switch to another state ? I mean something like this: class Link < ActiveRecord::Base include Workflow workflow do state :new do event :process, :transitions_to => :checking #checking http_response_code & content_type end state :checking do event :process, :transitions_to => :fetching_links # if all is fine event :process, :transitions_to => :failded # if something goes wrong end state :fetching_links do event :process, :transitions_to => :checking #ready for next check end end end

    Read the article

  • Using CallExternalMethodActivity/HandleExternalEventActivity in StateMachine

    - by AngrySpade
    I'm attempting to make a StateMachine execute some database action between states. So I have a "starting" state that uses CallExternalMethodActivity to call a "BeginExecuteNonQuery" function on an class decorated with ExternalDataExchangeAttribute. After that it uses a SetStateActivity to change to an "ending" state. The "ending" state uses a HandleExternalEventActivity to listen to a "EndExecuteNonQuery" event. I can step through the local service, into the "BeginExecuteNonQuery" function. The problem is that the "EndExecuteNonQuery" is null. public class FailoverWorkflowController : IFailoverWorkflowController { private readonly WorkflowRuntime workflowRuntime; private readonly FailoverWorkflowControlService failoverWorkflowControlService; private readonly DatabaseControlService databaseControlService; public FailoverWorkflowController() { workflowRuntime = new WorkflowRuntime(); workflowRuntime.WorkflowCompleted += workflowRuntime_WorkflowCompleted; workflowRuntime.WorkflowTerminated += workflowRuntime_WorkflowTerminated; ExternalDataExchangeService dataExchangeService = new ExternalDataExchangeService(); workflowRuntime.AddService(dataExchangeService); databaseControlService = new DatabaseControlService(); workflowRuntime.AddService(databaseControlService); workflowRuntime.StartRuntime(); } ... } ... public void BeginExecuteNonQuery(string command) { Guid workflowInstanceID = WorkflowEnvironment.WorkflowInstanceId; ThreadPool.QueueUserWorkItem(delegate(object state) { try { int result = ExecuteNonQuery((string)state); EndExecuteNonQuery(null, new ExecuteNonQueryResultEventArgs(workflowInstanceID, result)); } catch (Exception exception) { EndExecuteNonQuery(null, new ExecuteNonQueryResultEventArgs(workflowInstanceID, exception)); } }, command); } What am I doing wrong with my implementation? -Stan

    Read the article

  • Implementing a State Machine in Angular.js to control routing

    - by ldn_tech_exec
    Can anyone help me with integrating a state machine to control routing? What's the best method to do this? Create a service? I need to basically intercept every $location request, run the state machine and let it figure out what the next $location.path should be. Think of the problem like a bank of questions that get added and removed over time. The user visits once in a while, passes in the user's answers object to the statemachine, and the statemachine figures out which question to load. This is my pseudocode, but i need to figure out where to put this or what event I can hook into to make sure all route requests are passed through the machine. Do I need a specific stateMachine controller? Do I create a service? Where do I use the service? Do I need to override $locationProvider? $scope.user.answers = [{ id: 32, answer: "whatever" }, { id:33, answer: "another answer" }] $scope.questions = [{ id:32, question:"what is your name?", path:"/question/1" },{ id:34, question:"how old are you?", path:"/question/2" }] var questions = $scope.questions; angular.forEach(questions, function(question) { if(question.id !exist in $scope.user.answers.id) { $location.path = question.path break; }); Thanks

    Read the article

  • Is there a Java equivalent to libevent?

    - by JoelPM
    I've written a high-throughput server that handles each request in its own thread. For requests coming in it is occasionally necessary to do RPCs to one or more back-ends. These back-end RPCs are handled by a separate queue and thread-pool, which provides some bounding on the number of threads created and the maximum number of connections to the back-end (it does some caching to reuse clients and save the overhead of constantly creating connections). Having done all this, though, I'm beginning to think an event-based architecture would be more efficient. In searching around I haven't found any equivalents to libevent for Java, but maybe I'm not looking in the right place? Mina-statemachine from Apache was the closest thing I found, but it looks more verbose than I need and there's no real release available. Any suggestions?

    Read the article

  • C# - Coding a nested stateflow diagram

    - by weberc2
    I have the following state diagram. I know how to make a simple state machine that transitions between non-nested states; however, I don't know how to transition between nested states. Could someone explain how to do this at an appropriately high level (i.e., you don't need to write the code for me--unless you're feeling particularly generous :P). State Diagram [EDIT: The bottom "A", "C", and "E" should be "B", "D", and "F" respectively; sorry!] What I know how to do public class MyState : State // State enumeration { public static MyState A = new MyState("State A"); public static MyState B = new MyState("State B"); public static MyState C = new MyState("State C"); public static MyState D = new MyState("State D"); public static MyState E = new MyState("State E"); public static MyState F = new MyState("State F"); public static MyState NEUT = new MyState("Neutral"); public static MyState P = new MyState("P"); protected MyState(string name) : base(name) { } } public class MyEvent : Event // Event enumeration { public static MyEvent X_POS = new MyEvent("X+"); public static MyEvent X_NEG = new MyEvent("X-"); public static MyEvent Y_POS = new MyEvent("Y+"); public static MyEvent Y_NEG = new MyEvent("Y-"); protected MyEvent(string name) : base(name) { } } public class MyStateMachine : StateMachine<MyState, MyEvent> // State Machine implementation { public MyStateMachine() : base(MyState.P) // MyState.P = initial state { // Set up the transition table // P this.addTransition(MYState.P, MyState.NEUT, MyEvent.Y_NEG); // NEUTRAL this.addTransition(MyState.NEUT, MyState.P, MyEvent.Y_POS); this.addTransition(MyState.NEUT, MyState.A, MyEvent.Y_NEG); this.addTransition(MyState.NEUT, MyState.B, MyEvent.Y_POS); this.addTransition(MyState.NEUT, MyState.C, MyEvent.Y_NEG); this.addTransition(MyState.NEUT, MyState.D, MyEvent.Y_POS); this.addTransition(MyState.NEUT, MyState.E, MyEvent.Y_NEG); this.addTransition(MyState.NEUT, MyState.F, MyEvent.Y_POS); // A this.addTransition(MyState.A, MyState.NEUT, MyEvent.Y_POS); // B this.addTransition(MyState.B, MyState.NEUT, MyEvent.Y_NEG); // C this.addTransition(MyState.C, MyState.NEUT, MyEvent.Y_POS); // D this.addTransition(MyState.D, MyState.NEUT, MyEvent.Y_NEG); // E this.addTransition(MyState.E, MyState.NEUT, MyEvent.Y_POS); // F this.addTransition(MyState.F, MyState.NEUT, MyEvent.Y_NEG); } public void move(MyEvent eevent) { try { this.moveNext(eevent); } catch (Exception e) { } } }

    Read the article

  • implementing a state machine using the "yield" keyword

    - by Matt Warren
    Is it feasible to use the yield keyword to implement a simple state machine as shown here. To me it looks like the C# compiler has done the hard work for you as it internally implements a state machine to make the yield statement work. Can you piggy-back on top of the work the compiler is already doing and get it to implement most of the state machine for you? Has anyone done this, is it technically possible?

    Read the article

  • WCF Callback Faulted - what happens to the session?

    - by RemotecUk
    Just trying to get my head around what can happen when things go wrong with WCF. I have an implementation of my service contract declared with an InstanceContextMode of PerSession... [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerSession, ConcurrencyMode = ConcurrencyMode.Multiple)] The calls happen as follows: My client calls the server and calls GetServerUTC() to return the current UTC time of the server. This is a one way call and the server will call the client back when its ready (trivial in this instance to simply return the current time!) The server calls back to the client and for test purposes in the callback implementation on the client I throw an exception. This goes unhandled in the client (for test purposes) and the client crashes and closes down. On the server I handle the faulted event handler on the ICommunicationObject... obj.Faulted += new EventHandler(EventService_Faulted); Questions... Will this kill off the session for the current connection on the server. I presume I am free to do what I want in this method e.g. logging or something, but should I do anything specific here to terminate the session or will WCF handle this? From a best practise view point what should I do when the callback is faulted? Does it mean "something has happened in your client" and thats the end of that or is there something I a missing here? Additionally, are there any other faulted handlers I should be handling. Ive done a lot of reading on WCF and it seems sort of vague on what to do when something goes wrong. At present I am implementing a State Machine on my client which will manage the connection and determine if a user action can happen dependant on if a connection exists to the server - or is this overkill. Any tips would be really appreciated ;)

    Read the article

  • Finite State Machine : Bad design?

    - by f4
    Are Finite State Machines generally considered as bad design in OOP ? I hear that a lot. And, after I had to work on a really old, undocumented piece of C++ making use of it, I tend to agree. It was a pain to debug. what about readability/maintainability concerns?

    Read the article

  • Are there any tools to help the user to design a State Machine to be consumed by my application?

    - by kolrie
    When reading this question I remembered there was something I have been researching for a while now and I though Stackoverflow could be of help. I have created a framework that handles applications as state machines. Currently all the state business logic and transactions are handled via Java code. I was looking for some UI implementation that would allow the user to draw the state machines and transactions and generate a file that can later on be consumed by my framework to "run" the workflow according to one or more defined state machines. Ideally I would like to use an open standard like SCXML. The goal as the UI would be to have something like this plugin IBM have for Rational Software Architect: Do you know any editor, plugin or library that would have something similar or at least serve as a good starting point?

    Read the article

  • How would you code a washing machine?

    - by Dan
    Imagine I have a class that represents a simple washing machine. It can perform following operations in the following order: turn on - wash - centrifuge - turn off. I see two basic alternatives: A) I can have a class WashingMachine with methods turnOn(), wash(int minutes), centrifuge(int revs), turnOff(). The problem with this is that the interface says nothing about the correct order of operations. I can at best throw InvalidOprationException if the client tries to centrifuge before machine was turned on. B) I can let the class itself take care of correct transitions and have the single method nextOperation(). The problem with this on the other hand, is that the semantics is poor. Client will not know what will happen when he calls the nextOperation(). Imagine you implement the centrifuge button’s click event so it calls nextOperation(). User presses the centrifuge button after machine was turned on and ups! machine starts to wash. I will probably need a few properties on my class to parameterize operations, or maybe a separate Program class with washLength and centrifugeRevs fields, but that is not really the problem. Which alternative is better? Or maybe there are some other, better alternatives that I missed to describe?

    Read the article

  • Can LINQ expression classes implement the observer pattern instead of deferred execution?

    - by Tormod
    Hi. We have issues within an application using a state machine. The application is implemented as a windows service and is iteration based (it "foreaches" itself through everything) and there are myriads of instances being processed by the state machine. As I'm reading the MEAP version of Jon Skeets book "C# in Depth, 2nd ed", I'm wondering if I can change the whole thing to use linq expression instances so that guards and conditions are represented using expression trees. We are building many applications on this state machine engine and would probably greatly benefit from the new Expression tree visualizer in VS 2010 Now, simple example. If I have an expression tree where there is an OR Expression condition with two sub nodes, is there any way that these can implement the observer pattern so that the expression tree becomes event driven? If a condition change, it should notify its parent node (the OR node). Since the OR node then changes from "false" to "true", then it should notify ITS parent and so on. I love the declarative model of expression trees, but the deferred execution model works in opposite direction of the control flow if you want event based "live" conditions. Am I off on a wild goose chase here? Or is there some concept in the BCL that may help me achieve this?

    Read the article

  • Which UML tool can really round-trip java code?

    - by Geir Ove
    Hello, Many UML tools claim to do forward / reverse engineering of Java code. However, it turns out from prior experience, that few tools really work in this area. I haven't been doing Java projects for 3 years, and want to get up to date with the current status in this area. In Particular I am interested in Creating State Machine Skeletons from Diagram, be able to create hooks to my own code, and be able to reverse engineer the State Diagram back (Do not want to change the State Machine itself outside the Tool). Which UML tools works in this area? Enterprise Architecht? Visual Paradigm? Others? Geir Ove Norway

    Read the article

  • Windows Workflows - While Activity for creating multiple tasks not working

    - by Georgil Mathew
    I am using a while activity for creating multiple tasks for a workflow. The code is executed fine and the task is created when the loop runs only once. But when the loop runs twice or more, only one task is getting created. Also the WF status shows as Error Occured. All I want to do here is create multiple tasks (no of tasks depends on an entered column value) for the same user. Is it posible to use 'while' in this scenario? Or is there any other way to go ahead? NB: I am using state machine workflow.

    Read the article

  • Truth tables in code? How to structure state machine?

    - by HanClinto
    I have a (somewhat) large truth table / state machine that I need to implement in my code (embedded C). I anticipate the behavior specification of this state machine to change in the future, and so I'd like to keep this easily modifiable in the future. My truth table has 4 inputs and 4 outputs. I have it all in an Excel spreadsheet, and if I could just paste that into my code with a little formatting, that would be ideal. I was thinking I would like to access my truth table like so: u8 newState[] = decisionTable[input1][input2][input3][input4]; And then I could access the output values with: setOutputPin( LINE_0, newState[0] ); setOutputPin( LINE_1, newState[1] ); setOutputPin( LINE_2, newState[2] ); setOutputPin( LINE_3, newState[3] ); But in order to get that, it looks like I would have to do a fairly confusing table like so: static u8 decisionTable[][][][][] = {{{{ 0, 0, 0, 0 }, { 0, 0, 0, 0 }}, {{ 0, 0, 0, 0 }, { 0, 0, 0, 0 }}}, {{{ 0, 0, 1, 1 }, { 0, 1, 1, 1 }}, {{ 0, 1, 0, 1 }, { 1, 1, 1, 1 }}}}, {{{{ 0, 1, 0, 1 }, { 1, 1, 1, 1 }}, {{ 0, 1, 0, 1 }, { 1, 1, 1, 1 }}}, {{{ 0, 1, 1, 1 }, { 0, 1, 1, 1 }}, {{ 0, 1, 0, 1 }, { 1, 1, 1, 1 }}}}; Those nested brackets can be somewhat confusing -- does anyone have a better idea for how I can keep a pretty looking table in my code? Thanks! Edit based on HUAGHAGUAH's answer: Using an amalgamation of everyone's input (thanks -- I wish I could "accept" 3 or 4 of these answers), I think I'm going to try it as a two dimensional array. I'll index into my array using a small bit-shifting macro: #define SM_INPUTS( in0, in1, in2, in3 ) ((in0 << 0) | (in1 << 1) | (in2 << 2) | (in3 << 3)) And that will let my truth table array look like this: static u8 decisionTable[][] = { { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 1, 1 }, { 0, 1, 1, 1 }, { 0, 1, 0, 1 }, { 1, 1, 1, 1 }, { 0, 1, 0, 1 }, { 1, 1, 1, 1 }, { 0, 1, 0, 1 }, { 1, 1, 1, 1 }, { 0, 1, 1, 1 }, { 0, 1, 1, 1 }, { 0, 1, 0, 1 }, { 1, 1, 1, 1 }}; And I can then access my truth table like so: decisionTable[ SM_INPUTS( line1, line2, line3, line4 ) ] I'll give that a shot and see how it works out. I'll also be replacing the 0's and 1's with more helpful #defines that express what each state means, along with /**/ comments that explain the inputs for each line of outputs. Thanks for the help, everyone!

    Read the article

  • Problem with creating a deterministic finite automata (DFA) - Mercury

    - by Jabba The hut
    I would like to have a deterministic finite automata (DFA) simulated in Mercury. But I’m s(t)uck at several places. Formally, a DFA is described with the following characteristics: a setOfStates S, an inputAlphabet E <-- summation symbol, a transitionFunction : S × E -- S, a startState s € S, a setOfAcceptableFinalStates F =C S. A DFA will always starts in the start state. Then the DFA will read all the characters on the input, one by one. Based on the current input character and the current state, there will be made to a new state. These transitions are defined in the transitions function. when the DFA is in one of his acceptable final states, after reading the last character, then will the DFA accept the input, If not, then the input will be is rejected. The figure shows a DFA the accepting strings where the amount of zeros, is a plurality of three. Condition 1 is the initial state, and also the only acceptable state. for each input character is the corresponding arc followed to the next state. Link to Figure What must be done A type “mystate” which represents a state. Each state has a number which is used for identification. A type “transition” that represents a possible transition between states. Each transition has a source_state, an input_character, and a final_state. A type “statemachine” that represents the entire DFA. In the solution, the DFA must have the following properties: The set of all states, the input alphabet, a transition function, represented as a set of possible transitions, a set of accepting final states, a current state of the DFA A predicate “init_machine (state machine :: out)” which unifies his arguments with the DFA, as shown as in the Figure. The current state for the DFA is set to his initial state, namely, 1. The input alphabet of the DFA is composed of the characters '0'and '1'. A user can enter a text, which will be controlled by the DFA. the program will continues until the user types Ctrl-D and simulates an EOF. If the user use characters that are not allowed into the input alphabet of the DFA, then there will be an error message end the program will close. (pred require) Example Enter a sentence: 0110 String is not ok! Enter a sentence: 011101 String is not ok! Enter a sentence: 110100 String is ok! Enter a sentence: 000110010 String is ok! Enter a sentence: 011102 Uncaught exception Mercury: Software Error: Character does not belong to the input alphabet! the thing wat I have. :- module dfa. :- interface. :- import_module io. :- pred main(io.state::di, io.state::uo) is det. :- implementation. :- import_module int,string,list,bool. 1 :- type mystate ---> state(int). 2 :- type transition ---> trans(source_state::mystate, input_character::bool, final_state::mystate). 3 (error, finale_state and current_state and input_character) :- type statemachine ---> dfa(list(mystate),list(input_character),list(transition),list(final_state),current_state(mystate)) 4 missing a lot :- pred init_machine(statemachine :: out) is det. %init_machine(statemachine(L_Mystate,0,L_transition,L_final_state,1)) :- <-probably fault 5 not perfect main(!IO) :- io.write_string("\nEnter a sentence: ", !IO), io.read_line_as_string(Input, !IO), ( Invoer = ok(StringVar), S1 = string.strip(StringVar), (if S1 = "mustbeabool" then io.write_string("Sentenceis Ok! ", !IO) else io.write_string("Sentence is not Ok!.", !IO)), main(!IO) ; Invoer = eof ; Invoer = error(ErrorCode), io.format("%s\n", [s(io.error_message(ErrorCode))], !IO) ). Hope you can help me kind regards

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is called MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been cleaned up so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# level syntax sugar. There is no difference to await a async method or a normal method. A method returning Task will be awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } The above code is already cleaned up, but there are still a lot of things. More clean up can be done, and the state machine can be very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> void IAsyncStateMachine.MoveNext() { try { switch (this.State) { // Orginal code is splitted by "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; IAsyncStateMachine this1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this1.MoveNext()); // Callback break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; IAsyncStateMachine this2 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this2.MoveNext()); // Callback break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync_(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; (multiCallMethodAsyncStateMachine as IAsyncStateMachine).MoveNext(); // Original code are in this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clear - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback Since it is about callback, the simplification  can go even further – the entire state machine can be completely purged. Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is literally pretending to wait. In a await expression, a Task object will be return immediately so that caller is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is named MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine, MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been refactored, so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# language level syntax sugar. There is no difference to await a async method or a normal method. As long as a method returns Task, it is awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } Once again, the above state machine code is already refactored, but it still has a lot of things. More clean up can be done if we only keep the core logic, and the state machine can become very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> public void MoveNext() // IAsyncStateMachine member. { try { switch (this.State) { // Original code is split by "await"s into "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; MultiCallMethodAsyncStateMachine that1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => that1.MoveNext()); break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; MultiCallMethodAsyncStateMachine that2 = this; this.currentTaskToAwait.ContinueWith(_ => that2.MoveNext()); break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] public void SetStateMachine(IAsyncStateMachine stateMachine) // IAsyncStateMachine member. { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; multiCallMethodAsyncStateMachine.MoveNext(); // Original code are moved into this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clean - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback If we focus on the point of callback, the simplification  can go even further – the entire state machine can be completely purged, and we can just keep the code inside MoveNext(). Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is not to wait. In a await expression, a Task object will be return immediately so that execution is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • WorkflowMarkupSerializer doesn't keep positions in a state machine workflow

    - by Khadaji
    I am using WorkflowMarkupSerializer to save a statemachine workflow - it saves the states OK, but does not keep their positions. The code to write the workflow is here: using (XmlWriter xmlWriter = XmlWriter.Create(fileName)) { WorkflowMarkupSerializer markupSerializer = new WorkflowMarkupSerializer(); markupSerializer.Serialize(xmlWriter, workflow); } The code to read the workflow is: DesignerSerializationManager dsm = new DesignerSerializationManager(); using (dsm.CreateSession()) { using (XmlReader xmlReader = XmlReader.Create(fileName)) { //deserialize the workflow from the XmlReader WorkflowMarkupSerializer markupSerializer = new WorkflowMarkupSerializer(); workflow = markupSerializer.Deserialize( dsm, xmlReader) as Activity; if (dsm.Errors.Count > 0) { WorkflowMarkupSerializationException error = dsm.Errors[0] as WorkflowMarkupSerializationException; throw error; } } }

    Read the article

  • Multiple port asynchronous I/O over serialport in C#

    - by firoso
    I'm trying to write a test application for serial I/O (RS-232) with multiple units in C# and I'm running into an issue with my lack of threading experience so I'm soliciting feedback for a best known method. I've got a pool of COM ports COM1-16 each of which can read/write at any time and I need to be able to manage them simultaneously. Is this a situation for a thread pool? What is some guidance on structuring this applet? Edit: Upon review I was wondering is I really even need to do asynchronous threads here, I could just maintain states for each COM-port and do flow logic (i.e., statemachine) for each COM-port individually.

    Read the article

  • How to model dependency injection in UML ?

    - by hjo1620
    I have a Contract class. The contract is valid 1 Jan 2010 - 31 Dec 2010. It can be in state Active or Passive, depending on which date I ask the instance for it's state. ex. if I ask 4 July 2010, it's in state Active, but if I ask 1 Jan 2011, it's in state Passive. Instances are created using constructor dependency injection, i.e. they are either Active or Passive already when created, null is not allowed as a parameter for the internal state member. One initial/created vertex is drawn in UML. I have two arrows, leading out from the initial vertex, one leading to state Active and the other to state Passive. Is this a correct representation of dependency injection in UML ? This is related to http://stackoverflow.com/questions/2779922/how-model-statemachine-when-state-is-dependent-on-a-function which initiated the question on how to model DI in general, in UML.

    Read the article

  • In a state machine, is it a good idea to separate states and transitions?

    - by codablank1
    I have implemented a small state machine in this way (in pseudo code): class Input {} class KeyInput inherits Input { public : enum { Key_A, Key_B, ..., } } class GUIInput inherits Input { public : enum { Button_A, Button_B, ..., } } enum Event { NewGame, Quit, OpenOptions, OpenMenu } class BaseState { String name; Event get_event (Input input); void handle (Event e); //event handling function } class Menu inherits BaseState{...} class InGame inherits BaseState{...} class Options inherits BaseState{...} class StateMachine { public : BaseState get_current_state () { return current_state; } void add_state (String name, BaseState state) { statesMap.insert(name, state);} //raise an exception if state not found BaseState get_state (String name) { return statesMap.find(name); } //raise an exception if state or next_state not found void add_transition (Event event, String state_name, String next_state_name) { BaseState state = get_state(state_name); BaseState next_state = get_state(next_state_name); transitionsMap.insert(pair<event, state>, next_state); } //raise exception if couple not found BaseState get_next_state(Event event, BaseState state) { return transitionsMap.find(pair<event, state>); } void handle(Input input) { Event event = current_state.get_event(input) current_state.handle(event); current_state = get_next_state(event, current_state); } private : BaseState current_state; map<String, BaseState> statesMap; //map of all states in the machine //for each couple event/state, this map stores the next state map<pair<Event, BaseState>, BaseState> transitionsMap; } So, before getting the transition, I need to convert the key input or GUI input to the proper event, given the current state; thus the same key 'W' can launch a new game in the 'Menu' state or moving forward a character in the 'InGame' state; Then I get the next state from the transitionsMap and I update the current state Does this configuration seem valid to you ? Is it a good idea to separate states and transitions ? And I have some kind of trouble to represent a 'null state' or a 'null event'; What initial value can I give to the current state and which one should be returned by get_state if it fails ?

    Read the article

  • Workflow 4.5 is Awesome, cant wait for 5.0!

    - by JoshReuben
    About 2 years ago I wrote a blog post describing what I would like to see in Workflow vnext: http://geekswithblogs.net/JoshReuben/archive/2010/08/25/workflow-4.0---not-there-yet.aspx At the time WF 4.0 was a little rough around the edges – the State Machine was on codeplex and people were simulating state machines with Flowcharts. Last year I built a near- realtime machine management system using WF 4.0.1 – its managing the internal operations of this device: http://landanano.com/products/commercial   Well WF 4.5 has come a long way – many of my gripes have been addressed: C# expressions - no more VB 'AndAlso' clauses state machine awesomeness - can query current state many designer improvements - Document Outline is so much more succinct than Designer! Separate WCF Service Contract interfaces and ability to generate activities from contract operations ability to rehydrate to updated flow definitions via DynamicUpdateMap and WorkflowIdentity you can read about the new features here: http://msdn.microsoft.com/en-us/library/hh305677(VS.110).aspx   2013 could be the year of Workflow evangelism for .NET, as it comes together as the DSL language. Eg on Azure it could be used to graphically orchestrate between WebRoles, WorkerRoles and AppFabric Queues and the ServiceBus – that would be grand.   Here’s a list of things I’d like to see in Workflow 5.0: Stronger Parallelism support for true multithreaded workflows . A Workflow executes on a single thread – wouldn’t it be great if we had the ability to model TPL DataFlow? Parallel is not really parallel, just allows AsyncCodeActivity.     support for recursion an ExpressionTree activity with an editor design surface a math activity pack return of application level protocol (3.51 WF services) – automatically expose a state machine as a WCF service with bookmark Receive activities generated from OperationContract automatically placed in state transition triggers. A new HTML5 ActivityDesigner control – support with different CSS3  skinnable hooks,  remote connectivity (had to roll my own) A data flow view – crucial to understanding the big picture Ability to refactor a Sequence to custom activity in a separate .xaml file – like Expression Blend does for UserControl state machine global error handling - if all states goto an error state, you quickly get visual spagetti. Now you could nest a state machine, but what if you want an application level protocol whereby each state exposes certain WCF ops. DSL RAD editing - Make the Document Outline into a DSL editor for adding activities  – For WF to really succeed as a higher level of abstraction, It needs to be more productive than raw coding - drag & drop on the designer is currently too slow compared to just typing code. Extensible Wizard API - for pluggable WF editor experience other execution models beyond Sequence, Flowchart & StateMachine: SSIS, Behavior Trees,  Wolfram Model tool – surprise us! improvements to Designer debugging API - SourceLocation is tied to XAML file line number and char position, and ModelService access seems convoluted - why not leverage WPF LogicalTreeHelper / VisualTreeHelper ? Workflow Team , keep on rocking!

    Read the article

  • A Nondeterministic Engine written in VB.NET 2010

    - by neil chen
    When I'm reading SICP (Structure and Interpretation of Computer Programs) recently, I'm very interested in the concept of an "Nondeterministic Algorithm". According to wikipedia:  In computer science, a nondeterministic algorithm is an algorithm with one or more choice points where multiple different continuations are possible, without any specification of which one will be taken. For example, here is an puzzle came from the SICP: Baker, Cooper, Fletcher, Miller, and Smith live on different floors of an apartment housethat contains only five floors. Baker does not live on the top floor. Cooper does not live onthe bottom floor. Fletcher does not live on either the top or the bottom floor. Miller lives ona higher floor than does Cooper. Smith does not live on a floor adjacent to Fletcher's.Fletcher does not live on a floor adjacent to Cooper's. Where does everyone live? After reading this I decided to build a simple nondeterministic calculation engine with .NET. The rough idea is that we can use an iterator to track each set of possible values of the parameters, and then we implement some logic inside the engine to automate the statemachine, so that we can try one combination of the values, then test it, and then move to the next. We also used a backtracking algorithm to go back when we are running out of choices at some point. Following is the core code of the engine itself: Code highlighting produced by Actipro CodeHighlighter (freeware)http://www.CodeHighlighter.com/--Public Class NonDeterministicEngine Private _paramDict As New List(Of Tuple(Of String, IEnumerator)) 'Private _predicateDict As New List(Of Tuple(Of Func(Of Object, Boolean), IEnumerable(Of String))) Private _predicateDict As New List(Of Tuple(Of Object, IList(Of String))) Public Sub AddParam(ByVal name As String, ByVal values As IEnumerable) _paramDict.Add(New Tuple(Of String, IEnumerator)(name, values.GetEnumerator())) End Sub Public Sub AddRequire(ByVal predicate As Func(Of Object, Boolean), ByVal paramNames As IList(Of String)) CheckParamCount(1, paramNames) _predicateDict.Add(New Tuple(Of Object, IList(Of String))(predicate, paramNames)) End Sub Public Sub AddRequire(ByVal predicate As Func(Of Object, Object, Boolean), ByVal paramNames As IList(Of String)) CheckParamCount(2, paramNames) _predicateDict.Add(New Tuple(Of Object, IList(Of String))(predicate, paramNames)) End Sub Public Sub AddRequire(ByVal predicate As Func(Of Object, Object, Object, Boolean), ByVal paramNames As IList(Of String)) CheckParamCount(3, paramNames) _predicateDict.Add(New Tuple(Of Object, IList(Of String))(predicate, paramNames)) End Sub Public Sub AddRequire(ByVal predicate As Func(Of Object, Object, Object, Object, Boolean), ByVal paramNames As IList(Of String)) CheckParamCount(4, paramNames) _predicateDict.Add(New Tuple(Of Object, IList(Of String))(predicate, paramNames)) End Sub Public Sub AddRequire(ByVal predicate As Func(Of Object, Object, Object, Object, Object, Boolean), ByVal paramNames As IList(Of String)) CheckParamCount(5, paramNames) _predicateDict.Add(New Tuple(Of Object, IList(Of String))(predicate, paramNames)) End Sub Public Sub AddRequire(ByVal predicate As Func(Of Object, Object, Object, Object, Object, Object, Boolean), ByVal paramNames As IList(Of String)) CheckParamCount(6, paramNames) _predicateDict.Add(New Tuple(Of Object, IList(Of String))(predicate, paramNames)) End Sub Public Sub AddRequire(ByVal predicate As Func(Of Object, Object, Object, Object, Object, Object, Object, Boolean), ByVal paramNames As IList(Of String)) CheckParamCount(7, paramNames) _predicateDict.Add(New Tuple(Of Object, IList(Of String))(predicate, paramNames)) End Sub Public Sub AddRequire(ByVal predicate As Func(Of Object, Object, Object, Object, Object, Object, Object, Object, Boolean), ByVal paramNames As IList(Of String)) CheckParamCount(8, paramNames) _predicateDict.Add(New Tuple(Of Object, IList(Of String))(predicate, paramNames)) End Sub Sub CheckParamCount(ByVal count As Integer, ByVal paramNames As IList(Of String)) If paramNames.Count <> count Then Throw New Exception("Parameter count does not match.") End If End Sub Public Property IterationOver As Boolean Private _firstTime As Boolean = True Public ReadOnly Property Current As Dictionary(Of String, Object) Get If IterationOver Then Return Nothing Else Dim _nextResult = New Dictionary(Of String, Object) For Each item In _paramDict Dim iter = item.Item2 _nextResult.Add(item.Item1, iter.Current) Next Return _nextResult End If End Get End Property Function MoveNext() As Boolean If IterationOver Then Return False End If If _firstTime Then For Each item In _paramDict Dim iter = item.Item2 iter.MoveNext() Next _firstTime = False Return True Else Dim canMoveNext = False Dim iterIndex = _paramDict.Count - 1 canMoveNext = _paramDict(iterIndex).Item2.MoveNext If canMoveNext Then Return True End If Do While Not canMoveNext iterIndex = iterIndex - 1 If iterIndex = -1 Then Return False IterationOver = True End If canMoveNext = _paramDict(iterIndex).Item2.MoveNext If canMoveNext Then For i = iterIndex + 1 To _paramDict.Count - 1 Dim iter = _paramDict(i).Item2 iter.Reset() iter.MoveNext() Next Return True End If Loop End If End Function Function GetNextResult() As Dictionary(Of String, Object) While MoveNext() Dim result = Current If Satisfy(result) Then Return result End If End While Return Nothing End Function Function Satisfy(ByVal result As Dictionary(Of String, Object)) As Boolean For Each item In _predicateDict Dim pred = item.Item1 Select Case item.Item2.Count Case 1 Dim p1 = DirectCast(pred, Func(Of Object, Boolean)) Dim v1 = result(item.Item2(0)) If Not p1(v1) Then Return False End If Case 2 Dim p2 = DirectCast(pred, Func(Of Object, Object, Boolean)) Dim v1 = result(item.Item2(0)) Dim v2 = result(item.Item2(1)) If Not p2(v1, v2) Then Return False End If Case 3 Dim p3 = DirectCast(pred, Func(Of Object, Object, Object, Boolean)) Dim v1 = result(item.Item2(0)) Dim v2 = result(item.Item2(1)) Dim v3 = result(item.Item2(2)) If Not p3(v1, v2, v3) Then Return False End If Case 4 Dim p4 = DirectCast(pred, Func(Of Object, Object, Object, Object, Boolean)) Dim v1 = result(item.Item2(0)) Dim v2 = result(item.Item2(1)) Dim v3 = result(item.Item2(2)) Dim v4 = result(item.Item2(3)) If Not p4(v1, v2, v3, v4) Then Return False End If Case 5 Dim p5 = DirectCast(pred, Func(Of Object, Object, Object, Object, Object, Boolean)) Dim v1 = result(item.Item2(0)) Dim v2 = result(item.Item2(1)) Dim v3 = result(item.Item2(2)) Dim v4 = result(item.Item2(3)) Dim v5 = result(item.Item2(4)) If Not p5(v1, v2, v3, v4, v5) Then Return False End If Case 6 Dim p6 = DirectCast(pred, Func(Of Object, Object, Object, Object, Object, Object, Boolean)) Dim v1 = result(item.Item2(0)) Dim v2 = result(item.Item2(1)) Dim v3 = result(item.Item2(2)) Dim v4 = result(item.Item2(3)) Dim v5 = result(item.Item2(4)) Dim v6 = result(item.Item2(5)) If Not p6(v1, v2, v3, v4, v5, v6) Then Return False End If Case 7 Dim p7 = DirectCast(pred, Func(Of Object, Object, Object, Object, Object, Object, Object, Boolean)) Dim v1 = result(item.Item2(0)) Dim v2 = result(item.Item2(1)) Dim v3 = result(item.Item2(2)) Dim v4 = result(item.Item2(3)) Dim v5 = result(item.Item2(4)) Dim v6 = result(item.Item2(5)) Dim v7 = result(item.Item2(6)) If Not p7(v1, v2, v3, v4, v5, v6, v7) Then Return False End If Case 8 Dim p8 = DirectCast(pred, Func(Of Object, Object, Object, Object, Object, Object, Object, Object, Boolean)) Dim v1 = result(item.Item2(0)) Dim v2 = result(item.Item2(1)) Dim v3 = result(item.Item2(2)) Dim v4 = result(item.Item2(3)) Dim v5 = result(item.Item2(4)) Dim v6 = result(item.Item2(5)) Dim v7 = result(item.Item2(6)) Dim v8 = result(item.Item2(7)) If Not p8(v1, v2, v3, v4, v5, v6, v7, v8) Then Return False End If Case Else Throw New NotSupportedException End Select Next Return True End FunctionEnd Class    And now we can use the engine to solve the problem we mentioned above:   Code highlighting produced by Actipro CodeHighlighter (freeware)http://www.CodeHighlighter.com/--Sub Test2() Dim engine = New NonDeterministicEngine() engine.AddParam("baker", {1, 2, 3, 4, 5}) engine.AddParam("cooper", {1, 2, 3, 4, 5}) engine.AddParam("fletcher", {1, 2, 3, 4, 5}) engine.AddParam("miller", {1, 2, 3, 4, 5}) engine.AddParam("smith", {1, 2, 3, 4, 5}) engine.AddRequire(Function(baker) As Boolean Return baker <> 5 End Function, {"baker"}) engine.AddRequire(Function(cooper) As Boolean Return cooper <> 1 End Function, {"cooper"}) engine.AddRequire(Function(fletcher) As Boolean Return fletcher <> 1 And fletcher <> 5 End Function, {"fletcher"}) engine.AddRequire(Function(miller, cooper) As Boolean 'Return miller = cooper + 1 Return miller > cooper End Function, {"miller", "cooper"}) engine.AddRequire(Function(smith, fletcher) As Boolean Return smith <> fletcher + 1 And smith <> fletcher - 1 End Function, {"smith", "fletcher"}) engine.AddRequire(Function(fletcher, cooper) As Boolean Return fletcher <> cooper + 1 And fletcher <> cooper - 1 End Function, {"fletcher", "cooper"}) engine.AddRequire(Function(a, b, c, d, e) As Boolean Return a <> b And a <> c And a <> d And a <> e And b <> c And b <> d And b <> e And c <> d And c <> e And d <> e End Function, {"baker", "cooper", "fletcher", "miller", "smith"}) Dim result = engine.GetNextResult() While Not result Is Nothing Console.WriteLine(String.Format("baker: {0}, cooper: {1}, fletcher: {2}, miller: {3}, smith: {4}", result("baker"), result("cooper"), result("fletcher"), result("miller"), result("smith"))) result = engine.GetNextResult() End While Console.WriteLine("Calculation ended.")End Sub   Also, this engine can solve the classic 8 queens puzzle and find out all 92 results for me.   Code highlighting produced by Actipro CodeHighlighter (freeware)http://www.CodeHighlighter.com/--Sub Test3() ' The 8-Queens problem. Dim engine = New NonDeterministicEngine() ' Let's assume that a - h represents the queens in row 1 to 8, then we just need to find out the column number for each of them. engine.AddParam("a", {1, 2, 3, 4, 5, 6, 7, 8}) engine.AddParam("b", {1, 2, 3, 4, 5, 6, 7, 8}) engine.AddParam("c", {1, 2, 3, 4, 5, 6, 7, 8}) engine.AddParam("d", {1, 2, 3, 4, 5, 6, 7, 8}) engine.AddParam("e", {1, 2, 3, 4, 5, 6, 7, 8}) engine.AddParam("f", {1, 2, 3, 4, 5, 6, 7, 8}) engine.AddParam("g", {1, 2, 3, 4, 5, 6, 7, 8}) engine.AddParam("h", {1, 2, 3, 4, 5, 6, 7, 8}) Dim NotInTheSameDiagonalLine = Function(cols As IList) As Boolean For i = 0 To cols.Count - 2 For j = i + 1 To cols.Count - 1 If j - i = Math.Abs(cols(j) - cols(i)) Then Return False End If Next Next Return True End Function engine.AddRequire(Function(a, b, c, d, e, f, g, h) As Boolean Return a <> b AndAlso a <> c AndAlso a <> d AndAlso a <> e AndAlso a <> f AndAlso a <> g AndAlso a <> h AndAlso b <> c AndAlso b <> d AndAlso b <> e AndAlso b <> f AndAlso b <> g AndAlso b <> h AndAlso c <> d AndAlso c <> e AndAlso c <> f AndAlso c <> g AndAlso c <> h AndAlso d <> e AndAlso d <> f AndAlso d <> g AndAlso d <> h AndAlso e <> f AndAlso e <> g AndAlso e <> h AndAlso f <> g AndAlso f <> h AndAlso g <> h AndAlso NotInTheSameDiagonalLine({a, b, c, d, e, f, g, h}) End Function, {"a", "b", "c", "d", "e", "f", "g", "h"}) Dim result = engine.GetNextResult() While Not result Is Nothing Console.WriteLine("(1,{0}), (2,{1}), (3,{2}), (4,{3}), (5,{4}), (6,{5}), (7,{6}), (8,{7})", result("a"), result("b"), result("c"), result("d"), result("e"), result("f"), result("g"), result("h")) result = engine.GetNextResult() End While Console.WriteLine("Calculation ended.")End Sub (Chinese version of the post: http://www.cnblogs.com/RChen/archive/2010/05/17/1737587.html) Cheers,  

    Read the article

1