Search Results

Search found 913 results on 37 pages for 'targets'.

Page 1/37 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • An XEvent a Day (11 of 31) – Targets Week – Using Multiple Targets to Debug Orphaned Transactions

    - by Jonathan Kehayias
    Yesterday’s blog post Targets Week – etw_classic_sync_target covered the ETW integration that is built into Extended Events and how the etw_classic_sync_target can be used in conjunction with other ETW traces to provide troubleshooting at a level previously not possible with SQL Server. In today’s post we’ll look at how to use multiple targets to simplify analysis of Event collection. Why Multiple Targets? You might ask why you would want to use multiple Targets in an Event Session with Extended...(read more)

    Read the article

  • Multiple render targets and pixel shader outputs terminology

    - by Rei Miyasaka
    I'm a little confused on the jargon: does Multiple Render Targets (MRT) refer to outputting from a pixel shader to multiple elements in a struct? That is, when one says "MRT is to write to multiple textures", are multiple elements interleaved in a single output texture, or do you specify multiple discrete output textures? By the way, from what I understand, at least for DX9, all the elements of this struct need to be of the same size. Does this restriction still apply to DX11?

    Read the article

  • All Targets Not Being Called (nested Targets not being executed)

    - by obautista
    I am using a two TARGET files. On one TARGET file I call a TARGET that is inside the second TARGET file. This second TARGET then calls another TARGET that has 6 other TARGET calls, which do a number of different things (in addition to calling other nested TARGETS (but inside the same TARGET file)). The problem is that, on the TARGET where I call 6 TARGETS, only the first one is being executed. The program doesnt find its way to call the 2nd, 3rd, 4th, 5th, and 6th TARGET. Is there a limit to the number of nested TARGETS that can be called and run? Nothing is failing. The problem is the other TARGET calls are not running. Thanks for any help you can provide. Oscar Bautista

    Read the article

  • Reusing MSBuild targets for different build types

    - by Zbigniew Kawalec
    I have got a problem with reusing the same MSBuild targets for different build types on TFS. Let me describe the situation. I have got two build types (CI - for continuous integration and RC - for release candidate). So I have got two build types defined in the TFS. Their *.proj files are under: - $/Repository/TeamBuildTypes/CI - $/Repository/TeamBuildTypes/RC Also, I have got some common targets, like: ChnageVersion.taget, Deploy.tagert, etc. and I import them in the main *.proj file. Unfortunaltely, I have to keep two copies of them, one in each build type. I've been struggling to have only one copy of the common targets somewhere, but I give up. I can't do it, because when the build starts on a build agent, the build files are downloaded from: $/Repository/TeamBuildTypes/CI only. How can I make the build agent / TFS / whatever to download also $/Repository/TeamBuildTypes/Common for example?

    Read the article

  • An XEvent a Day (7 of 31) – Targets Week – bucketizers

    - by Jonathan Kehayias
    Yesterday’s post, Targets Week - asynchronous_file_target , looked at the asynchronous_file_target Target in Extended Events and how it outputs the raw Event data in an XML document. Continuing with Targets week today, we’ll look at the bucketizer targets in Extended Events which can be used to group Events based on the Event data that is being returned. What is the bucketizer? The bucketizer performs grouping of Events as they are processed by the target into buckets based on the Event data and...(read more)

    Read the article

  • How to manage drawing loop when changing render targets

    - by George Duckett
    I'm managing my game state by having a base GameScreen class with a Draw method. I then have (basically) a stack of GameScreens that I render. I render the bottom one first, as screens above might not completely cover the ones below. I now have a problem where one GameScreen changes render targets while doing its rendering. Anything the previous screens have drawn to the backbuffer is lost (as XNA emulates what happens on the xbox). I don't want to just set the backbuffer to preserve its contents as I want this to work on the xbox as well as PC. How should I manage this problem? A few ideas I've had: Render every GameScreen to its own render target, then render them all to the backbuffer. Create some kind of RenderAction queue where a game screen (and anything else I guess) could queue something to be rendered to the back buffer. They'd render whatever they wanted to any render target as normal, but if they wanted to render to the backbuffer they'd stick that in a queue which would get processed once all rendertarget rendering was done. Abstract away from render targets and backbuffers and have some way of representing the way graphics flows and transforms between render targets and have something manage/work out the correct rendering order (and render targets) given what rendering process needs as input and what it produces as output. I think each of my ideas have pros and cons and there are probably several other ways of approaching this general problem so I'm interested in finding out what solutions are out there.

    Read the article

  • An XEvent a Day (8 of 31) – Targets Week – synchronous_event_counter

    - by Jonathan Kehayias
    Yesterday’s post, Targets Week - Bucketizers , looked at the bucketizer Targets in Extended Events and how they can be used to simplify analysis and perform more targeted analysis based on their output.  Today’s post will be fairly short, by comparison to the previous posts, while we look at the synchronous_event_counter target, which can be used to test the impact of an Event Session without actually incurring the cost of Event collection. What is the synchronous_event_counter? The synchronous_event_count...(read more)

    Read the article

  • Effecient finding of long-range spotting targets

    - by nihohit
    I'm creating a top-down 2d strategy game, with a square grid map. So far, I've used Bresenham's line drawing algorithm in a circle to determine what's in LOS of each unit, and then targedt one of the targets in the circle. Now I find that this limits my units to shoot only at targets that they see. I want to extend my targeting algorithm to target any other unit in range of my weapon, even if they're out of sight range of this given unit, if they're "spotted" by another friendly unit. In other words, I want to enable usage of weapons with ranges longer than sight range. Is there a better way than iterating over all sighted units and computing range and LOSto each of them?

    Read the article

  • An XEvent a Day (10 of 31) – Targets Week – etw_classic_sync_target

    - by Jonathan Kehayias
    Yesterday’s post, Targets Week – pair_matching , looked at the pair_matching Target in Extended Events and how it could be used to find unmatched Events.  Today’s post will cover the etw_classic_sync_target Target, which can be used to track Events starting in SQL Server, out to the Windows Server OS Kernel, and then back to the Event completion in SQL Server. What is the etw_classic_sync_target Target? The etw_classic_sync_target Target is the target that hooks Extended Events in SQL Server...(read more)

    Read the article

  • An XEvent a Day (5 of 31) - Targets Week – ring_buffer

    - by Jonathan Kehayias
    Yesterday’s post, Querying the Session Definition and Active Session DMV’s , showed how to find information about the Event Sessions that exist inside a SQL Server and how to find information about the Active Event Sessions that are running inside a SQL Server using the Session Definition and Active Session DMV’s.  With the background information now out of the way, and since this post falls on the start of a new week I’ve decided to make this Targets Week, where each day we’ll look at a different...(read more)

    Read the article

  • An XEvent a Day (6 of 31) – Targets Week – asynchronous_file_target

    - by Jonathan Kehayias
    Yesterday’s post, Targets Week - ring_buffer , looked at the ring_buffer Target in Extended Events and how it outputs the raw Event data in an XML document.  Today I’m going to go over the details of the other Target in Extended Events that captures raw Event data, the asynchronous_file_target. What is the asynchronous_file_target? The asynchronous_file_target holds the raw format Event data in a proprietary binary file format that persists beyond server restarts and can be provided to another...(read more)

    Read the article

  • An XEvent a Day (9 of 31) – Targets Week – pair_matching

    - by Jonathan Kehayias
    Yesterday’s post, Targets Week – synchronous_event_counter , looked at the counter Target in Extended Events and how it could be used to determine the number of Events a Event Session will generate without actually incurring the cost to collect and store the Events.  Today’s post is coming late, I know, but sometimes that’s just how the ball rolls.  My original planned demo’s for today’s post turned out to only work based on a fluke, though they were very consistent at working as expected,...(read more)

    Read the article

  • Understanding Performance Profiling Targets

    In this sample chapter from his upcoming book, Paul Glavich explains performance metrics and walks us through the steps needed to establish meaningful performance targets. He covers many metrics such as "time to first byte" and explains why you should add some contingency into your estimated performance requirements.

    Read the article

  • Multiple render targets and gamma correctness in Direct3D9

    - by Mario
    Let's say in a deferred renderer when building your G-Buffer you're going to render texture color, normals, depth and whatever else to your multiple render targets at once. Now if you want to have a gamma-correct rendering pipeline and you use regular sRGB textures as well as rendertargets, you'll need to apply some conversions along the way, because your filtering, sampling and calculations should happen in linear space, not sRGB space. Of course, you could store linear color in your textures and rendertargets, but this might very well introduce bad precision and banding issues. Reading from sRGB textures is easy: just set SRGBTexture = true; in your texture sampler in your HLSL effect code and the hardware does the conversion sRGB-linear for you. Writing to an sRGB rendertarget is theoretically easy, too: just set SRGBWriteEnable = true; in your effect pass in HLSL and your linear colors will be converted to sRGB space automatically. But how does this work with multiple rendertargets? I only want to do these corrections to the color textures and rendertarget, not to the normals, depth, specularity or whatever else I'll be rendering to my G-Buffer. Ok, so I just don't apply SRGBTexture = true; to my non-color textures, but when using SRGBWriteEnable = true; I'll do a gamma correction to all the values I write out to my rendertargets, no matter what I actually store there. I found some info on gamma over at Microsoft: http://msdn.microsoft.com/en-us/library/windows/desktop/bb173460%28v=vs.85%29.aspx For hardware that supports Multiple Render Targets (Direct3D 9) or Multiple-element Textures (Direct3D 9), only the first render target or element is written. If I understand correctly, SRGBWriteEnable should only be applied to the first rendertarget, but according to my tests it doesn't and is used for all rendertargets instead. Now the only alternative seems to be to handle these corrections manually in my shader and only correct the actual color output, but I'm not totally sure, that this'll not have any negative impact on color correctness. E.g. if the GPU does any blending or filtering or multisampling after the Linear-sRGB conversion... Do I even need gamma correction in this case, if I'm just writing texture color without lighting to my rendertarget? As far as I know, I DO need it because of the texture filtering and mip sampling happening in sRGB space instead, if I don't correct for it. Anyway, it'd be interesting to hear other people's solutions or thoughts about this.

    Read the article

  • Using Solaris zfs + iscsi targets with Oracle VM

    - by wim.coekaerts
    I was playing with my Oracle VM setup and needed some shared storage that was block based. I did not have a storage array available but I did have a solaris box, that I use for Oracle VDI, available. I set up a few iscsi targets on this solaris server and exported them to my 2 Oracle VM servers. Here's how I did this : (1) On the solaris side : # zpool list NAME SIZE USED AVAIL CAP HEALTH ALTROOT rpool 544G 129G 415G 23% ONLINE - I just have a simple zpool, called rpool, on this box. It has plenty of space available for my needs. So I will use rpool and I will create 5 50gb vols : zfs create -V 50G rpool/ovm1 zfs create -V 50G rpool/ovm2 zfs create -V 50G rpool/ovm3 zfs create -V 50G rpool/ovm4 zfs create -V 50G rpool/ovm5 I want to use these volumes for iscsi so I have to enable them as shared iscsi devices : zfs set shareiscsi=on rpool/ovm1 zfs set shareiscsi=on rpool/ovm2 zfs set shareiscsi=on rpool/ovm3 zfs set shareiscsi=on rpool/ovm4 zfs set shareiscsi=on rpool/ovm5 The command iscsitadm list target should list these devices so make sure they show up. # iscsitadm list target Target: rpool/ovm1 iSCSI Name: iqn.1986-03.com.sun:02:896c766c-0943-4da5-d47e-9575b5a0be36 Connections: 2 Target: rpool/ovm2 iSCSI Name: iqn.1986-03.com.sun:02:a3116b46-73e0-e8c2-e80c-9a4f71aff069 Connections: 2 Target: rpool/ovm3 iSCSI Name: iqn.1986-03.com.sun:02:a838c400-2730-c0d6-f2c2-ee186a0261c1 Connections: 2 Target: rpool/ovm4 iSCSI Name: iqn.1986-03.com.sun:02:2e046afb-d66d-4f3f-c5de-8115e0ddd931 Connections: 2 Target: rpool/ovm5 iSCSI Name: iqn.1986-03.com.sun:02:66109fbe-81ac-ef05-f85e-ab8c1f34cb43 Connections: 2 At this point I want to make sure that I have some access control on these devices. To make it easier, I will create an alias for my 2 servers and use the alias for the ACL. get the iqn from the 2 servers on my 2 ovm servers (wcoekaer-srv1, wcoekaer-srv2) get the content of /etc/iscsi/initiatorname.iscsi (for each server) InitiatorName=iqn.1986-03.com.sun:01:2a7526f0ffff On the solaris side create the aliases : iscsitadm create initiator -n iqn.1986-03.com.sun:01:2a7526f0ffff wcoekaer-srv1 iscsitadm create initiator -n iqn.1986-03.com.sun:01:e31b08110f1 wcoekaer-srv5 Add the ACL to the targets : iscsitadm modify target -l wcoekaer-srv1 rpool/ovm1 iscsitadm modify target -l wcoekaer-srv1 rpool/ovm2 iscsitadm modify target -l wcoekaer-srv1 rpool/ovm3 iscsitadm modify target -l wcoekaer-srv1 rpool/ovm4 iscsitadm modify target -l wcoekaer-srv1 rpool/ovm5 iscsitadm modify target -l wcoekaer-srv5 rpool/ovm1 iscsitadm modify target -l wcoekaer-srv5 rpool/ovm2 iscsitadm modify target -l wcoekaer-srv5 rpool/ovm3 iscsitadm modify target -l wcoekaer-srv5 rpool/ovm4 iscsitadm modify target -l wcoekaer-srv5 rpool/ovm5 (2) the Oracle VM side On each server just do 2 simple things : # iscsiadm -m discovery -t sendtargets -p ca-vdi1 where ca-vdi1 is my solaris server name # service iscsi restart When I do cat /proc/partitions on my servers I will see the devices show up # cat /proc/partitions major minor #blocks name 8 0 160836480 sda 8 1 104391 sda1 8 2 3148740 sda2 8 3 1052257 sda3 253 0 6377804 dm-0 253 1 6377804 dm-1 253 2 6377804 dm-2 8 16 52428800 sdb 8 32 52428800 sdc 8 48 52428800 sdd 8 80 52428800 sdf 8 64 52428800 sde These 5 new devices sd[b..f] are shared storage for Oracle VM and can be used to pass through to the VM's as phy: devices or put ocfs2 on it and use as shared filesystem storage for dom0 repositories. I am setting up an 11gR2 rac template (the cool stuff Saar did) so I am using my devices to create a 2 node RAC cluster with phy: devices.

    Read the article

  • Render on other render targets starting from one already rendered on

    - by JTulip
    I have to perform a double pass convolution on a texture that is actually the color attachment of another render target, and store it in the color attachment of ANOTHER render target. This must be done multiple time, but using the same texture as starting point What I do now is (a bit abstracted, but what I have abstract is guaranteed to work singularly) renderOnRT(firstTarget); // This is working. for each other RT currRT{ glBindFramebuffer(GL_FRAMEBUFFER, currRT.frameBufferID); programX.use(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, firstTarget.colorAttachmentID); programX.setUniform1i("colourTexture",0); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, firstTarget.depthAttachmentID); programX.setUniform1i("depthTexture",1); glBindBuffer(GL_ARRAY_BUFFER, quadBuffID); // quadBuffID is a VBO for a screen aligned quad. It is fine. programX.vertexAttribPointer(POSITION_ATTRIBUTE, 3, GL_FLOAT, GL_FALSE, 0, (void*)0); glDrawArrays(GL_QUADS,0,4); programY.use(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, currRT.colorAttachmentID); // The second pass is done on the previous pass programY.setUniform1i("colourTexture",0); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, currRT.depthAttachmentID); programY.setUniform1i("depthTexture",1); glBindBuffer(GL_ARRAY_BUFFER, quadBuffID); programY.vertexAttribPointer(POSITION_ATTRIBUTE, 3, GL_FLOAT, GL_FALSE, 0, (void*)0); glDrawArrays(GL_QUADS, 0, 4); } The problem is that I end up with black textures and not the wanted result. The GLSL programs program(X,Y) works fine, already tested on single targets. Is there something stupid I am missing? Even an hint is much appreciated, thanks!

    Read the article

  • How can I use iteration to lead targets?

    - by e100
    In my 2D game, I have stationary AI turrets firing constant speed bullets at moving targets. So far I have used a quadratic solver technique to calculate where the turret should aim in advance of the target, which works well (see Algorithm to shoot at a target in a 3d game, Predicting enemy position in order to have an object lead its target). But it occurs to me that an iterative technique might be more realistic (e.g. it should fire even when there is no exact solution), efficient and tunable - for example one could change the number of iterations to improve accuracy. I thought I could calculate the current range and thus an initial (inaccurate) bullet flight time to target, then work out where the target would actually be by that time, then recalculate a more accurate range, then recalculate flight time, etc etc. I think I am missing something obvious to do with the time term, but my aimpoint calculation does not currently converge after the significant initial correction in the first iteration: import math def aimpoint(iters, target_x, target_y, target_vel_x, target_vel_y, bullet_speed): aimpoint_x = target_x aimpoint_y = target_y range = math.sqrt(aimpoint_x**2 + aimpoint_y**2) time_to_target = range / bullet_speed time_delta = time_to_target n = 0 while n <= iters: print "iteration:", n, "target:", "(", aimpoint_x, aimpoint_y, ")", "time_delta:", time_delta aimpoint_x += target_vel_x * time_delta aimpoint_y += target_vel_y * time_delta range = math.sqrt(aimpoint_x**2 + aimpoint_y**2) new_time_to_target = range / bullet_speed time_delta = new_time_to_target - time_to_target n += 1 aimpoint(iters=5, target_x=0, target_y=100, target_vel_x=1, target_vel_y=0, bullet_speed=100)

    Read the article

  • Oracle Data Integrator 11.1.1.5 Complex Files as Sources and Targets

    - by Alex Kotopoulis
    Overview ODI 11.1.1.5 adds the new Complex File technology for use with file sources and targets. The goal is to read or write file structures that are too complex to be parsed using the existing ODI File technology. This includes: Different record types in one list that use different parsing rules Hierarchical lists, for example customers with nested orders Parsing instructions in the file data, such as delimiter types, field lengths, type identifiers Complex headers such as multiple header lines or parseable information in header Skipping of lines  Conditional or choice fields Similar to the ODI File and XML File technologies, the complex file parsing is done through a JDBC driver that exposes the flat file as relational table structures. Complex files are mapped to one or more table structures, as opposed to the (simple) file technology, which always has a one-to-one relationship between file and table. The resulting set of tables follows the same concept as the ODI XML driver, table rows have additional PK-FK relationships to express hierarchy as well as order values to maintain the file order in the resulting table.   The parsing instruction format used for complex files is the nXSD (native XSD) format that is already in use with Oracle BPEL. This format extends the XML Schema standard by adding additional parsing instructions to each element. Using nXSD parsing technology, the native file is converted into an internal XML format. It is important to understand that the XML is streamed to improve performance; there is no size limitation of the native file based on memory size, the XML data is never fully materialized.  The internal XML is then converted to relational schema using the same mapping rules as the ODI XML driver. How to Create an nXSD file Complex file models depend on the nXSD schema for the given file. This nXSD file has to be created using a text editor or the Native Format Builder Wizard that is part of Oracle BPEL. BPEL is included in the ODI Suite, but not in standalone ODI Enterprise Edition. The nXSD format extends the standard XSD format through nxsd attributes. NXSD is a valid XML Schema, since the XSD standard allows extra attributes with their own namespaces. The following is a sample NXSD schema: <?xml version="1.0"?> <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd" elementFormDefault="qualified" xmlns:tns="http://xmlns.oracle.com/pcbpel/demoSchema/csv" targetNamespace="http://xmlns.oracle.com/pcbpel/demoSchema/csv" attributeFormDefault="unqualified" nxsd:encoding="US-ASCII" nxsd:stream="chars" nxsd:version="NXSD"> <xsd:element name="Root">         <xsd:complexType><xsd:sequence>       <xsd:element name="Header">                 <xsd:complexType><xsd:sequence>                         <xsd:element name="Branch" type="xsd:string" nxsd:style="terminated" nxsd:terminatedBy=","/>                         <xsd:element name="ListDate" type="xsd:string" nxsd:style="terminated" nxsd:terminatedBy="${eol}"/>                         </xsd:sequence></xsd:complexType>                         </xsd:element>                 </xsd:sequence></xsd:complexType>         <xsd:element name="Customer" maxOccurs="unbounded">                 <xsd:complexType><xsd:sequence>                 <xsd:element name="Name" type="xsd:string" nxsd:style="terminated" nxsd:terminatedBy=","/>                         <xsd:element name="Street" type="xsd:string" nxsd:style="terminated" nxsd:terminatedBy="," />                         <xsd:element name="City" type="xsd:string" nxsd:style="terminated" nxsd:terminatedBy="${eol}" />                         </xsd:sequence></xsd:complexType>                         </xsd:element>                 </xsd:sequence></xsd:complexType> </xsd:element> </xsd:schema> The nXSD schema annotates elements to describe their position and delimiters within the flat text file. The schema above uses almost exclusively the nxsd:terminatedBy instruction to look for the next terminator chars. There are various constructs in nXSD to parse fixed length fields, look ahead in the document for string occurences, perform conditional logic, use variables to remember state, and many more. nXSD files can either be written manually using an XML Schema Editor or created using the Native Format Builder Wizard. Both Native Format Builder Wizard as well as the nXSD language are described in the Application Server Adapter Users Guide. The way to start the Native Format Builder in BPEL is to create a new File Adapter; in step 8 of the Adapter Configuration Wizard a new Schema for Native Format can be created:   The Native Format Builder guides through a number of steps to generate the nXSD based on a sample native file. If the format is complex, it is often a good idea to “approximate” it with a similar simple format and then add the complex components manually.  The resulting *.xsd file can be copied and used as the format for ODI, other BPEL constructs such as the file adapter definition are not relevant for ODI. Using this technique it is also possible to parse the same file format in SOA Suite and ODI, for example using SOA for small real-time messages, and ODI for large batches. This nXSD schema in this example describes a file with a header row containing data and 3 string fields per row delimited by commas, for example: Redwood City Downtown Branch, 06/01/2011 Ebeneezer Scrooge, Sandy Lane, Atherton Tiny Tim, Winton Terrace, Menlo Park The ODI Complex File JDBC driver exposes the file structure through a set of relational tables with PK-FK relationships. The tables for this example are: Table ROOT (1 row): ROOTPK Primary Key for root element SNPSFILENAME Name of the file SNPSFILEPATH Path of the file SNPSLOADDATE Date of load Table HEADER (1 row): ROOTFK Foreign Key to ROOT record ROWORDER Order of row in native document BRANCH Data BRANCHORDER Order of Branch within row LISTDATE Data LISTDATEORDER Order of ListDate within row Table ADDRESS (2 rows): ROOTFK Foreign Key to ROOT record ROWORDER Order of row in native document NAME Data NAMEORDER Oder of Name within row STREET Data STREETORDER Order of Street within row CITY Data CITYORDER Order of City within row Every table has PK and/or FK fields to reflect the document hierarchy through relationships. In this example this is trivial since the HEADER and all CUSTOMER records point back to the PK of ROOT. Deeper nested documents require this to identify parent elements. All tables also have a ROWORDER field to define the order of rows, as well as order fields for each column, in case the order of columns varies in the original document and needs to be maintained. If order is not relevant, these fields can be ignored. How to Create an Complex File Data Server in ODI After creating the nXSD file and a test data file, and storing it on the local file system accessible to ODI, you can go to the ODI Topology Navigator to create a Data Server and Physical Schema under the Complex File technology. This technology follows the conventions of other ODI technologies and is very similar to the XML technology. The parsing settings such as the source native file, the nXSD schema file, the root element, as well as the external database can be set in the JDBC URL: The use of an external database defined by dbprops is optional, but is strongly recommended for production use. Ideally, the staging database should be used for this. Also, when using a complex file exclusively for read purposes, it is recommended to use the ro=true property to ensure the file is not unnecessarily synchronized back from the database when the connection is closed. A data file is always required to be present  at the filename path during design-time. Without this file, operations like testing the connection, reading the model data, or reverse engineering the model will fail.  All properties of the Complex File JDBC Driver are documented in the Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator in Appendix C: Oracle Data Integrator Driver for Complex Files Reference. David Allan has created a great viewlet Complex File Processing - 0 to 60 which shows the creation of a Complex File data server as well as a model based on this server. How to Create Models based on an Complex File Schema Once physical schema and logical schema have been created, the Complex File can be used to create a Model as if it were based on a database. When reverse-engineering the Model, data stores(tables) for each XSD element of complex type will be created. Use of complex files as sources is straightforward; when using them as targets it has to be made sure that all dependent tables have matching PK-FK pairs; the same applies to the XML driver as well. Debugging and Error Handling There are different ways to test an nXSD file. The Native Format Builder Wizard can be used even if the nXSD wasn’t created in it; it will show issues related to the schema and/or test data. In ODI, the nXSD  will be parsed and run against the existing test XML file when testing a connection in the Dataserver. If either the nXSD has an error or the data is non-compliant to the schema, an error will be displayed. Sample error message: Error while reading native data. [Line=1, Col=5] Not enough data available in the input, when trying to read data of length "19" for "element with name D1" from the specified position, using "style" as "fixedLength" and "length" as "". Ensure that there is enough data from the specified position in the input. Complex File FAQ Is the size of the native file limited by available memory? No, since the native data is streamed through the driver, only the available space in the staging database limits the size of the data. There are limits on individual field sizes, though; a single large object field needs to fit in memory. Should I always use the complex file driver instead of the file driver in ODI now? No, use the file technology for all simple file parsing tasks, for example any fixed-length or delimited files that just have one row format and can be mapped into a simple table. Because of its narrow assumptions the ODI file driver is easy to configure within ODI and can stream file data without writing it into a database. The complex file driver should be used whenever the use case cannot be handled through the file driver. Are we generating XML out of flat files before we write it into a database? We don’t materialize any XML as part of parsing a flat file, either in memory or on disk. The data produced by the XML parser is streamed in Java objects that just use XSD-derived nXSD schema as its type system. We use the nXSD schema because is the standard for describing complex flat file metadata in Oracle Fusion Middleware, and enables users to share schemas across products. Is the nXSD file interchangeable with SOA Suite? Yes, ODI can use the same nXSD files as SOA Suite, allowing mixed use cases with the same data format. Can I start the Native Format Builder from the ODI Studio? No, the Native Format Builder has to be started from a JDeveloper with BPEL instance. You can get BPEL as part of the SOA Suite bundle. Users without SOA Suite can manually develop nXSD files using XSD editors. When is the database data written back to the native file? Data is synchronized using the SYNCHRONIZE and CREATE FILE commands, and when the JDBC connection is closed. It is recommended to set the ro or read_only property to true when a file is exclusively used for reading so that no unnecessary write-backs occur. Is the nXSD metadata part of the ODI Master or Work Repository? No, the data server definition in the master repository only contains the JDBC URL with file paths; the nXSD files have to be accessible on the file systems where the JDBC driver is executed during production, either by copying or by using a network file system. Where can I find sample nXSD files? The Application Server Adapter Users Guide contains nXSD samples for various different use cases.

    Read the article

  • ESXi boot time with 9 iSCSI targets

    - by Myles Gray
    Our ESXi hosts have always been slow booting when it came to iscsi_vmk loaded successfully - sitting here for almost 5 minutes. In all a full server reboot takes almost 12 minutes. We have 9 iSCSI targets per host (5 SANs with redundant interfaces) configured as dynamic discovery targets. Has anyone experienced this? Can it be remedied with static discovery mode? Are there any debug steps we can work through to help diagnose this? (All our targets are accessible at boot so i'm assuming the host isn't stuck retrying to connect to a target)

    Read the article

  • How to connect SAN from CentOS through two iSCSI Targets

    - by garconcn
    I had asked the similar question before. This time I want to use subnet for two iSCSI Targets, hence I start a new question. I have an old Promise VTrak M500i SAN Server. It comes with 2 iSCSI ports. I want to connect to two LUNs on the SAN server through two separate Targets from CentOS 5.7 64bits server. My network setup is as follows: CentOS server: Management network - 192.168.1.1 Storage network 1 - 192.168.5.2 Storage network 2 - 192.168.6.2 Promise SAN server: Management network - 192.168.1.2 iSCSI Port 1 - 192.168.5.1 iSCSI Port 2 - 192.168.6.1 I have two Logical Drives on this SAN and they are mapped as follows: Index Initiator Name LUN Mapping 0 iqn.2011-11:backup (LD0,0) 1 iqn.2011-11:template (LD1,1) Basically, I want the traffic to iqn.2011-11:backup LUN 0 through 192.168.5.1 network the traffic to iqn.2011-11:template LUN 1 through 192.168.6.1 network I don't use MPIO, just want to separate the traffic to avoid traffic jam. How do I achieve this? I am new to SAN stuff, please explain as much detail as you can. Thank you. The following are what I am doing now. After mapping the LUN to my pre-defined Initiators, the CentOS server can discover both Targets. [root@centos ~]# iscsiadm -m discovery -t sendtargets -p 192.168.5.1 192.168.5.1:3260,1 iscsi-1 192.168.6.1:3260,2 iscsi-1 [root@centos ~]# iscsiadm -m discovery -t sendtargets -p 192.168.6.1 192.168.6.1:3260,2 iscsi-1 192.168.5.1:3260,1 iscsi-1 [root@centos ~]# /etc/init.d/iscsi start iscsid is stopped Starting iSCSI daemon: [ OK ] [ OK ] Setting up iSCSI targets: Logging in to [iface: default, target: iscsi-1, portal: 192.168.6.1,3260] Logging in to [iface: default, target: iscsi-1, portal: 192.168.5.1,3260] Login to [iface: default, target: iscsi-1, portal: 192.168.6.1,3260] successful. Login to [iface: default, target: iscsi-1, portal: 192.168.5.1,3260] successful. [ OK ] [root@centos ~]# iscsiadm -m session tcp: [1] 192.168.6.1:3260,2 iscsi-1 tcp: [2] 192.168.5.1:3260,1 iscsi-1 When I check the LUN mapping on the SAN server for the two Logical Drives, both LUNs are connected through Port0-192.168.5.2 with the Initiator defined in CentOS. Assigned Initiator List: Initiator Name Alias IP Address LUN iqn.2011-11.centos centos.mydomain.com Port0-192.168.5.2 0 Initiator Name Alias IP Address LUN iqn.2011-11.centos centos.mydomain.com Port1-192.168.5.2 1 I assume the following is what I want: Initiator Name Alias IP Address LUN iqn.2011-11.backup centos.mydomain.com Port0-192.168.5.2 0 Initiator Name Alias IP Address LUN iqn.2011-11.template centos.mydomain.com Port0-192.168.6.2 1

    Read the article

  • Using Oracle Linux iSCSI targets with Oracle VM

    - by wim.coekaerts
    A few days ago I had written a blog entry on how to use Oracle Solaris 10 (in my case), ZFS and the iSCSI target feature in Oracle Solaris to create a set of devices exported to my Oracle VM server. Oracle Linux can do this as well and I wanted to make sure I also tried out how to do this on Oracle Linux and here are the results. When you install Oracle Linux 5 update 5 (anything newer than update 3), it comes with an rpm called scsi-target-utils. To begin your quest, should you choose to accept it :) make sure this is installed. rpm -qa |grep scsi-target If it is not installed : up2date scsi-target-utils The target utils come with a tool tgtadm which is similar to iscsitadm on Oracle Solaris. There are 2 components again on the iSCSI server side. (1) create volumes - we will use lvm with lvcreate (2) expose a target using tgtadm. My server has a simple setup. All the disks are part of a single volume group called vgroot. To export a 50Gb volume I just create a new volume : lvcreate -L 50G -nmytest1 vgroot This will show up as a new volume in /dev/mapper as /dev/mapper/vgroot-mytest1. Create as many as you want for your environment. Since I already have my blog entry about the 5 volumes, I am not going to repeat the whole thing. You can just go look at the previous blog entry. Now that we have created the volume, we need to use tgtadm to set it up : make sure the service is running : /etc/init.d/tgtd start or service tgtd start (if you want to keep it running you can do chkconfig tgtd on to start it automatically at boottime) Next you need a targetname to set everything up. My recommendation would be to install iscsi-initiator-utils . This will create an iscsi id and put it in /etc/iscsi/initiatorname.iscsi. For convenience you can do : source /etc/iscsi/initiatorname.iscsi echo $InitiatorName and from here on use $InitiatorName instead of the long complex iqn. create your target : tgtadm --lld iscsi --op new --mode target --tid 1 -T $InitiatorName to show the status : tgtadm --lld iscsi --op show --mode target add the volume previously created : tgtadm --lld iscsi --op new --mode logicalunit --tid 1 --lun 1 -b /dev/mapper/vgroot-mytest1 re-run status to see it's there : tgtadm --lld iscsi --op show --mode target and just like on Oracle Solaris you now have to export (bind) it : tgtadm --lld iscsi --op bind --mode target --tid 1 -I iqn.1986-03.com.sun:01:2a7526f0ffff If you want to export the lun to every iscsi initiator then replace the iqn with ALL. Of course you have to add the iqn of each iscsi initiator or client you want to connect. In the case of my 2 node Oracle VM server setup, both Oracle VM server's initiator names would have to be added. use status again to see that it has this iqn under ACL tgtadm --lld iscsi --op show --mode target You can drop the --lld iscsi if you want, or alias it. It just makes the command line more obvious as to what you are doing. Oracle VM side : Refer back to the previous blog entry for the detailed setup of my Oracle VM server volumes but the exact same commands will be used there. discover : iscsiadm --mode discovery --type sendtargets --portal login : iscsiadm --mode node --targetname iscsi targetname --portal --login get devices : /etc/init.d/iscsi restart and voila you should be in business. have fun.

    Read the article

  • Week in Geek: BlackHole RAT Trojan Targets Mac OS X Edition

    - by Asian Angel
    This week we learned how to change window transparency in Windows 7 with a hotkey, backup web-based email accounts using Thunderbird, “temporarily halt autorun, enable Android’s power control, & securely wipe CDs/DVDs”, “block text messages, prioritize Wi-Fi connections, & revitalize a Windows 6 phone”, learned what Bitcoin the virtual digital currency is, and more. Photo by Jessica Lucia. Latest Features How-To Geek ETC Learn To Adjust Contrast Like a Pro in Photoshop, GIMP, and Paint.NET Have You Ever Wondered How Your Operating System Got Its Name? Should You Delete Windows 7 Service Pack Backup Files to Save Space? What Can Super Mario Teach Us About Graphics Technology? Windows 7 Service Pack 1 is Released: But Should You Install It? How To Make Hundreds of Complex Photo Edits in Seconds With Photoshop Actions Sync Your Windows Computer with Your Ubuntu One Account [Desktop Client] Awesome 10 Meter Curved Touchscreen at the University of Groningen [Video] TV Antenna Helper Makes HDTV Antenna Calibration a Snap Turn a Green Laser into a Microscope Projector [Science] The Open Road Awaits [Wallpaper] N64oid Brings N64 Emulation to Android Devices

    Read the article

  • write to depth buffer while using multiple render targets

    - by DocSeuss
    Presently my engine is set up to use deferred shading. My pixel shader output struct is as follows: struct GBuffer { float4 Depth : DEPTH0; //depth render target float4 Normal : COLOR0; //normal render target float4 Diffuse : COLOR1; //diffuse render target float4 Specular : COLOR2; //specular render target }; This works fine for flat surfaces, but I'm trying to implement relief mapping which requires me to manually write to the depth buffer to get correct silhouettes. MSDN suggests doing what I'm already doing to output to my depth render target - however, this has no impact on z culling. I think it might be because XNA uses a different depth buffer for every RenderTarget2D. How can I address these depth buffers from the pixel shader?

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >