Search Results

Search found 6912 results on 277 pages for 'assembly resolution'.

Page 1/277 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • KVM switching from lower resolution system resets Ubuntu high resolution

    - by Ed Manet
    I'm running 12.04 desktop on my main desktop and it's hooked to a KVM (IOGear miniview) that shares the peripherals with a SLES 11 machine. The SLES 11 machine can't get the same resolution as the Ubuntu machine because of different graphics hardware. If I switch from Ubuntu to SLES and stay there too long, when I switch back to Ubuntu the screen resolution on Ubuntu is reset to the same as SLES. I can get it back easily just opening the Displays configuration; it immediately resets to the high resolution as soon as the Displays window opens. But all my open windows have been maximized and it's a P.I.T.A. having to resize them all again. How do I get it to just stay at the high resolution between switching between systems? Is there a setting in the Xorg conf file I need to set?

    Read the article

  • c# - can you make a "weak" assembly reference to a strong named assembly

    - by Tim
    hi, for various reasons i would rather not use strong named (signed) assemblies in my project. however, one of the projects is referenced by a sharepoint web part which means it must be signed. is it possible to have this assembly signed but when I reference it from other projects, to do so using a non-strong reference. this would give me the advantages of having a non-signed assembly for the rest of my code but still allow it to be loaded by sharepoint Tim

    Read the article

  • How to Specify AssemblyKeyFile Attribute in .NET Assembly and Issues

    How to specify strong key file in assembly? Answer: You can specify snk file information using following line [assembly: AssemblyKeyFile(@"c:\Key2.snk")] Where to specify an strong key file (snk file)? Answer: You have two options to specify the AssemblyKeyFile infromation. 1. In class 2. In AssemblyInfo.cs [assembly: AssemblyKeyFile(@"c:\Key2.snk")] 1. In Class you must specify above line before defining namespace of the class and after all the imports or usings Example: See Line 7 in bellow sample class using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Reflection;[assembly: AssemblyKeyFile(@"c:\Key1.snk")]namespace Csharp3Part1{ class Person { public string GetName() { return "Smith"; } }}2. In AssemblyInfo.cs You can aslo specify assembly information in AssemblyInfo.cs Example: See Line 16 in bellow sample AssemblyInfo.csusing System.Reflection;using System.Runtime.CompilerServices;using System.Runtime.InteropServices;// General Information about an assembly is controlled through the following// set of attributes. Change these attribute values to modify the information// associated with an assembly.[assembly: AssemblyTitle("Csharp3Part1")][assembly: AssemblyDescription("")][assembly: AssemblyConfiguration("")][assembly: AssemblyCompany("Deloitte")][assembly: AssemblyProduct("Csharp3Part1")][assembly: AssemblyCopyright("Copyright © Deloitte 2009")][assembly: AssemblyTrademark("")][assembly: AssemblyCulture("")][assembly: AssemblyKeyFile(@"c:\Key1.snk")]// Setting ComVisible to false makes the types in this assembly not visible// to COM components. If you need to access a type in this assembly from// COM, set the ComVisible attribute to true on that type.[assembly: ComVisible(false)]// The following GUID is for the ID of the typelib if this project is exposed to COM[assembly: Guid("4350396f-1a5c-4598-a79f-2e1f219654f3")]// Version information for an assembly consists of the following four values://// Major Version// Minor Version// Build Number// Revision//// You can specify all the values or you can default the Build and Revision Numbers// by using the '*' as shown below:// [assembly: AssemblyVersion("1.0.*")][assembly: AssemblyVersion("1.0.0.0")][assembly: AssemblyFileVersion("1.0.0.0")]Issues:You should not sepcify this in following ways. 1. In multiple classes. 2. In both class and AssemblyInfo.cs If you did wrong in either one of the above ways, Visual Studio or C#/VB.NET compilers shows following Error Duplicate 'AssemblyKeyFile' attribute and warning Use command line option '/keyfile' or appropriate project settings instead of 'AssemblyKeyFile' To avoid this, Please specity your keyfile information only one time either only in one class or in AssemblyInfo.cs file. It is suggested to specify this at AssemblyInfo.cs file You might also encounter the errors like Error: type or namespace name 'AssemblyKeyFileAttribute' and 'AssemblyKeyFile' could not be found. Solution. Please find herespan.fullpost {display:none;} span.fullpost {display:none;}

    Read the article

  • More information wanted on error: CREATE ASSEMBLY for assembly failed because assembly failed verif

    - by turnip.cyberveggie
    I have a small application that uses SQL Server 2005 Express with CLR stored procedures. It has been successfully installed and runs on many computers running XP and Vista. To create the assembly the following SQL is executed (names changed to protect the innocent): CREATE ASSEMBLY myAssemblyName FROM 'c:\pathtoAssembly\myAssembly.dll' On one computer (a test machine that reflects other computers targeted for installation) that is running Vista and has some very aggressive security policy restrictions I receive the following error: << Start Error Message Msg 6218, Level 16, State 2, Server domain\servername, Line 2 CREATE ASSEMBLY for assembly 'myAssembly' failed because assembly 'myAssembly' failed verification. Check if the referenced assemblies are up-to-date and trusted (for external_access or unsafe) to execute in the database. CLR Verifier error messages if any will follow this message [ : myProcSupport.Axis::Proc1][mdToken=0x6000004] [HRESULT 0x8007000E] - Not enough storage is available to complete this operation. [ : myProcSupport.Axis::Proc2][mdToken=0x6000005] [HRESULT 0x8007000E] - Not enough storage is available to complete this operation. [ : myProcSupport.Axis::Proc3][mdToken=0x6000006] [HRESULT 0x8007000E] - Not enough storage is available to complete this operation. [ : myProcSupport.Axis::.ctor][mdToken=0x600000a] [HRESULT 0x8007000E] - Not enough storage is available to complete this operation. [ : myProcSupport.Axis::Proc4][mdToken=0x6000001] [HRESULT 0x8007000E] - Not enough storage is available to complete this operation. [ : myProcSupport.Axis::Proc5][mdToken=0x6000002] [HRESULT 0x8007000E] - Not enough storage is available to complete this operation. [ : myProcSupport.Axis::Proc6][mdToken=0x6000007] [HRESULT 0x8007000E] - Not enough storage is available to complete this operation. [ : myProcSupport.Axis::Proc7][mdToken=0x6000008] [HRESULT 0x8007000E] - Not enough storage is available to complete this operation. [ : myProcSupport.Axis::Proc8][mdToken=0x6000009] [HRESULT 0x8007000E] - Not enough storage is available to complete this operation. [ : myProcSupport.Axis::Proc8][mdToken=0x600000b] [HRESULT 0x8007000E] - Not enough storage is available to complete this operation. [ : myProcSupport.Axis::Proc9][mdToken=0x600000c] [HRESULT 0x8007000E] - Not enough storage is available to complete this operation.... << End Error Message The C# DLL is defined as “Safe” as it only uses data contained in the database. The DLL is not normally signed, but I provided a signed version to test and received the same results. The installation is being done by someone else, and I don’t have access to the box, but they are executing scripts that I provided and work on other computers. I have tried to find information about this error beyond what the results of the script provide, but I haven’t found anything helpful. The person executing the script to create the assembly is logged in with an Admin account, is running CMD as admin, is connecting to the DB via Windows Authentication, has been added to the dbo_owner role, and added to the server role SysAdmin with the hopes that it is a permissions issue. This hasn't changed anything. Do I need to configure SQL Server 2005 Express differently for this environment? Is this error logged anywhere other than just the output from SQLCMD? What could cause this error? Could Vista security policies cause this? I don’t have access to the computer (the customer is doing the testing) so I can’t examine the box myself. TIA

    Read the article

  • T4 Template error - Assembly Directive cannot locate referenced assembly in Visual Studio 2010 proje

    - by CodeSniper
    I ran into the following error recently in Visual Studio 2010 while trying to port Phil Haack’s excellent T4CSS template which was originally built for Visual Studio 2008.   The Problem Error Compiling transformation: Metadata file 'dotless.Core' could not be found In “T4 speak”, this simply means that you have an Assembly directive in your T4 template but the T4 engine was not able to locate or load the referenced assembly. In the case of the T4CSS Template, this was a showstopper for making it work in Visual Studio 2010. On a side note: The T4CSS template is a sweet little wrapper to allow you to use DotLessCss to generate static .css files from .less files rather than using their default HttpHandler or command-line tool.    If you haven't tried DotLessCSS yet, go check it out now!  In short, it is a tool that allows you to templatize and program your CSS files so that you can use variables, expressions, and mixins within your CSS which enables rapid changes and a lot of developer-flexibility as you evolve your CSS and UI. Back to our regularly scheduled program… Anyhow, this post isn't about DotLessCss, its about the T4 Templates and the errors I ran into when converting them from Visual Studio 2008 to Visual Studio 2010. In VS2010, there were quite a few changes to the T4 Template Engine; most were excellent changes, but this one bit me with T4CSS: “Project assemblies are no longer used to resolve template assembly directives.” In VS2008, if you wanted to reference a custom assembly in your T4 Template (.tt file) you would simply right click on your project, choose Add Reference and select that assembly.  Afterwards you were allowed to use the following syntax in your T4 template to tell it to look at the local references: <#@ assembly name="dotless.Core.dll" #> This told the engine to look in the “usual place” for the assembly, which is your project references. However, this is exactly what they changed in VS2010.  They now basically sandbox the T4 Engine to keep your T4 assemblies separate from your project assemblies.  This can come in handy if you want to support different versions of an assembly referenced both by your T4 templates and your project. Who broke the build?  Oh, Microsoft Did! In our case, this change causes a problem since the templates are no longer compatible when upgrading to VS 2010 – thus its a breaking change.  So, how do we make this work in VS 2010? Luckily, Microsoft now offers several options for referencing assemblies from T4 Templates: GAC your assemblies and use Namespace Reference or Fully Qualified Type Name Use a hard-coded Fully Qualified UNC path Copy assembly to Visual Studio "Public Assemblies Folder" and use Namespace Reference or Fully Qualified Type Name.  Use or Define a Windows Environment Variable to build a Fully Qualified UNC path. Use a Visual Studio Macro to build a Fully Qualified UNC path. Option #1 & 2 were already supported in Visual Studio 2008, so if you want to keep your templates compatible with both Visual Studio versions, then you would have to adopt one of these approaches. Yakkety Yak, use the GAC! Option #1 requires an additional pre-build step to GAC the referenced assembly, which could be a pain.  But, if you go that route, then after you GAC, all you need is a simple type name or namespace reference such as: <#@ assembly name="dotless.Core" #> Hard Coding aint that hard! The other option of using hard-coded paths in Option #2 is pretty impractical in most situations since each developer would have to use the same local project folder paths, or modify this setting each time for their local machines as well as for production deployment.  However, if you want to go that route, simply use the following assembly directive style: <#@ assembly name="C:\Code\Lib\dotless.Core.dll" #> Lets go Public! Option #3, the Visual Studio Public Assemblies Folder, is the recommended place to put commonly used tools and libraries that are only needed for Visual Studio.  Think of it like a VS-only GAC.  This is likely the best place for something like dotLessCSS and is my preferred solution.  However, you will need to either use an installer or a pre-build action to copy the assembly to the right folder location.   Normally this is located at:  C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\PublicAssemblies Once you have copied your assembly there, you use the type name or namespace syntax again: <#@ assembly name="dotless.Core" #> Save the Environment! Option #4, using a Windows Environment Variable, is interesting for enterprise use where you may have standard locations for files, but less useful for demo-code, frameworks, and products where you don't have control over the local system.  The syntax for including a environment variable in your assembly directive looks like the following, just as you would expect: <#@ assembly name="%mypath%\dotless.Core.dll" #> “mypath” is a Windows environment variable you setup that points to some fully qualified UNC path on your system.  In the right situation this can be a great solution such as one where you use a msi installer for deployment, or where you have a pre-existing environment variable you can re-use. OMG Macros! Finally, Option #5 is a very nice option if you want to keep your T4 template’s assembly reference local and relative to the project or solution without muddying-up your dev environment or GAC with extra deployments.  An example looks like this: <#@ assembly name="$(SolutionDir)lib\dotless.Core.dll" #> In this example, I’m using the “SolutionDir” VS macro so I can reference an assembly in a “/lib” folder at the root of the solution.   This is just one of the many macros you can use.  If you are familiar with creating Pre/Post-build Event scripts, you can use its dialog to look at all of the different VS macros available. This option gives the best solution for local assemblies without the hassle of extra installers or other setup before the build.   However, its still not compatible with Visual Studio 2008, so if you have a T4 Template you want to use with both, then you may have to create multiple .tt files, one for each IDE version, or require the developer to set a value in the .tt file manually.   I’m not sure if T4 Templates support any form of compiler switches like “#if (VS2010)”  statements, but it would definitely be nice in this case to switch between this option and one of the ones more compatible with VS 2008. Conclusion As you can see, we went from 3 options with Visual Studio 2008, to 5 options (plus one problem) with Visual Studio 2010.  As a whole, I think the changes are great, but the short-term growing pains during the migration may be annoying until we get used to our new found power. Hopefully this all made sense and was helpful to you.  If nothing else, I’ll just use it as a reference the next time I need to port a T4 template to Visual Studio 2010.  Happy T4 templating, and “May the fourth be with you!”

    Read the article

  • Viewing a large-resolution VNC server through a small-resolution viewer in Ubuntu

    - by Madiyaan Damha
    I have two Ubuntu computers, one with a large screen resolution (1920x1600) that is running default ubuntu vnc server. I have another computer that has a resolution of about 1200x1024 that I use to vnc into the server (I use the default ubuntu vnc viewer). Now everything works fine except there are annoying scrollbars in the viewer because the server's desktop resolution is so much higher than the viewer's. Is there a way to: 1) Scale the server's desktop down to the viewer's resolution. I know there will be a loss of image quality, but I am willing to try it out. This should be something like how windows media player or vlc scales down the window (and does some interpolation of pixels). 2) Automatically shrink the resolution of the server to the client's when I connect and scale the resolution back when I disconnect. This seems like a less attractive solution. 3) Any other solution that gurus out there use? I am sure someone has experienced this before (annoying scroll bars) so there must be a solution out there. Thanks,

    Read the article

  • Viewing a large-resolution VNC server through a small-resolution viewer in Ubuntu

    - by Madiyaan Damha
    I have two Ubuntu computers, one with a large screen resolution (1920x1600) that is running the default Ubuntu VNC server. I have another computer that has a resolution of about 1200x1024 that I use to VNC into the server using the default Ubuntu VNC viewer). Now everything works fine except there are annoying scrollbars in the viewer because the server's desktop resolution is so much higher than the viewer's. Is there a way to: Scale the server's desktop down to the viewer's resolution. I know there will be a loss of image quality, but I am willing to try it out. This should be something like how Windows Media Player or VLC scales down the window (and does some interpolation of pixels). Automatically shrink the resolution of the server to the client's when I connect and scale the resolution back when I disconnect. This seems like a less attractive solution. Any other solution that gurus out there use? I am sure someone has experienced this before (annoying scroll bars) so there must be a solution out there.

    Read the article

  • XNA Windows Resolution / Mouse Position Bug

    - by Ian Hern
    In XNA, when in windowed mode and resolution (set via PreferredBackBufferWidth/Height) is close to the resolution of the display, the view is distorted (zoomed in a bit)and the mouse coordinates are wrong. Here is what it looks like when I draw a bunch of lines to the screen. (Normal, Error on my ASUS Notebook G73Jh, Error on my EEE PC 1001P) In the top left of the screen the mouse position is correct, but the further you get away the more out of sync it becomes. Here are some images of the mouse in different positions and the game drawing a circle underneath where it thinks the mouse is. (Top Left, Bottom Right) If you shrink the resolution by a couple pixels then it goes back to working like normal, my first though at a fix was to limit the max resolution to a little smaller than the display resolution. I figured out the maximum resolution that works in a couple different modes, but there doesn't seem to be a pattern that would allow me to determine it based off the display resolution. Computer | Screen Resolution | Max Error-Free | Difference ASUS Notebook G73Jh | 1920x1080 | 1924x1059 | +4x-21 ASUS Notebook G73Jh | 1024x600 | 1018x568 | -6x-32 EEE PC 1001P | 1024x600 | 1020x574 | -4x-26 Because the differences don't form a pattern I can't hack in a solution, the one even has +4 which baffles me. Here is a project that demonstrates the problem, just set the resolution to the resolution of your display. Any ideas on how I might fix this issue? As an insteresting aside, I tried to use FRAPS to capture a video of the issue but fraps actually records without distortion or mouse offset.

    Read the article

  • high resolution on small screen size

    - by vishesh
    I have recently got an intel ultrabook,but its screen size is 13.3' and the native resolution is 1600X900.So the problem is that the letters that appear on screen are very small.Reducing resolution blurs the display and making everything bigger also doesn't feel very good.is there a way to get around this problem without changing hardware. I am even ok with this high resolution but I am concerned about the harmful effects it might have on my eyes in long term. Any advice will be very useful.Please help

    Read the article

  • Making a 2D game with responsive resolution

    - by alexandervrs
    I am making a 2D game, however I wish for it to be resolution agnostic. My target resolution i.e. where things look as intended is 1600 x 900. My ideas are: Make the HUD stay fixed to the sides no matter what resolution, use different size for HUD graphics under a certain resolution and another under a certain large one. Use large HD PNG sprites/backgrounds which are a power of 2, so they scale nicely. No vectors. Use the player's native resolution. Scale the game area (not the HUD) to fit (resulting zooming in some and cropping the game area sides if necessary for widescreen, no stretch), but always fill the screen. Have a min and max resolution limit for small and very large displays where you will just change the resolution(?) or scale up/down to fit. What I am a bit confused though is what math formula I would use to scale the game area correctly based on the resolution no matter the aspect ratio, fully fit in a square screen and with some clip to the sides for widescreen. Pseudocode would help as well. :)

    Read the article

  • Making a game with responsive resolution

    - by alexandervrs
    I am making a game, however I wish for it to be resolution agnostic. My target resolution i.e. where things look as intended is 1600 x 900. My ideas are: Make the HUD stay fixed to the sides no matter what resolution, use different size for HUD graphics under a certain resolution and another under a certain large one. Use large HD sprites/backgrounds which are a power of 2, so they scale nicely. Use the player's native resolution. Scale the game area (not the HUD) to fit (resulting zooming in some and cropping the game area sides if necessary for widescreen, no stretch), but always fill the screen. Have a min and max resolution limit for small and very large displays where you will just change the resolution(?) or scale up/down to fit. What I am a bit confused though is what math formula I would use to scale the game area correctly based on the resolution no matter the aspect ratio, fully fit in a square screen and with some clip to the sides for widescreen. Pseudocode would help as well. :)

    Read the article

  • Installed SQL Server 2008 and now TFS is broken.

    - by johnnycakes
    Hi, My W2K3 server was running TFS 2008 SP1, SQL Server 2005 Development edition. I installed SQL Server 2008 Standard. I installed it while leaving SQL Server 2005 alone. Upgrading was not possible due to the differences in editions of the SQL Servers. Now TFS is broken. On a client computer, if I go Team - Connect to Team Foundation Server, I get this error: Team Foundation services are not available from server myserver. Technical information (for administrator): TF30059: Fatal error while initializing web service. So I head on over to my event viewer on the server. Under Application, I see one warning and two errors. First, the warning: Source: SQLSERVERAGENT Event ID: 208 Description: SQL Server Scheduled Job 'TfsWorkItemTracking Process Identities Job' (0x21F395C1F444CA499A63EBF05D717749) - Status: Failed - Invoked on: 2010-04-26 13:30:00 - Message: The job failed. The Job was invoked by Schedule 9 (ProcessIdentitiesSchedule). The last step to run was step 1 (Process Identities). Then the first error: Source: TFS Services Event ID: 3017 Description: TF53010: The following error has occurred in a Team Foundation component or extension: Date (UTC): 4/26/2010 5:36:29 PM Machine: myserver Application Domain: /LM/W3SVC/799623628/Root/Services-2-129167769888923968 Assembly: Microsoft.TeamFoundation.Server, Version=9.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a; v2.0.50727 Process Details: Process Name: w3wp Process Id: 4008 Thread Id: 224 Account name: DOMAIN\TFSService Detailed Message: TF53013: A crash report is being prepared for Microsoft. The following information is included in that report: System Values OS Version Information=Microsoft Windows NT 5.2.3790 Service Pack 2 CLR Version Information=2.0.50727.3053 Machine Name=myserver Processor Count=1 Working Set=34897920 System Directory=C:\WINDOWS\system32 Process Values ExitCode=0 Interactive=False Has Shutdown Started=False Process Environment Variables Path = C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\Program Files\Microsoft SQL Server\80\Tools\Binn\;C:\Program Files\Microsoft SQL Server\90\Tools\binn\;C:\Program Files\Microsoft SQL Server\90\DTS\Binn\;C:\Program Files\Microsoft SQL Server\90\Tools\Binn\VSShell\Common7\IDE\;C:\Program Files\Microsoft Visual Studio 8\Common7\IDE\PrivateAssemblies\;C:\Program Files\Microsoft SQL Server\100\Tools\Binn\;C:\Program Files\Microsoft SQL Server\100\DTS\Binn\;C:\Program Files\Microsoft SQL Server\100\Tools\Binn\VSShell\Common7\IDE\;C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE\PrivateAssemblies\;C:\WINDOWS\system32\WindowsPowerShell\v1.0 PATHEXT = .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.PSC1 PROCESSOR_ARCHITECTURE = x86 SystemDrive = C: windir = C:\WINDOWS TMP = C:\WINDOWS\TEMP USERPROFILE = C:\Documents and Settings\Default User ProgramFiles = C:\Program Files FP_NO_HOST_CHECK = NO COMPUTERNAME = myserver APP_POOL_ID = Microsoft Team Foundation Server Application Pool NUMBER_OF_PROCESSORS = 1 PROCESSOR_IDENTIFIER = x86 Family 16 Model 5 Stepping 2, AuthenticAMD ClusterLog = C:\WINDOWS\Cluster\cluster.log SystemRoot = C:\WINDOWS ComSpec = C:\WINDOWS\system32\cmd.exe CommonProgramFiles = C:\Program Files\Common Files PROCESSOR_LEVEL = 16 PROCESSOR_REVISION = 0502 lib = C:\Program Files\SQLXML 4.0\bin\ ALLUSERSPROFILE = C:\Documents and Settings\All Users TEMP = C:\WINDOWS\TEMP OS = Windows_NT Request Details Url=http://myserver.domain.local:8080/Services/v1.0/Registration.asmx [method = POST] User Agent=Team Foundation (devenv.exe, 10.0.30128.1) Headers=Content-Length=390&Content-Type=text%2fxml%3b+charset%3dutf-8&Accept-Encoding=gzip%2cgzip%2cgzip&Accept-Language=en-US&Authorization=NTLM+TlRMTVNTUAADAAAAGAAYAIQAAABAAUABnAAAABAAEABYAAAADAAMAGgAAAAQABAAdAAAAAAAAADcAQAABYKIogYBsB0AAAAPN9gzQTXfZIiIFnXDlQrxjUgAWQBQAEUAUgBJAE8ATgBKAG8AaABuAG4AeQBQAEwAQQBUAFkAUABVAFMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUrL79KzznBHCSJi2wVjn5QEBAAAAAAAAuhQoBGflygEImxiHPrhZoAAAAAACABAASABZAFAARQBSAEkATwBOAAEACgBUAEkAVABBAE4ABAAcAEgAeQBwAGUAcgBpAG8AbgAuAGwAbwBjAGEAbAADACgAdABpAHQAYQBuAC4ASAB5AHAAZQByAGkAbwBuAC4AbABvAGMAYQBsAAUAHABIAHkAcABlAHIAaQBvAG4ALgBsAG8AYwBhAGwACAAwADAAAAAAAAAAAAAAAAAwAACg0XxPlP8uXycSFhksBJWiwp8oW7iVDqf%2f6h5U30CEXgoAEAAAAAAAAAAAAAAAAAAAAAAACQAyAEgAVABUAFAALwB0AGkAdABhAG4ALgBoAHkAcABlAHIAaQBvAG4ALgBsAG8AYwBhAGwAAAAAAAAAAAA%3d&Expect=100-continue&Host=myserver.domain.local%3a8080&User-Agent=Team+Foundation+(devenv.exe%2c+10.0.30128.1)&X-TFS-Version=1.0.0.0&X-TFS-Session=b7e7fdec-e7ee-48fc-92e8-537d1cd87ea4&SOAPAction=%22http%3a%2f%2fschemas.microsoft.com%2fTeamFoundation%2f2005%2f06%2fServices%2fRegistration%2f03%2fGetRegistrationEntries%22 Path=/Services/v1.0/Registration.asmx Local Request=False User Host Address=10.0.5.78 User=DOMAIN\Johnny [auth = NTLM] Application Provided Information Team Foundation Application Information Event Log Source = TFS Services Configured Team Foundation Server = http://myserver:8080 License Type = WorkgroupLicense Server Culture = en-US Activity Logging Name = Integration Component Name = CS Initialized = No Requests Processed = 0 Exception: TypeInitializationException Message: The type initializer for 'Microsoft.TeamFoundation.Server.IntegrationResourceComponent' threw an exception. Stack Trace: at Microsoft.TeamFoundation.Server.IntegrationResourceComponent.RegisterExceptions() at Microsoft.TeamFoundation.Server.Global.Initialize() at Microsoft.TeamFoundation.Server.TeamFoundationApplication.Init() Inner Exception Details Exception: ReflectionTypeLoadException Message: Unable to load one or more of the requested types. Retrieve the LoaderExceptions property for more information. Stack Trace: at System.Reflection.Module._GetTypesInternal(StackCrawlMark& stackMark) at System.Reflection.Assembly.GetTypes() at Microsoft.TeamFoundation.Server.SqlResourceComponent.RegisterExceptions(Assembly assembly) at Microsoft.TeamFoundation.Server.IntegrationResourceComponent.RegisterExceptions() at Microsoft.TeamFoundation.Server.IntegrationResourceComponent..cctor() Application Domain Information Assembly Name=mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089 Assembly CLR Version=v2.0.50727 Assembly Version=2.0.0.0 Assembly Location=C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\mscorlib.dll Assembly File Version: File: C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\mscorlib.dll InternalName: mscorlib.dll OriginalFilename: mscorlib.dll FileVersion: 2.0.50727.3053 (netfxsp.050727-3000) FileDescription: Microsoft Common Language Runtime Class Library Product: Microsoft® .NET Framework ProductVersion: 2.0.50727.3053 Debug: False Patched: False PreRelease: False PrivateBuild: False SpecialBuild: False Language: English (United States) Assembly Name=System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a Assembly CLR Version=v2.0.50727 Assembly Version=2.0.0.0 Assembly Location=C:\WINDOWS\assembly\GAC_32\System.Web\2.0.0.0__b03f5f7f11d50a3a\System.Web.dll Assembly File Version: File: C:\WINDOWS\assembly\GAC_32\System.Web\2.0.0.0__b03f5f7f11d50a3a\System.Web.dll InternalName: System.Web.dll OriginalFilename: System.Web.dll FileVersion: 2.0.50727.3053 (netfxsp.050727-3000) FileDescription: System.Web.dll Product: Microsoft® .NET Framework ProductVersion: 2.0.50727.3053 Debug: False Patched: False PreRelease: False PrivateBuild: False SpecialBuild: False Language: English (United States) Assembly Name=System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089 Assembly CLR Version=v2.0.50727 Assembly Version=2.0.0.0 Assembly Location=C:\WINDOWS\assembly\GAC_MSIL\System\2.0.0.0__b77a5c561934e089\System.dll Assembly File Version: File: C:\WINDOWS\assembly\GAC_MSIL\System\2.0.0.0__b77a5c561934e089\System.dll InternalName: System.dll OriginalFilename: System.dll FileVersion: 2.0.50727.3053 (netfxsp.050727-3000) FileDescription: .NET Framework Product: Microsoft® .NET Framework ProductVersion: 2.0.50727.3053 Debug: False Patched: False PreRelease: False PrivateBuild: False SpecialBuild: False Language: English (United States) Assembly Name=System.Xml, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089 Assembly CLR Version=v2.0.50727 Assembly Version=2.0.0.0 Assembly Location=C:\WINDOWS\assembly\GAC_MSIL\System.Xml\2.0.0.0__b77a5c561934e089\System.Xml.dll Assembly File Version: File: C:\WINDOWS\assembly\GAC_MSIL\System.Xml\2.0.0.0__b77a5c561934e089\System.Xml.dll InternalName: System.Xml.dll OriginalFilename: System.Xml.dll FileVersion: 2.0.50727.3053 (netfxsp.050727-3000) FileDescription: .NET Framework Product: Microsoft® .NET Framework ProductVersion: 2.0.50727.3053 Debug: False Patched: False PreRelease: False PrivateBuild: False SpecialBuild: False Language: English (United States) Assembly Name=System.Configuration, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a Assembly CLR Version=v2.0.50727 Assembly Version=2.0.0.0 Assembly Location=C:\WINDOWS\assembly\GAC_MSIL\System.Configuration\2.0.0.0__b03f5f7f11d50a3a\System.Configuration.dll Assembly File Version: File: C:\WINDOWS\assembly\GAC_MSIL\System.Configuration\2.0.0.0__b03f5f7f11d50a3a\System.Configuration.dll InternalName: System.Configuration.dll OriginalFilename: System.Configuration.dll FileVersion: 2.0.50727.3053 (netfxsp.050727-3000) FileDescription: System.Configuration.dll Product: Microsoft® .NET Framework ProductVersion: 2.0.50727.3053 Debug: False Patched: False PreRelease: False PrivateBuild: False SpecialBuild: False Language: English (United States) Assembly Name=Microsoft.JScript, Version=8.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a Assembly CLR Version=v2.0.50727 Assembly Version=8.0.0.0 Assembly Location=C:\WINDOWS\assembly\GAC_MSIL\Microsoft.JScript\8.0.0.0__b03f5f7f11d50a3a\Microsoft.JScript.dll Assembly File Version: File: C:\WINDOWS\assembly\GAC_MSIL\Microsoft.JScript\8.0.0.0__b03f5f7f11d50a3a\Microsoft.JScript.dll InternalName: Microsoft.JScript.dll OriginalFilename: Microsoft.JScript.dll FileVersion: 8.0.50727.3053 FileDescription: Microsoft.JScript.dll Product: Microsoft (R) Visual Studio (R) 2005 ProductVersion: 8.0.50727.3053 Debug: False Patched: False PreRelease: False PrivateBuild: False SpecialBuild: False Language: Language Neutral Assembly Name=App_global.asax.4nq_g1xi, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null Assembly CLR Version=v2.0.50727 Assembly Version=0.0.0.0 Assembly Location=C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\services\87e24ff8\921625fe\App_global.asax.4nq_g1xi.dll Assembly File Version: File: C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\services\87e24ff8\921625fe\App_global.asax.4nq_g1xi.dll InternalName: App_global.asax.4nq_g1xi.dll OriginalFilename: App_global.asax.4nq_g1xi.dll FileVersion: 0.0.0.0 FileDescription: Product: ProductVersion: 0.0.0.0 Debug: False Patched: False PreRelease: False PrivateBuild: False SpecialBuild: False Language: Language Neutral Assembly Name=Microsoft.TeamFoundation.Server, Version=9.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a Assembly CLR Version=v2.0.50727 Assembly Version=9.0.0.0 Assembly Location=C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\services\87e24ff8\921625fe\assembly\dl3\9051eeb6\603ea9a2_d822c801\Microsoft.TeamFoundation.Server.DLL Assembly File Version: File: C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\services\87e24ff8\921625fe\assembly\dl3\9051eeb6\603ea9a2_d822c801\Microsoft.TeamFoundation.Server.DLL InternalName: Microsoft.TeamFoundation.Server.dll OriginalFilename: Microsoft.TeamFoundation.Server.dll FileVersion: 9.0.21022.8 FileDescription: Microsoft.TeamFoundation.Server.dll Product: Microsoft (R) Visual Studio (R) 2008 ProductVersion: 9.0.21022.8 Debug: False Patched: False PreRelease: False PrivateBuild: False SpecialBuild: False Language: Language Neutral Assembly Name=Microsoft.TeamFoundation.Common, Version=9.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a Assembly CLR Version=v2.0.50727 Assembly Version=9.0.0.0 Assembly Location=C:\WINDOWS\assembly\GAC_32\Microsoft.TeamFoundation.Common\9.0.0.0__b03f5f7f11d50a3a\Microsoft.TeamFoundation.Common.dll Assembly File Version: File: C:\WINDOWS\assembly\GAC_32\Microsoft.TeamFoundation.Common\9.0.0.0__b03f5f7f11d50a3a\Microsoft.TeamFoundation.Common.dll InternalName: Microsoft.TeamFoundation.Common.dll OriginalFilename: Microsoft.TeamFoundation.Common.dll FileVersion: 9.0.30729.1 FileDescription: Microsoft.TeamFoundation.Common.dll Product: Microsoft (R) Visual Studio (R) 2008 ProductVersion: 9.0.30729.1 Debug: False Patched: False PreRelease: False PrivateBuild: False SpecialBuild: False Language: Language Neutral Assembly Name=Microsoft.TeamFoundation, Version=9.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a Assembly CLR Version=v2.0.50727 Assembly Version=9.0.0.0 Assembly Location=C:\WINDOWS\assembly\GAC_32\Microsoft.TeamFoundation\9.0.0.0__b03f5f7f11d50a3a\Microsoft.TeamFoundation.dll Assembly File Version: File: C:\WINDOWS\assembly\GAC_32\Microsoft.TeamFoundation\9.0.0.0__b03f5f7f11d50a3a\Microsoft.TeamFoundation.dll InternalName: Microsoft.TeamFoundation.dll OriginalFilename: Microsoft.TeamFoundation.dll FileVersion: 9.0.30729.1 FileDescription: Microsoft.TeamFoundation.dll Product: Microsoft (R) Visual Studio (R) 2008 ProductVersion: 9.0.30729.1 Debug: False Patched: False PreRelease: False PrivateBuild: False SpecialBuild: False Language: Language Neutral Assembly Name=System.Security, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a Assembly CLR Version=v2.0.50727 Assembly Version=2.0.0.0 Assembly Location=C:\WINDOWS\assembly\GAC_MSIL\System.Security\2.0.0.0__b03f5f7f11d50a3a\System.Security.dll Assembly File Version: File: C:\WINDOWS\assembly\GAC_MSIL\System.Security\2.0.0.0__b03f5f7f11d50a3a\System.Security.dll InternalName: System.Security.dll OriginalFilename: System.Security.dll FileVersion: 2.0.50727.3053 (netfxsp.050727-3000) FileDescription: System.Security.dll Product: Microsoft® .NET Framework ProductVersion: 2.0.50727.3053 Debug: False Patched: False PreRelease: False PrivateBuild: False SpecialBuild: False Language: English (United States) Assembly Name=System.Data, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089 Assembly CLR Version=v2.0.50727 Assembly Version=2.0.0.0 Assembly Location=C:\WINDOWS\assembly\GAC_32\System.Data\2.0.0.0__b77a5c561934e089\System.Data.dll Assembly File Version: File: C:\WINDOWS\assembly\GAC_32\System.Data\2.0.0.0__b77a5c561934e089\System.Data.dll InternalName: system.data.dll OriginalFilename: system.data.dll FileVersion: 2.0.50727.3053 (netfxsp.050727-3000) FileDescription: .NET Framework Product: Microsoft® .NET Framework ProductVersion: 2.0.50727.3053 Debug: False Patched: False PreRelease: False PrivateBuild: False SpecialBuild: False Language: English (United States) Assembly Name=Microsoft.TeamFoundation.Common.Library, Version=9.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a Assembly CLR Version=v2.0.50727 Assembly Version=9.0.0.0 Assembly Location=C:\WINDOWS\assembly\GAC_32\Microsoft.TeamFoundation.Common.Library\9.0.0.0__b03f5f7f11d50a3a\Microsoft.TeamFoundation.Common.Library.dll Assembly File Version: File: C:\WINDOWS\assembly\GAC_32\Microsoft.TeamFoundation.Common.Library\9.0.0.0__b03f5f7f11d50a3a\Microsoft.TeamFoundation.Common.Library.dll InternalName: Microsoft.TeamFoundation.Common.Library.dll OriginalFilename: Microsoft.TeamFoundation.Common.Library.dll FileVersion: 9.0.30729.1 FileDescription: Microsoft.TeamFoundation.Common.Library.dll Product: Microsoft (R) Visual Studio (R) 2008 ProductVersion: 9.0.30729.1 Debug: False Patched: False PreRelease: False PrivateBuild: False SpecialBuild: False Language: Language Neutral Assembly Name=System.Web.Mobile, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a Assembly CLR Version=v2.0.50727 Assembly Version=2.0.0.0 Assembly Location=C:\WINDOWS\assembly\GAC_MSIL\System.Web.Mobile\2.0.0.0__b03f5f7f11d50a3a\System.Web.Mobile.dll As And finally, the second error: Source: Team Foundation Error Reporting Event ID: 5000 Description: EventType teamfoundationue, P1 1.0.0.0, P2 tfs, P3 9.0.30729.1, P4 9.0.0.0, P5 general, P6 typeinitializationexcept, P7 4758b22a940fe6d9, P8 d15c14bb, P9 NIL, P10 NIL. Any ideas? Thanks.

    Read the article

  • Anatomy of a .NET Assembly - CLR metadata 1

    - by Simon Cooper
    Before we look at the bytes comprising the CLR-specific data inside an assembly, we first need to understand the logical format of the metadata (For this post I only be looking at simple pure-IL assemblies; mixed-mode assemblies & other things complicates things quite a bit). Metadata streams Most of the CLR-specific data inside an assembly is inside one of 5 streams, which are analogous to the sections in a PE file. The name of each section in a PE file starts with a ., and the name of each stream in the CLR metadata starts with a #. All but one of the streams are heaps, which store unstructured binary data. The predefined streams are: #~ Also called the metadata stream, this stream stores all the information on the types, methods, fields, properties and events in the assembly. Unlike the other streams, the metadata stream has predefined contents & structure. #Strings This heap is where all the namespace, type & member names are stored. It is referenced extensively from the #~ stream, as we'll be looking at later. #US Also known as the user string heap, this stream stores all the strings used in code directly. All the strings you embed in your source code end up in here. This stream is only referenced from method bodies. #GUID This heap exclusively stores GUIDs used throughout the assembly. #Blob This heap is for storing pure binary data - method signatures, generic instantiations, that sort of thing. Items inside the heaps (#Strings, #US, #GUID and #Blob) are indexed using a simple binary offset from the start of the heap. At that offset is a coded integer giving the length of that item, then the item's bytes immediately follow. The #GUID stream is slightly different, in that GUIDs are all 16 bytes long, so a length isn't required. Metadata tables The #~ stream contains all the assembly metadata. The metadata is organised into 45 tables, which are binary arrays of predefined structures containing information on various aspects of the metadata. Each entry in a table is called a row, and the rows are simply concatentated together in the file on disk. For example, each row in the TypeRef table contains: A reference to where the type is defined (most of the time, a row in the AssemblyRef table). An offset into the #Strings heap with the name of the type An offset into the #Strings heap with the namespace of the type. in that order. The important tables are (with their table number in hex): 0x2: TypeDef 0x4: FieldDef 0x6: MethodDef 0x14: EventDef 0x17: PropertyDef Contains basic information on all the types, fields, methods, events and properties defined in the assembly. 0x1: TypeRef The details of all the referenced types defined in other assemblies. 0xa: MemberRef The details of all the referenced members of types defined in other assemblies. 0x9: InterfaceImpl Links the types defined in the assembly with the interfaces that type implements. 0xc: CustomAttribute Contains information on all the attributes applied to elements in this assembly, from method parameters to the assembly itself. 0x18: MethodSemantics Links properties and events with the methods that comprise the get/set or add/remove methods of the property or method. 0x1b: TypeSpec 0x2b: MethodSpec These tables provide instantiations of generic types and methods for each usage within the assembly. There are several ways to reference a single row within a table. The simplest is to simply specify the 1-based row index (RID). The indexes are 1-based so a value of 0 can represent 'null'. In this case, which table the row index refers to is inferred from the context. If the table can't be determined from the context, then a particular row is specified using a token. This is a 4-byte value with the most significant byte specifying the table, and the other 3 specifying the 1-based RID within that table. This is generally how a metadata table row is referenced from the instruction stream in method bodies. The third way is to use a coded token, which we will look at in the next post. So, back to the bytes Now we've got a rough idea of how the metadata is logically arranged, we can now look at the bytes comprising the start of the CLR data within an assembly: The first 8 bytes of the .text section are used by the CLR loader stub. After that, the CLR-specific data starts with the CLI header. I've highlighted the important bytes in the diagram. In order, they are: The size of the header. As the header is a fixed size, this is always 0x48. The CLR major version. This is always 2, even for .NET 4 assemblies. The CLR minor version. This is always 5, even for .NET 4 assemblies, and seems to be ignored by the runtime. The RVA and size of the metadata header. In the diagram, the RVA 0x20e4 corresponds to the file offset 0x2e4 Various flags specifying if this assembly is pure-IL, whether it is strong name signed, and whether it should be run as 32-bit (this is how the CLR differentiates between x86 and AnyCPU assemblies). A token pointing to the entrypoint of the assembly. In this case, 06 (the last byte) refers to the MethodDef table, and 01 00 00 refers to to the first row in that table. (after a gap) RVA of the strong name signature hash, which comes straight after the CLI header. The RVA 0x2050 corresponds to file offset 0x250. The rest of the CLI header is mainly used in mixed-mode assemblies, and so is zeroed in this pure-IL assembly. After the CLI header comes the strong name hash, which is a SHA-1 hash of the assembly using the strong name key. After that comes the bodies of all the methods in the assembly concatentated together. Each method body starts off with a header, which I'll be looking at later. As you can see, this is a very small assembly with only 2 methods (an instance constructor and a Main method). After that, near the end of the .text section, comes the metadata, containing a metadata header and the 5 streams discussed above. We'll be looking at this in the next post. Conclusion The CLI header data doesn't have much to it, but we've covered some concepts that will be important in later posts - the logical structure of the CLR metadata and the overall layout of CLR data within the .text section. Next, I'll have a look at the contents of the #~ stream, and how the table data is arranged on disk.

    Read the article

  • Why Is Vertical Resolution Monitor Resolution so Often a Multiple of 360?

    - by Jason Fitzpatrick
    Stare at a list of monitor resolutions long enough and you might notice a pattern: many of the vertical resolutions, especially those of gaming or multimedia displays, are multiples of 360 (720, 1080, 1440, etc.) But why exactly is this the case? Is it arbitrary or is there something more at work? Today’s Question & Answer session comes to us courtesy of SuperUser—a subdivision of Stack Exchange, a community-driven grouping of Q&A web sites. The Question SuperUser reader Trojandestroy recently noticed something about his display interface and needs answers: YouTube recently added 1440p functionality, and for the first time I realized that all (most?) vertical resolutions are multiples of 360. Is this just because the smallest common resolution is 480×360, and it’s convenient to use multiples? (Not doubting that multiples are convenient.) And/or was that the first viewable/conveniently sized resolution, so hardware (TVs, monitors, etc) grew with 360 in mind? Taking it further, why not have a square resolution? Or something else unusual? (Assuming it’s usual enough that it’s viewable). Is it merely a pleasing-the-eye situation? So why have the display be a multiple of 360? The Answer SuperUser contributor User26129 offers us not just an answer as to why the numerical pattern exists but a history of screen design in the process: Alright, there are a couple of questions and a lot of factors here. Resolutions are a really interesting field of psychooptics meeting marketing. First of all, why are the vertical resolutions on youtube multiples of 360. This is of course just arbitrary, there is no real reason this is the case. The reason is that resolution here is not the limiting factor for Youtube videos – bandwidth is. Youtube has to re-encode every video that is uploaded a couple of times, and tries to use as little re-encoding formats/bitrates/resolutions as possible to cover all the different use cases. For low-res mobile devices they have 360×240, for higher res mobile there’s 480p, and for the computer crowd there is 360p for 2xISDN/multiuser landlines, 720p for DSL and 1080p for higher speed internet. For a while there were some other codecs than h.264, but these are slowly being phased out with h.264 having essentially ‘won’ the format war and all computers being outfitted with hardware codecs for this. Now, there is some interesting psychooptics going on as well. As I said: resolution isn’t everything. 720p with really strong compression can and will look worse than 240p at a very high bitrate. But on the other side of the spectrum: throwing more bits at a certain resolution doesn’t magically make it better beyond some point. There is an optimum here, which of course depends on both resolution and codec. In general: the optimal bitrate is actually proportional to the resolution. So the next question is: what kind of resolution steps make sense? Apparently, people need about a 2x increase in resolution to really see (and prefer) a marked difference. Anything less than that and many people will simply not bother with the higher bitrates, they’d rather use their bandwidth for other stuff. This has been researched quite a long time ago and is the big reason why we went from 720×576 (415kpix) to 1280×720 (922kpix), and then again from 1280×720 to 1920×1080 (2MP). Stuff in between is not a viable optimization target. And again, 1440P is about 3.7MP, another ~2x increase over HD. You will see a difference there. 4K is the next step after that. Next up is that magical number of 360 vertical pixels. Actually, the magic number is 120 or 128. All resolutions are some kind of multiple of 120 pixels nowadays, back in the day they used to be multiples of 128. This is something that just grew out of LCD panel industry. LCD panels use what are called line drivers, little chips that sit on the sides of your LCD screen that control how bright each subpixel is. Because historically, for reasons I don’t really know for sure, probably memory constraints, these multiple-of-128 or multiple-of-120 resolutions already existed, the industry standard line drivers became drivers with 360 line outputs (1 per subpixel). If you would tear down your 1920×1080 screen, I would be putting money on there being 16 line drivers on the top/bottom and 9 on one of the sides. Oh hey, that’s 16:9. Guess how obvious that resolution choice was back when 16:9 was ‘invented’. Then there’s the issue of aspect ratio. This is really a completely different field of psychology, but it boils down to: historically, people have believed and measured that we have a sort of wide-screen view of the world. Naturally, people believed that the most natural representation of data on a screen would be in a wide-screen view, and this is where the great anamorphic revolution of the ’60s came from when films were shot in ever wider aspect ratios. Since then, this kind of knowledge has been refined and mostly debunked. Yes, we do have a wide-angle view, but the area where we can actually see sharply – the center of our vision – is fairly round. Slightly elliptical and squashed, but not really more than about 4:3 or 3:2. So for detailed viewing, for instance for reading text on a screen, you can utilize most of your detail vision by employing an almost-square screen, a bit like the screens up to the mid-2000s. However, again this is not how marketing took it. Computers in ye olden days were used mostly for productivity and detailed work, but as they commoditized and as the computer as media consumption device evolved, people didn’t necessarily use their computer for work most of the time. They used it to watch media content: movies, television series and photos. And for that kind of viewing, you get the most ‘immersion factor’ if the screen fills as much of your vision (including your peripheral vision) as possible. Which means widescreen. But there’s more marketing still. When detail work was still an important factor, people cared about resolution. As many pixels as possible on the screen. SGI was selling almost-4K CRTs! The most optimal way to get the maximum amount of pixels out of a glass substrate is to cut it as square as possible. 1:1 or 4:3 screens have the most pixels per diagonal inch. But with displays becoming more consumery, inch-size became more important, not amount of pixels. And this is a completely different optimization target. To get the most diagonal inches out of a substrate, you want to make the screen as wide as possible. First we got 16:10, then 16:9 and there have been moderately successful panel manufacturers making 22:9 and 2:1 screens (like Philips). Even though pixel density and absolute resolution went down for a couple of years, inch-sizes went up and that’s what sold. Why buy a 19″ 1280×1024 when you can buy a 21″ 1366×768? Eh… I think that about covers all the major aspects here. There’s more of course; bandwidth limits of HDMI, DVI, DP and of course VGA played a role, and if you go back to the pre-2000s, graphics memory, in-computer bandwdith and simply the limits of commercially available RAMDACs played an important role. But for today’s considerations, this is about all you need to know. Have something to add to the explanation? Sound off in the the comments. Want to read more answers from other tech-savvy Stack Exchange users? Check out the full discussion thread here.     

    Read the article

  • Low resolution Dektop intel i7 3770 and intel board DH67BL

    - by rtorres
    I installed Ubuntu 12.04.1 in a desktop with the following specs: CPU: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz Motherboard: Intel DH67B However the monitor is not identified (Monitor: Unknown) such that maximum resolution is 1024x768. This occurs with Samsung Syncmaster 2033 (resolution 1900x600), and is the same with ViewSonic VX2453mh-LED (resolution 1920x1080). I'd be very grateful if anyone could give me a suggestion as to how to fix the resolution.

    Read the article

  • Problem mirroring two monitors with different resolution

    - by quad
    Hello I am trying to put two monitors in mirror mode (Windows 7 Professional) with Ultramon 3.1.0. The two monitors: Main monitor: 24" Asus. 1680x1050 resolution (16/10). Secondary monitor: 19" LG. 1280x1024 resolution. The graphic card is a Nvidia GeForce 8600 GT. I have installed the Ultramon 3.1.0 and I have created a mirror, with the "stretch mirror image to fill monitor" and the "disable video overlays and 3D acceleration". When I start the mirroring, there are two zones in the lateral edges that are not displayed in the second monitor. I think this is because the width of the main monitor is 1680 px. and the width of the secondary monitor is 1280 px., but I have indicated "stretch mirror image to fill monitor" in the options. The same occurs in the top and the bottom edges, but the diference is minimal (1050 vs 1024 pixels). I want the same image (distortioned in the secondary monitor if is neccesary), but I don't know what is failing. Someone can help me, please? I have read Mirrored monitors of different resolution. Cloned screen on monitors with different resolutions

    Read the article

  • Display resolution problem with Sony TV and Intel integrated graphics

    - by user96195
    I am trying to set the correct display resolution for my Sony TV (KDL-32V2000, native resolution 1366x768) connected via HDMI to my HTPC running Ubuntu 12.04. I have a Intel Core i3-530 and Intel mobo (DH57JG), so no proprietary graphics drivers. The problem is that I can't get the correct resolution to display on the TV. Initially I only had 1024x768 (or similar) as a maximum resolution, which was not displayed properly. I tried a few steps, including generating an xorg.conf (initially didn't have one) and adding the segment as described in this post regarding this particular TV. I couldn't get this to work, and at this stage have reverted to running without an xorg.conf. Another post suggested upgrading to kernel 3.5, which did give me a 1920x1080 resolution option. This results in the TV cutting off a fair bit of the edges of the screen. My Dell laptop with ATI drivers recognises the TV screen and works well via HDMI. Any idea how to proceed?

    Read the article

  • Change resolution in Waking Mars

    - by Wes
    I purchased and installed the humble bundle game "Waking Mars" via the Ubuntu Software Center and it works really well except for some issues with changing settings, namely with the resolution. The in-game settings for changing resolution and entering/exiting fullscreen were easy enough to find and toggle, and when you do it asks to restart the application. When you restart it, all other settings you updated are reflected except for the changes to the resolution. (I'm trying to get it to play in windowed mode that fits onto one monitor, but it will only default to windowed mode with the full dual monitor resolution). I noticed that it writes these values to ~/.local/share/WakingMars/UserSettings.ini. When I change the resolution, it is properly written to in this settings file...but it never is reflected when you restart the application. Any ideas what's wrong?

    Read the article

  • NVIDIA Graphics - resolution problems with new 12.04 LTS installation

    - by Daveisuser56810
    I've been trying to install Ubuntu 12.04 LTS on my desktop most of the day. The desktop uses a NVIDIA GEFORCE 9800 (GT I think) graphics card. I am unable to set the correct resolution (1680 x 1050) for the display. The first problem I had was that of the "Black Screen" during install. I overcame this by utilising the "nomodeset" switch on the install options (once I'd found how to do that). The second problem of course was the "Black screen" following the first reboot. Once again this was overcome by using "nomodeset", this time by "editing" the GRUB. This gave me a resolution of 1280x768 which, the Displays GUI allowed me to change to 1280x720 (appears to fit on screen). I then tried to install the NVIDIA drivers. 1) using additional drivers 2) manually by downloading driver and installing in root As soon as NVIDIA drivers are installed - resolution become restricted to 640x480 (max). At this resolution Ubuntu GUI is not usable as most screens are larger than the display. Removing the NVIDIA driver and removing the XORG.CONF file does not lift this restriction. I have tried most things that I have found and that were vaguely intelligible, but nothing appears to get me closer to a resolution of 1680x1050. UPDATE: reinstalled Ubuntu 12-04 and used the "NoModeSet" in the Grub to restore the resolution to 1280x720, which is at least usable. Will live with this for now.

    Read the article

  • Viewing a large-resolution VNC server through a small-resolution viewer in Ubuntu

    - by Madiyaan Damha
    I have two Ubuntu computers, one with a large screen resolution (1920x1600) that is running default ubuntu vnc server. I have another computer that has a resolution of about 1200x1024 that I use to vnc into the server (I use the default ubuntu vnc viewer). Now everything works fine except there are annoying scrollbars in the viewer because the server's desktop resolution is so much higher than the viewer's. Is there a way to: 1) Scale the server's desktop down to the viewer's resolution. I know there will be a loss of image quality, but I am willing to try it out. This should be something like how windows media player or vlc scales down the window (and does some interpolation of pixels). 2) Automatically shrink the resolution of the server to the client's when I connect and scale the resolution back when I disconnect. This seems like a less attractive solution. 3) Any other solution that gurus out there use? I am sure someone has experienced this before (annoying scroll bars) so there must be a solution out there. Thanks,

    Read the article

  • Xubuntu 14.04 resolution low

    - by user3203576
    I installed Xubuntu 14.04 amd64 on the computer at the computer repair shop where I work, but the screen resolution is way low, like 1024 x 768 (that wouldn't be low for a laptop or anything, but for a large desktop screen it is) I went to the display settings, but the resolution wouldn't go higher than that. When I installed Xubuntu 14.04 i386 at my computer at home, I didn't have any problems with the resolution. Any help? update: I ran lspci | grep VGA and got: 00:0d.0 VGA compatible controller: NVIDIA Corporation C61 [GeForce 6150SE nForce 430] (rev a2)

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >