Search Results

Search found 31 results on 2 pages for 'tanis 7x'.

Page 1/2 | 1 2  | Next Page >

  • Local Variables take 7x longer to access than global variables?

    - by ItzWarty
    I was trying to benchmark the gain/loss of "caching" math.floor, in hopes that I could make calls faster. Here was the test: <html> <head> <script> window.onload = function() { var startTime = new Date().getTime(); var k = 0; for(var i = 0; i < 1000000; i++) k += Math.floor(9.99); var mathFloorTime = new Date().getTime() - startTime; startTime = new Date().getTime(); window.mfloor = Math.floor; k = 0; for(var i = 0; i < 1000000; i++) k += window.mfloor(9.99); var globalFloorTime = new Date().getTime() - startTime; startTime = new Date().getTime(); var mfloor = Math.floor; k = 0; for(var i = 0; i < 1000000; i++) k += mfloor(9.99); var localFloorTime = new Date().getTime() - startTime; document.getElementById("MathResult").innerHTML = mathFloorTime; document.getElementById("globalResult").innerHTML = globalFloorTime; document.getElementById("localResult").innerHTML = localFloorTime; }; </script> </head> <body> Math.floor: <span id="MathResult"></span>ms <br /> var mathfloor: <span id="globalResult"></span>ms <br /> window.mathfloor: <span id="localResult"></span>ms <br /> </body> </html> My results from the test: [Chromium 5.0.308.0]: Math.floor: 49ms var mathfloor: 271ms window.mathfloor: 40ms [IE 8.0.6001.18702] Math.floor: 703ms var mathfloor: 9890ms [LOL!] window.mathfloor: 375ms [Firefox [Minefield] 3.7a4pre] Math.floor: 42ms var mathfloor: 2257ms window.mathfloor: 60ms [Safari 4.0.4[531.21.10] ] Math.floor: 92ms var mathfloor: 289ms window.mathfloor: 90ms [Opera 10.10 build 1893] Math.floor: 500ms var mathfloor: 843ms window.mathfloor: 360ms [Konqueror 4.3.90 [KDE 4.3.90 [KDE 4.4 RC1]]] Math.floor: 453ms var mathfloor: 563ms window.mathfloor: 312ms The variance is random, of course, but for the most part In all cases [this shows time taken]: [takes longer] mathfloor Math.floor window.mathfloor [is faster] Why is this? In my projects i've been using var mfloor = Math.floor, and according to my not-so-amazing benchmarks, my efforts to "optimize" actually slowed down the script by ALOT... Is there any other way to make my code more "efficient"...? I'm at the stage where i basically need to optimize, so no, this isn't "premature optimization"...

    Read the article

  • Why isn't my operator overloading working properly?

    - by Mithrax
    I have the following Polynomial class I'm working on: #include <iostream> using namespace std; class Polynomial { //define private member functions private: int coef[100]; // array of coefficients // coef[0] would hold all coefficients of x^0 // coef[1] would hold all x^1 // coef[n] = x^n ... int deg; // degree of polynomial (0 for the zero polynomial) //define public member functions public: Polynomial::Polynomial() //default constructor { for ( int i = 0; i < 100; i++ ) { coef[i] = 0; } } void set ( int a , int b ) //setter function { //coef = new Polynomial[b+1]; coef[b] = a; deg = degree(); } int degree() { int d = 0; for ( int i = 0; i < 100; i++ ) if ( coef[i] != 0 ) d = i; return d; } void print() { for ( int i = 99; i >= 0; i-- ) { if ( coef[i] != 0 ) { cout << coef[i] << "x^" << i << " "; } } } // use Horner's method to compute and return the polynomial evaluated at x int evaluate ( int x ) { int p = 0; for ( int i = deg; i >= 0; i-- ) p = coef[i] + ( x * p ); return p; } // differentiate this polynomial and return it Polynomial differentiate() { if ( deg == 0 ) { Polynomial t; t.set ( 0, 0 ); return t; } Polynomial deriv;// = new Polynomial ( 0, deg - 1 ); deriv.deg = deg - 1; for ( int i = 0; i < deg; i++ ) deriv.coef[i] = ( i + 1 ) * coef[i + 1]; return deriv; } Polynomial Polynomial::operator + ( Polynomial b ) { Polynomial a = *this; //a is the poly on the L.H.S Polynomial c; for ( int i = 0; i <= a.deg; i++ ) c.coef[i] += a.coef[i]; for ( int i = 0; i <= b.deg; i++ ) c.coef[i] += b.coef[i]; c.deg = c.degree(); return c; } Polynomial Polynomial::operator += ( Polynomial b ) { Polynomial a = *this; //a is the poly on the L.H.S Polynomial c; for ( int i = 0; i <= a.deg; i++ ) c.coef[i] += a.coef[i]; for ( int i = 0; i <= b.deg; i++ ) c.coef[i] += b.coef[i]; c.deg = c.degree(); for ( int i = 0; i < 100; i++) a.coef[i] = c.coef[i]; a.deg = a.degree(); return a; } Polynomial Polynomial::operator -= ( Polynomial b ) { Polynomial a = *this; //a is the poly on the L.H.S Polynomial c; for ( int i = 0; i <= a.deg; i++ ) c.coef[i] += a.coef[i]; for ( int i = 0; i <= b.deg; i++ ) c.coef[i] -= b.coef[i]; c.deg = c.degree(); for ( int i = 0; i < 100; i++) a.coef[i] = c.coef[i]; a.deg = a.degree(); return a; } Polynomial Polynomial::operator *= ( Polynomial b ) { Polynomial a = *this; //a is the poly on the L.H.S Polynomial c; for ( int i = 0; i <= a.deg; i++ ) for ( int j = 0; j <= b.deg; j++ ) c.coef[i+j] += ( a.coef[i] * b.coef[j] ); c.deg = c.degree(); for ( int i = 0; i < 100; i++) a.coef[i] = c.coef[i]; a.deg = a.degree(); return a; } Polynomial Polynomial::operator - ( Polynomial b ) { Polynomial a = *this; //a is the poly on the L.H.S Polynomial c; for ( int i = 0; i <= a.deg; i++ ) c.coef[i] += a.coef[i]; for ( int i = 0; i <= b.deg; i++ ) c.coef[i] -= b.coef[i]; c.deg = c.degree(); return c; } Polynomial Polynomial::operator * ( Polynomial b ) { Polynomial a = *this; //a is the poly on the L.H.S Polynomial c; for ( int i = 0; i <= a.deg; i++ ) for ( int j = 0; j <= b.deg; j++ ) c.coef[i+j] += ( a.coef[i] * b.coef[j] ); c.deg = c.degree(); return c; } }; int main() { Polynomial a, b, c, d; a.set ( 7, 4 ); //7x^4 a.set ( 1, 2 ); //x^2 b.set ( 6, 3 ); //6x^3 b.set ( -3, 2 ); //-3x^2 c = a - b; // (7x^4 + x^2) - (6x^3 - 3x^2) a -= b; c.print(); cout << "\n"; a.print(); cout << "\n"; c = a * b; // (7x^4 + x^2) * (6x^3 - 3x^2) c.print(); cout << "\n"; d = c.differentiate().differentiate(); d.print(); cout << "\n"; cout << c.evaluate ( 2 ); //substitue x with 2 cin.get(); } Now, I have the "-" operator overloaded and it works fine: Polynomial Polynomial::operator - ( Polynomial b ) { Polynomial a = *this; //a is the poly on the L.H.S Polynomial c; for ( int i = 0; i <= a.deg; i++ ) c.coef[i] += a.coef[i]; for ( int i = 0; i <= b.deg; i++ ) c.coef[i] -= b.coef[i]; c.deg = c.degree(); return c; } However, I'm having difficulty with my "-=" operator: Polynomial Polynomial::operator -= ( Polynomial b ) { Polynomial a = *this; //a is the poly on the L.H.S Polynomial c; for ( int i = 0; i <= a.deg; i++ ) c.coef[i] += a.coef[i]; for ( int i = 0; i <= b.deg; i++ ) c.coef[i] -= b.coef[i]; c.deg = c.degree(); // overwrite value of 'a' with the newly computed 'c' before returning 'a' for ( int i = 0; i < 100; i++) a.coef[i] = c.coef[i]; a.deg = a.degree(); return a; } I just slightly modified my "-" operator method to overwrite the value in 'a' and return 'a', and just use the 'c' polynomial as a temp. I've put in some debug print statement and I confirm that at the time of computation, both: c = a - b; and a -= b; are computed to the same value. However, when I go to print them, their results are different: Polynomial a, b; a.set ( 7, 4 ); //7x^4 a.set ( 1, 2 ); //x^2 b.set ( 6, 3 ); //6x^3 b.set ( -3, 2 ); //-3x^2 c = a - b; // (7x^4 + x^2) - (6x^3 - 3x^2) a -= b; c.print(); cout << "\n"; a.print(); cout << "\n"; Result: 7x^4 -6x^3 4x^2 7x^4 1x^2 Why is my c = a - b and a -= b giving me different results when I go to print them?

    Read the article

  • Scrolling RelativeLayout- white border over part of the content

    - by Tanis.7x
    I have a fairly simply Fragment that adds a handful of colored ImageViews to a RelativeLayout. There are more images than can fit on screen, so I implemented some custom scrolling. However, When I scroll around, I see that there is an approximately 90dp white border overlapping part of the content right where the edges of the screen are before I scroll. It is obvious that the ImageViews are still being created and drawn properly, but they are being covered up. How do I get rid of this? I have tried: Changing both the RelativeLayout and FrameLayout to WRAP_CONTENT, FILL_PARENT, MATCH_PARENT, and a few combinations of those. Setting the padding and margins of both layouts to 0dp. Example: Fragment: public class MyFrag extends Fragment implements OnTouchListener { int currentX; int currentY; RelativeLayout container; final int[] colors = {Color.BLACK, Color.RED, Color.BLUE}; @Override public View onCreateView(LayoutInflater inflater, ViewGroup fragContainer, Bundle savedInstanceState) { return inflater.inflate(R.layout.fragment_myfrag, null); } @Override public void onActivityCreated(Bundle savedInstanceState) { super.onActivityCreated(savedInstanceState); container = (RelativeLayout) getView().findViewById(R.id.container); container.setOnTouchListener(this); // Temp- Add a bunch of images to test scrolling for(int i=0; i<1500; i+=100) { for (int j=0; j<1500; j+=100) { int color = colors[(i+j)%3]; ImageView image = new ImageView(getActivity()); image.setScaleType(ImageView.ScaleType.CENTER); image.setBackgroundColor(color); LayoutParams lp = new RelativeLayout.LayoutParams(100, 100); lp.setMargins(i, j, 0, 0); image.setLayoutParams(lp); container.addView(image); } } } @Override public boolean onTouch(View v, MotionEvent event) { switch (event.getAction()) { case MotionEvent.ACTION_DOWN: { currentX = (int) event.getRawX(); currentY = (int) event.getRawY(); break; } case MotionEvent.ACTION_MOVE: { int x2 = (int) event.getRawX(); int y2 = (int) event.getRawY(); container.scrollBy(currentX - x2 , currentY - y2); currentX = x2; currentY = y2; break; } case MotionEvent.ACTION_UP: { break; } } return true; } } XML: <FrameLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:tools="http://schemas.android.com/tools" android:layout_width="fill_parent" android:layout_height="fill_parent" tools:context=".FloorPlanFrag"> <RelativeLayout android:id="@+id/container" android:layout_width="fill_parent" android:layout_height="fill_parent" /> </FrameLayout>

    Read the article

  • MonoTouch & SQLite - Cannot open database after previous successful connections

    - by Tanis Draven
    I am having difficulty in reading data from my SQLite database from MonoTouch. I can read and write without any difficulty for the first few screens and then suddenly I am unable to create any further connections with the error: Mono.Data.Sqlite.SqliteException: Unable to open the database file at Mono.Data.Sqlite.SQLite3.Open (System.String strFilename, SQLiteOpenFlagsEnum flags, Int32 maxPoolSize, Boolean usePool) [0x0007e] in /Developer/MonoTouch/Source/mono/mcs/class/Mono.Data.Sqlite/Mono.Data.Sqlite_2.0/SQLite3.cs:136 at Mono.Data.Sqlite.SqliteConnection.Open () [0x002aa] in /Developer/MonoTouch/Source/mono/mcs/class/Mono.Data.Sqlite/Mono.Data.Sqlite_2.0/SQLiteConnection.cs:888 I ensure that i dispose and close every connection each time i use it but still i have this problem. For example: var mySqlConn = new SqliteConnection(GlobalVars.connectionString); mySqlConn.Open(); SqliteCommand mySqlCommand = new SqliteCommand(SQL, mySqlConn); mySqlCommand.ExecuteNonQuery(); mySqlConn.Close(); mySqlCommand.Dispose(); mySqlConn.Dispose(); I'm guessing that I'm not closing the connections correctly. Any help would be greatly appreciated.

    Read the article

  • Voice Control iOS

    - by Marc Tanis
    I would like to build a simple reader app for the iPad 2 that would allow users to navigate/read via voice controls. The app would allow the user to enter a mode where the microphone was live and listened for predefined keywords like 'down', 'up', 'next', 'back', 'home', etc. I don't want to reinvent the wheel on this so I'm just wondering first, if someone has done this already and if not, are there any good tutorials or SDKs available to help with recording someone's voice, and then comparing future output to see if it matches, or just dealing with the microphone in general?

    Read the article

  • best add-ons for Firefox 4

    - by anirudha
    Firefox is a great tool for web development and have many great feature like addons , plugin or many other customization to make development easier and best. here is the list of plugin for Firefox 4 [upcoming] Firebug : 1.7x [in development] Web Developer [stable] Firequery [stable but not reviewed] Firecookie [stable] Colorzilla[direct from developer site] Adblock[stable] measureit[direct from developer site]

    Read the article

  • On Demand Webinar: Extreme Database Performance meets its Backup and Recovery Match

    - by Cinzia Mascanzoni
    Oracle’s Sun ZFS Backup Appliance is a tested, validated and supported backup appliance specifically tuned for Oracle engineered system backup and recovery. The Sun ZFS Backup Appliance is easily integrated with Oracle engineered systems and provides an integrated high-performance backup solution that reduces backup windows by up to 7x and recovery time by up to 4x compared to competitor engineered systems backup solutions. Invite partners to register to attend this webcast to learn how the Sun ZFS Backup Appliance can provide superior performance, cost effectiveness, simplified management and reduced risk.

    Read the article

  • SPARC T5-8 Servers EMEA Acceleration Promotion for Partners

    - by mseika
    Dear all We are pleased to announce the EMEA T5-8 Acceleration Promotion, a price promotion that, for a limited time, makes the T5-8 server available to our EMEA partners at a very attractive discount. Why the SPARC T5-8 server Oracle's SPARC servers running Oracle Solaris are ideal for mission-critical applications requiring high performance, best-in-class availability, and unmatched scalability on all application tiers. SPARC servers include built-in virtualization, systems management, and security at no additional cost. Designed for applications that demand the highest performance and 24x7 availability. Oracle's SPARC T5-8 server is the fastest and the most advanced, scalable midrange server in the Oracle portfolio. The Oracle SPARC T5-8 server is in the sweet spot of the UNIX midrange, and directly competing with IBM P770(+) and P780(+) systems, with a 7x price advantage (see official Oracle press release) over a similarly configured P780 system! What are we offering Effective immediately, the fully-configured T5-8 server is available to VADs with a 38% discount off price list: this is 8 additional points on top of the standard 30% contractual discount. The promo will be communicated to VADs and VARs, and VADs are expected to pass the additional discount through to the VARs. Resellers will be encouraged to use this attractive price to position T5-8 versus the competition, accelerate T5-8 sales, and use the increased margin to offer additional services to their end users - thus expanding their footprint within their customers and making the T5-8 business proposition even more compelling. This is a unique opportunity for partners to expand their base and beat the competition with a 7x price advantage over a similarly configured IBM P780. This price promotion is only available to OPN Partners, and is valid until November 30, 2013. What's in it for Partners  More competitive price More customer budget available for more projects: attach migration services, training, ... Opportunity to attach Storage, and additional Software Higher win rate Additional Details The promotion is valid for the existing configurations of T5-8 with 8 CPU and different memory configurations, including all X-options that are part of the system and ordered at the same time. 8% additional discount to the VAD on full T5-8 - Including X-Options: Cat V (30% + 8% additional): System, CPU, Memory, Disks, Ethernet Cat U (22% + 8% additional): Infiniband HCA Cat W (30% + 8% additional): FC/SAS HBA / FCoE CNA Partner eligibilty criteria Standard requirements apply. Partners must: be an OPN member in good standing, at Gold level or above meet the Resale criteria in the SPARC T-Series servers Knowledge Zone have a right to distribute hardware via the Full Use Distribution Agreement, with Hardware Addendum if applicable. Order process The promotion is available until November 30, 2013. VADs place the order via Oracle Partner Store. A request for extra-discount has to be raised in advance using the standard process for available configs: input the configuration apply the suggested discounts submit the request in the request documentation, please refer to EMEA T5-8 FY14H1 Channel Promotion as approved in GDMT GT-EB2-Q413-107C This promotion is only valid for the T5-8 configurations stated in this announcement. Any change, or additional products / items not listed explicitly, can be ordered at the same time and will follow standard approval process. Key contacts Your local A&C organization For questions on EMEA Partner Programs for Servers: Giuseppe Facchetti For questions on the T5-8 product: Martin de Jong Best regards, Olivier Tordo Senior Director, Sales & Strategy, Hardware SolutionsEMEA Alliances & Channels Paul Flannery Senior Director, EMEA Servers Product Management

    Read the article

  • SPARC T5-8 Servers EMEA Acceleration Promotion for Partners

    - by mseika
    Dear all We are pleased to announce the EMEA T5-8 Acceleration Promotion, a price promotion that, for a limited time, makes the T5-8 server available to our EMEA partners at a very attractive discount. Why the SPARC T5-8 server Oracle's SPARC servers running Oracle Solaris are ideal for mission-critical applications requiring high performance, best-in-class availability, and unmatched scalability on all application tiers. SPARC servers include built-in virtualization, systems management, and security at no additional cost. Designed for applications that demand the highest performance and 24x7 availability. Oracle's SPARC T5-8 server is the fastest and the most advanced, scalable midrange server in the Oracle portfolio. The Oracle SPARC T5-8 server is in the sweet spot of the UNIX midrange, and directly competing with IBM P770(+) and P780(+) systems, with a 7x price advantage (see official Oracle press release) over a similarly configured P780 system! What are we offering Effective immediately, the fully-configured T5-8 server is available to VADs with a 38% discount off price list: this is 8 additional points on top of the standard 30% contractual discount. The promo will be communicated to VADs and VARs, and VADs are expected to pass the additional discount through to the VARs. Resellers will be encouraged to use this attractive price to position T5-8 versus the competition, accelerate T5-8 sales, and use the increased margin to offer additional services to their end users - thus expanding their footprint within their customers and making the T5-8 business proposition even more compelling. This is a unique opportunity for partners to expand their base and beat the competition with a 7x price advantage over a similarly configured IBM P780. This price promotion is only available to OPN Partners, and is valid until November 30, 2013. What's in it for Partners  More competitive price More customer budget available for more projects: attach migration services, training, ... Opportunity to attach Storage, and additional Software Higher win rate Additional Details The promotion is valid for the existing configurations of T5-8 with 8 CPU and different memory configurations, including all X-options that are part of the system and ordered at the same time. 8% additional discount to the VAD on full T5-8 - Including X-Options: Cat V (30% + 8% additional): System, CPU, Memory, Disks, Ethernet Cat U (22% + 8% additional): Infiniband HCA Cat W (30% + 8% additional): FC/SAS HBA / FCoE CNA Partner eligibilty criteria Standard requirements apply. Partners must: be an OPN member in good standing, at Gold level or above meet the Resale criteria in the SPARC T-Series servers Knowledge Zone have a right to distribute hardware via the Full Use Distribution Agreement, with Hardware Addendum if applicable. Order process The promotion is available until November 30, 2013. VADs place the order via Oracle Partner Store. A request for extra-discount has to be raised in advance using the standard process for available configs: input the configuration apply the suggested discounts submit the request in the request documentation, please refer to EMEA T5-8 FY14H1 Channel Promotion as approved in GDMT GT-EB2-Q413-107C This promotion is only valid for the T5-8 configurations stated in this announcement. Any change, or additional products / items not listed explicitly, can be ordered at the same time and will follow standard approval process. Key contacts Your local A&C organization For questions on EMEA Partner Programs for Servers: Giuseppe Facchetti For questions on the T5-8 product: Martin de Jong Best regards, Olivier Tordo Senior Director, Sales & Strategy, Hardware SolutionsEMEA Alliances & Channels Paul Flannery Senior Director, EMEA Servers Product Management

    Read the article

  • SPARC T5-8 Servers EMEA Acceleration Promotion for Partners

    - by mseika
    Dear all We are pleased to announce the EMEA T5-8 Acceleration Promotion, a price promotion that, for a limited time, makes the T5-8 server available to our EMEA partners at a very attractive discount. Why the SPARC T5-8 server Oracle's SPARC servers running Oracle Solaris are ideal for mission-critical applications requiring high performance, best-in-class availability, and unmatched scalability on all application tiers. SPARC servers include built-in virtualization, systems management, and security at no additional cost. Designed for applications that demand the highest performance and 24x7 availability. Oracle's SPARC T5-8 server is the fastest and the most advanced, scalable midrange server in the Oracle portfolio. The Oracle SPARC T5-8 server is in the sweet spot of the UNIX midrange, and directly competing with IBM P770(+) and P780(+) systems, with a 7x price advantage (see official Oracle press release) over a similarly configured P780 system! What are we offering Effective immediately, the fully-configured T5-8 server is available to VADs with a 38% discount off price list: this is 8 additional points on top of the standard 30% contractual discount. The promo will be communicated to VADs and VARs, and VADs are expected to pass the additional discount through to the VARs. Resellers will be encouraged to use this attractive price to position T5-8 versus the competition, accelerate T5-8 sales, and use the increased margin to offer additional services to their end users - thus expanding their footprint within their customers and making the T5-8 business proposition even more compelling. This is a unique opportunity for partners to expand their base and beat the competition with a 7x price advantage over a similarly configured IBM P780. This price promotion is only available to OPN Partners, and is valid until November 30, 2013. What's in it for Partners  More competitive price More customer budget available for more projects: attach migration services, training, ... Opportunity to attach Storage, and additional Software Higher win rate Additional Details The promotion is valid for the existing configurations of T5-8 with 8 CPU and different memory configurations, including all X-options that are part of the system and ordered at the same time. 8% additional discount to the VAD on full T5-8 - Including X-Options: Cat V (30% + 8% additional): System, CPU, Memory, Disks, Ethernet Cat U (22% + 8% additional): Infiniband HCA Cat W (30% + 8% additional): FC/SAS HBA / FCoE CNA Partner eligibilty criteria Standard requirements apply. Partners must: be an OPN member in good standing, at Gold level or above meet the Resale criteria in the SPARC T-Series servers Knowledge Zone have a right to distribute hardware via the Full Use Distribution Agreement, with Hardware Addendum if applicable. Order process The promotion is available until November 30, 2013. VADs place the order via Oracle Partner Store. A request for extra-discount has to be raised in advance using the standard process for available configs: input the configuration apply the suggested discounts submit the request in the request documentation, please refer to EMEA T5-8 FY14H1 Channel Promotion as approved in GDMT GT-EB2-Q413-107C This promotion is only valid for the T5-8 configurations stated in this announcement. Any change, or additional products / items not listed explicitly, can be ordered at the same time and will follow standard approval process. Key contacts Your local A&C organization For questions on EMEA Partner Programs for Servers: Giuseppe Facchetti For questions on the T5-8 product: Martin de Jong Best regards, Olivier Tordo Senior Director, Sales & Strategy, Hardware SolutionsEMEA Alliances & Channels Paul Flannery Senior Director, EMEA Servers Product Management

    Read the article

  • SPARC T5-8 Servers EMEA Acceleration Promotion for Partners

    - by mseika
    Dear all We are pleased to announce the EMEA T5-8 Acceleration Promotion, a price promotion that, for a limited time, makes the T5-8 server available to our EMEA partners at a very attractive discount. Why the SPARC T5-8 server Oracle's SPARC servers running Oracle Solaris are ideal for mission-critical applications requiring high performance, best-in-class availability, and unmatched scalability on all application tiers. SPARC servers include built-in virtualization, systems management, and security at no additional cost. Designed for applications that demand the highest performance and 24x7 availability. Oracle's SPARC T5-8 server is the fastest and the most advanced, scalable midrange server in the Oracle portfolio. The Oracle SPARC T5-8 server is in the sweet spot of the UNIX midrange, and directly competing with IBM P770(+) and P780(+) systems, with a 7x price advantage (see official Oracle press release) over a similarly configured P780 system! What are we offering Effective immediately, the fully-configured T5-8 server is available to VADs with a 38% discount off price list: this is 8 additional points on top of the standard 30% contractual discount. The promo will be communicated to VADs and VARs, and VADs are expected to pass the additional discount through to the VARs. Resellers will be encouraged to use this attractive price to position T5-8 versus the competition, accelerate T5-8 sales, and use the increased margin to offer additional services to their end users - thus expanding their footprint within their customers and making the T5-8 business proposition even more compelling. This is a unique opportunity for partners to expand their base and beat the competition with a 7x price advantage over a similarly configured IBM P780. This price promotion is only available to OPN Partners, and is valid until November 30, 2013. What's in it for Partners  More competitive price More customer budget available for more projects: attach migration services, training, ... Opportunity to attach Storage, and additional Software Higher win rate Additional Details The promotion is valid for the existing configurations of T5-8 with 8 CPU and different memory configurations, including all X-options that are part of the system and ordered at the same time. 8% additional discount to the VAD on full T5-8 - Including X-Options: Cat V (30% + 8% additional): System, CPU, Memory, Disks, Ethernet Cat U (22% + 8% additional): Infiniband HCA Cat W (30% + 8% additional): FC/SAS HBA / FCoE CNA Partner eligibilty criteria Standard requirements apply. Partners must: be an OPN member in good standing, at Gold level or above meet the Resale criteria in the SPARC T-Series servers Knowledge Zone have a right to distribute hardware via the Full Use Distribution Agreement, with Hardware Addendum if applicable. Order process The promotion is available until November 30, 2013. VADs place the order via Oracle Partner Store. A request for extra-discount has to be raised in advance using the standard process for available configs: input the configuration apply the suggested discounts submit the request in the request documentation, please refer to EMEA T5-8 FY14H1 Channel Promotion as approved in GDMT GT-EB2-Q413-107C This promotion is only valid for the T5-8 configurations stated in this announcement. Any change, or additional products / items not listed explicitly, can be ordered at the same time and will follow standard approval process. Key contacts Your local A&C organization For questions on EMEA Partner Programs for Servers: Giuseppe Facchetti For questions on the T5-8 product: Martin de Jong Best regards, Olivier Tordo Senior Director, Sales & Strategy, Hardware SolutionsEMEA Alliances & Channels Paul Flannery Senior Director, EMEA Servers Product Management

    Read the article

  • Faster Memory Allocation Using vmtasks

    - by Steve Sistare
    You may have noticed a new system process called "vmtasks" on Solaris 11 systems: % pgrep vmtasks 8 % prstat -p 8 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP 8 root 0K 0K sleep 99 -20 9:10:59 0.0% vmtasks/32 What is vmtasks, and why should you care? In a nutshell, vmtasks accelerates creation, locking, and destruction of pages in shared memory segments. This is particularly helpful for locked memory, as creating a page of physical memory is much more expensive than creating a page of virtual memory. For example, an ISM segment (shmflag & SHM_SHARE_MMU) is locked in memory on the first shmat() call, and a DISM segment (shmflg & SHM_PAGEABLE) is locked using mlock() or memcntl(). Segment operations such as creation and locking are typically single threaded, performed by the thread making the system call. In many applications, the size of a shared memory segment is a large fraction of total physical memory, and the single-threaded initialization is a scalability bottleneck which increases application startup time. To break the bottleneck, we apply parallel processing, harnessing the power of the additional CPUs that are always present on modern platforms. For sufficiently large segments, as many of 16 threads of vmtasks are employed to assist an application thread during creation, locking, and destruction operations. The segment is implicitly divided at page boundaries, and each thread is given a chunk of pages to process. The per-page processing time can vary, so for dynamic load balancing, the number of chunks is greater than the number of threads, and threads grab chunks dynamically as they finish their work. Because the threads modify a single application address space in compressed time interval, contention on locks protecting VM data structures locks was a problem, and we had to re-scale a number of VM locks to get good parallel efficiency. The vmtasks process has 1 thread per CPU and may accelerate multiple segment operations simultaneously, but each operation gets at most 16 helper threads to avoid monopolizing CPU resources. We may reconsider this limit in the future. Acceleration using vmtasks is enabled out of the box, with no tuning required, and works for all Solaris platform architectures (SPARC sun4u, SPARC sun4v, x86). The following tables show the time to create + lock + destroy a large segment, normalized as milliseconds per gigabyte, before and after the introduction of vmtasks: ISM system ncpu before after speedup ------ ---- ------ ----- ------- x4600 32 1386 245 6X X7560 64 1016 153 7X M9000 512 1196 206 6X T5240 128 2506 234 11X T4-2 128 1197 107 11x DISM system ncpu before after speedup ------ ---- ------ ----- ------- x4600 32 1582 265 6X X7560 64 1116 158 7X M9000 512 1165 152 8X T5240 128 2796 198 14X (I am missing the data for T4 DISM, for no good reason; it works fine). The following table separates the creation and destruction times: ISM, T4-2 before after ------ ----- create 702 64 destroy 495 43 To put this in perspective, consider creating a 512 GB ISM segment on T4-2. Creating the segment would take 6 minutes with the old code, and only 33 seconds with the new. If this is your Oracle SGA, you save over 5 minutes when starting the database, and you also save when shutting it down prior to a restart. Those minutes go directly to your bottom line for service availability.

    Read the article

  • Single/Mulitple LUN for vmware vm hosting

    - by Yucong Sun
    I'm building a iscsi storage system for hosting about ~500 Vmware vm running concurrently. And I have a disk array with 15 disks, I only need moderate write performance but preferably not SPOFed. so, that leaves me with RAID1 / RAID10 , I have couple choices: 1) 3x LUN 4disk RAID10 + 3 hot-swap 2) 1x LUN 14disk RAID10 + 1 hot-swap 3) 7x LUN 2disk RAID1 + 1 host-swap Which way is better? Is there a real problem running 500 vms on single LUN? and would it be better to resort to 7 LUns so each VM is better isolated with each other?

    Read the article

  • Multiple CD writer taking long to burn

    - by Mirage
    I have installed 6 DVD writers in Tower case. I am using Alcohol Software to burn multiple CDS. I have seen that about 4 dvd/cd writer finish recording early but some take long time finish and their speed is around 7x. Its not that those are the only writers doing that, some times other writer write slowly. But there are always 1 or 2 writer which takes about 25 min to write the 700Mb cd and some finish in 5 mins Why is that. All writers can write upto 40px speed. Which thing determines the speed

    Read the article

  • 2012 Oracle Fusion Middleware Innovation Awards for Oracle Exalogic

    - by Sanjeev Sharma
    Companies from around the world were honored for their innovative solutions using Oracle Fusion Middleware. This year’s 27 award winners, representing 11 countries and a wide span of industries, wowed the judges with a range of projects across eight product categories. 4 awards were given out to customers who demonstrated innovative application of Oracle Exalogic for their mission-critical applications.Below is an overview of the 4 businesses that won the Oracle Fusion Middleware Innovation Award for Oracle Exalogic this year. Company: Netshoes About: Leading online retailer of sporting goods in Latin America.Challenges: Rapid business growth resulted in frequent outages and poor response-time of online store-front Conventional ad-hoc approach to horizontal scaling resulted in high CAPEX and OPEX Poor performance and unavailability of online store-front resulted in revenue loss from purchase abandonment Solution: Consolidated ATG Commerce and Oracle WebLogic running on Oracle Exalogic.Business Impact:Reduced abandonment rates resulting in a two-digit increase in online conversion rates translating directly into revenue up-liftCompany: ClaroAbout: Leading communications services provider in Latin America.Challenges: Support business growth over the next 3  - 5 years while maximizing re-use of existing middleware and application investments with minimal effort and risk Solution: Consolidated Oracle Fusion Middleware components (Oracle WebLogic, Oracle SOA Suite, Oracle Tuxedo) and JAVA applications onto Oracle Exalogic and Oracle Exadata. Business Impact:Improved partner SLA’s 7x while improving throughput 5X and response-time 35x for  JAVA applicationsCompany: ULAbout: Leading safety testing and certification organization in the world.Challenges: Transition from being a non-profit to a profit oriented enterprise and grow from a $1B to $5B in annual revenues in the next 5 years Undertake a massive business transformation by aligning change strategy with execution Solution: Consolidated Oracle Applications (E-Business Suite, Siebel, BI, Hyperion) and Oracle Fusion Middleware (AIA, SOA Suite) on Oracle Exalogic and Oracle ExadataBusiness Impact:Reduced financial and operating risk in re-architecting IT services to support new business capabilities supporting 87,000 manufacturersCompany: Ingersoll RandAbout: Leading manufacturer of industrial, climate, residential and security solutions.Challenges: Business continuity risks due to complexity in enforcing consistent operational and financial controls; Re-active business decisions reduced ability to offer differentiation and compete Solution: Consolidated Oracle E-business Suite on Oracle Exalogic and Oracle ExadataBusiness Impact:Service differentiation with faster order provisioning and a shorter lead-to-cash cycle translating into higher customer satisfaction and quicker cash-conversionCheck out the winners of the Oracle Fusion Middleware Innovation awards in other categories here.

    Read the article

  • Javascript: Machine Constants Applicable?

    - by DavidB2013
    I write numerical routines for students of science and engineering (although they are freely available for use by anybody else as well) and am wondering how to properly use machine constants in a JavaScript program, or if they are even applicable. For example, say I am writing a program in C++ that numerically computes the roots of the following equation: exp(-0.7x) + sin(3x) - 1.2x + 0.3546 = 0 A root-finding routine should be able to compute roots to within the machine epsilon. In C++, this value is specified by the language: DBL_EPSILON. C++ also specifies the smallest and largest values that can be held by a float or double variable. However, how does this convert to JavaScript? Since a Javascript program runs in a web browser, and I don't know what kind of computer will run the program, and JavaScript does not have corresponding predefined values for these quantities, how can I implement my own version of these constants so that my programs compute results to as much accuracy as allowed on the computer running the web browser? My first draft is to simply copy over the literal constants from C++: FLT_MIN: 1.17549435082229e-038 FLT_MAX: 3.40282346638529e+038 DBL_EPSILON: 2.2204460492503131e-16 I am also willing to write small code blocks that could compute these values for each machine on which the program is run. That way, a supercomputer might compute results to a higher accuracy than an old, low-level, PC. BUT, I don't know if such a routine would actually reach the computer, in which case, I would be wasting my time. Anybody here know how to compute and use (in Javascript) values that correspond to machine constants in a compiled language? Is it worth my time to write small programs in Javascript that compute DBL_EPSILON, FLT_MIN, FLT_MIN, etc. for use in numerical routines? Or am I better off simply assigning literal constants that come straight from C++ on a standard Windows PC?

    Read the article

  • Oracle Exalogic Customer Momentum @ OOW'12

    - by Sanjeev Sharma
    [Adapted from here]  At Oracle Open World 2012, i sat down with some of the Oracle Exalogic early adopters  to discuss the business benefits these businesses were realizing by embracing the engineered systems approach to data-center modernization and application consolidation. Below is an overview of the 4 businesses that won the Oracle Fusion Middleware Innovation Award for Oracle Exalogic this year. Company: Netshoes About: Leading online retailer of sporting goods in Latin America.Challenges: Rapid business growth resulted in frequent outages and poor response-time of online store-front Conventional ad-hoc approach to horizontal scaling resulted in high CAPEX and OPEX Poor performance and unavailability of online store-front resulted in revenue loss from purchase abandonment Solution: Consolidated ATG Commerce and Oracle WebLogic running on Oracle Exalogic.Business Impact:Reduced abandonment rates resulting in a two-digit increase in online conversion rates translating directly into revenue up-liftCompany: ClaroAbout: Leading communications services provider in Latin America.Challenges: Support business growth over the next 3  - 5 years while maximizing re-use of existing middleware and application investments with minimal effort and risk Solution: Consolidated Oracle Fusion Middleware components (Oracle WebLogic, Oracle SOA Suite, Oracle Tuxedo) and JAVA applications onto Oracle Exalogic and Oracle Exadata. Business Impact:Improved partner SLA’s 7x while improving throughput 5X and response-time 35x for  JAVA applicationsCompany: ULAbout: Leading safety testing and certification organization in the world.Challenges: Transition from being a non-profit to a profit oriented enterprise and grow from a $1B to $5B in annual revenues in the next 5 years Undertake a massive business transformation by aligning change strategy with execution Solution: Consolidated Oracle Applications (E-Business Suite, Siebel, BI, Hyperion) and Oracle Fusion Middleware (AIA, SOA Suite) on Oracle Exalogic and Oracle ExadataBusiness Impact:Reduced financial and operating risk in re-architecting IT services to support new business capabilities supporting 87,000 manufacturersCompany: Ingersoll RandAbout: Leading manufacturer of industrial, climate, residential and security solutions.Challenges: Business continuity risks due to complexity in enforcing consistent operational and financial controls; Re-active business decisions reduced ability to offer differentiation and compete Solution: Consolidated Oracle E-business Suite on Oracle Exalogic and Oracle ExadataBusiness Impact:Service differentiation with faster order provisioning and a shorter lead-to-cash cycle translating into higher customer satisfaction and quicker cash-conversionCheck out the winners of the Oracle Fusion Middleware Innovation awards in other categories here.

    Read the article

  • ACT On' OVCA for Cloud Providers Program Launch Webcast: June 12, 2014 - 9am UKT / 10am CET / 11am EET

    - by Cinzia Mascanzoni
    Normal 0 false false false EN-US X-NONE X-NONE We invite you to join the OVCA for Cloud Providers ‘ACT On' program launch at 11am BST / 12noon CET on June 12. · More and more customers realize the value of shifting to a Converged IT Infrastructure, this is why IDC expects this market to grow 40% annually for the next 2 years. · The Oracle Virtual Compute Appliance (OVCA) with attached ZFS storage is the perfect answer to this market trend. By providing rapid application and cloud deployment, OVCA allows customers to cut capital expenditures by up to 50% and deploy key applications up to 7x faster. · For Partners, OVCA supports their journey to consolidation, virtualization and cloud, and allows them to sell higher value services to their customers. The objective of this webcast is to share with you the OVCA value proposition, help you identify the best target partners, and provide you with the Enablement and Demand Generation content and resources. To register and for further details click here /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Read the article

  • Sabre Manages Fast Data Growth with Oracle Data Integration Products

    - by Irem Radzik
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} Last year at OpenWorld we announced Sabre Holding as a winner of the Fusion Middleware Innovation Awards. The Sabre team did an excellent job at leveraging cutting edge technologies for managing rapid data growth and exponential scalability demands they have experienced in the travel industry. Today we announced the details and specific benefits of Sabre’s new real-time data integration solution in a press release. Please take a look if you haven’t seen it yet. Sabre Holdings Deploys Oracle Data Integrator and Oracle GoldenGate to Support Rapid Customer Growth There are 3 different areas of benefits Sabre achieved by using Oracle Data Integration products: Manages 7X increase in data sources for the enterprise data warehouse Reduced infrastructure complexity Decreased time to market for new products and services by 30 percent. This simply shows that using latest technologies helps the companies to innovate robust solutions against today’s key data management challenges. And the benefit of using a next generation data integration technology is not only seen in the IT operations, but also in the business side. A better data integration solution for the enterprise data warehouse delivered the platform they need to accelerate how they service their customers, improving their competitive advantage. Tomorrow I will give another great example of innovation with next generation data integration from Oracle. We will be discussing the Fusion Middleware Innovation Awards 2012 winners and their results with using Oracle’s data integration products.

    Read the article

  • ignoring informational payload, type INVALID_COOKIE msgid=00000000

    - by user197279
    I'm configuring a site-to-site vpn between openswan ipsec and cisco asa 5540. After the step, i started ipesc service but the error i'm seeing is: ignoring informational payload, type INVALID_COOKIE msgid=00000000 Nov 5 09:42:30 pluto[11712]: "myVPN" #1: received and ignored informational message Nov 5 09:42:51 pluto[11712]: "myVPN" #1: ignoring informational payload, type INVALID_COOKIE msgid=00000000 Nov 5 09:42:51 pluto[11712]: "myVPN" #1: received and ignored informational message Nov 5 09:43:30 pluto[11712]: "myVPN" #1: max number of retransmissions (2) reached STATE_MAIN_I2 Nov 5 09:43:30 pluto[11712]: "myVPN" #1: starting keying attempt 2 of at most 3 Any advise why I'm getting this error on openswan? Also sudo ipsec whack --status gives: "myVPN": 10.0.xx.0/24===10.0.7x.x[54.209.y.yyy,+S=C]---10.0.xx.x...10.0.70.x---41.22x.4.xx<41.22x.4.xx[+S=C]===41.22y.4.yyy/32; unrouted; eroute owner: #0 000 "myVPN": myip=54.209.zz.zz; hisip=unset; 000 "myVPN": ike_life: 86400s; ipsec_life: 28800s; rekey_margin: 540s; rekey_fuzz: 100%; keyingtries: 3 000 "myVPN": policy: PSK+ENCRYPT+TUNNEL+DONTREKEY+UP+IKEv2ALLOW+SAREFTRACK+lKOD+rKOD; prio: 24,32; interface: eth0; 000 "myVPN": newest ISAKMP SA: #0; newest IPsec SA: #0; 000 "myVPN": IKE algorithms wanted: AES_CBC(7)_256-SHA1(2)_000-MODP1024(2); flags=-strict 000 "myVPN": IKE algorithms found: AES_CBC(7)_256-SHA1(2)_160-MODP1024(2) 000 "myVPN": ESP algorithms wanted: AES(12)_256-SHA1(2)_000; flags=-strict 000 "myVPN": ESP algorithms loaded: AES(12)_256-SHA1(2)_160 000 000 #5: "myVPN":500 STATE_MAIN_I2 (sent MI2, expecting MR2); EVENT_RETRANSMIT in 8s; nodpd; idle; import:admin initiate 000 #5: pending Phase 2 for "myVPN" replacing #0 Thanks.

    Read the article

  • Rack layout for future growth

    - by bleything
    We're getting ready to move to a new colo facility and I'm designing the rack layout. While we have a full rack, we only have 12U worth of hardware right now: 1x 1U switch 7x 1U servers 1x 2U server 1x 2U disk shelf The colo facility requires us to front-mount the switch and use a 1U brush strip, so we'll be using a total of 13U of space. Regarding growth, I'm reasonably sure we'll be adding another 4U in servers, 1-2U of network gear, and 2-4U of storage in the mid-term. Specific questions I'm hoping to get help with: where should I mount the switch? the LEDs are on top... should I group the servers by function with space for adding new machines? as an alternative, should I group servers based on whether they are production or staging? where in the rack should I start? in the middle? at the top? at the bottom? equally spaced? Here's a silly little ASCII diagram of what I'm thinking right now. Please feel free to tear my design apart, I've really no idea what I'm doing :) Any advice is very welcome. edit: to be clear, the colo is providing redundant power with UPS and generator, so that's why there's no power gear in the plan, except for the 0U PDU that I didn't diagram. 42 | -- switch ---------------------- 41 | -- brush strip ----------------- 40 | ~~ reserved for second switch ~~ 39 | ~~ reserved for firewall ~~~~~~~ 38 | 37 | -- admin01 --------------------- 36 | 35 | -- vm01 ------------------------ 34 | -- vm02 ------------------------ 33 | ~~ reserved for vm03 ~~~~~~~~~~~ 32 | ~~ reserved for vm04 ~~~~~~~~~~~ 31 | ~~ reserved for vm05 ~~~~~~~~~~~ 30 | 29 | -- web01 ----------------------- 28 | -- web02 ----------------------- 27 | ~~ reserved for web03 ~~~~~~~~~~ 26 | ~~ reserved for web04 ~~~~~~~~~~ 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | -- db01 ------------------------ 15 | +- disks ----------------------+ 14 | +------------------------------+ 13 | ~~ reserved for more ~~~~~~~~~~~ 12 | ~~ db01 disks ~~~~~~~~~~~~~~~~~~ 11 | 10 | +- db02 -----------------------+ 9 | +------------------------------+ 8 | ~~ reserved for db02 ~~~~~~~~~~~ 7 | ~~ disks ~~~~~~~~~~~~~~~~~~~~~~~ 6 | ~~ reserved for more ~~~~~~~~~~~ 5 | ~~ db02 disks ~~~~~~~~~~~~~~~~~~ 4 | 3 | 2 | 1 |

    Read the article

  • Dell OMCI: Wacky values for Temperature and etc? (Win7x64)

    - by Yablargo
    Hey All. I am running a Dell Precision R5400 Workstation with dell OMCI installed. I am using it to test polling various data over WMI for our monitoring across the enterprise. I'm getting some weird results. perhaps someone can help point me in the direction of some clarification? Posted is the results of my DCIM\SYSMAN\DCIM_NumericSensor probe for sensor type 2(temp sensor) Microsoft (R) Windows Script Host Version 5.8 Copyright (C) Microsoft Corporation. All rights reserved. ----------------------------------- DCIM_NumericSensor instance ----------------------------------- Accuracy: AccuracyUnits: AdditionalAvailability: Availability: AvailableRequestedStates: BaseUnits: 2 Caption: CommunicationStatus: CreationClassName: DCIM_NumericSensor CurrentReading: -214748365 CurrentState: Unknown Description: DetailedStatus: DeviceID: Root/MainSystemChassis/TemperatureObj ElementName: Temperature Sensor:CPU0 EnabledDefault: 2 EnabledState: 2 EnabledThresholds: ErrorCleared: ErrorDescription: HealthState: 5 Hysteresis: IdentifyingDescriptions: InstallDate: IsLinear: LastErrorCode: LocationIndicator: LowerThresholdCritical: LowerThresholdFatal: LowerThresholdNonCritical: MaxQuiesceTime: MaxReadable: MinReadable: Name: NominalReading: NormalMax: NormalMin: OperatingStatus: OperationalStatus: 2 OtherEnabledState: OtherIdentifyingInfo: OtherSensorTypeDescription: PollingInterval: PossibleStates: Unknown,Normal,Fatal,Lower Non-Critical,Upper Non-Critical,Lower Critical,Upper Critical PowerManagementCapabilities: PowerManagementSupported: PowerOnHours: PrimaryStatus: ProgrammaticAccuracy: RateUnits: 0 RequestedState: 12 Resolution: SensorType: 2 SettableThresholds: Status: StatusDescriptions: StatusInfo: SupportedThresholds: SystemCreationClassName: DCIM_ComputerSystem SystemName: dt:5Q7BKK1 TimeOfLastStateChange: Tolerance: TotalPowerOnHours: TransitioningToState: 12 UnitModifier: 0 UpperThresholdCritical: UpperThresholdFatal: UpperThresholdNonCritical: ValueFormulation: 2 I'm not really sure whats going on, but note the CurrentReading: -214748365. I have reinstalled OMCI a few times, installed the OMCI 7x compatability and same thing I consistently get that error. It almost looks like its a issue between 32/64 bit value or something? Do I have to convert it to a float ? :)

    Read the article

  • Oracle TimesTen In-Memory Database Performance on SPARC T4-2

    - by Brian
    The Oracle TimesTen In-Memory Database is optimized to run on Oracle's SPARC T4 processor platforms running Oracle Solaris 11 providing unsurpassed scalability, performance, upgradability, protection of investment and return on investment. The following demonstrate the value of combining Oracle TimesTen In-Memory Database with SPARC T4 servers and Oracle Solaris 11: On a Mobile Call Processing test, the 2-socket SPARC T4-2 server outperforms: Oracle's SPARC Enterprise M4000 server (4 x 2.66 GHz SPARC64 VII+) by 34%. Oracle's SPARC T3-4 (4 x 1.65 GHz SPARC T3) by 2.7x, or 5.4x per processor. Utilizing the TimesTen Performance Throughput Benchmark (TPTBM), the SPARC T4-2 server protects investments with: 2.1x the overall performance of a 4-socket SPARC Enterprise M4000 server in read-only mode and 1.5x the performance in update-only testing. This is 4.2x more performance per processor than the SPARC64 VII+ 2.66 GHz based system. 10x more performance per processor than the SPARC T2+ 1.4 GHz server. 1.6x better performance per processor than the SPARC T3 1.65 GHz based server. In replication testing, the two socket SPARC T4-2 server is over 3x faster than the performance of a four socket SPARC Enterprise T5440 server in both asynchronous replication environment and the highly available 2-Safe replication. This testing emphasizes parallel replication between systems. Performance Landscape Mobile Call Processing Test Performance System Processor Sockets/Cores/Threads Tps SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 218,400 M4000 SPARC64 VII+, 2.66 GHz 4 16 32 162,900 SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 80,400 TimesTen Performance Throughput Benchmark (TPTBM) Read-Only System Processor Sockets/Cores/Threads Tps SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 7.9M SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 6.5M M4000 SPARC64 VII+, 2.66 GHz 4 16 32 3.1M T5440 SPARC T2+, 1.4 GHz 4 32 256 3.1M TimesTen Performance Throughput Benchmark (TPTBM) Update-Only System Processor Sockets/Cores/Threads Tps SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 547,800 M4000 SPARC64 VII+, 2.66 GHz 4 16 32 363,800 SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 240,500 TimesTen Replication Tests System Processor Sockets/Cores/Threads Asynchronous 2-Safe SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 38,024 13,701 SPARC T5440 SPARC T2+, 1.4 GHz 4 32 256 11,621 4,615 Configuration Summary Hardware Configurations: SPARC T4-2 server 2 x SPARC T4 processors, 2.85 GHz 256 GB memory 1 x 8 Gbs FC Qlogic HBA 1 x 6 Gbs SAS HBA 4 x 300 GB internal disks Sun Storage F5100 Flash Array (40 x 24 GB flash modules) 1 x Sun Fire X4275 server configured as COMSTAR head SPARC T3-4 server 4 x SPARC T3 processors, 1.6 GHz 512 GB memory 1 x 8 Gbs FC Qlogic HBA 8 x 146 GB internal disks 1 x Sun Fire X4275 server configured as COMSTAR head SPARC Enterprise M4000 server 4 x SPARC64 VII+ processors, 2.66 GHz 128 GB memory 1 x 8 Gbs FC Qlogic HBA 1 x 6 Gbs SAS HBA 2 x 146 GB internal disks Sun Storage F5100 Flash Array (40 x 24 GB flash modules) 1 x Sun Fire X4275 server configured as COMSTAR head Software Configuration: Oracle Solaris 11 11/11 Oracle TimesTen 11.2.2.4 Benchmark Descriptions TimesTen Performance Throughput BenchMark (TPTBM) is shipped with TimesTen and measures the total throughput of the system. The workload can test read-only, update-only, delete and insert operations as required. Mobile Call Processing is a customer-based workload for processing calls made by mobile phone subscribers. The workload has a mixture of read-only, update, and insert-only transactions. The peak throughput performance is measured from multiple concurrent processes executing the transactions until a peak performance is reached via saturation of the available resources. Parallel Replication tests using both asynchronous and 2-Safe replication methods. For asynchronous replication, transactions are processed in batches to maximize the throughput capabilities of the replication server and network. In 2-Safe replication, also known as no data-loss or high availability, transactions are replicated between servers immediately emphasizing low latency. For both environments, performance is measured in the number of parallel replication servers and the maximum transactions-per-second for all concurrent processes. See Also SPARC T4-2 Server oracle.com OTN Oracle TimesTen In-Memory Database oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 1 October 2012.

    Read the article

  • Linux per-process resource limits - a deep Red Hat Mystery

    - by BobBanana
    I have my own multithreaded C program which scales in speed smoothly with the number of CPU cores.. I can run it with 1, 2, 3, etc threads and get linear speedup.. up to about 5.5x speed on a 6-core CPU on a Ubuntu Linux box. I had an opportunity to run the program on a very high end Sunfire x4450 with 4 quad-core Xeon processors, running Red Hat Enterprise Linux. I was eagerly anticipating seeing how fast the 16 cores could run my program with 16 threads.. But it runs at the same speed as just TWO threads! Much hair-pulling and debugging later, I see that my program really is creating all the threads, they really are running simultaneously, but the threads themselves are slower than they should be. 2 threads runs about 1.7x faster than 1, but 3, 4, 8, 10, 16 threads all run at just net 1.9x! I can see all the threads are running (not stalled or sleeping), they're just slow. To check that the HARDWARE wasn't at fault, I ran SIXTEEN copies of my program independently, simultaneously. They all ran at full speed. There really are 16 cores and they really do run at full speed and there really is enough RAM (in fact this machine has 64GB, and I only use 1GB per process). So, my question is if there's some OPERATING SYSTEM explanation, perhaps some per-process resource limit which automatically scales back thread scheduling to keep one process from hogging the machine. Clues are: My program does not access the disk or network. It's CPU limited. Its speed scales linearly on a single CPU box in Ubuntu Linux with a hexacore i7 for 1-6 threads. 6 threads is effectively 6x speedup. My program never runs faster than 2x speedup on this 16 core Sunfire Xeon box, for any number of threads from 2-16. Running 16 copies of my program single threaded runs perfectly, all 16 running at once at full speed. top shows 1600% of CPUs allocated. /proc/cpuinfo shows all 16 cores running at full 2.9GHz speed (not low frequency idle speed of 1.6GHz) There's 48GB of RAM free, it is not swapping. What's happening? Is there some process CPU limit policy? How could I measure it if so? What else could explain this behavior? Thanks for your ideas to solve this, the Great Xeon Slowdown Mystery of 2010!

    Read the article

1 2  | Next Page >