Search Results

Search found 48 results on 2 pages for 'triangulation'.

Page 1/2 | 1 2  | Next Page >

  • Wi-Fi triangulation using android smartphone

    - by user1887020
    How to make application for wifi triangulation using android platform? This project will be implemented inside the building. No GPS needed. Just using wifi only and doing triangulation to get the current position of the user inside the building. I got minimum 3 access point to implement it. But how to start code in android and integrate triangulation inside android coding? I got the algorithm to do it.. but is there any chance that I can get it done? Because this project is actually want to replace the floor directory board into a smartphone floor directory so that user can find their way to their room for example to the lab. public class Triangulation { public Triangulation() { int dist_1, dist_2, dist_3; //variable for the distances int x1, x2, x3; //coordinates of x int y1, y2, y3; //coordinates of y int final_dist1, final_dist2; //final distance after calc dist_1 = 1; dist_2 = 2; dist_3 = 3; x1 = 5; //test inputs x2 = 2; x3 = 4; y1 = 2; y2 = 2; y3 = 5; final_dist1 = ((dist_1 * dist_1) - (dist_2 * dist_2) – (x1 * x1) + (x2 * x2) - (y1 * y1) + (y2 * y2)) / 2; final_dist2 = ((dist_2 * dist_2) - (dist_3 * dist_3) – (x2 * x2) + (x3 * x3) - (y2 * y2) + (y3 * y3)) / 2; initial_a1 = x1 - x2; initial_a2 = x2 - x3; initial_b1 = y1 - y2; initial_b2 = y2 - y3; //-----------------------STEP 1-------------------------------------- int a1 = initial_a1 / initial_a1; int a2 = initial_a2 / initial_a1; int b1 = initial_b1 / initial_a1; int b2 = initial_b2 / initial_a1; final_dist1 /= initial_a1; final_dist2 /= initial_a1; //-----------------------STEP 2-------------------------------------- a2 = a2 -a2; final_dist2 = -(initial_a2) * final_dist1 + final_dist2; //-----------------------STEP 3-------------------------------------- a2 /= b2; final_dist2 = final_dist2 / b2; b2 /= b2; //-------------------------STEP 4----------------------------------- b1 = b1 - b1; final_dist1 = -(initial_b1) * final_dist2 + final_dist1; } }

    Read the article

  • The difference between triangulation and mesh

    - by xiao
    I have done some computer graphical programming recently, and I have no experience before. I used the library call CGAL(computer geometry algorithm library). Also, I noticed that there is class for triangulation and also class for mesh. Is mesh just a kind of triangle net? Do they have any differences? Thanks!

    Read the article

  • Triangulation in 3D Space

    - by w3b_wizzard
    Disclaimer: This is for class, however I'm fresh out of ideas and a nudge in the right direction would be much appreciated. Also, this needs to be implemented in raw C, so no fancy libraries can be used. I have to write a search and rescue simulator for submarines, it has to find a probe that is randomly placed in 3D space in a grid from of the MAX_XYZ (100000). The only tools I'm given are a "ping" which will give the magnitude of the distance between a certain sub and the probe. The goal is to optimize the costs of this entire operation so a brute force attempt, like looking at every single coordinate, won't work. Hence I was thinking triangulation. Now, it makes loads of sense to me, place three subs, each one of them uses their ping to get the distance between them and the probe. Since each sub have a known distance relative to one another, it's easy to build the base of a tetrahedron with them, and the results of the ping will point to a certain coordinate, the problem I'm having is how to figure out the elevation, or the height, of the tetrahedron. So what I have as data is the following: Distances between subs (In vector format) Angles between each subs (very easy to compute) Distance between each sub and the probe (3 segments from the base to the peak) Angles inside each of the outer 3 surfaces of the tetrahedron. I tried finding some sort of relationship with the vertices of the tetrahedron and the relative angles in each of them, however all I found had to deal with tetrahedrons built with equilateral triangles, which isn't much help. I have the impression this can be easily solved with trig but either I'm not seeing it or I need more coffee. Any suggestions would be appreciated!

    Read the article

  • Triangulation A* (TA*) pathfinding algorithm

    - by hyn
    I need help understanding the Triangle A* (TA*) algorithm that is described by Demyen in his paper Efficient Triangulation-Based Pathfinding, on pages 76-81. He describes how to adapt the regular A* algorithm for triangulation, to search for other possibly more optimal paths, even after the final node is reached/expanded. Regular A* stops when the final node is expanded, but this is not always the best path when used in a triangulated graph. This is exactly the problem I'm having. The problem is illustrated on page 78, Figure 5.4: I understand how to calculate the g and h values presented in the paper (page 80). And I think the search stop condition is: if (currentNode.fCost > shortestDistanceFound) { // stop break; } where currentNode is the search node popped from the open list (priority queue), which has the lowest f-score. shortestDistanceFound is the actual distance of the shortest path found so far. But how do I exclude the previously found paths from future searches? Because if I do the search again, it will obviously find the same path. Do I reset the closed list? I need to modify something, but I don't know what it is I need to change. The paper lacks pseudocode, so that would be helpful.

    Read the article

  • Polygonal Triangulation - algorithm with O(n log n) complexity

    - by Arthur Wulf White
    I wish to triangulate a polygon I only have the outline of (p0, p1, p2 ... pn) like described in this question: polygon triangulation algorithm and this webpage: http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Ian/algorithm2.html I do not wish to learn the subject and have a deep understanding of it at the moment. I only want to see an effective algorithm that can be used out of the box. The one described in the site seems to be of somewhat high complexity O(n) for finding one ear. I heard this could be done in O(n log n) time. Is there any well known easy to use algorithm that I can translate port to use in my engine that runs with somewhat reasonable complexity? The reason I need to triangulate is that I wish to feel out a 2d-outline and render it 3d. Much like we fill out a 2d-outline in paint. I could use sprites. This would not serve cause I am planning to play with the resulting model on the z-axis, giving it different heights in the different areas. I would love to try the books that were mentioned, although I suspect that is not the answer most readers are hoping for when they read this Q & A format. Mostly I like to see a code snippet I can cut and paste with some modifications and start running.

    Read the article

  • 2D Polygon Triangulation

    - by BleedObsidian
    I am creating a game engine using the JBox2D physics engine. It only allows you to create polygon fixtures up to 8 vertices, To create a body with more than 8 vertices, you need to create multiple fixtures for the body. My question is, How can I split the polygons a user creates into smaller polygons for JBox2D? Also, what topology should I use when splitting the polygons and why? (If JBox2D can have up to 8 vertices, why not split polygons into 8 per polygon)

    Read the article

  • Calculating rotation and translation matrices between two odometry positions for monocular linear triangulation

    - by user1298891
    Recently I've been trying to implement a system to identify and triangulate the 3D position of an object in a robotic system. The general outline of the process goes as follows: Identify the object using SURF matching, from a set of "training" images to the actual live feed from the camera Move/rotate the robot a certain amount Identify the object using SURF again in this new view Now I have: a set of corresponding 2D points (same object from the two different views), two odometry locations (position + orientation), and camera intrinsics (focal length, principal point, etc.) since it's been calibrated beforehand, so I should be able to create the 2 projection matrices and triangulate using a basic linear triangulation method as in Hartley & Zissermann's book Multiple View Geometry, pg. 312. Solve the AX = 0 equation for each of the corresponding 2D points, then take the average In practice, the triangulation only works when there's almost no change in rotation; if the robot even rotates a slight bit while moving (due to e.g. wheel slippage) then the estimate is way off. This also applies for simulation. Since I can only post two hyperlinks, here's a link to a page with images from the simulation (on the map, the red square is simulated robot position and orientation, and the yellow square is estimated position of the object using linear triangulation.) So you can see that the estimate is thrown way off even by a little rotation, as in Position 2 on that page (that was 15 degrees; if I rotate it any more then the estimate is completely off the map), even in a simulated environment where a perfect calibration matrix is known. In a real environment when I actually move around with the robot, it's worse. There aren't any problems with obtaining point correspondences, nor with actually solving the AX = 0 equation once I compute the A matrix, so I figure it probably has to do with how I'm setting up the two camera projection matrices, specifically how I'm calculating the translation and rotation matrices from the position/orientation info I have relative to the world frame. How I'm doing that right now is: Rotation matrix is composed by creating a 1x3 matrix [0, (change in orientation angle), 0] and then converting that to a 3x3 one using OpenCV's Rodrigues function Translation matrix is composed by rotating the two points (start angle) degrees and then subtracting the final position from the initial position, in order to get the robot's straight and lateral movement relative to its starting orientation Which results in the first projection matrix being K [I | 0] and the second being K [R | T], with R and T calculated as described above. Is there anything I'm doing really wrong here? Or could it possibly be some other problem? Any help would be greatly appreciated.

    Read the article

  • Polygon triangulation

    - by Saurabh
    Hey, I am working on nesting of sheet metal parts and am implementing Minkowski Sums to find No Fit Polygons for nesting. The problem is I can give only convex sets as input to the code which calculates Minkowski sums for me. Hence I need to break a concave polygon, with holes into Convex sets. I am open to triangulation also, but I am looking for a working code on VC++ (6.0). I am slightly running short on time as my whole code is ready and just waiting for input in the form of convex sets. I would really appreciate if somebody with prior experience can help me in this. I have gone through other posts but did not find anything matching to this. I am a student of mechanical engineering and really dun have much idea about computer languages. All I can handle is compiling a code on VC++ and incorporate it with my existing code. Looking forward to responses!! Thanks Warm regards Saurabh India

    Read the article

  • Triangulation & Direct linear transform

    - by srand
    Following Hartley/Zisserman's Multiview Geometery, Algorithm 12: The optimal triangulation method (p318), I got the corresponding image points xhat1 and xhat2 (step 10). In step 11, one needs to compute the 3D point Xhat. One such method is Direct Linear Transform (DLT), mentioned in 12.2 (p312) and 4.1 (p88). The homogenous method (DLT), p312-313, states that it finds a solution as the unit singular vector corresponding to the smallest singular value of A, thus, A = [xhat1(1) * P1(3,:)' - P1(1,:)' ; xhat1(2) * P1(3,:)' - P1(2,:)' ; xhat2(1) * P2(3,:)' - P2(1,:)' ; xhat2(2) * P2(3,:)' - P2(2,:)' ]; [Ua Ea Va] = svd(A); Xhat = Va(:,end); plot3(Xhat(1),Xhat(2),Xhat(3), 'r.'); However, A is a 16x1 matrix, resulting in a Va that is 1x1. What am I doing wrong (and a fix) in getting the 3D point? For what its worth sample data: xhat1 = 1.0e+009 * 4.9973 -0.2024 0.0027 xhat2 = 1.0e+011 * 2.0729 2.6624 0.0098 P1 = 699.6674 0 392.1170 0 0 701.6136 304.0275 0 0 0 1.0000 0 P2 = 1.0e+003 * -0.7845 0.0508 -0.1592 1.8619 -0.1379 0.7338 0.1649 0.6825 -0.0006 0.0001 0.0008 0.0010 A = <- my computation 1.0e+011 * -0.0000 0 0.0500 0 0 -0.0000 -0.0020 0 -1.3369 0.2563 1.5634 2.0729 -1.7170 0.3292 2.0079 2.6624

    Read the article

  • 2D polygon triangulation

    - by logank9
    The code below is my attempt at triangulation. It outputs the wrong angles (it read a square's angles as 90, 90. 90, 176) and draws the wrong shapes. What am I doing wrong? //use earclipping to generate a list of triangles to draw std::vector<vec> calcTriDraw(std::vector<vec> poly) { std::vector<double> polyAngles; //get angles for(unsigned int i = 0;i < poly.size();i++) { int p1 = i - 1; int p2 = i; int p3 = i + 1; if(p3 > int(poly.size())) p3 -= poly.size(); if(p1 < 0) p1 += poly.size(); //get the angle from 3 points double dx, dy; dx = poly[p2].x - poly[p1].x; dy = poly[p2].y - poly[p1].y; double a = atan2(dy,dx); dx = poly[p3].x - poly[p2].x; dy = poly[p3].y - poly[p2].y; double b = atan2(dy,dx); polyAngles.push_back((a-b)*180/PI); } std::vector<vec> triList; for(unsigned int i = 0;i < poly.size() && poly.size() > 2;i++) { int p1 = i - 1; int p2 = i; int p3 = i + 1; if(p3 > int(poly.size())) p3 -= poly.size(); if(p1 < 0) p1 += poly.size(); if(polyAngles[p2] >= 180) { continue; } else { triList.push_back(poly[p1]); triList.push_back(poly[p2]); triList.push_back(poly[p3]); poly.erase(poly.begin()+p2); std::vector<vec> add = calcTriDraw(poly); triList.insert(triList.end(), add.begin(), add.end()); break; } } return triList; }

    Read the article

  • Library for polygon operations

    - by AJM
    I've recently encountered a need for a library or set of libraries to handle operations on 2D polygons. I need to be able to perform boolean/clipping operations (difference and union) and triangulation. So far the libraries I've found are poly2tri, CGAL, and GPC. Poly2tri looks good for triangulation but I'm still left with boolean operations, and I'm unsure about its maturity. CGAL and GPC are only free if my own project is free. My particular project isn't commercial, so I'm hesitant to pay or request for any licenses. But I may want to use my code for a future commercial project, so I'm hesitant about CGAL's open source licenses and GPC's freeware-only restriction. There doesn't seem to be any polygon clipping libraries with nice BSD-style licenses.

    Read the article

  • GSM Cell Towers Location & Triangulation Algorithm (Similar to OpenCellID / Skyhook / Google's MyLocation)

    - by ranabra
    Hi all, assuming I have a Fingerprint DB of Cell towers. The data (including Long. & Lat. CellID, signal strength, etc) is achieved by 'wardriving', similar to OpenCellID.org. I would like to be able to get the location of the client mobile phone without GPS (similar to OpenCellID / Skyhook Wireless/ Google's 'MyLocation'), which sends me info on the Cell towers it "sees" at the moment: the Cell tower connected to, and another 6 neighboring cell towers (assuming GSM). I have read and Googled it for a long time and came across several effective theories, such as using SQL 2008 Spatial capabilities, or using an euclidean algorithm, or Markov Model. However, I am lacking a practical solution, preferably in C# or using SQL 2008 :) The location calculation will be done on the server and not on the client mobile phone. the phone's single job is to send via HTTP/GPRS, the tower it's connected to and other neighboring cell towers. Any input is appreciated, I have read so much and so far haven't really advanced much. Thanx

    Read the article

  • Fastest way of converting a quad to a triangle strip?

    - by Tina Brooks
    What is the fastest way of converting a quadrilateral (made up of foyr x,y points) to a triangle strip? I'm well aware of the general triangulation algorithms that exist, but I need a short, well optimized algorithm that deals with quadrilaterals only. My current algorithm does this, which works for most quads but still gets the points mixed up for some: #define fp(f) bounds.p##f /* Sort four points in ascending order by their Y values */ point_sort4_y(&fp(1), &fp(2), &fp(3), &fp(4)); /* Bottom two */ if (fminf(-fp(1).x, -fp(2).x) == -fp(2).x) { out_quad.p1 = fp(2); out_quad.p2 = fp(1); } else { out_quad.p1 = fp(1); out_quad.p2 = fp(2); } /* Top two */ if (fminf(-fp(3).x, -fp(4).x) == -fp(3).x) { out_quad.p3 = fp(3); out_quad.p4 = fp(4); } else { out_quad.p3 = fp(4); out_quad.p4 = fp(3); }

    Read the article

  • Triangulating a partially triangulated mesh (2D)

    - by teodron
    Referring to the above exhibits, this is the scenario I am working with: starting with a planar graph (in my case, a 2D mesh) with a given triangulation, based on a certain criterion, the graph nodes are labeled as RED and BLACK. (A) a subgraph containing all the RED nodes (with edges between only the directly connected neighbours) is formed (note: although this figure shows a tree forming, it may well happen that the subgraph contain loops) (B) Problem: I need to quickly build a triangulation around the subgraph (e.g. as shown in figure C), but under the constraint that I have to keep the already present edges in the final result. Question: Is there a fast way of achieving this given a partially triangulated mesh? Ideally, the complexity should be in the O(n) class. Some side-remarks: it would be nice for the triangulation algorithm to take into account a certain vertex priority when adding edges (e.g. it should always try to build a "1-ring" structure around the most important nodes first - I can implement iteratively such a routine, but it's O(n^2) ). it would also be nice to reflect somehow the "hop distance" when adding edges: add edges first between the nodes that were "closer" to each other given the start topology. Nevertheless, disregarding the remarks, is there an already known scenario similar to this one where a triangulation is built upon a partially given set of triangles/edges?

    Read the article

  • 5 Ways to Determine Mobile Location

    - by David Dorf
    In my previous post, I mentioned the importance of determining the location of a consumer using their mobile phone.  Retailers can track anonymous mobile phones to determine traffic patterns both inside and outside their stores.  And with consumers' permission, retailers can send location-aware offers to mobile phones; for example, a coupon for cereal as you walk down that aisle.  When paying with Square, your location is matched with the transaction.  So there are lots of reasons for retailers to want to know the location of their customers.  But how is it done? I thought I'd dive a little deeper on that topic and consider the approaches to determining location. 1. Tower Triangulation By comparing the relative signal strength from multiple antenna towers, a general location of a phone can be roughly determined to an accuracy of 200-1000 meters.  The more towers involved, the more accurate the location. 2. GPS Using Global Positioning Satellites is more accurate than using cell towers, but it takes longer to find the satellites, it uses more battery, and it won't well indoors.  For geo-fencing applications, like those provided by Placecast and Digby, cell towers are often used to determine if the consumer is nearing a "fence" then switches to GPS to determine the actual crossing of the fence. 3. WiFi Triangulation WiFi triangulation is usually more accurate than using towers just because there are so many more WiFi access points (i.e. radios in routers) around. The position of each WiFi AP needs to be recorded in a database and used in the calculations, which is what Skyhook has been doing since 2008.  Another advantage to this method is that works well indoors, although it usually requires additional WiFi beacons to get the accuracy down to 5-10 meters.  Companies like ZuluTime, Aisle411, and PointInside have been perfecting this approach for retailers like Meijer, Walgreens, and HomeDepot. Keep in mind that a mobile phone doesn't have to connect to the WiFi network in order for it to be located.  The WiFi radio in the phone only needs to be on.  Even when not connected, WiFi radios talk to each other to prepare for a possible connection. 4. Hybrid Approaches Naturally the most accurate approach is to combine the approaches described above.  The more available data points, the greater the accuracy.  Companies like ShopKick like to add in acoustic triangulation using the phone's microphone, and NearBuy can use video analytics to increase accuracy. 5. Magnetic Fields The latest approach, and this one is really new, takes a page from the animal kingdom.  As you've probably learned from guys like Marlin Perkins, some animals use the Earth's magnetic fields to navigate.  By recording magnetic variations within a store, then matching those readings with ones from a consumer's phone, location can be accurately determined.  At least that's the approach IndoorAtlas is taking, and the science seems to bear out.  It works well indoors, and doesn't require retailers to purchase any additional hardware.  Keep an eye on this one.

    Read the article

  • How to color a mesh with values at the vertices in WPF 3D?

    - by Christo
    We've got a sphere which we want to display in 3D and color given a fuction that depends on spherical coordinates. The sphere was triangulated using a regular grid in (theta, phi), but this produced a lot of small triangles near the poles. In an attempt to reduce the number triangles at the poles, we've changed out mesh generation to produce more evenly sized triangles over the surface. The first triangulation method had the advantage that we could easily create a texture and drape it over the surface. It seems that in WPF it isn't possible to assign colors to vertices the way one would go about in OpenGL or Direct3D. With the second triangulation method it isn't apparent how to go about generating the texture and setting the texture coordinates, since the vertices aren't aligned to a grid anymore. Maybe it would be possible to create a linear texture containing a color for each vertex, but then how will that effect the coloring? Will it still render smoothly over the triangle surfaces as one would expect by applying per vertex coloring?

    Read the article

  • SDL libraries are missing

    - by user287570
    ~/vidmodel/wvsn-model-omnetpp-v4/geometry/Triangle.o ~/vidmodel/wvsn-model-omnetpp-v4/geometry/Polygon.o ~/vidmodel/wvsn-model-omnetpp-v4/geometry/triangulation.o -Wl,--no-as-needed -Wl,--whole-archive -lSDL -lpng -ljpeg -lz -lSDL_image -Wl,--no-whole-archive -L"/home/sreeram/omnetpp-4.2.2/lib/gcc" -L"/home/sreeram/omnetpp-4.2.2/lib" -loppmain -u _cmdenv_lib -Wl,--no-as-needed -loppcmdenv -loppenvir -loppsim -ldl -lstdc++ /usr/bin/ld: cannot find -lSDL /usr/bin/ld: cannot find -lpng /usr/bin/ld: cannot find -ljpeg /usr/bin/ld: cannot find -lSDL_image collect2: ld returned 1 exit can any one please help me

    Read the article

  • History of Mobile Technology

    - by David Dorf
    Over the last ten years, mobile phones have gone through several incremental technology leaps that have added capabilities that impact the retail industry.  I've listed the six major ones below, along with their long-lasting impact. 1. Location In the US, the FCC required mobile phones to implement E911 (emergency calls) by 2006, requiring the caller to be located to within 300 meters.  Back in 2000, GPS was opened up for civilian use, and by 2004 Qualcomm had figured out how to use GPS in mobile phones.  So mobile operators moved from cell tower triangulation to GPS, principally for E911.  But then lots of other uses became apparent, especially navigation.  The earliest mobile apps from retailers made it easy to find nearby stores, and companies are looking at ways to use WiFi triangulation inside stores. 2. Computer Vision In 1997 Philippe Kahn shared a photo of his newborn using a mobile phone thus launching the popularity of instant visual communications.  Over the years the quality of the cameras got better, reaching the point where barcodes could be read around 2008.  That's when Occipital came on the scene with their Red Laser application, which was eventually acquired by eBay.  This opened up the ability for consumers to easily price compare inside stores.  Other interesting apps included Tesco's Wine Finder and Amazon's Price Checker, both allowing products to be identified by picture. 3. Augmented Reality Once the mobile phone had GPS, a video camera, and compass functionality it was suddenly possible to overlay digital information on the screen in real-time.  Yelp, which was using GPS to find nearby merchants, created a backdoor called Monocle on the iPhone that showed nearby merchants overlayed on the video camera view.  Today AR apps are mostly used by retailers for marketing, like Moosejaw's app that undresses models in their catalog. 4. Geo-Fencing So if we're able to track the location of a mobile phone, why not use that context to offer timely information?  My first experience with geo-fencing came courtesy of North Face, the outdoor enthusiast store. When a mobile phone enters a predetermined area, like near a store, a text message is sent to phone with an offer or useful information.  Of course retailers can geo-fence their competitors as well and find out which customers are aren't so loyal. 5. Digital Wallet Mobile payments leverage different technologies such as NFC, QRCodes, bluetooth, and SMS to facilitate communication between the consumers's phone and the retailer's point-of-sale. The key here is the potential to consolidate loyalty cards, coupons, and bank cards into the mobile phone and enable faster checkout.  Nobody does this better than Starbucks today, but McDonald's and Duncan Donuts aren't far behind.  Google, Isis, Paypal, Square, and MCX are all vying for leadership in this area.  If NFC does finally take off, it will be leveraged by retailers in more places than just the POS. 6. Voice Response Mobile Phones have had the ability to interpret simple voice commands for a while, but Google and Amazon were the first to use voice to allow searches for products.  Allowing searches by text, barcode, and voice makes it easy to comparison shop in the aisles.  Walmart even uses voice to build shopping lists, and if the Siri API is even opened we could see lots more innovation in this area.

    Read the article

  • Currency Conversion in Oracle BI applications

    - by Saurabh Verma
    Authored by Vijay Aggarwal and Hichem Sellami A typical data warehouse contains Star and/or Snowflake schema, made up of Dimensions and Facts. The facts store various numerical information including amounts. Example; Order Amount, Invoice Amount etc. With the true global nature of business now-a-days, the end-users want to view the reports in their own currency or in global/common currency as defined by their business. This presents a unique opportunity in BI to provide the amounts in converted rates either by pre-storing or by doing on-the-fly conversions while displaying the reports to the users. Source Systems OBIA caters to various source systems like EBS, PSFT, Sebl, JDE, Fusion etc. Each source has its own unique and intricate ways of defining and storing currency data, doing currency conversions and presenting to the OLTP users. For example; EBS stores conversion rates between currencies which can be classified by conversion rates, like Corporate rate, Spot rate, Period rate etc. Siebel stores exchange rates by conversion rates like Daily. EBS/Fusion stores the conversion rates for each day, where as PSFT/Siebel store for a range of days. PSFT has Rate Multiplication Factor and Rate Division Factor and we need to calculate the Rate based on them, where as other Source systems store the Currency Exchange Rate directly. OBIA Design The data consolidation from various disparate source systems, poses the challenge to conform various currencies, rate types, exchange rates etc., and designing the best way to present the amounts to the users without affecting the performance. When consolidating the data for reporting in OBIA, we have designed the mechanisms in the Common Dimension, to allow users to report based on their required currencies. OBIA Facts store amounts in various currencies: Document Currency: This is the currency of the actual transaction. For a multinational company, this can be in various currencies. Local Currency: This is the base currency in which the accounting entries are recorded by the business. This is generally defined in the Ledger of the company. Global Currencies: OBIA provides five Global Currencies. Three are used across all modules. The last two are for CRM only. A Global currency is very useful when creating reports where the data is viewed enterprise-wide. Example; a US based multinational would want to see the reports in USD. The company will choose USD as one of the global currencies. OBIA allows users to define up-to five global currencies during the initial implementation. The term Currency Preference is used to designate the set of values: Document Currency, Local Currency, Global Currency 1, Global Currency 2, Global Currency 3; which are shared among all modules. There are four more currency preferences, specific to certain modules: Global Currency 4 (aka CRM Currency) and Global Currency 5 which are used in CRM; and Project Currency and Contract Currency, used in Project Analytics. When choosing Local Currency for Currency preference, the data will show in the currency of the Ledger (or Business Unit) in the prompt. So it is important to select one Ledger or Business Unit when viewing data in Local Currency. More on this can be found in the section: Toggling Currency Preferences in the Dashboard. Design Logic When extracting the fact data, the OOTB mappings extract and load the document amount, and the local amount in target tables. It also loads the exchange rates required to convert the document amount into the corresponding global amounts. If the source system only provides the document amount in the transaction, the extract mapping does a lookup to get the Local currency code, and the Local exchange rate. The Load mapping then uses the local currency code and rate to derive the local amount. The load mapping also fetches the Global Currencies and looks up the corresponding exchange rates. The lookup of exchange rates is done via the Exchange Rate Dimension provided as a Common/Conforming Dimension in OBIA. The Exchange Rate Dimension stores the exchange rates between various currencies for a date range and Rate Type. Two physical tables W_EXCH_RATE_G and W_GLOBAL_EXCH_RATE_G are used to provide the lookups and conversions between currencies. The data is loaded from the source system’s Ledger tables. W_EXCH_RATE_G stores the exchange rates between currencies with a date range. On the other hand, W_GLOBAL_EXCH_RATE_G stores the currency conversions between the document currency and the pre-defined five Global Currencies for each day. Based on the requirements, the fact mappings can decide and use one or both tables to do the conversion. Currency design in OBIA also taps into the MLS and Domain architecture, thus allowing the users to map the currencies to a universal Domain during the implementation time. This is especially important for companies deploying and using OBIA with multiple source adapters. Some Gotchas to Look for It is necessary to think through the currencies during the initial implementation. 1) Identify various types of currencies that are used by your business. Understand what will be your Local (or Base) and Documentation currency. Identify various global currencies that your users will want to look at the reports. This will be based on the global nature of your business. Changes to these currencies later in the project, while permitted, but may cause Full data loads and hence lost time. 2) If the user has a multi source system make sure that the Global Currencies and Global Rate Types chosen in Configuration Manager do have the corresponding source specific counterparts. In other words, make sure for every DW specific value chosen for Currency Code or Rate Type, there is a source Domain mapping already done. Technical Section This section will briefly mention the technical scenarios employed in the OBIA adaptors to extract data from each source system. In OBIA, we have two main tables which store the Currency Rate information as explained in previous sections. W_EXCH_RATE_G and W_GLOBAL_EXCH_RATE_G are the two tables. W_EXCH_RATE_G stores all the Currency Conversions present in the source system. It captures data for a Date Range. W_GLOBAL_EXCH_RATE_G has Global Currency Conversions stored at a Daily level. However the challenge here is to store all the 5 Global Currency Exchange Rates in a single record for each From Currency. Let’s voyage further into the Source System Extraction logic for each of these tables and understand the flow briefly. EBS: In EBS, we have Currency Data stored in GL_DAILY_RATES table. As the name indicates GL_DAILY_RATES EBS table has data at a daily level. However in our warehouse we store the data with a Date Range and insert a new range record only when the Exchange Rate changes for a particular From Currency, To Currency and Rate Type. Below are the main logical steps that we employ in this process. (Incremental Flow only) – Cleanup the data in W_EXCH_RATE_G. Delete the records which have Start Date > minimum conversion date Update the End Date of the existing records. Compress the daily data from GL_DAILY_RATES table into Range Records. Incremental map uses $$XRATE_UPD_NUM_DAY as an extra parameter. Generate Previous Rate, Previous Date and Next Date for each of the Daily record from the OLTP. Filter out the records which have Conversion Rate same as Previous Rates or if the Conversion Date lies within a single day range. Mark the records as ‘Keep’ and ‘Filter’ and also get the final End Date for the single Range record (Unique Combination of From Date, To Date, Rate and Conversion Date). Filter the records marked as ‘Filter’ in the INFA map. The above steps will load W_EXCH_RATE_GS. Step 0 updates/deletes W_EXCH_RATE_G directly. SIL map will then insert/update the GS data into W_EXCH_RATE_G. These steps convert the daily records in GL_DAILY_RATES to Range records in W_EXCH_RATE_G. We do not need such special logic for loading W_GLOBAL_EXCH_RATE_G. This is a table where we store data at a Daily Granular Level. However we need to pivot the data because the data present in multiple rows in source tables needs to be stored in different columns of the same row in DW. We use GROUP BY and CASE logic to achieve this. Fusion: Fusion has extraction logic very similar to EBS. The only difference is that the Cleanup logic that was mentioned in step 0 above does not use $$XRATE_UPD_NUM_DAY parameter. In Fusion we bring all the Exchange Rates in Incremental as well and do the cleanup. The SIL then takes care of Insert/Updates accordingly. PeopleSoft:PeopleSoft does not have From Date and To Date explicitly in the Source tables. Let’s look at an example. Please note that this is achieved from PS1 onwards only. 1 Jan 2010 – USD to INR – 45 31 Jan 2010 – USD to INR – 46 PSFT stores records in above fashion. This means that Exchange Rate of 45 for USD to INR is applicable for 1 Jan 2010 to 30 Jan 2010. We need to store data in this fashion in DW. Also PSFT has Exchange Rate stored as RATE_MULT and RATE_DIV. We need to do a RATE_MULT/RATE_DIV to get the correct Exchange Rate. We generate From Date and To Date while extracting data from source and this has certain assumptions: If a record gets updated/inserted in the source, it will be extracted in incremental. Also if this updated/inserted record is between other dates, then we also extract the preceding and succeeding records (based on dates) of this record. This is required because we need to generate a range record and we have 3 records whose ranges have changed. Taking the same example as above, if there is a new record which gets inserted on 15 Jan 2010; the new ranges are 1 Jan to 14 Jan, 15 Jan to 30 Jan and 31 Jan to Next available date. Even though 1 Jan record and 31 Jan have not changed, we will still extract them because the range is affected. Similar logic is used for Global Exchange Rate Extraction. We create the Range records and get it into a Temporary table. Then we join to Day Dimension, create individual records and pivot the data to get the 5 Global Exchange Rates for each From Currency, Date and Rate Type. Siebel: Siebel Facts are dependent on Global Exchange Rates heavily and almost none of them really use individual Exchange Rates. In other words, W_GLOBAL_EXCH_RATE_G is the main table used in Siebel from PS1 release onwards. As of January 2002, the Euro Triangulation method for converting between currencies belonging to EMU members is not needed for present and future currency exchanges. However, the method is still available in Siebel applications, as are the old currencies, so that historical data can be maintained accurately. The following description applies only to historical data needing conversion prior to the 2002 switch to the Euro for the EMU member countries. If a country is a member of the European Monetary Union (EMU), you should convert its currency to other currencies through the Euro. This is called triangulation, and it is used whenever either currency being converted has EMU Triangulation checked. Due to this, there are multiple extraction flows in SEBL ie. EUR to EMU, EUR to NonEMU, EUR to DMC and so on. We load W_EXCH_RATE_G through multiple flows with these data. This has been kept same as previous versions of OBIA. W_GLOBAL_EXCH_RATE_G being a new table does not have such needs. However SEBL does not have From Date and To Date columns in the Source tables similar to PSFT. We use similar extraction logic as explained in PSFT section for SEBL as well. What if all 5 Global Currencies configured are same? As mentioned in previous sections, from PS1 onwards we store Global Exchange Rates in W_GLOBAL_EXCH_RATE_G table. The extraction logic for this table involves Pivoting data from multiple rows into a single row with 5 Global Exchange Rates in 5 columns. As mentioned in previous sections, we use CASE and GROUP BY functions to achieve this. This approach poses a unique problem when all the 5 Global Currencies Chosen are same. For example – If the user configures all 5 Global Currencies as ‘USD’ then the extract logic will not be able to generate a record for From Currency=USD. This is because, not all Source Systems will have a USD->USD conversion record. We have _Generated mappings to take care of this case. We generate a record with Conversion Rate=1 for such cases. Reusable Lookups Before PS1, we had a Mapplet for Currency Conversions. In PS1, we only have reusable Lookups- LKP_W_EXCH_RATE_G and LKP_W_GLOBAL_EXCH_RATE_G. These lookups have another layer of logic so that all the lookup conditions are met when they are used in various Fact Mappings. Any user who would want to do a LKP on W_EXCH_RATE_G or W_GLOBAL_EXCH_RATE_G should and must use these Lookups. A direct join or Lookup on the tables might lead to wrong data being returned. Changing Currency preferences in the Dashboard: In the 796x series, all amount metrics in OBIA were showing the Global1 amount. The customer needed to change the metric definitions to show them in another Currency preference. Project Analytics started supporting currency preferences since 7.9.6 release though, and it published a Tech note for other module customers to add toggling between currency preferences to the solution. List of Currency Preferences Starting from 11.1.1.x release, the BI Platform added a new feature to support multiple currencies. The new session variable (PREFERRED_CURRENCY) is populated through a newly introduced currency prompt. This prompt can take its values from the xml file: userpref_currencies_OBIA.xml, which is hosted in the BI Server installation folder, under :< home>\instances\instance1\config\OracleBIPresentationServicesComponent\coreapplication_obips1\userpref_currencies.xml This file contains the list of currency preferences, like“Local Currency”, “Global Currency 1”,…which customers can also rename to give them more meaningful business names. There are two options for showing the list of currency preferences to the user in the dashboard: Static and Dynamic. In Static mode, all users will see the full list as in the user preference currencies file. In the Dynamic mode, the list shown in the currency prompt drop down is a result of a dynamic query specified in the same file. Customers can build some security into the rpd, so the list of currency preferences will be based on the user roles…BI Applications built a subject area: “Dynamic Currency Preference” to run this query, and give every user only the list of currency preferences required by his application roles. Adding Currency to an Amount Field When the user selects one of the items from the currency prompt, all the amounts in that page will show in the Currency corresponding to that preference. For example, if the user selects “Global Currency1” from the prompt, all data will be showing in Global Currency 1 as specified in the Configuration Manager. If the user select “Local Currency”, all amount fields will show in the Currency of the Business Unit selected in the BU filter of the same page. If there is no particular Business Unit selected in that filter, and the data selected by the query contains amounts in more than one currency (for example one BU has USD as a functional currency, the other has EUR as functional currency), then subtotals will not be available (cannot add USD and EUR amounts in one field), and depending on the set up (see next paragraph), the user may receive an error. There are two ways to add the Currency field to an amount metric: In the form of currency code, like USD, EUR…For this the user needs to add the field “Apps Common Currency Code” to the report. This field is in every subject area, usually under the table “Currency Tag” or “Currency Code”… In the form of currency symbol ($ for USD, € for EUR,…) For this, the user needs to format the amount metrics in the report as a currency column, by specifying the currency tag column in the Column Properties option in Column Actions drop down list. Typically this column should be the “BI Common Currency Code” available in every subject area. Select Column Properties option in the Edit list of a metric. In the Data Format tab, select Custom as Treat Number As. Enter the following syntax under Custom Number Format: [$:currencyTagColumn=Subjectarea.table.column] Where Column is the “BI Common Currency Code” defined to take the currency code value based on the currency preference chosen by the user in the Currency preference prompt.

    Read the article

1 2  | Next Page >