Search Results

Search found 24226 results on 970 pages for 'team foundation build'.

Page 1/970 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Is your team is a high-performing team?

    As a child I can remember looking out of the car window as my father drove along the Interstate in Florida while seeing prisoners wearing bright orange jump suits and prison guards keeping a watchful eye on them. The prisoners were taking part in a prison road gang. These road gangs were formed to help the state maintain the state highway infrastructure. The prisoner’s primary responsibilities are to pick up trash and debris from the roadway. This is a prime example of a work group or working group used by most prison systems in the United States. Work groups or working groups can be defined as a collection of individuals or entities working together to achieve a specific goal or accomplish a specific set of tasks. Typically these groups are only established for a short period of time and are dissolved once the desired outcome has been achieved. More often than not group members usually feel as though they are expendable to the group and some even dread that they are even in the group. "A team is a small number of people with complementary skills who are committed to a common purpose, performance goals, and approach for which they are mutually accountable." (Katzenbach and Smith, 1993) So how do you determine that a team is a high-performing team?  This can be determined by three base line criteria that include: consistently high quality output, the promotion of personal growth and well being of all team members, and most importantly the ability to learn and grow as a unit. Initially, a team can successfully create high-performing output without meeting all three criteria, however this will erode over time because team members will feel detached from the group or that they are not growing then the quality of the output will decline. High performing teams are similar to work groups because they both utilize a collection of individuals or entities to accomplish tasks. What distinguish a high-performing team from a work group are its characteristics. High-performing teams contain five core characteristics. These characteristics are what separate a group from a team. The five characteristics of a high-performing team include: Purpose, Performance Measures, People with Tasks and Relationship Skills, Process, and Preparation and Practice. A high-performing team is much more than a work group, and typically has a life cycle that can vary from team to team. The standard team lifecycle consists of five states and is comparable to a human life cycle. The five states of a high-performing team lifecycle include: Formulating, Storming, Normalizing, Performing, and Adjourning. The Formulating State of a team is first realized when the team members are first defined and roles are assigned to all members. This initial stage is very important because it can set the tone for the team and can ultimately determine its success or failure. In addition, this stage requires the team to have a strong leader because team members are normally unclear about specific roles, specific obstacles and goals that my lay ahead of them.  Finally, this stage is where most team members initially meet one another prior to working as a team unless the team members already know each other. The Storming State normally arrives directly after the formulation of a new team because there are still a lot of unknowns amongst the newly formed assembly. As a general rule most of the parties involved in the team are still getting used to the workload, pace of work, deadlines and the validity of various tasks that need to be performed by the group.  In this state everything is questioned because there are so many unknowns. Items commonly questioned include the credentials of others on the team, the actual validity of a project, and the leadership abilities of the team leader.  This can be exemplified by looking at the interactions between animals when they first meet.  If we look at a scenario where two people are walking directly toward each other with their dogs. The dogs will automatically enter the Storming State because they do not know the other dog. Typically in this situation, they attempt to define which is more dominating via play or fighting depending on how the dogs interact with each other. Once dominance has been defined and accepted by both dogs then they will either want to play or leave depending on how the dogs interacted and other environmental variables. Once the Storming State has been realized then the Normalizing State takes over. This state is entered by a team once all the questions of the Storming State have been answered and the team has been tested by a few tasks or projects.  Typically, participants in the team are filled with energy, and comradery, and a strong alliance with team goals and objectives.  A high school football team is a perfect example of the Normalizing State when they start their season.  The player positions have been assigned, the depth chart has been filled and everyone is focused on winning each game. All of the players encourage and expect each other to perform at the best of their abilities and are united by competition from other teams. The Performing State is achieved by a team when its history, working habits, and culture solidify the team as one working unit. In this state team members can anticipate specific behaviors, attitudes, reactions, and challenges are seen as opportunities and not problems. Additionally, each team member knows their role in the team’s success, and the roles of others. This is the most productive state of a group and is where all the time invested working together really pays off. If you look at an Olympic figure skating team skate you can easily see how the time spent working together benefits their performance. They skate as one unit even though it is comprised of two skaters. Each skater has their routine completely memorized as well as their partners. This allows them to anticipate each other’s moves on the ice makes their skating look effortless. The final state of a team is the Adjourning State. This state is where accomplishments by the team and each individual team member are recognized. Additionally, this state also allows for reflection of the interactions between team members, work accomplished and challenges that were faced. Finally, the team celebrates the challenges they have faced and overcome as a unit. Currently in the workplace teams are divided into two different types: Co-located and Distributed Teams. Co-located teams defined as the traditional group of people working together in an office, according to Andy Singleton of Assembla. This traditional type of a team has dominated business in the past due to inadequate technology, which forced workers to primarily interact with one another via face to face meetings.  Team meetings are primarily lead by the person with the highest status in the company. Having personally, participated in meetings of this type, usually a select few of the team members dominate the flow of communication which reduces the input of others in group discussions. Since discussions are dominated by a select few individuals the discussions and group discussion are skewed in favor of the individuals who communicate the most in meetings. In addition, Team members might not give their full opinions on a topic of discussion in part not to offend or create controversy amongst the team and can alter decision made in meetings towards those of the opinions of the dominating team members. Distributed teams are by definition spread across an area or subdivided into separate sections. That is exactly what distributed teams when compared to a more traditional team. It is common place for distributed teams to have team members across town, in the next state, across the country and even with the advances in technology over the last 20 year across the world. These teams allow for more diversity compared to the other type of teams because they allow for more flexibility regarding location. A team could consist of a 30 year old male Italian project manager from New York, a 50 year old female Hispanic from California and a collection of programmers from India because technology allows them to communicate as if they were standing next to one another.  In addition, distributed team members consult with more team members prior to making decisions compared to traditional teams, and take longer to come to decisions due to the changes in time zones and cultural events. However, team members feel more empowered to speak out when they do not agree with the team and to notify others of potential issues regarding the work that the team is doing. Virtual teams which are a subset of the distributed team type is changing organizational strategies due to the fact that a team can now in essence be working 24 hrs a day because of utilizing employees in various time zones and locations.  A primary example of this is with customer services departments, a company can have multiple call centers spread across multiple time zones allowing them to appear to be open 24 hours a day while all a employees work from 9AM to 5 PM every day. Virtual teams also allow human resources departments to go after the best talent for the company regardless of where the potential employee works because they will be a part of a virtual team all that is need is the proper technology to be setup to allow everyone to communicate. In addition to allowing employees to work from home, the company can save space and resources by not having to provide a desk for every team member. In fact, those team members that randomly come into the office can actually share one desk amongst multiple people. This is definitely a cost cutting plus given the current state of the economy. One thing that can turn a team into a high-performing team is leadership. High-performing team leaders need to focus on investing in ongoing personal development, provide team members with direction, structure, and resources needed to accomplish their work, make the right interventions at the right time, and help the team manage boundaries between the team and various external parties involved in the teams work. A team leader needs to invest in ongoing personal development in order to effectively manage their team. People have said that attitude is everything; this is very true about leaders and leadership. A team takes on the attitudes and behaviors of its leaders. This can potentially harm the team and the team’s output. Leaders must concentrate on self-awareness, and understanding their team’s group dynamics to fully understand how to lead them. In addition, always learning new leadership techniques from other effective leaders is also very beneficial. Providing team members with direction, structure, and resources that they need to accomplish their work collectively sounds easy, but it is not.  Leaders need to be able to effectively communicate with their team on how their work helps the company reach for its organizational vision. Conversely, the leader needs to allow his team to work autonomously within specific guidelines to turn the company’s vision into a reality.  This being said the team must be appropriately staffed according to the size of the team’s tasks and their complexity. These tasks should be clear, and be meaningful to the company’s objectives and allow for feedback to be exchanged with the leader and the team member and the leader and upper management. Now if the team is properly staffed, and has a clear and full understanding of what is to be done; the company also must supply the workers with the proper tools to achieve the tasks that they are asked to do. No one should be asked to dig a hole without being given a shovel.  Finally, leaders must reward their team members for accomplishments that they achieve. Awards could range from just a simple congratulatory email, a party to close the completion of a large project, or other monetary rewards. Managing boundaries is very important for team leaders because it can alter attitudes of team members and can add undue stress to the team which will force them to loose focus on the tasks at hand for the group. Team leaders should promote communication between team members so that burdens are shared amongst the team and solutions can be derived from hearing the opinions of multiple sources. This also reinforces team camaraderie and working as a unit. Team leaders must manage the type and timing of interventions as to not create an even bigger mess within the team. Poorly timed interventions can really deflate team members and make them question themselves. This could really increase further and undue interventions by the team leader. Typically, the best time for interventions is when the team is just starting to form so that all unproductive behaviors are removed from the team and that it can retain focus on its agenda. If an intervention is effectively executed the team will feel energized about the work that they are doing, promote communication and interaction amongst the group and improve moral overall. High-performing teams are very import to organizations because they consistently produce high quality output and develop a collective purpose for their work. This drive to succeed allows team members to utilize specific talents allowing for growth in these areas.  In addition, these team members usually take on a sense of ownership with their projects and feel that the other team members are irreplaceable. References: http://blog.assembla.com/assemblablog/tabid/12618/bid/3127/Three-ways-to-organize-your-team-co-located-outsourced-or-global.aspx Katzenbach, J.R. & Smith, D.K. (1993). The Wisdom of Teams: Creating the High-performance Organization. Boston: Harvard Business School.

    Read the article

  • TFS Build 2010: BuildNumber and DropLocation

    - by javarg
    Automatic Builds for Application Release is a current practice in every major development factory nowadays. Using Team Foundation Server Build 2010 to accomplish this offers many opportunities to improve quality of your releases. The following approach allow us to generate build drop folders including the BuildNumber and the Changeset or Label provided. Using this procedure we can quickly identify the generated binaries in the Drop Server with the corresponding Version. Branch the DefaultTemplate.xaml and renamed it with CustomDefaultTemplate.xaml Open it for edit (check out) Go to the Set Drop Location Activity and edit the DropLocation property. Write the following expression: BuildDetail.DropLocationRoot + "\" + BuildDetail.BuildDefinition.Name + "\" + If(String.IsNullOrWhiteSpace(GetVersion), BuildDetail.SourceGetVersion, GetVersion) + "_" + BuildDetail.BuildNumber Check in the branched template. Now create a build definition named TestBuildForDev using the new template. The previous expression sets the DropLocation with the following format: (ChangesetNumber|LabelName)_BuildName_BuildNumber The first part of the folder name will be the changeset number or the label name (if triggered using labels). Folder names will be generated as following: C1850_TestBuildForDev_20111117.1 (changesets start with letter C) LLabelname_TestBuildForDev_20111117.1 (labels start with letter L) Try launching a build from a Changeset and from a Label. You can specify a Label in the GetVersion parameter in the Queue new Build Wizard, going to the Parameters tab (for labels add the “L” prefix):

    Read the article

  • kernel module compiling error

    - by wati
    sh@ubuntu:/home/ccpp/helloworld$ make gcc-4.6 -O2 -DMODULE -D_KERNEL_ -W -Wall -Wstrict-prototypes -Wmissing-prototypes -isystem /lib/modules/`uname -r`/build/include -c -o hello-1.o hello-1.c hello-1.c:4:0: warning: "MODULE" redefined [enabled by default] <command-line>:0:0: note: this is the location of the previous definition hello-1.c:6:0: warning: "_KERNEL_" redefined [enabled by default] <command-line>:0:0: note: this is the location of the previous definition In file included from /lib/modules/3.2.0-25-generic/build/include/linux/list.h:4:0, from /lib/modules/3.2.0-25-generic/build/include/linux/module.h:9, from hello-1.c:7: /lib/modules/3.2.0-25-generic/build/include/linux/types.h:13:2: warning: #warning "Attempt to use kernel headers from user space, see http://kernelnewbies.org/KernelHeaders" [-Wcpp] In file included from /lib/modules/3.2.0-25-generic/build/include/linux/module.h:9:0, from hello-1.c:7: /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘INIT_LIST_HEAD’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:26:6: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:27:6: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘__list_add’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:41:6: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:42:5: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:43:5: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:44:6: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘list_add’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:62:28: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘list_add_tail’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:76:22: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘__list_del’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:88:6: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:89:6: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘__list_del_entry’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:101:18: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:101:31: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘list_del’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:106:18: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:106:31: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:107:7: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:108:7: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘list_replace’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:125:5: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:125:17: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:126:5: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:127:5: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:127:17: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:128:5: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘list_is_last’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:179:13: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘list_empty’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:188:13: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘list_empty_careful’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:206:31: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:207:40: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘list_rotate_left’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:219:15: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘list_is_singular’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:230:35: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:230:49: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘__list_cut_position’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:236:37: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:237:6: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:237:19: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:238:6: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:239:6: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:240:7: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:241:6: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:242:11: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘list_cut_position’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:265:8: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘__list_splice’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:277:32: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:278:31: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:280:7: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:281:6: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:283:6: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:284:6: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘list_splice’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:296:33: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘list_splice_tail’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:308:27: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘list_splice_init’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:322:33: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘list_splice_tail_init’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:339:27: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘INIT_HLIST_NODE’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:572:3: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:573:3: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘hlist_unhashed’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:578:11: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘hlist_empty’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:583:11: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘__hlist_del’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:588:29: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:589:31: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:592:7: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘hlist_del’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:598:3: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:599:3: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘hlist_add_head’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:612:30: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:613:3: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:615:8: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:615:20: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:616:3: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:617:3: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:617:15: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘hlist_add_before’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:624:3: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:624:17: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:625:3: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:626:6: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:626:18: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:627:5: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘hlist_add_after’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:633:6: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:633:16: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:634:3: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:635:6: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:635:18: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:637:9: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:638:7: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:638:29: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘hlist_add_fake’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:644:3: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:644:15: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h: In function ‘hlist_move_list’: /lib/modules/3.2.0-25-generic/build/include/linux/list.h:654:5: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:654:18: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:655:9: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:656:6: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:656:27: error: dereferencing pointer to incomplete type /lib/modules/3.2.0-25-generic/build/include/linux/list.h:657:5: error: dereferencing pointer to incomplete type In file included from /lib/modules/3.2.0-25-generic/build/include/linux/module.h:12:0, from hello-1.c:7: /lib/modules/3.2.0-25-generic/build/include/linux/cache.h: At top level: /lib/modules/3.2.0-25-generic/build/include/linux/cache.h:5:23: fatal error: asm/cache.h: No such file or directory compilation terminated. make: *** [hello-1.o] Error 1 i got this error after compiling an helloworld program my program is #define MODULE #define LINUX #define _KERNEL_ #include <linux/module.h> #include <linux/kernel.h> int init_module(void) { printk("<1>hello World 1.\n"); return 0; } void cleanup_module(void) { printk(KERN_ALERT "goodbye world 1.\n"); } MODULE_LICENSE("GPL"); my make file is: TARGET := hello-1 WARN := -W -Wall -Wstrict-prototypes -Wmissing-prototypes INCLUDE := -isystem /lib/modules/`uname -r`/build/include CFLAGS := -O2 -DMODULE -D_KERNEL_ ${WARN} ${INCLUDE} CC := gcc-4.6 ${TARGET}.o: ${TARGET}.c .PHONY: clean clean: rm -rf ${TARGET}.o iam usin kernel 3.2.0.25 as novice i can't able to figure out where the problem is I SEARCHED EVERY THING I CAN TO KNOW ABOUT THIS ERROR BUT I CANT UNDERSTAND &I GET IRRELEVANT DOCS anybody help me please

    Read the article

  • Deleting Team Project in Team Foundation Server 2010

    - by Hosam Kamel
    I’m seeing a lot of people still using some old ways ported from TFS 2008 to delete a team project like TFSDeleteProject utility.   In TFS 2010 the administration tasks are made very easy to help you in a lot of administration stuff, for the deletion point specially you can navigate to the Administration Console then Select Team Project Collection Select the project collection contains the project you want to delete then navigate to Team Projects. Select the project then click Delete, you will have the option to delete any external artifacts and workspace too.   Hope it helps. Originally posted at "Hosam Kamel| Developer & Platform Evangelist"

    Read the article

  • Customize Team Build 2010 – Part 13: Get control over the Build Output

    In the series the following parts have been published Part 1: Introduction Part 2: Add arguments and variables Part 3: Use more complex arguments Part 4: Create your own activity Part 5: Increase AssemblyVersion Part 6: Use custom type for an argument Part 7: How is the custom assembly found Part 8: Send information to the build log Part 9: Impersonate activities (run under other credentials) Part 10: Include Version Number in the Build Number Part 11: Speed up opening my build process template Part 12: How to debug my custom activities Part 13: Get control over the Build Output Part 14: Execute a PowerShell script Part 15: Fail a build based on the exit code of a console application     In the part 8, I have explained how you can add informational messages, warnings or errors to the build output. If you want to integrate with other lines of text to the build output, you need to do more. This post will show you how you can add extra steps, additional information and hyperlinks to the build output. Add an hyperlink to the end of the build output Lets start with a simple example of how you can adjust the build output. In this case we are going to add at the end of the build output an hyperlink where a user can click on to for example start the deployment to the test environment. In part 4 you can find information how you can create a custom activity To add information to the build output, you need the BuildDetail. This value is a variable in your xaml and is thus easily transferable to you custom activity. Besides the BuildDetail the user has also to specify the text and the url that has to be added to the end of the build output. The following code segment shows you how you can achieve this.     [BuildActivity(HostEnvironmentOption.All)]    public sealed class AddHyperlinkToBuildOutput : CodeActivity    {        [RequiredArgument]        public InArgument<IBuildDetail> BuildDetail { get; set; }         [RequiredArgument]        public InArgument<string> DisplayText { get; set; }         [RequiredArgument]        public InArgument<string> Url { get; set; }         protected override void Execute(CodeActivityContext context)        {            // Obtain the runtime value of the input arguments                        IBuildDetail buildDetail = context.GetValue(this.BuildDetail);            string displayText = context.GetValue(this.DisplayText);            string url = context.GetValue(this.Url);             // Add the hyperlink            buildDetail.Information.AddExternalLink(displayText, new Uri(url));            buildDetail.Information.Save();        }    } If you add this activity to somewhere in your build process template (within the scope Run on Agent), you will get the following build output Add an line of text to the build output The next challenge is to add this kind of output not only to the end of the build output but at the step that is currently executing. To be able to do this, you need the current node in the build output. The following code shows you how you can achieve this. First you need to get the current activity tracking, which you can get with the following line of code             IActivityTracking currentTracking = context.GetExtension<IBuildLoggingExtension>().GetActivityTracking(context); Then you can create a new node and set its type to Activity Tracking Node (so copy it from the current node) and do nice things with the node.             IBuildInformationNode childNode = currentTracking.Node.Children.CreateNode();            childNode.Type = currentTracking.Node.Type;            childNode.Fields.Add("DisplayText", "This text is displayed."); You can also add a build step to display progress             IBuildStep buildStep = childNode.Children.AddBuildStep("Custom Build Step", "This is my custom build step");            buildStep.FinishTime = DateTime.Now.AddSeconds(10);            buildStep.Status = BuildStepStatus.Succeeded; Or you can add an hyperlink to the node             childNode.Children.AddExternalLink("My link", new Uri(http://www.ewaldhofman.nl)); When you combine this together you get the following result in the build output     You can download the full solution at BuildProcess.zip. It will include the sources of every part and will continue to evolve.

    Read the article

  • Does a team of developers need a manager?

    - by Amadiere
    Background: I'm currently part of a team of four: 1 manager, 1 senior developer and 2 developers. We do a range of bespoke in-house systems / projects (e.g. 6-8 weeks) for an organisation of around 3500 staff, as well as all the maintenance and support required from the systems that have been created before. There is not enough of us to do all the work that is potentially coming our way - we're understaffed. Management acknowledge this, but budget restraints limit our ability to recruit additional members to the team (even if we make the salary back in savings). The Change This leaves us where we are now. Our manager is due to leave his role for pastures new, leaving a vacancy in the team. Management are using this opportunity to restructure our team which would see the team manager role replaced by another developer and another senior developer. Their logic being that we need more developers, so here's a way of funding it (one of the roles is partially funded from another vacant post). The team would have no direct line manager and the roles and responsibilities would be divided up between the seniors and the (relatively new to post) service manager (a non-technical role with little-to-no development knowledge/experience whose focus is shared amongst a number of other teams and individuals) - who would be our next actual manager up the food chain. I guess the final question is: Is it possible to run a development team without an manager? Have you had experience of this? And what things could go wrong / could be of benefit to us? I'd ideally like to "see the light" and the benefits of doing things this way, or come up with some points for argument against it.

    Read the article

  • Replacing build.xml with Build.java - using Java and the Ant libraries as a build system

    - by Dean Schulze
    I've grown disillusioned with Groovy based alternatives to Ant. AntBuilder doesn't work from within Eclipse, the Groovy plugin for Eclipse is disappointing, and Gradle just isn't ready yet. The Ant documentation has a section titled "Using Ant Tasks Outside of Ant" which gives a teaser for how to use the Ant libraries from Java code. There's another example here: http://www.mail-archive.com/[email protected]/msg16310.html In theory it seems simple enough to replace build.xml with Build.java. The Ant documentation hints at some undocumented dependencies that I'll have to discover (undocumented from the point of view of using Ant from within Java). Given the level of disappointment with Ant scripting, I wonder why this hasn't been done before. Perhaps it has and isn't a good build system. Has anyone tried writing build files in Java using the Ant libraries?

    Read the article

  • Microsoft Team Foundation Server 2010 Service Pack 1

    - by javarg
    Last week Microsoft has released the first Service Pack for Team Foundation Server. Several issues have been fixed and included in this patch. Check out the list of fixes here. Cool stuff has been shipped with this new released, such as the expected Project Service Integration. PS: note that these annoying bugs has been fixed: Team Explorer: When you use a Visual Studio 2005 or a Visual Studio 2008 client, you encounter a red "X" on the reporting node of the team explorer. Source Control: You receive the error "System.IO.IOException: Unable to read data from the transport connection: The connection was closed." when you try to download a source

    Read the article

  • Dealing with selfish team member(s)

    - by thegreendroid
    My team is facing a difficult quandary, a couple of team members are essentially selfish (not to be confused with dominant!) and are cherry-picking stories/tasks that will give them the most recognition within the company (at sprint reviews etc. when all the stakeholders are present). These team members are very good at what they do and are fully aware of what they are doing. When we first started using agile about a year ago, I can say I was quite selfish too (coming from a very individual-focused past). I took ownership of certain stories and didn't involve anyone else in it, which in hindsight wasn't the right thing to do and I learnt from that experience almost immediately. We are a young team of very ambitious twenty somethings so I can understand the selfishness to some extent (after all everyone should be ambitious!). But the level to which this selfishness has reached of late has started to bother me and a few others within my team. The way I see it, agile/scrum is all about the team and not individuals. We should be looking out for each other and helping each other improve. I made this quite clear during our last retrospective, that we should be fair and give everyone a chance. I'll wait and see what comes out of it in the next few sprints. In the meantime, what are some of the troubles that you have faced with selfish members and how did you overcome them?

    Read the article

  • Customize Team Build 2010 – Part 11: Speed up opening my build process template

    In the series the following parts have been published Part 1: Introduction Part 2: Add arguments and variables Part 3: Use more complex arguments Part 4: Create your own activity Part 5: Increase AssemblyVersion Part 6: Use custom type for an argument Part 7: How is the custom assembly found Part 8: Send information to the build log Part 9: Impersonate activities (run under other credentials) Part 10: Include Version Number in the Build Number Part 11: Speed up opening my build process template Part 12: How to debug my custom activities Part 13: Get control over the Build Output Part 14: Execute a PowerShell script Part 15: Fail a build based on the exit code of a console application       When you open the build process template, it takes 15 – 30 seconds until it opens. When you are in the process of creating your custom build process template, this can be very frustrating. Thanks to Ed Blankenship how has found a little trick to speed up the opening of the template. It now only takes a few seconds. Create a file called empty.xaml and place the following text in it: <Activity http://www.edsquared.com/ct.ashx?id=1746c587-59ce-45eb-85af-8ea167862617&url=http%3a%2f%2fschemas.microsoft.com%2fnetfx%2f2009%2fxaml%2factivities"http://schemas.microsoft.com/netfx/2009/xaml/activities"> </Activity> Open this file in Visual Studio. In the toolbox panel, add a new tab called “Team Foundation Build Activities”.  Note that it is important to get the tab name correct because if it is not correct then the activities will be reloaded. Inside the new tab, right click and select “Choose Items” Click the Browse button Load the file C:\Windows\Microsoft.NET\assembly\GAC_MSIL\Microsoft.TeamFoundation.Build.Workflow\v4.0_10.0.0.0__b03f5f7f11d50a3a\Microsoft.TeamFoundation.Build.Workflow.dll Click OK to add the toolbox items to the tab. Create another new tab called “Team Foundation LabManagement Activities”. Inside the new tab, right click and select “Choose Items” Click the Browse button Load the file C:\Windows\Microsoft.NET\assembly\GAC_MSIL\Microsoft.TeamFoundation.Lab.Workflow.Activities\v4.0_10.0.0.0__b03f5f7f11d50a3a\Microsoft.TeamFoundation.Lab.Workflow.Activities.dll Click OK to add the toolbox items to the tab. You can download the full solution at BuildProcess.zip. It will include the sources of every part and will continue to evolve.

    Read the article

  • Getting TF215097 error after modifying a build process template in TFS Team Build 2010

    - by Jakob Ehn
    When embracing Team Build 2010, you typically want to define several different build process templates for different scenarios. Common examples here are CI builds, QA builds and release builds. For example, in a contiuous build you often have no interest in publishing to the symbol store, you might or might not want to associate changesets and work items etc. The build server is often heavily occupied as it is, so you don’t want to have it doing more that necessary. Try to define a set of build process templates that are used across your company. In previous versions of TFS Team Build, there was no easy way to do this. But in TFS 2010 it is very easy so there is no excuse to not do it! :-)   I ran into a scenario today where I had an existing build definition that was based on our release build process template. In this template, we have defined several different build process parameters that control the release build. These are placed into its own sectionin the Build Process Parameters editor. This is done using the ProcessParameterMetadataCollection element, I will explain how this works in a future post.   I won’t go into details on these parametes, the issue for this blog post is what happens when you modify a build process template so that it is no longer compatible with the build definition, i.e. a breaking change. In this case, I removed a parameter that was no longer necessary. After merging the new build process template to one of the projects and queued a new release build, I got this error:   TF215097: An error occurred while initializing a build for build definition <Build Definition Name>: The values provided for the root activity's arguments did not satisfy the root activity's requirements: 'DynamicActivity': The following keys from the input dictionary do not map to arguments and must be removed: <Parameter Name>.  Please note that argument names are case sensitive. Parameter name: rootArgumentValues <Parameter Name> was the parameter that I removed so it was pretty easy to understand why the error had occurred. However, it is not entirely obvious how to fix the problem. When open the build definition everything looks OK, the removed build process parameter is not there, and I can open the build process template without any validation warnings. The problem here is that all settings specific to a particular build definition is stored in the TFS database. In TFS 2005, everything that was related to a build was stored in TFS source control in files (TFSBuild.proj, WorkspaceMapping.xml..). In TFS 2008, many of these settings were moved into the database. Still, lots of things were stored in TFSBuild.proj, such as the solution and configuration to build, wether to execute tests or not. In TFS 2010, all settings for a build definition is stored in the database. If we look inside the database we can see what this looks like. The table tbl_BuildDefinition contains all information for a build definition. One of the columns is called ProcessParameters and contains a serialized representation of a Dictionary that is the underlying object where these settings are stoded. Here is an example:   <Dictionary x:TypeArguments="x:String, x:Object" xmlns="clr-namespace:System.Collections.Generic;assembly=mscorlib" xmlns:mtbwa="clr-namespace:Microsoft.TeamFoundation.Build.Workflow.Activities;assembly=Microsoft.TeamFoundation.Build.Workflow" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"> <mtbwa:BuildSettings x:Key="BuildSettings" ProjectsToBuild="$/PathToProject.sln"> <mtbwa:BuildSettings.PlatformConfigurations> <mtbwa:PlatformConfigurationList Capacity="4"> <mtbwa:PlatformConfiguration Configuration="Release" Platform="Any CPU" /> </mtbwa:PlatformConfigurationList> </mtbwa:BuildSettings.PlatformConfigurations> </mtbwa:BuildSettings> <mtbwa:AgentSettings x:Key="AgentSettings" Tags="Agent1" /> <x:Boolean x:Key="DisableTests">True</x:Boolean> <x:String x:Key="ReleaseRepositorySolution">ERP</x:String> <x:Int32 x:Key="Major">2</x:Int32> <x:Int32 x:Key="Minor">3</x:Int32> </Dictionary> Here we can see that it is really only the non-default values that are persisted into the databasen. So, the problem in my case was that I removed one of the parameteres from the build process template, but the parameter and its value still existed in the build definition database. The solution to the problem is to refresh the build definition and save it. In the process tab, there is a Refresh button that will reload the build definition and the process template and synchronize them:   After refreshing the build definition and saving it, the build was running successfully again.

    Read the article

  • Messing with the Team

    - by Robert May
    Good Product Owners will help the team be the best that they can be.  Bad product owners will mess with the team and won’t care about the team.  If you’re a product owner, seek to do good and avoid bad behavior at all costs.  Remember, this is for YOUR benefit and you have much power given to you.  Use that power wisely. Scope Creep The product owner has several tools at his disposal to inject scope into an iteration.  First, the product owner can use defects to inject scope.  To do this, they’ll tell the team what functionality that they want to see in a feature.  Then, after the feature is developed, the Product Owner will decide that they don’t really like how the functionality behaves.  To change it, rather than creating a new story, they’ll add a defect.  The functionality is correct, as designed, but the Product Owner doesn’t like it.  By creating the defect, the Product Owner destroys the trust that the team has of the product owner.  They may not be able to count the story, because the Product Owner changed the story in the iteration, and the team then ends up looking like they have low velocity for something over which they have no control.  This is bad.  One way to deal with this is to add “Product Owner Time” to the iteration.  This will slow the velocity, but then the ScrumMaster can tell stake holders that this time is strictly in place to deal with bad behavior of the Product Owner. Another mechanism often used to inject Scope is the concept of directed development.  Outside of planning, stand-ups, or any other meeting, the Product Owner will take a developer aside and ask them to complete a task for them.  This is bad!  The team should be allocating all of their time to development.  If the Product Owner asks for a favor, then time that would normally be used for development will be used for a pet project of the Product Owner and the team will not get credit for this work.  Selfish product owners do this, and I typically see people who were “managers” do this behavior.  Authoritarian command and control development environments also see this happen.  The best thing that can happen is for the team member to report the issue to the ScrumMaster and the ScrumMaster to get very aggressive with management and the Product Owner to try and stop the behavior.  This may result in the ScrumMaster being fired, but if the behavior continues, Scrum is doomed.  This problem is especially bad in cases where the team member’s direct supervisor is the Product Owner.  I don’t recommend that the Product Owner or ScrumMaster have a direct report relationship with team members, since team members need the ability to say no.  To work around this issue, team members need to say no.  If that fails, team members need to add extra time to the iteration to deal with the scope creep injection and accept the lower velocity. As discussed above, another mechanism for injecting scope is by changing acceptance tests after the work is complete.  This is similar to adding defects to change scope and is bad.  To get around, add time for Product Owner uncertainty to the iteration and make sure that stakeholders are aware of the need to add this time because of the Product Owner. Refusing to Prioritize Refusing to prioritize causes chaos for the team.  From the team’s perspective, things that are not important will be worked on while things that the team knows are vital will be ignored.  A poor Product Owner will often pick the stories for the iteration on a whim.  This leads to the team working on many different aspects of the product and results in a lower velocity, since each iteration the team must switch context to the new area of development. The team will also experience confusion about priorities.  In one iteration, Feature X was the highest priority and had to be done.  Then, the following iteration, even though parts of Feature X still need to be completed, no stories to address them will be in the iteration.  However, three iterations later, Feature X will again become high priority. This will cause the team to not trust the Product Owner, and eventually, they’ll stop caring about the features they implement.  They won’t know what is important, so to insulate themselves from the ever changing chaos, they’ll become apathetic to all features.  Team members are some of the most creative people in a company.  By losing their engagement, the company is going to have a substandard product because the passion for the product won’t be in the team. Other signs that the Product Owner refuses to prioritize is that no one outside of the product owner will be consulted on priorities.  Additionally, the product, release, and iteration backlogs will be weak or non-existent. Dealing with this issue is not easy.  This really isn’t something the team can fix, short of taking over the role of Product Owner themselves.  An appeal to the stake holders might work, but only if the Product Owner isn’t a “manager” themselves.  The ScrumMaster needs to protect the team and do what they can to either get the Product Owner to prioritize or have the Product Owner replaced. Managing the Team A Product Owner that is also the “boss” of team members is a Scrum team that is waiting to fail.  If your boss tells you to do something, failing to do that something can cause you to be fired.  The team needs the ability to tell the Product Owner NO.  If the product owner introduces scope creep, the team has a responsibility to tell the Product Owner no.  If the Product Owner tries to get the team to commit to more than they can accomplish in an iteration, the team needs the ability to tell the Product Owner no. If the Product Owner is your boss and determines your pay increases, you’re probably not going to ever tell them no, and Scrum will likely fail.  The team can’t do much in this situation. Another aspect of “managing the team” that often happens is the Product Owner tries to tell the team how to develop the stories that are in the iteration.  This is one reason why I recommend that Product Owners are NOT technical people.  That way, the team can come up with the tasks that are needed to accomplish the stories and the Product Owner won’t know better.  If the Product Owner is technical, the ScrumMaster will need to take great care to protect the team from the ScrumMaster changing how the team thinks they need to implement the stories. Product Owners can also try to manage the team by their body language.  If the team says a task is going to take 6 hours to complete, and the Product Owner disagrees, they will use some kind of sour body language to indicate this disagreement.  In weak teams, this may cause the team to revise their estimate down, which will result in them taking longer than estimated and may result in them missing the iteration.  The ScrumMaster will need to make sure that the Product Owner doesn’t send such messages and that the team ignores them and estimates what they REALLY think it will take to complete the tasks.  Forcing the team to deal with such items in the retrospective can be helpful. Absenteeism The team is completely dependent upon the Product Owner to develop features for the customer.  The Product Owner IS the voice of the customer and without them, the team will lack direction.  Being the Product Owner is a full time job!  If the Product Owner cannot dedicate daily time with the team, a different product owner should be found. The Product Owner needs to attend every stand-up, planning meeting, showcase, and retrospective that the team has.  The team also must be able to have instant communication with the product owner.  They must not be required to schedule meetings to speak with their product owner.  The team must be the highest priority task that the Product Owner has. The best way to work around an absent Product Owner is to appoint a new Product Owner in the team.  This person will be responsible for making the decisions that the Product Owner should be making and to act as the liaison to the absent Product Owner.  If the delegate Product Owner doesn’t have authority to make decisions for the team, Scrum will fail.  If the Product Owner is absent, the ScrumMaster should seek to have that Product Owner replaced by someone who has the time and ability to be a real Product Owner. Making it Personal Too often Product Owners will become convinced that their ideas are the ones that matter and that anyone who disagrees is making a personal attack on them.  Remember that Product Owners will inherently be at odds with many people, simply because they have the need to prioritize.  Others will frequently question prioritization because they only see part of the picture that Product Owners face. Product Owners must have a thick skin and think egos.  If they don’t, they tend to make things personal, which causes them to become emotional and causes them to take actions that can destroy the trust that team members have in the Product Owner. If a Product Owner is making things person, the best thing that team members can do is reassure them that its not personal, but be firm about doing what is best for the Company and for the users.  The ScrumMaster should also spend significant time coaching the Product Owner on how to not react emotionally and how to accept criticism without becoming defensive. Conclusion I’m sure there are other ways that a Product Owner can mess with the team, but these are the most common that I’ve seen.  I would encourage all Product Owners to seek to be a good Product Owner.  If you find yourself behaving in any of the bad product owner ways, change your behavior today!  Your team will thank you. Remember, being Product Owner is very difficult!  Product Owner is one of the most difficult roles in Scrum.  However, it can also be one of the most rewarding roles in Scrum, since Product Owners literally see their ideas brought to life on the computer screen.  Product Owners need to be very patient, even in the face of criticism and need to be willing to make tough decisions on priority, but then not become offended when others disagree with those decisions.  Companies should spend the time needed to find the right product owners for their teams.  Doing so will only help the company to write better software. Technorati Tags: Scrum,Product Owner

    Read the article

  • Who should determine team size?

    - by TaylorOtwell
    Developers, managers, or customers? I was recently involved in a situation where I felt like the customers were arbitrarily demanding for more developers on a team which already had too many developers. They were scared the project was going to be late (and it probably will be). Personally, I was scared we were going to fulfill Brook's Law. The group of programmers already lacked in-depth business knowledge, and some were even new to the technology (.NET), yet the customer wanted to add more developers who had even less business knowledge. The impression was that this would make the project get done quicker. I started wondering if the customer, who is extremely bright, but presumably knows little about IT project management, should really be the one determining team size.

    Read the article

  • Essential roles for web application team

    - by jromero
    Some friends of mine came up with an idea for a web application which we (so far) think could be great. I made the analysis and all the early stages of the development process and I'm about to start the coding. I'm talking about something that is barely a mid-level project, so I consider one developer (myself) should be enough. The thing is that we are trying to assign roles to each one of us so we can be focused on our duties and have clear our responsibilities within the team. We are a crew of four people, three of us (my friends) are business people who would do the marketing, customer relationship, management and accounting stuff and I'm basically the developer. I have in mind to get them involved into the development process by giving them documentation to write and use them as testers, all of that besides the management duties they have. Perhaps someone out there have been in the same situation, so I would appreciate if the experience is shared so we can effectively give ourselves positions in the project based on what I explained above. Which are the essential roles or the optimal team layout so the idea can be developed successfully? The question is not strictly about programming, but it's related to build a software entrepreneurship beyond the code, that is something that I'm sure plenty of us are looking. Any help is really appreciated! Regards.

    Read the article

  • Team Foundation Server (TFS) Team Build Custom Activity C# Code for Assembly Stamping

    - by Bob Hardister
    For the full context and guidance on how to develop and implement a custom activity in Team Build see the Microsoft Visual Studio Rangers Team Foundation Build Customization Guide V.1 at http://vsarbuildguide.codeplex.com/ There are many ways to stamp or set the version number of your assemblies. This approach is based on the build number.   namespace CustomActivities { using System; using System.Activities; using System.IO; using System.Text.RegularExpressions; using Microsoft.TeamFoundation.Build.Client; [BuildActivity(HostEnvironmentOption.Agent)] public sealed class VersionAssemblies : CodeActivity { /// <summary> /// AssemblyInfoFileMask /// </summary> [RequiredArgument] public InArgument<string> AssemblyInfoFileMask { get; set; } /// <summary> /// SourcesDirectory /// </summary> [RequiredArgument] public InArgument<string> SourcesDirectory { get; set; } /// <summary> /// BuildNumber /// </summary> [RequiredArgument] public InArgument<string> BuildNumber { get; set; } /// <summary> /// BuildDirectory /// </summary> [RequiredArgument] public InArgument<string> BuildDirectory { get; set; } /// <summary> /// Publishes field values to the build report /// </summary> public OutArgument<string> DiagnosticTextOut { get; set; } // If your activity returns a value, derive from CodeActivity<TResult> and return the value from the Execute method. protected override void Execute(CodeActivityContext context) { // Obtain the runtime value of the input arguments string sourcesDirectory = context.GetValue(this.SourcesDirectory); string assemblyInfoFileMask = context.GetValue(this.AssemblyInfoFileMask); string buildNumber = context.GetValue(this.BuildNumber); string buildDirectory = context.GetValue(this.BuildDirectory); // ** Determine the version number values ** // Note: the format used here is: major.secondary.maintenance.build // ----------------------------------------------------------------- // Obtain the build definition name int nameStart = buildDirectory.LastIndexOf(@"\") + 1; string buildDefinitionName = buildDirectory.Substring(nameStart); // Set the primary.secondary.maintenance values // NOTE: these are hard coded in this example, but could be sourced from a file or parsed from a build definition name that includes them string p = "1"; string s = "5"; string m = "2"; // Initialize the build number string b; string na = "0"; // used for Assembly and Product Version instead of build number (see versioning best practices: **TBD reference) // Set qualifying product version information string productInfo = "RC2"; // Obtain the build increment number from the build number // NOTE: this code assumes the default build definition name format int buildIncrementNumberDelimterIndex = buildNumber.LastIndexOf("."); b = buildNumber.Substring(buildIncrementNumberDelimterIndex + 1); // Convert version to integer values int pVer = Convert.ToInt16(p); int sVer = Convert.ToInt16(s); int mVer = Convert.ToInt16(m); int bNum = Convert.ToInt16(b); int naNum = Convert.ToInt16(na); // ** Get all AssemblyInfo files and stamp them ** // Note: the mapping of AssemblyInfo.cs attributes to assembly display properties are as follows: // - AssemblyVersion = Assembly Version - used for the assembly version (does not change unless p, s or m values are changed) // - AssemblyFileVersion = File Version - used for the file version (changes with every build) // - AssemblyInformationalVersion = Product Version - used for the product version (can include additional version information) // ------------------------------------------------------------------------------------------------------------------------------------------------ Version assemblyVersion = new Version(pVer, sVer, mVer, naNum); Version newAssemblyFileVersion = new Version(pVer, sVer, mVer, bNum); Version productVersion = new Version(pVer, sVer, mVer); // Setup diagnostic fields int numberOfReplacements = 0; string addedAssemblyInformationalAttribute = "No"; // Enumerate over the assemblyInfo version attributes foreach (string attribute in new[] { "AssemblyVersion", "AssemblyFileVersion", "AssemblyInformationalVersion" }) { // Define the regular expression to find in each and every Assemblyinfo.cs files (which is for example 'AssemblyVersion("1.0.0.0")' ) Regex regex = new Regex(attribute + @"\(""\d+\.\d+\.\d+\.\d+""\)"); foreach (string file in Directory.EnumerateFiles(sourcesDirectory, assemblyInfoFileMask, SearchOption.AllDirectories)) { string text = File.ReadAllText(file); // Read the text from the AssemblyInfo file // If the AsemblyInformationalVersion attribute is not in the file, add it as the last line of the file // Note: by default the AssemblyInfo.cs files will not contain the AssemblyInformationalVersion attribute if (!text.Contains("[assembly: AssemblyInformationalVersion(\"")) { string lastLine = Environment.NewLine + "[assembly: AssemblyInformationalVersion(\"1.0.0.0\")]"; text = text + lastLine; addedAssemblyInformationalAttribute = "Yes"; } // Search for the expression Match match = regex.Match(text); if (match.Success) { // Get file attributes FileAttributes fileAttributes = File.GetAttributes(file); // Set file to read only File.SetAttributes(file, fileAttributes & ~FileAttributes.ReadOnly); // Insert AssemblyInformationalVersion attribute into the file text if does not already exist string newText = string.Empty; if (attribute == "AssemblyVersion") { newText = regex.Replace(text, attribute + "(\"" + assemblyVersion + "\")"); numberOfReplacements++; } if (attribute == "AssemblyFileVersion") { newText = regex.Replace(text, attribute + "(\"" + newAssemblyFileVersion + "\")"); numberOfReplacements++; } if (attribute == "AssemblyInformationalVersion") { newText = regex.Replace(text, attribute + "(\"" + productVersion + " " + productInfo + "\")"); numberOfReplacements++; } // Publish diagnostics to build report (diagnostic verbosity only) context.SetValue(this.DiagnosticTextOut, " Added AssemblyInformational Attribute: " + addedAssemblyInformationalAttribute + " Number of replacements: " + numberOfReplacements + " Build number: " + buildNumber + " Build directory: " + buildDirectory + " Build definition name: " + buildDefinitionName + " Assembly version: " + assemblyVersion + " New file version: " + newAssemblyFileVersion + " Product version: " + productVersion + " AssemblyInfo.cs Text Last Stamped: " + newText); // Write the new text in the AssemblyInfo file File.WriteAllText(file, newText); // restore the file's original attributes File.SetAttributes(file, fileAttributes); } } } } } }

    Read the article

  • Modify Build Failure Work Item in TFS 2010 Build

    - by Jakob Ehn
    The default behaviour in TFS Team Build (all versions) is to create a bug work item when a build fails. This main benefit of this is that you get a work item for something that needs to be done, namely to fix the build!. When the developer responsible for the build failure has fixed the problem, he/she can associated that check-in with the work item that was created from the previous build failure. In TFS 2005/2008 you could modify the information in the created work item by changing some predefined properties in the TFSBuild.proj file:   <!-- WorkItemType The type of the work item created on a build failure. --> <WorkItemType>Bug</WorkItemType> <!-- WorkItemFieldValues Fields and values of the work item created on a build failure. Note: Use reference names for fields if you want the build to be resistant to field name changes. Reference names are language independent while friendly names are changed depending on the installed language. For example, "System.Reason" is the reference name for the "Reason" field. --> <WorkItemFieldValues>System.Reason=Build Failure;System.Description=Start the build using Team Build</WorkItemFieldValues> <!-- WorkItemTitle Title of the work item created on build failure. --> <WorkItemTitle>Build failure in build:</WorkItemTitle> <!-- DescriptionText History comment of the work item created on a build failure. --> <DescriptionText>This work item was created by Team Build on a build failure.</DescriptionText> <!-- BuildLogText Additional comment text for the work item created on a build failure. --> <BuildlogText>The build log file is at:</BuildlogText> <!-- ErrorWarningLogText Additional comment text for the work item created on a build failure. This text will only be added if there were errors or warnings. --> <ErrorWarningLogText>The errors/warnings log file is at:</ErrorWarningLogText>   In TFS 2010, with Windows Workflow, you change this by modifying the properties on the OpenWorkItem activity. The hardest part of this is to actually find where this activity is located in the build process workflow. If you open the build definition in XAML you can just search for OpenWorkItem. If you use the designer you need to click your way down to the Catch section of the Try to Compile the Project sequence: To change the default values of the created work item, select the Created Work Item activity and look at the Properties window: Note the CustomFields property which is a dictionary with key (work item field name) and value. If you add custom fields to your work item you can add a value for it here by adding a new entry in the dictionary.

    Read the article

  • Structure of NAnt build scripts and solution structure on build server

    - by llykke
    We're in the process of streamlining/automating build, integration and unit testing as well as deployment. Our software is developed in Visual Studio where we have use both C# and VB.NET in our projects. A single project can be contained within multiple solutions (i.e. Utils project is used in both ProductA and ProductB solutions) For historical reasons our code repository isn't as well structured as one could have hoped for. E.g. Utils project might be located under ProductA solution (because that's were it was first used) but it was later deemed useful for productB development and merely just included into the solution of productB (but still located in a subdirectory of productA). I would like to use continous integration testing and have setup a CC.NET build server where I intend to use NAnt for creating the actual builds. Question 1: How should I structure my builds on the buildserver? Should I instruct CC.NET to retrieve all the projects for productB into a single library e.g. a file structure similar to -ProductB --Utils --BetterUtils --Data or should I opt for a filestructure similar to this -ProductA --Utils -ProductB --BetterUtils --Data and then just have the NAnt build scripts handle the references? Our references in VS doesn't match the actual location in the code repository so it's not possible today to just check-out productB solution and build it straight away (unfortunately). I hope this question makes sense? Question 2: Is it better to check out all the source code located in different projects into a single file folder (whilst retaining some kind of structure) and then build every thing at once or have multiple projects in CC.NET and then let the CC.NET server handle dependencies? Example: Should I have a seperate project in CC.NET for monitoring the automated build/test of Utils project when it's never released on it's own? Or should I just build/test it whilst building it as part of ProductB? I hope the above makes sense and that you can provide me with some arguments for using either option. We're nowhere near an ideal source code repository structure and I would prefer if I can resolve the lack of repository structure on the build server instead of having to clean up the structure of our repository. Switching away from VSS is (unfortunately) not an option. Right now our build consists of either deploying via VS clickonce or pressing F5 so just getting the build automated would be a huge step up for us. Thanks

    Read the article

  • New A-Team Web Site Launched

    - by .raja
    The A-Team has launched a new web site – the A-Team Chronicles which aggregates and organizes content produced by The A-Team members (including your humble blogger). The A-Team is a central, outbound, highly technical team comprised of Enterprise Architects, Solution Specialists and Software Engineers within the Fusion Middleware Product Development Organization that works with customers and partners, world wide, providing guidance on implementation best practices, architecture, troubleshooting and how best to use Oracle products to solve customer business needs. This content captures best practices, tips and tricks and guidance that the A-Team members gain from real-world experiences, working with customers and partners on implementation projects, through Architecture reviews, issue resolution and more. A-Team Chronicles makes this content available, through short and to the point articles to all our customers and partners in a consistent, easy to find and organized way. If you like the articles we post here, you might find even more interesting articles at the new A-Team Chronicles site, covering a wider range of Fusion Middleware topics. We will be decommissioning this site shortly in favor of A-Team Chronicles site and all new contents will be posted there.

    Read the article

  • Copy TFS Build Definitions between Projects and Collections

    - by Jakob Ehn
    Originally posted on: http://geekswithblogs.net/jakob/archive/2014/06/05/copy-tfs-build-definitions-between-projects-and-collections.aspxThe last couple of years it has become apparent that using multiple team projects in TFS is generally a bad idea. There are of course exceptions to this, but there are a lot ot things that becomes much easier to do when you put all of your projects and team in the same team project. Fellow ALM MVP Martin Hinshelwood has blogged about this several times, as well as other people in the community. In particular, using the backlog and portfolio management tools makes much more sense when everything is located in the same team project. Consolidating multiple team projects into one is not that easy unfortunately, it involves migrating source code, work items, reports etc.  Another thing that also need to be migrated is build definitions. It is possible to clone build definitions within the same team project using the TFS power tools. The Community TFS Build Manager also lets you clone build definitions to other team projects. But there is no tool that allows you to clone/copy a build definition to another collection. So, I whipped up a simple console application that let you do this. The tool can be downloaded from https://onedrive.live.com/redir?resid=EE034C9F620CD58D!8162&authkey=!ACTr56v1QVowzuE&ithint=file%2c.zip   Using CopyTFSBuildDefinitions You use the tool like this: CopyTFSBuildDefinitions  SourceCollectionUrl  SourceTeamProject  BuildDefinitionName  DestinationCollectionUrl  DestinationTeamProject [NewDefinitionName] Arguments SourceCollectionUrl The URL to the TFS collection that contains the team project with the build definition that you want to copy SourceTeamProject The name of the team project that contains the build definition BuildDefinitionName Name of the build definition DestinationCollectionUrl The URL to the TFS collection that contains the team project that you want to copy your build definition to DestinationTeamProject The name of the team project in the destination collection NewDefinitionName (Optional) Use this to override the name of the new build definition. If you don’t specify this, the name will the same as the original one Example: CopyTFSBuildDefinitions  https://jakob.visualstudio.com DemoProject  WebApplication.CI https://anotheraccount.visualstudio.com     Notes Since we are (potentially) create a build definition in a new collection, there is no guarantee that the various paths that are defined in the build definition exist in the new collection. For example, a build definition refers to server paths in TFVC or repos + branches in TFGit. It also refers to build controllers that definitely don’t exist in the new collection. So there will be some cleanup to do after you copy your build definitions. You can fix some of these using the Community TFS Build Manager, for example it is very easy to apply the correct build controller to a set of build definitions The problem stated above also applies to build process templates. However, the tool tries to find a build process template in the new team project with the same file name as the one that existed in the old team project. If it finds one, it will be used for the new build definition. Otherwise is will use the default build template If you want to run the tool for many build definitions, you can use this SQL scripts, compliments of Mr. Scrum/ALM MVP Richard Hundhausen to generate the necessary commands: USE Tfs_Collection GO SELECT 'CopyTFSBuildDefinitions.exe http://SERVER:8080/tfs/collection "' + P.ProjectName + '" "' + REPLACE(BD.DefinitionName,'\','') + '" http://NEWSERVER:8080/tfs/COLLECTION TEAMPROJECT'   FROM tbl_Project P        INNER JOIN tbl_BuildGroup BG on BG.TeamProject = P.ProjectUri        INNER JOIN tbl_BuildDefinition BD on BD.GroupId = BG.GroupId   ORDER BY P.ProjectName, BD.DefinitionName   Hope that helps, let me know if you have any problems with the tool or if you find it useful

    Read the article

  • Customize Team Build 2010 – Part 12: How to debug my custom activities

    In the series the following parts have been published Part 1: Introduction Part 2: Add arguments and variables Part 3: Use more complex arguments Part 4: Create your own activity Part 5: Increase AssemblyVersion Part 6: Use custom type for an argument Part 7: How is the custom assembly found Part 8: Send information to the build log Part 9: Impersonate activities (run under other credentials) Part 10: Include Version Number in the Build Number Part 11: Speed up opening my build process template Part 12: How to debug my custom activities Part 13: Get control over the Build Output Part 14: Execute a PowerShell script Part 15: Fail a build based on the exit code of a console application       Developers are “spoilt” persons who expect to be able to have easy debugging experiences for every technique they work with. So they also expect it when developing custom activities for the build process template. This post describes how you can debug your custom activities without having to develop on the build server itself. Remote debugging prerequisites The prerequisite for these steps are to install the Microsoft Visual Studio Remote Debugging Monitor. You can find information how to install this at http://msdn.microsoft.com/en-us/library/bt727f1t.aspx. I chose for the option to run the remote debugger on the build server from a file share. Debugging symbols prerequisites To be able to start the debugging, you need to have the pdb files on the buildserver together with the assembly. The pdb must have been build with Full Debug Info. Steps In my setup I have a development machine and a build server. To setup the remote debugging, I performed the following steps Locate on your development machine the folder C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\Remote Debugger Create a share for the Remote Debugger folder. Make sure that the share (and the folder) has the correct permissions so the user on the build server has access to the share. On the build server go to the shared “Remote Debugger” folder Start msvsmon.exe which is located in the folder that represents the platform of the build server. This will open a winform application like   Go back to your development machine and open the BuildProcess solution. Start the Attach to process command (Ctrl+Alt+P) Type in the Qualifier the name of the build server. In my case the user account that has started the msvsmon is another user then the user on my development machine. In that case you have to type the qualifier in the format that is shown in the Remote Debugging Monitor (in my case LOCAL\Administrator@TFSLAB) and confirm it by pressing <Enter> Since the build service is running with other credentials, check the option “Show processes from all users”. Now the Attach to process dialog shows the TFSBuildServiceHost process Set the breakpoint in the activity you want to debug and kick of a build. Be aware that when you attach to the TFSBuildServiceHost that you debug every single build that is run by this windows service, so make sure you don’t debug the build server that is in production! You can download the full solution at BuildProcess.zip. It will include the sources of every part and will continue to evolve.

    Read the article

  • TF30004: The New Team Project Wizard encountered an unexpected error while initializing the Microsof

    - by Frozzare
    Hello, i get this error when i trying to create a new project in team project. The server is right, i check all ports. I don't now what i should do now, can't find any good information 2009-09-19 01:45:41Z | Module: Internal | Team Foundation Server proxy retrieved | Completion time: 0.338 seconds 2009-09-19 01:45:41Z | Module: Internal | The template information for Team Foundation Server "TFSServer01" was retrieved from the Team Foundation Server. | Completion time: 0.099 seconds 2009-09-19 01:45:41Z | Module: Wizard | Retrieved IAuthorizationService proxy | Completion time: 0.404 seconds 2009-09-19 01:45:41Z | Module: Wizard | TF30227: Project creation permissions retrieved | Completion time: 0.015 seconds 2009-09-19 01:45:44Z | Module: Engine | Thread: 5 | New project will be created with the "MSF for Agile Software Development - v4.2" methodology 2009-09-19 01:45:44Z | Module: Engine | Retrieved IAuthorizationService proxy | Completion time: 0 seconds 2009-09-19 01:45:44Z | Module: Engine | TF30227: Project creation permissions retrieved | Completion time: 0.01 seconds 2009-09-19 01:45:45Z | Module: Engine | Wrote compressed process template file | Completion time: 0.001 seconds 2009-09-19 01:45:46Z | Module: Engine | Extracted process template file | Completion time: 1.428 seconds 2009-09-19 01:45:46Z | Module: Engine | Thread: 5 | Starting Project Creation for project "TestProject" in domain "TFSServer01" 2009-09-19 01:45:46Z | Module: Engine | The user identity information was retrieved from the Group Security Service | Completion time: 0.045 seconds 2009-09-19 01:45:46Z | Module: Initializer | Thread: 5 | The New Team Project Wizard is starting to initialize the plug-ins. 2009-09-19 01:45:46Z | Module: CssStructureUploader | Thread: 5 | Entering Initialize in CssStructureUploader 2009-09-19 01:45:46Z | Module: CssStructureUploader | Thread: 5 | Initialize for CssStructureUploader complete 2009-09-19 01:45:46Z | Module: Initializer | Thread: 5 | The New Team Project Wizard successfully Initialized the plug-in Microsoft.ProjectCreationWizard.Classification. 2009-09-19 01:45:46Z | Module: Rosetta | Thread: 5 | Entering Initialize in RosettaReportUploader 2009-09-19 01:45:48Z | Module: Rosetta | Thread: 5 | Exiting Initialize for RosettaReportUploader 2009-09-19 01:45:48Z | Module: Initializer | Thread: 5 | The New Team Project Wizard successfully Initialized the plug-in Microsoft.ProjectCreationWizard.Reporting. 2009-09-19 01:45:48Z | Module: WSS | Thread: 5 | Entering Initialize in WssSiteCreator 2009-09-19 01:45:48Z | Module: WSS | Thread: 5 | Site information: Title = "TestProject" Description = "This team project was created based on the 'MSF for Agile Software Development - v4.2' process template." 2009-09-19 01:45:48Z | Module: WSS | Thread: 5 | Base site url: http://TFSServer01:14143/webbplatser 2009-09-19 01:45:48Z | Module: WSS | Thread: 5 | Admin site url: http://TFSServer01:16183/_vti_adm/admin.asmx ---begin Exception entry--- Time: 2009-09-19 01:46:27 Z Module: Initialize Event Description: TF30207: Initialization for plugin "Microsoft.ProjectCreationWizard.Portal 'failed Exception Type: Microsoft.TeamFoundation.Client.PcwException Exception Message: The client discovered that content-type of request is text / html; charset = utf-8, but the text / xml expected. The request failed with error message: -- Unable to connect to the configuration database. --. Stack Trace: vid Microsoft.VisualStudio.TeamFoundation.WssSiteCreator.CheckPermissions(ProjectCreationContext ctxt) vid Microsoft.VisualStudio.TeamFoundation.WssSiteCreator.Initialize(ProjectCreationContext context) vid Microsoft.VisualStudio.TeamFoundation.EngineStarter.InitializePlugins(MsfTemplate template, PcwPluginCollection pluginCollection) -- Inner Exception -- Exception Type: System.InvalidOperationException Exception Message: The client discovered that content-type of request is text / html; charset = utf-8, but the text / xml expected. The request failed with error message: -- Unable to connect to the configuration database. --. Stack Trace: vid System.Web.Services.Protocols.SoapHttpClientProtocol.ReadResponse(SoapClientMessage message, WebResponse response, Stream responseStream, Boolean asyncCall) vid System.Web.Services.Protocols.SoapHttpClientProtocol.Invoke(String methodName, Object[] parameters) vid Microsoft.TeamFoundation.Proxy.Portal.Admin.GetLanguages() vid Microsoft.VisualStudio.TeamFoundation.WssSiteCreator.CheckPermissions(ProjectCreationContext ctxt) -- end Inner Exception -- --- end Exception entry --- Thanks for you help

    Read the article

  • Reasons to fail a build

    - by Brian Laframboise
    As a build engineer, I'm constantly looking for new and interesting ways to improve our build process - and that includes looking for new and interesting ways to fail our builds! I have yet to find a canonical list of reasons to fail a build ... so I figure it's time to get one created. With that in mind: What build-time checks - both obvious and creative - have you seen fail builds?

    Read the article

  • What would you do to improve the working of a small Development team?

    - by Omar Kooheji
    My company is having a reshuffle and I'm applying for my boss' job as he's moved up the ladder. The new role would give me a chance to move our development team into the 21st century and I'd like to make sure that: I can provide sensible suggestions in the interview to get the job so I can fix the team If I get the job I can actually enact some changes to actually improve the lives of the developers and their output. I want to know what I can suggest to improve the way we work, because I think it's a mess but every time I've suggested a change it's been shot down because any time spend implementing the change would be time that isn't spent developing software. Here is the state of play at the moment: My team consists of 3-4 developers (Mainly Java but I do some .Net work) Each member of the team is usually works on 2-3 projects at a time We are each responsible for the entire life cycle of the project from design to testing. Usually only one person works on a project (Although we have the odd project that will have more than one person working on it.) Projects tend to be bespoke to single customer, or are really heavilly reliant on a particular customer environment. We have 2-3 "Products" which we evolve to meet customer requirements. We use SVN for source control We don't do continuous integration (I'd like to start) We use a really basic bug tracker for internal issue tracking (I'd like to move to an issue/task management system) Any changes that bring a sudden dip in revenue generation will probably be rejected, the company isn't structured for development most of the rest of the technical team's jobs can be broken down to install this piece of hardware, configure that piece of hardware and once a job is done it's done and you never have to look at it again. This mentality has crept into development team because it's part of the company culture.

    Read the article

  • How to interview my future team leader?

    - by Stormenet
    Our current team leader is quitting his job (starting his own company) and thus we are searching for a new team leader. It's a small team of 4 people (Team leader included). Since it's a small team we expect the team leader not to only manage us but also do some coding. Because of this I convinced the R&D manager to let me have a say in this so that I can evaluate his technical skills and managing skills. I have little experience interviewing people let alone my future Team leader. What I search in a team leader is someone who isn't running a dictatorship but someone that when there are issues there is a discussion about it and we take everyone on the same line. What are the things I should not forget to ask and what are the skills I should find in that person?

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >