Search Results

Search found 5 results on 1 pages for 'ungetc'.

Page 1/1 | 1 

  • ungetc in Python

    - by Dragos Toader
    Some file read (readlines()) functions in Python copy the file contents to memory (as a list) I need to process a file that's too large to be copied in memory and as such need to use a file pointer (to access the file one byte at a time) -- as in C getc(). The additional requirement I have is that I'd like to rewind the file pointer to previous bytes like in C ungetc(). Is there a way to do this in Python? Also, in Python, I can read one line at a time with readline() Is there a way to read the previous line going backward?

    Read the article

  • Can I make ungetc unblock a blocking fgetc call?

    - by Paul Beckingham
    I would like to stuff an 'A' character back into stdin using ungetc on receipt of SIGUSR1. Imagine that I have a good reason for doing this. When calling foo(), the blocking read in stdin is not interrupted by the ungetc call on receipt of the signal. While I didn't expect this to work as is, I wonder if there is a way to achieve this - does anyone have suggestions? void handler (int sig) { ungetc ('A', stdin); } void foo () { signal (SIGUSR1, handler); while ((key = fgetc (stdin)) != EOF) { ... } }

    Read the article

  • error in finding out the lexems and no of lines of a text file in C

    - by mekasperasky
    #include<stdio.h> #include<ctype.h> #include<string.h> int main() { int i=0,j,k,lines_count[2]={1,1},operand_count[2]={0},operator_count[2]={0},uoperator_count[2]={0},control_count[2]={0,0},cl[13]={0},variable_dec[2]={0,0},l,p[2]={0},ct,variable_used[2]={0,0},constant_count[2],s[2]={0},t[2]={0}; char a,b[100],c[100]; char d[100]={0}; j=30; FILE *fp1[2],*fp2; fp1[0]=fopen("program1.txt","r"); fp1[1]=fopen("program2.txt","r"); //the source file is opened in read only mode which will passed through the lexer fp2=fopen("ccv1ouput.txt","wb"); //now lets remove all the white spaces and store the rest of the words in a file if(fp1[0]==NULL) { perror("failed to open program1.txt"); //return EXIT_FAILURE; } if(fp1[1]==NULL) { perror("failed to open program2.txt"); //return EXIT_FAILURE; } i=0; k=0; ct=0; while(ct!=2) { while(!feof(fp1[ct])) { a=fgetc(fp1[ct]); if(a!=' '&&a!='\n') { if (!isalpha(a) && !isdigit(a)) { switch(a) { case '+':{ i=0; cl[0]=1; operator_count[ct]=operator_count[ct]+1;break;} case '-':{ cl[1]=1; operator_count[ct]=operator_count[ct]+1;i=0;break;} case '*':{ cl[2]=1; operator_count[ct]=operator_count[ct]+1;i=0;break;} case '/':{ cl[3]=1; operator_count[ct]=operator_count[ct]+1;i=0;break;} case '=':{a=fgetc(fp1[ct]); if (a=='='){cl[4]=1; operator_count[ct]=operator_count[ct]+1; operand_count[ct]=operand_count[ct]+1;} else { cl[5]=1; operator_count[ct]=operator_count[ct]+1; operand_count[ct]=operand_count[ct]+1; ungetc(1,fp1[ct]); } break;} case '%':{ cl[6]=1; operator_count[ct]=operator_count[ct]+1;i=0;break;} case '<':{ a=fgetc(fp1[ct]); if (a=='=') {cl[7]=1; operator_count[ct]=operator_count[ct]+1;} else { cl[8]=1; operator_count[ct]=operator_count[ct]+1; ungetc(1,fp1[ct]); } break; } case '>':{ ; a=fgetc(fp1[ct]); if (a=='='){cl[9]=1; operator_count[ct]=operator_count[ct]+1;} else { cl[10]=1; operator_count[ct]=operator_count[ct]+1; ungetc(1,fp1[ct]); } break;} case '&':{ cl[11]=1; a=fgetc(fp1[ct]); operator_count[ct]=operator_count[ct]+1; operand_count[ct]=operand_count[ct]+1; variable_used[ct]=variable_used[ct]-1; break; } case '|':{ cl[12]=1; a=fgetc(fp1[ct]); operator_count[ct]=operator_count[ct]+1; operand_count[ct]=operand_count[ct]+1; variable_used[ct]=variable_used[ct]-1; break; } case '#':{ while(a!='\n') { a=fgetc(fp1[ct]); } } } } else { d[i]=a; i=i+1; k=k+1; } } else { //printf("%s \n",d); if((strcmp(d,"if")==0)){ memset ( d, 0, 100 ); i=0; control_count[ct]=control_count[ct]+1; } else if(strcmp(d,"then")==0){ i=0;memset ( d, 0, 100 );control_count[ct]=control_count[ct]+1;} else if(strcmp(d,"else")==0){ i=0;memset ( d, 0, 100 );control_count[ct]=control_count[ct]+1;} else if(strcmp(d,"while")==0){ i=0;memset ( d, 0, 100 );control_count[ct]=control_count[ct]+1;} else if(strcmp(d,"int")==0){ while(a != '\n') { a=fgetc(fp1[ct]); if (isalpha(a) ) variable_dec[ct]=variable_dec[ct]+1; } memset ( d, 0, 100 ); lines_count[ct]=lines_count[ct]+1; } else if(strcmp(d,"char")==0){while(a != '\n') { a=fgetc(fp1[ct]); if (isalpha(a) ) variable_dec[ct]=variable_dec[ct]+1; } memset ( d, 0, 100 ); lines_count[ct]=lines_count[ct]+1; } else if(strcmp(d,"float")==0){while(a != '\n') { a=fgetc(fp1[ct]); if (isalpha(a) ) variable_dec[ct]=variable_dec[ct]+1; } memset ( d, 0, 100 ); lines_count[ct]=lines_count[ct]+1; } else if(strcmp(d,"printf")==0){while(a!='\n') a=fgetc(fp1[ct]); memset(d,0,100); } else if(strcmp(d,"scanf")==0){while(a!='\n') a=fgetc(fp1[ct]); memset(d,0,100);} else if (isdigit(d[i-1])) { memset ( d, 0, 100 ); i=0; constant_count[ct]=constant_count[ct]+1; operand_count[ct]=operand_count[ct]+1; } else if (isalpha(d[i-1]) && strcmp(d,"int")!=0 && strcmp(d,"char")!=0 && strcmp(d,"float")!=0 && (strcmp(d,"if")!=0) && strcmp(d,"then")!=0 && strcmp(d,"else")!=0 && strcmp(d,"while")!=0 && strcmp(d,"printf")!=0 && strcmp(d,"scanf")!=0) { memset ( d, 0, 100 ); i=0; operand_count[ct]=operand_count[ct]+1; } else if(a=='\n') { lines_count[ct]=lines_count[ct]+1; memset ( d, 0, 100 ); } } } fclose(fp1[ct]); operand_count[ct]=operand_count[ct]-5; variable_used[0]=operand_count[0]-constant_count[0]; variable_used[1]=operand_count[1]-constant_count[1]; for(j=0;j<12;j++) uoperator_count[ct]=uoperator_count[ct]+cl[j]; fprintf(fp2,"\n statistics of program %d",ct+1); fprintf(fp2,"\n the no of lines ---> %d",lines_count[ct]); fprintf(fp2,"\n the no of operands --->%d",operand_count[ct]); fprintf(fp2,"\n the no of operator --->%d",operator_count[ct]); fprintf(fp2,"\n the no of control statments --->%d",control_count[ct]); fprintf(fp2,"\n the no of unique operators --->%d",uoperator_count[ct]); fprintf(fp2,"\n the no of variables declared--->%d",variable_dec[ct]); fprintf(fp2,"\n the no of variables used--->%d",variable_used[ct]); fprintf(fp2,"\n ---------------------------------"); fprintf(fp2,"\n \t \t \t"); ct=ct+1; } t[0]=lines_count[0]+control_count[0]+uoperator_count[0]; t[1]=lines_count[1]+control_count[1]+uoperator_count[1]; s[0]=operator_count[0]+operand_count[0]+variable_dec[0]+variable_used[0]; s[1]=operator_count[1]+operand_count[1]+variable_dec[1]+variable_used[1]; fprintf(fp2,"\n the time complexity of program 1 is %d",t[0]); fprintf(fp2,"\n the time complexity of program 2 is %d",t[1]); fprintf(fp2,"\n the space complexity of program 1 is %d",s[0]); fprintf(fp2,"\n the space complexity of program 2 is %d",s[1]); if((t[0]>t[1]) && (s[0] >s[1])) fprintf(fp2,"\n the efficiency of program 2 is greater than program 1"); else if(t[0]<t[1] && s[0] < s[1]) fprintf(fp2,"\n the efficiency of program 1 is greater than program 2 " ); else if (t[0]+s[0] > t[1]+s[1]) fprintf(fp2,"\n the efficiency of program 1 is greater than program 2"); else if (t[0]+s[0] < t[1]+s[1]) fprintf(fp2,"\n the efficiency of program 2 is greater than program 1"); else if (t[0]+s[0] == t[1]+s[1]) fprintf(fp2,"\n the efficiency of program 1 is equal to that of program 2"); fclose(fp2); return 0; } this code basically compares two c codes and finds out the no. of variables declared , used , no. of control statements , no. of lines and no. of unique operators , and operands , so as to find out the time complexity and space complexity of of the two programs given in the text file program1.txt and program2.txt ... Lets say program1.txt is this #include<stdio.h> #include<math.h> int main () { FILE *fp; fp=fopen("output.txt","w"); long double t,y=0,x=0,e=5,f=1,w=1; for (t=0;t<10;t=t+0.01) { //if (isnan(y) || isinf(y)) //break; fprintf(fp,"%ld\t%ld\n",y,x); y = y + ((e*(1 - (x*x))*y) - x + f*cos(w*0.1))*0.1; x = x + y*0.1; } fclose(fp); return (0); } i havent indented it as its just a text file . But my output is totally faulty . Its not able to find the any of the ouput that i need . Where is the bug in this ? I am not able to figure out as the algorithm looks fine .

    Read the article

  • Why should main() be short?

    - by Stargazer712
    I've been programming for over 9 years, and according to the advice of my first programming teacher, I always keep my main() function extremely short. At first I had no idea why. I just obeyed without understanding, much to the delight of my professors. After gaining experience, I realized that if I designed my code correctly, having a short main() function just sortof happened. Writing modularized code and following the single responsibility principle allowed my code to be designed in "bunches", and main() served as nothing more than a catalyst to get the program running. Fast forward to a few weeks ago, I was looking at Python's souce code, and I found the main() function: /* Minimal main program -- everything is loaded from the library */ ... int main(int argc, char **argv) { ... return Py_Main(argc, argv); } Yay Python. Short main() function == Good code. Programming teachers were right. Wanting to look deeper, I took a look at Py_Main. In its entirety, it is defined as follows: /* Main program */ int Py_Main(int argc, char **argv) { int c; int sts; char *command = NULL; char *filename = NULL; char *module = NULL; FILE *fp = stdin; char *p; int unbuffered = 0; int skipfirstline = 0; int stdin_is_interactive = 0; int help = 0; int version = 0; int saw_unbuffered_flag = 0; PyCompilerFlags cf; cf.cf_flags = 0; orig_argc = argc; /* For Py_GetArgcArgv() */ orig_argv = argv; #ifdef RISCOS Py_RISCOSWimpFlag = 0; #endif PySys_ResetWarnOptions(); while ((c = _PyOS_GetOpt(argc, argv, PROGRAM_OPTS)) != EOF) { if (c == 'c') { /* -c is the last option; following arguments that look like options are left for the command to interpret. */ command = (char *)malloc(strlen(_PyOS_optarg) + 2); if (command == NULL) Py_FatalError( "not enough memory to copy -c argument"); strcpy(command, _PyOS_optarg); strcat(command, "\n"); break; } if (c == 'm') { /* -m is the last option; following arguments that look like options are left for the module to interpret. */ module = (char *)malloc(strlen(_PyOS_optarg) + 2); if (module == NULL) Py_FatalError( "not enough memory to copy -m argument"); strcpy(module, _PyOS_optarg); break; } switch (c) { case 'b': Py_BytesWarningFlag++; break; case 'd': Py_DebugFlag++; break; case '3': Py_Py3kWarningFlag++; if (!Py_DivisionWarningFlag) Py_DivisionWarningFlag = 1; break; case 'Q': if (strcmp(_PyOS_optarg, "old") == 0) { Py_DivisionWarningFlag = 0; break; } if (strcmp(_PyOS_optarg, "warn") == 0) { Py_DivisionWarningFlag = 1; break; } if (strcmp(_PyOS_optarg, "warnall") == 0) { Py_DivisionWarningFlag = 2; break; } if (strcmp(_PyOS_optarg, "new") == 0) { /* This only affects __main__ */ cf.cf_flags |= CO_FUTURE_DIVISION; /* And this tells the eval loop to treat BINARY_DIVIDE as BINARY_TRUE_DIVIDE */ _Py_QnewFlag = 1; break; } fprintf(stderr, "-Q option should be `-Qold', " "`-Qwarn', `-Qwarnall', or `-Qnew' only\n"); return usage(2, argv[0]); /* NOTREACHED */ case 'i': Py_InspectFlag++; Py_InteractiveFlag++; break; /* case 'J': reserved for Jython */ case 'O': Py_OptimizeFlag++; break; case 'B': Py_DontWriteBytecodeFlag++; break; case 's': Py_NoUserSiteDirectory++; break; case 'S': Py_NoSiteFlag++; break; case 'E': Py_IgnoreEnvironmentFlag++; break; case 't': Py_TabcheckFlag++; break; case 'u': unbuffered++; saw_unbuffered_flag = 1; break; case 'v': Py_VerboseFlag++; break; #ifdef RISCOS case 'w': Py_RISCOSWimpFlag = 1; break; #endif case 'x': skipfirstline = 1; break; /* case 'X': reserved for implementation-specific arguments */ case 'U': Py_UnicodeFlag++; break; case 'h': case '?': help++; break; case 'V': version++; break; case 'W': PySys_AddWarnOption(_PyOS_optarg); break; /* This space reserved for other options */ default: return usage(2, argv[0]); /*NOTREACHED*/ } } if (help) return usage(0, argv[0]); if (version) { fprintf(stderr, "Python %s\n", PY_VERSION); return 0; } if (Py_Py3kWarningFlag && !Py_TabcheckFlag) /* -3 implies -t (but not -tt) */ Py_TabcheckFlag = 1; if (!Py_InspectFlag && (p = Py_GETENV("PYTHONINSPECT")) && *p != '\0') Py_InspectFlag = 1; if (!saw_unbuffered_flag && (p = Py_GETENV("PYTHONUNBUFFERED")) && *p != '\0') unbuffered = 1; if (!Py_NoUserSiteDirectory && (p = Py_GETENV("PYTHONNOUSERSITE")) && *p != '\0') Py_NoUserSiteDirectory = 1; if ((p = Py_GETENV("PYTHONWARNINGS")) && *p != '\0') { char *buf, *warning; buf = (char *)malloc(strlen(p) + 1); if (buf == NULL) Py_FatalError( "not enough memory to copy PYTHONWARNINGS"); strcpy(buf, p); for (warning = strtok(buf, ","); warning != NULL; warning = strtok(NULL, ",")) PySys_AddWarnOption(warning); free(buf); } if (command == NULL && module == NULL && _PyOS_optind < argc && strcmp(argv[_PyOS_optind], "-") != 0) { #ifdef __VMS filename = decc$translate_vms(argv[_PyOS_optind]); if (filename == (char *)0 || filename == (char *)-1) filename = argv[_PyOS_optind]; #else filename = argv[_PyOS_optind]; #endif } stdin_is_interactive = Py_FdIsInteractive(stdin, (char *)0); if (unbuffered) { #if defined(MS_WINDOWS) || defined(__CYGWIN__) _setmode(fileno(stdin), O_BINARY); _setmode(fileno(stdout), O_BINARY); #endif #ifdef HAVE_SETVBUF setvbuf(stdin, (char *)NULL, _IONBF, BUFSIZ); setvbuf(stdout, (char *)NULL, _IONBF, BUFSIZ); setvbuf(stderr, (char *)NULL, _IONBF, BUFSIZ); #else /* !HAVE_SETVBUF */ setbuf(stdin, (char *)NULL); setbuf(stdout, (char *)NULL); setbuf(stderr, (char *)NULL); #endif /* !HAVE_SETVBUF */ } else if (Py_InteractiveFlag) { #ifdef MS_WINDOWS /* Doesn't have to have line-buffered -- use unbuffered */ /* Any set[v]buf(stdin, ...) screws up Tkinter :-( */ setvbuf(stdout, (char *)NULL, _IONBF, BUFSIZ); #else /* !MS_WINDOWS */ #ifdef HAVE_SETVBUF setvbuf(stdin, (char *)NULL, _IOLBF, BUFSIZ); setvbuf(stdout, (char *)NULL, _IOLBF, BUFSIZ); #endif /* HAVE_SETVBUF */ #endif /* !MS_WINDOWS */ /* Leave stderr alone - it should be unbuffered anyway. */ } #ifdef __VMS else { setvbuf (stdout, (char *)NULL, _IOLBF, BUFSIZ); } #endif /* __VMS */ #ifdef __APPLE__ /* On MacOS X, when the Python interpreter is embedded in an application bundle, it gets executed by a bootstrapping script that does os.execve() with an argv[0] that's different from the actual Python executable. This is needed to keep the Finder happy, or rather, to work around Apple's overly strict requirements of the process name. However, we still need a usable sys.executable, so the actual executable path is passed in an environment variable. See Lib/plat-mac/bundlebuiler.py for details about the bootstrap script. */ if ((p = Py_GETENV("PYTHONEXECUTABLE")) && *p != '\0') Py_SetProgramName(p); else Py_SetProgramName(argv[0]); #else Py_SetProgramName(argv[0]); #endif Py_Initialize(); if (Py_VerboseFlag || (command == NULL && filename == NULL && module == NULL && stdin_is_interactive)) { fprintf(stderr, "Python %s on %s\n", Py_GetVersion(), Py_GetPlatform()); if (!Py_NoSiteFlag) fprintf(stderr, "%s\n", COPYRIGHT); } if (command != NULL) { /* Backup _PyOS_optind and force sys.argv[0] = '-c' */ _PyOS_optind--; argv[_PyOS_optind] = "-c"; } if (module != NULL) { /* Backup _PyOS_optind and force sys.argv[0] = '-c' so that PySys_SetArgv correctly sets sys.path[0] to '' rather than looking for a file called "-m". See tracker issue #8202 for details. */ _PyOS_optind--; argv[_PyOS_optind] = "-c"; } PySys_SetArgv(argc-_PyOS_optind, argv+_PyOS_optind); if ((Py_InspectFlag || (command == NULL && filename == NULL && module == NULL)) && isatty(fileno(stdin))) { PyObject *v; v = PyImport_ImportModule("readline"); if (v == NULL) PyErr_Clear(); else Py_DECREF(v); } if (command) { sts = PyRun_SimpleStringFlags(command, &cf) != 0; free(command); } else if (module) { sts = RunModule(module, 1); free(module); } else { if (filename == NULL && stdin_is_interactive) { Py_InspectFlag = 0; /* do exit on SystemExit */ RunStartupFile(&cf); } /* XXX */ sts = -1; /* keep track of whether we've already run __main__ */ if (filename != NULL) { sts = RunMainFromImporter(filename); } if (sts==-1 && filename!=NULL) { if ((fp = fopen(filename, "r")) == NULL) { fprintf(stderr, "%s: can't open file '%s': [Errno %d] %s\n", argv[0], filename, errno, strerror(errno)); return 2; } else if (skipfirstline) { int ch; /* Push back first newline so line numbers remain the same */ while ((ch = getc(fp)) != EOF) { if (ch == '\n') { (void)ungetc(ch, fp); break; } } } { /* XXX: does this work on Win/Win64? (see posix_fstat) */ struct stat sb; if (fstat(fileno(fp), &sb) == 0 && S_ISDIR(sb.st_mode)) { fprintf(stderr, "%s: '%s' is a directory, cannot continue\n", argv[0], filename); fclose(fp); return 1; } } } if (sts==-1) { /* call pending calls like signal handlers (SIGINT) */ if (Py_MakePendingCalls() == -1) { PyErr_Print(); sts = 1; } else { sts = PyRun_AnyFileExFlags( fp, filename == NULL ? "<stdin>" : filename, filename != NULL, &cf) != 0; } } } /* Check this environment variable at the end, to give programs the * opportunity to set it from Python. */ if (!Py_InspectFlag && (p = Py_GETENV("PYTHONINSPECT")) && *p != '\0') { Py_InspectFlag = 1; } if (Py_InspectFlag && stdin_is_interactive && (filename != NULL || command != NULL || module != NULL)) { Py_InspectFlag = 0; /* XXX */ sts = PyRun_AnyFileFlags(stdin, "<stdin>", &cf) != 0; } Py_Finalize(); #ifdef RISCOS if (Py_RISCOSWimpFlag) fprintf(stderr, "\x0cq\x0c"); /* make frontend quit */ #endif #ifdef __INSURE__ /* Insure++ is a memory analysis tool that aids in discovering * memory leaks and other memory problems. On Python exit, the * interned string dictionary is flagged as being in use at exit * (which it is). Under normal circumstances, this is fine because * the memory will be automatically reclaimed by the system. Under * memory debugging, it's a huge source of useless noise, so we * trade off slower shutdown for less distraction in the memory * reports. -baw */ _Py_ReleaseInternedStrings(); #endif /* __INSURE__ */ return sts; } Good God Almighty...it is big enough to sink the Titanic. It seems as though Python did the "Intro to Programming 101" trick and just moved all of main()'s code to a different function called it something very similar to "main". Here's my question: Is this code terribly written, or are there other reasons reasons to have a short main function? As it stands right now, I see absolutely no difference between doing this and just moving the code in Py_Main() back into main(). Am I wrong in thinking this?

    Read the article

  • Why should main() be short?

    - by Stargazer712
    I've been programming for over 9 years, and according to the advice of my first programming teacher, I always keep my main() function extremely short. At first I had no idea why. I just obeyed without understanding, much to the delight of my professors. After gaining experience, I realized that if I designed my code correctly, having a short main() function just sortof happened. Writing modularized code and following the single responsibility principle allowed my code to be designed in "bunches", and main() served as nothing more than a catalyst to get the program running. Fast forward to a few weeks ago, I was looking at Python's souce code, and I found the main() function: /* Minimal main program -- everything is loaded from the library */ ... int main(int argc, char **argv) { ... return Py_Main(argc, argv); } Yay python. Short main() function == Good code. Programming teachers were right. Wanting to look deeper, I took a look at Py_Main. In its entirety, it is defined as follows: /* Main program */ int Py_Main(int argc, char **argv) { int c; int sts; char *command = NULL; char *filename = NULL; char *module = NULL; FILE *fp = stdin; char *p; int unbuffered = 0; int skipfirstline = 0; int stdin_is_interactive = 0; int help = 0; int version = 0; int saw_unbuffered_flag = 0; PyCompilerFlags cf; cf.cf_flags = 0; orig_argc = argc; /* For Py_GetArgcArgv() */ orig_argv = argv; #ifdef RISCOS Py_RISCOSWimpFlag = 0; #endif PySys_ResetWarnOptions(); while ((c = _PyOS_GetOpt(argc, argv, PROGRAM_OPTS)) != EOF) { if (c == 'c') { /* -c is the last option; following arguments that look like options are left for the command to interpret. */ command = (char *)malloc(strlen(_PyOS_optarg) + 2); if (command == NULL) Py_FatalError( "not enough memory to copy -c argument"); strcpy(command, _PyOS_optarg); strcat(command, "\n"); break; } if (c == 'm') { /* -m is the last option; following arguments that look like options are left for the module to interpret. */ module = (char *)malloc(strlen(_PyOS_optarg) + 2); if (module == NULL) Py_FatalError( "not enough memory to copy -m argument"); strcpy(module, _PyOS_optarg); break; } switch (c) { case 'b': Py_BytesWarningFlag++; break; case 'd': Py_DebugFlag++; break; case '3': Py_Py3kWarningFlag++; if (!Py_DivisionWarningFlag) Py_DivisionWarningFlag = 1; break; case 'Q': if (strcmp(_PyOS_optarg, "old") == 0) { Py_DivisionWarningFlag = 0; break; } if (strcmp(_PyOS_optarg, "warn") == 0) { Py_DivisionWarningFlag = 1; break; } if (strcmp(_PyOS_optarg, "warnall") == 0) { Py_DivisionWarningFlag = 2; break; } if (strcmp(_PyOS_optarg, "new") == 0) { /* This only affects __main__ */ cf.cf_flags |= CO_FUTURE_DIVISION; /* And this tells the eval loop to treat BINARY_DIVIDE as BINARY_TRUE_DIVIDE */ _Py_QnewFlag = 1; break; } fprintf(stderr, "-Q option should be `-Qold', " "`-Qwarn', `-Qwarnall', or `-Qnew' only\n"); return usage(2, argv[0]); /* NOTREACHED */ case 'i': Py_InspectFlag++; Py_InteractiveFlag++; break; /* case 'J': reserved for Jython */ case 'O': Py_OptimizeFlag++; break; case 'B': Py_DontWriteBytecodeFlag++; break; case 's': Py_NoUserSiteDirectory++; break; case 'S': Py_NoSiteFlag++; break; case 'E': Py_IgnoreEnvironmentFlag++; break; case 't': Py_TabcheckFlag++; break; case 'u': unbuffered++; saw_unbuffered_flag = 1; break; case 'v': Py_VerboseFlag++; break; #ifdef RISCOS case 'w': Py_RISCOSWimpFlag = 1; break; #endif case 'x': skipfirstline = 1; break; /* case 'X': reserved for implementation-specific arguments */ case 'U': Py_UnicodeFlag++; break; case 'h': case '?': help++; break; case 'V': version++; break; case 'W': PySys_AddWarnOption(_PyOS_optarg); break; /* This space reserved for other options */ default: return usage(2, argv[0]); /*NOTREACHED*/ } } if (help) return usage(0, argv[0]); if (version) { fprintf(stderr, "Python %s\n", PY_VERSION); return 0; } if (Py_Py3kWarningFlag && !Py_TabcheckFlag) /* -3 implies -t (but not -tt) */ Py_TabcheckFlag = 1; if (!Py_InspectFlag && (p = Py_GETENV("PYTHONINSPECT")) && *p != '\0') Py_InspectFlag = 1; if (!saw_unbuffered_flag && (p = Py_GETENV("PYTHONUNBUFFERED")) && *p != '\0') unbuffered = 1; if (!Py_NoUserSiteDirectory && (p = Py_GETENV("PYTHONNOUSERSITE")) && *p != '\0') Py_NoUserSiteDirectory = 1; if ((p = Py_GETENV("PYTHONWARNINGS")) && *p != '\0') { char *buf, *warning; buf = (char *)malloc(strlen(p) + 1); if (buf == NULL) Py_FatalError( "not enough memory to copy PYTHONWARNINGS"); strcpy(buf, p); for (warning = strtok(buf, ","); warning != NULL; warning = strtok(NULL, ",")) PySys_AddWarnOption(warning); free(buf); } if (command == NULL && module == NULL && _PyOS_optind < argc && strcmp(argv[_PyOS_optind], "-") != 0) { #ifdef __VMS filename = decc$translate_vms(argv[_PyOS_optind]); if (filename == (char *)0 || filename == (char *)-1) filename = argv[_PyOS_optind]; #else filename = argv[_PyOS_optind]; #endif } stdin_is_interactive = Py_FdIsInteractive(stdin, (char *)0); if (unbuffered) { #if defined(MS_WINDOWS) || defined(__CYGWIN__) _setmode(fileno(stdin), O_BINARY); _setmode(fileno(stdout), O_BINARY); #endif #ifdef HAVE_SETVBUF setvbuf(stdin, (char *)NULL, _IONBF, BUFSIZ); setvbuf(stdout, (char *)NULL, _IONBF, BUFSIZ); setvbuf(stderr, (char *)NULL, _IONBF, BUFSIZ); #else /* !HAVE_SETVBUF */ setbuf(stdin, (char *)NULL); setbuf(stdout, (char *)NULL); setbuf(stderr, (char *)NULL); #endif /* !HAVE_SETVBUF */ } else if (Py_InteractiveFlag) { #ifdef MS_WINDOWS /* Doesn't have to have line-buffered -- use unbuffered */ /* Any set[v]buf(stdin, ...) screws up Tkinter :-( */ setvbuf(stdout, (char *)NULL, _IONBF, BUFSIZ); #else /* !MS_WINDOWS */ #ifdef HAVE_SETVBUF setvbuf(stdin, (char *)NULL, _IOLBF, BUFSIZ); setvbuf(stdout, (char *)NULL, _IOLBF, BUFSIZ); #endif /* HAVE_SETVBUF */ #endif /* !MS_WINDOWS */ /* Leave stderr alone - it should be unbuffered anyway. */ } #ifdef __VMS else { setvbuf (stdout, (char *)NULL, _IOLBF, BUFSIZ); } #endif /* __VMS */ #ifdef __APPLE__ /* On MacOS X, when the Python interpreter is embedded in an application bundle, it gets executed by a bootstrapping script that does os.execve() with an argv[0] that's different from the actual Python executable. This is needed to keep the Finder happy, or rather, to work around Apple's overly strict requirements of the process name. However, we still need a usable sys.executable, so the actual executable path is passed in an environment variable. See Lib/plat-mac/bundlebuiler.py for details about the bootstrap script. */ if ((p = Py_GETENV("PYTHONEXECUTABLE")) && *p != '\0') Py_SetProgramName(p); else Py_SetProgramName(argv[0]); #else Py_SetProgramName(argv[0]); #endif Py_Initialize(); if (Py_VerboseFlag || (command == NULL && filename == NULL && module == NULL && stdin_is_interactive)) { fprintf(stderr, "Python %s on %s\n", Py_GetVersion(), Py_GetPlatform()); if (!Py_NoSiteFlag) fprintf(stderr, "%s\n", COPYRIGHT); } if (command != NULL) { /* Backup _PyOS_optind and force sys.argv[0] = '-c' */ _PyOS_optind--; argv[_PyOS_optind] = "-c"; } if (module != NULL) { /* Backup _PyOS_optind and force sys.argv[0] = '-c' so that PySys_SetArgv correctly sets sys.path[0] to '' rather than looking for a file called "-m". See tracker issue #8202 for details. */ _PyOS_optind--; argv[_PyOS_optind] = "-c"; } PySys_SetArgv(argc-_PyOS_optind, argv+_PyOS_optind); if ((Py_InspectFlag || (command == NULL && filename == NULL && module == NULL)) && isatty(fileno(stdin))) { PyObject *v; v = PyImport_ImportModule("readline"); if (v == NULL) PyErr_Clear(); else Py_DECREF(v); } if (command) { sts = PyRun_SimpleStringFlags(command, &cf) != 0; free(command); } else if (module) { sts = RunModule(module, 1); free(module); } else { if (filename == NULL && stdin_is_interactive) { Py_InspectFlag = 0; /* do exit on SystemExit */ RunStartupFile(&cf); } /* XXX */ sts = -1; /* keep track of whether we've already run __main__ */ if (filename != NULL) { sts = RunMainFromImporter(filename); } if (sts==-1 && filename!=NULL) { if ((fp = fopen(filename, "r")) == NULL) { fprintf(stderr, "%s: can't open file '%s': [Errno %d] %s\n", argv[0], filename, errno, strerror(errno)); return 2; } else if (skipfirstline) { int ch; /* Push back first newline so line numbers remain the same */ while ((ch = getc(fp)) != EOF) { if (ch == '\n') { (void)ungetc(ch, fp); break; } } } { /* XXX: does this work on Win/Win64? (see posix_fstat) */ struct stat sb; if (fstat(fileno(fp), &sb) == 0 && S_ISDIR(sb.st_mode)) { fprintf(stderr, "%s: '%s' is a directory, cannot continue\n", argv[0], filename); fclose(fp); return 1; } } } if (sts==-1) { /* call pending calls like signal handlers (SIGINT) */ if (Py_MakePendingCalls() == -1) { PyErr_Print(); sts = 1; } else { sts = PyRun_AnyFileExFlags( fp, filename == NULL ? "<stdin>" : filename, filename != NULL, &cf) != 0; } } } /* Check this environment variable at the end, to give programs the * opportunity to set it from Python. */ if (!Py_InspectFlag && (p = Py_GETENV("PYTHONINSPECT")) && *p != '\0') { Py_InspectFlag = 1; } if (Py_InspectFlag && stdin_is_interactive && (filename != NULL || command != NULL || module != NULL)) { Py_InspectFlag = 0; /* XXX */ sts = PyRun_AnyFileFlags(stdin, "<stdin>", &cf) != 0; } Py_Finalize(); #ifdef RISCOS if (Py_RISCOSWimpFlag) fprintf(stderr, "\x0cq\x0c"); /* make frontend quit */ #endif #ifdef __INSURE__ /* Insure++ is a memory analysis tool that aids in discovering * memory leaks and other memory problems. On Python exit, the * interned string dictionary is flagged as being in use at exit * (which it is). Under normal circumstances, this is fine because * the memory will be automatically reclaimed by the system. Under * memory debugging, it's a huge source of useless noise, so we * trade off slower shutdown for less distraction in the memory * reports. -baw */ _Py_ReleaseInternedStrings(); #endif /* __INSURE__ */ return sts; } Good God Almighty...it is big enough to sink the Titanic. It seems as though Python did the "Intro to Programming 101" trick and just moved all of main()'s code to a different function called it something very similar to "main". Here's my question: Is this code terribly written, or are there other reasons to have a short main function? As it stands right now, I see absolutely no difference between doing this and just moving the code in Py_Main() back into main(). Am I wrong in thinking this?

    Read the article

1