Search Results

Search found 418 results on 17 pages for 'convex polygon'.

Page 1/17 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Adding tolerance to a point in polygon test

    - by David Gouveia
    I've been using this method which was taken from Game Coding Complete to detect whether a point is inside of a polygon. It works in almost every case, but is failing on a few edge cases, and I can't figure out the reason. For example, given a polygon with vertices at (0,0) (0,100) and (100,100), the algorithm is returning: True for any point strictly inside the polygon False for any of the vertices False for (0, 50) which lies on one of the edges of the polygon True (?) for (50,50) which is also on one of the edges of the polygon I'd actually like to relax the algorithm so that it returns true in all of these cases. In other words, it should return true for points that are strictly inside, for the vertices themselves, and for points on the edges of the polygon. If possible I'd also like to give it enough tolerance so that it always tend towards "true" in face of floating point fluctuations. For example, I have another method, that given a line segment and a point, returns the closest location on the line segment to the given point. Currently, given any point outside the polygon and one of its edges, there are cases where the result is categorized as being inside by the method above, while other points are considered outside. I'd like to give it enough tolerance so that it always returns true in this situation. The way I've currently solved the problem is an hack, which consists of using an external library to inflate the polygon by a few pixels, and performing the tests on the inflated polygon, but I'd really like to replace this with a proper solution.

    Read the article

  • Convex Hull for Concave Objects

    - by Lighthink
    I want to implement GJK and I want it to handle concave shapes too (almost all my shapes are concave). I've thought of decomposing the concave shape into convex shapes and then building a hierarchical tree out of convex shapes, but I do not know how to do it. Nothing I could find on the Internet about it wasn't satisfying my needs, so maybe someone can point me in the right direction or give a full explanation.

    Read the article

  • Polygon count budget

    - by Lautaro
    Is there any smart way to think about polygon budget relating to PC gaming today? My game will have one static 3d background scene and two fighters. No more enemies. I am thinking about having animated 3d models in the background for atmosphere, like spectators. So how could i find out what the polygon count for the player models and background scenarios could be. I guess the question is, what is a for today typical polygon count that most PCs can handle?

    Read the article

  • Algorithm for approximating sihlouette image as polygon

    - by jack
    I want to be able to analyze a texture in real time and approximate a polygon to represent a silhouette. Imagine a person standing in front of a green screen and I want to approximately trace around their outline and get a 2D polygon as the result. Are there algorithms to do this and are they fast enough to work frame-to-frame in a game? (I have found algorithms to triangulate polygons, but I am having trouble knowing what to search for that describes my goal.)

    Read the article

  • How can I move a polygon edge 1 unit away from the center?

    - by Stephen
    Let's say I have a polygon class that is represented by a list of vector classes as vertices, like so: var Vector = function(x, y) { this.x = x; this.y = y; }, Polygon = function(vectors) { this.vertices = vectors; }; Now I make a polygon (in this case, a square) like so: var poly = new Polygon([ new Vector(2, 2), new Vector(5, 2), new Vector(5, 5), new Vector(2, 5) ]); So, the top edge would be [poly.vertices[0], poly.vertices[1]]. I need to stretch this polygon by moving each edge away from the center of the polygon by one unit, along that edge's normal. The following example shows the first edge, the top, moved one unit up: The final polygon should look like this new one: var finalPoly = new Polygon([ new Vector(1, 1), new Vector(6, 1), new Vector(6, 6), new Vector(1, 6) ]); It is important that I iterate, moving one edge at a time, because I will be doing some collision tests after moving each edge. Here is what I tried so far (simplified for clarity), which fails triumphantly: for(var i = 0; i < vertices.length; i++) { var a = vertices[i], b = vertices[i + 1] || vertices[0]; // in case of final vertex var ax = a.x, ay = a.y, bx = b.x, by = b.y; // get some new perpendicular vectors var a2 = new Vector(-ay, ax), b2 = new Vector(-by, bx); // make into unit vectors a2.convertToUnitVector(); b2.convertToUnitVector(); // add the new vectors to the original ones a.add(a2); b.add(b2); // the rest of the code, collision tests, etc. } This makes my polygon start slowly rotating and sliding to the left, instead of what I need. Finally, the example shows a square, but the polygons in question could be anything. They will always be convex, and always with vertices in clockwise order.

    Read the article

  • Any reliable polygon normal calculation code?

    - by Jenko
    I'm currently calculating the normal vector of a polygon using this code, but for some faces here and there it calculates a wrong normal. I don't really know what's going on or where it fails but its not reliable. Do you have any polygon normal calculation that's tested and found to be reliable? // calculate normal of a polygon using all points var n:int = points.length; var x:Number = 0; var y:Number = 0; var z:Number = 0 // ensure all points above 0 var minx:Number = 0, miny:Number = 0, minz:Number = 0; for (var p:int = 0, pl:int = points.length; p < pl; p++) { var po:_Point3D = points[p] = points[p].clone(); if (po.x < minx) { minx = po.x; } if (po.y < miny) { miny = po.y; } if (po.z < minz) { minz = po.z; } } for (p = 0; p < pl; p++) { po = points[p]; po.x -= minx; po.y -= miny; po.z -= minz; } var cur:int = 1, prev:int = 0, next:int = 2; for (var i:int = 1; i <= n; i++) { // using Newell method x += points[cur].y * (points[next].z - points[prev].z); y += points[cur].z * (points[next].x - points[prev].x); z += points[cur].x * (points[next].y - points[prev].y); cur = (cur+1) % n; next = (next+1) % n; prev = (prev+1) % n; } // length of the normal var length:Number = Math.sqrt(x * x + y * y + z * z); // turn large values into a unit vector if (length != 0){ x = x / length; y = y / length; z = z / length; }else { throw new Error("Cannot calculate normal since triangle has an area of 0"); }

    Read the article

  • Subdividing a polygon into boxes of varying size

    - by Michael Trouw
    I would like to be pointed to information / resources for creating algorithms like the one illustrated on this blog, which is a subdivision of a polygon (in my case a voronoi cell) into several boxes of varying size: http://procworld.blogspot.nl/2011/07/city-lots.html In the comments a paper by among others the author of the blog can be found, however the only formula listed is about candidate location suitability: http://www.groenewegen.de/delft/thesis-final/ProceduralCityLayoutGeneration-Preprint.pdf Any language will do, but if examples can be given Javascript is preferred (as it is the language i am currently working with) A similar question is this one: What is an efficient packing algorithm for packing rectangles into a polygon?

    Read the article

  • Calculate pixels within a polygon

    - by DoomStone
    In an assignment for school do we need to do some image recognizing, where we have to find a path for a robot. So far have we been able to find all the polygons in the image, but now we need to generate a pixel map, that be used for an astar algorithm later. We have found a way to do this, show below, but the problem is that is very slow, as we go though each pixel and test if it is inside the polygon. So my question is, are there a way that we can generate this pixel map faster? We have a list of cordinates for the polygon private List<IntPoint> hull; The fuction "getMap" is called to get the pixel map public Point[] getMap() { List<Point> points = new List<Point>(); lock (hull) { Rectangle rect = getRectangle(); for (int x = rect.X; x <= rect.X + rect.Width; x++) { for (int y = rect.Y; y <= rect.Y + rect.Height; y++) { if (inPoly(x, y)) points.Add(new Point(x, y)); } } } return points.ToArray(); } Get Rectangle is used to limit the search, se we don't have to go thoug the whole image public Rectangle getRectangle() { int x = -1, y = -1, width = -1, height = -1; foreach (IntPoint item in hull) { if (item.X < x || x == -1) x = item.X; if (item.Y < y || y == -1) y = item.Y; if (item.X > width || width == -1) width = item.X; if (item.Y > height || height == -1) height = item.Y; } return new Rectangle(x, y, width-x, height-y); } And atlast this is how we check to see if a pixel is inside the polygon public bool inPoly(int x, int y) { int i, j = hull.Count - 1; bool oddNodes = false; for (i = 0; i < hull.Count; i++) { if (hull[i].Y < y && hull[j].Y >= y || hull[j].Y < y && hull[i].Y >= y) { try { if (hull[i].X + (y - hull[i].X) / (hull[j].X - hull[i].X) * (hull[j].X - hull[i].X) < x) { oddNodes = !oddNodes; } } catch (DivideByZeroException e) { if (0 < x) { oddNodes = !oddNodes; } } } j = i; } return oddNodes; }

    Read the article

  • Any reliable polygon normal calculation code?

    - by Jenko
    Do you have any reliable face normal calculation code? I'm using this but it fails when faces are 90 degrees upright or similar. // the normal point var x:Number = 0; var y:Number = 0; var z:Number = 0; // if is a triangle with 3 points if (points.length == 3) { // read vertices of triangle var Ax:Number, Bx:Number, Cx:Number; var Ay:Number, By:Number, Cy:Number; var Az:Number, Bz:Number, Cz:Number; Ax = points[0].x; Bx = points[1].x; Cx = points[2].x; Ay = points[0].y; By = points[1].y; Cy = points[2].y; Az = points[0].z; Bz = points[1].z; Cz = points[2].z; // calculate normal of a triangle x = (By - Ay) * (Cz - Az) - (Bz - Az) * (Cy - Ay); y = (Bz - Az) * (Cx - Ax) - (Bx - Ax) * (Cz - Az); z = (Bx - Ax) * (Cy - Ay) - (By - Ay) * (Cx - Ax); // if is a polygon with 4+ points }else if (points.length > 3){ // calculate normal of a polygon using all points var n:int = points.length; x = 0; y = 0; z = 0 // ensure all points above 0 var minx:Number = 0, miny:Number = 0, minz:Number = 0; for (var p:int = 0, pl:int = points.length; p < pl; p++) { var po:_Point3D = points[p] = points[p].clone(); if (po.x < minx) { minx = po.x; } if (po.y < miny) { miny = po.y; } if (po.z < minz) { minz = po.z; } } if (minx > 0 || miny > 0 || minz > 0){ for (p = 0; p < pl; p++) { po = points[p]; po.x -= minx; po.y -= miny; po.z -= minz; } } var cur:int = 1, prev:int = 0, next:int = 2; for (var i:int = 1; i <= n; i++) { // using Newell method x += points[cur].y * (points[next].z - points[prev].z); y += points[cur].z * (points[next].x - points[prev].x); z += points[cur].x * (points[next].y - points[prev].y); cur = (cur+1) % n; next = (next+1) % n; prev = (prev+1) % n; } } // length of the normal var length:Number = Math.sqrt(x * x + y * y + z * z); // if area is 0 if (length == 0) { return null; }else{ // turn large values into a unit vector x = x / length; y = y / length; z = z / length; }

    Read the article

  • Robust line of sight test on the inside of a polygon with tolerance

    - by David Gouveia
    Foreword This is a followup to this question and the main problem I'm trying to solve. My current solution is an hack which involves inflating the polygon, and doing most calculations on the inflated polygon instead. My goal is to remove this step completely, and correctly solve the problem with calculations only. Problem Given a concave polygon and treating all of its edges as if they were walls in a level, determine whether two points A and B are in line of sight of each other, while accounting for some degree of floating point errors. I'm currently basing my solution on a series of line-segment interection tests. In other words: If any of the end points are outside the polygon, they are not in line of sight. If both end points are inside the polygon, and the line segment from A to B crosses any of the edges from the polygon, then they are not in line of sight. If both end points are inside the polygon, and the line segment from A to B does not cross any of the edges from the polygon, then they are in line of sight. But the problem is dealing correctly with all the edge cases. In particular, it must be able to deal with all the situations depicted below, where red lines are examples that should be rejected, and green lines are examples that should be accepted. I probably missed a few other situations, such as when the line segment from A to B is colinear with an edge, but one of the end points is outside the polygon. One point of particular interest is the difference between 1 and 9. In both cases, both end points are vertices of the polygon, and there are no edges being intersected, but 1 should be rejected while 9 should be accepted. How to distinguish these two? I could check some middle point within the segment to see if it falls inside or not, but it's easy to come up with situations in which it would fail. Point 7 was also pretty tricky and I had to to treat it as a special case, which checks if two points are adjacent vertices of the polygon directly. But there are also other chances of line segments being col linear with the edges of the polygon, and I'm still not entirely sure how I should handle those cases. Is there any well known solution to this problem?

    Read the article

  • Polygon count target range for MMO being released in 2 years

    - by classer
    What would a realistic poly count target range be for NPC and player models in a 3D MMO that will be released in 2 years? What about poly count target range for the entire camera view (environment, NPC and player meshes)? I read in some places that one should not aim too low if the game will come out in a couple years because technology is always advancing. If you can give some mesh poly stats on what other current MMOs / MMORPGs are running and future projections, that would be great. Thank you.

    Read the article

  • Can SpriteBatch be used to fill a polygon with a texture?

    - by can poyrazoglu
    I basically need to fill a texture into a polygon using the SpriteBatch. I've done some research but couldn't find anything useful except polygon triangulation method, which works well only with convex polygons (without diving into super math which is definitely not something I'm pretty good at). Are there any solutions for filling in a polygon in a basic way? I of course need something dynamic (I'll have a map editor that you can define polygons, and the game will render them (and collision detection will also use them but that's off topic), basically I can't accept solutions like "pre-calculated" bitmaps or anything like that. I need to draw a polygon with the segments provided, to the screen, using the SpriteBatch.

    Read the article

  • Polygon with different line width (in R)

    - by Tal Galili
    Hi all, I would like to use a command like this: plot(c(1,8), 1:2, type="n") polygon(1:7, c(2,1,2,NA,2,1,2), col=c("red", "blue"), # border=c("green", "yellow"), border=c(1,10), lwd=c(1:10)) To create two triangles, with different line widths. But the polygon command doesn't seem to recycle the "lwd" parameter as it does the col or the border parameters. I would like the resulting plot to look like what the following code will produce: plot(c(1,8), 1:2, type="n") polygon(1:3, c(2,1,2), col=c("red"), # border=c("green", "yellow"), border=c(1,10), lwd=c(1)) polygon(5:7, c(2,1,2), col=c( "blue"), # border=c("green", "yellow"), border=c(1,10), lwd=c(10)) So my questions are: Is there something like polygon that does what I asked for? (If not, I would do it by creating a new polygon function that will break the original x,y by their NA's, although I am not yet sure what is the smartest way to do that...) Thanks, Tal

    Read the article

  • Diagonal of polygon is inside or outside?

    - by Himadri
    I have three consecutive points of polygon, say p1,p2,p3. Now I wanted to know whether the orthogonal between p1 and p3 is inside the polygon or outside the polygon. I am doing it by taking three vectors v1,v2 and v3. And the point before the point p1 in polygon say p0. v1 = (p0 - p1) v2 = (p2 - p1) v3 = (p3 - p1) With reference to this question, I am using the method shown in the accepted answer of that question. It is only for counterclockwise. What if my points are clockwise. I am also knowing my whole polygon is clockwise or counterclockwise. And accordingly I select the vectors v1 and v2. But still I am getting some problem. I am showing one case where I am getting problem. This polygon is counterclockwise. and It is starting from the origin of v1 and v2.

    Read the article

  • JBox2D Polygon Collisions Acting Strange

    - by andy
    I have been playing around with JBox2D and Slick2D and made a little demo with a ground object, a box object, and two different polygons. The problem I am facing is that the collision-detection for the polygons seems to be off (see picture below), but the box's collision works fine. My Code: Main Class package main; import org.jbox2d.common.Vec2; import org.jbox2d.dynamics.BodyType; import org.jbox2d.dynamics.World; import org.newdawn.slick.GameContainer; import org.newdawn.slick.Graphics; import org.newdawn.slick.SlickException; import org.newdawn.slick.state.BasicGameState; import org.newdawn.slick.state.StateBasedGame; import shapes.Box; import shapes.Polygon; public class State1 extends BasicGameState{ World world; int velocityIterations; int positionIterations; float pixelsPerMeter; int state; Box ground; Box box1; Polygon poly1; Polygon poly2; Renderer renderer; public State1(int state) { this.state = state; } @Override public void init(GameContainer gc, StateBasedGame game) throws SlickException { velocityIterations = 10; positionIterations = 10; pixelsPerMeter = 1f; world = new World(new Vec2(0.f, -9.8f)); renderer = new Renderer(gc, gc.getGraphics(), pixelsPerMeter, world); box1 = new Box(-100f, 200f, 40, 50, BodyType.DYNAMIC, world); ground = new Box(-14, -275, 50, 900, BodyType.STATIC, world); poly1 = new Polygon(50f, 10f, new Vec2[] { new Vec2(-6f, -14f), new Vec2(0f, -20f), new Vec2(6f, -14f), new Vec2(10f, 10f), new Vec2(-10f, 10f) }, BodyType.DYNAMIC, world); poly2 = new Polygon(0f, 10f, new Vec2[] { new Vec2(10f, 0f), new Vec2(20f, 0f), new Vec2(30f, 10f), new Vec2(30f, 20f), new Vec2(20f, 30f), new Vec2(10f, 30f), new Vec2(0f, 20f), new Vec2(0f, 10f) }, BodyType.DYNAMIC, world); } @Override public void update(GameContainer gc, StateBasedGame game, int delta) throws SlickException { world.step((float)delta / 180f, velocityIterations, positionIterations); } @Override public void render(GameContainer gc, StateBasedGame game, Graphics g) throws SlickException { renderer.render(); } @Override public int getID() { return this.state; } } Polygon Class package shapes; import org.jbox2d.collision.shapes.PolygonShape; import org.jbox2d.common.Vec2; import org.jbox2d.dynamics.Body; import org.jbox2d.dynamics.BodyDef; import org.jbox2d.dynamics.BodyType; import org.jbox2d.dynamics.FixtureDef; import org.jbox2d.dynamics.World; import org.newdawn.slick.Color; public class Polygon { public float x, y; public Color color; public BodyType bodyType; org.newdawn.slick.geom.Polygon poly; BodyDef def; PolygonShape ps; FixtureDef fd; Body body; World world; Vec2[] verts; public Polygon(float x, float y, Vec2[] verts, BodyType bodyType, World world) { this.verts = verts; this.x = x; this.y = y; this.bodyType = bodyType; this.world = world; init(); } public void init() { def = new BodyDef(); def.type = bodyType; def.position.set(x, y); ps = new PolygonShape(); ps.set(verts, verts.length); fd = new FixtureDef(); fd.shape = ps; fd.density = 2.0f; fd.friction = 0.7f; fd.restitution = 0.5f; body = world.createBody(def); body.createFixture(fd); } } Rendering Class package main; import org.jbox2d.collision.shapes.PolygonShape; import org.jbox2d.collision.shapes.ShapeType; import org.jbox2d.common.MathUtils; import org.jbox2d.common.Vec2; import org.jbox2d.dynamics.Body; import org.jbox2d.dynamics.Fixture; import org.jbox2d.dynamics.World; import org.newdawn.slick.Color; import org.newdawn.slick.GameContainer; import org.newdawn.slick.Graphics; import org.newdawn.slick.geom.Polygon; import org.newdawn.slick.geom.Transform; public class Renderer { World world; float pixelsPerMeter; GameContainer gc; Graphics g; public Renderer(GameContainer gc, Graphics g, float ppm, World world) { this.world = world; this.pixelsPerMeter = ppm; this.g = g; this.gc = gc; } public void render() { Body current = world.getBodyList(); Vec2 center = current.getLocalCenter(); while(current != null) { Vec2 pos = current.getPosition(); g.pushTransform(); g.translate(pos.x * pixelsPerMeter + (0.5f * gc.getWidth()), -pos.y * pixelsPerMeter + (0.5f * gc.getHeight())); Fixture f = current.getFixtureList(); while(f != null) { ShapeType type = f.getType(); g.setColor(getColor(current)); switch(type) { case POLYGON: { PolygonShape shape = (PolygonShape)f.getShape(); Vec2[] verts = shape.getVertices(); int count = shape.getVertexCount(); Polygon p = new Polygon(); for(int i = 0; i < count; i++) { p.addPoint(verts[i].x, verts[i].y); } p.setCenterX(center.x); p.setCenterY(center.y); p = (Polygon)p.transform(Transform.createRotateTransform(current.getAngle() + MathUtils.PI, center.x, center.y)); p = (Polygon)p.transform(Transform.createScaleTransform(pixelsPerMeter, pixelsPerMeter)); g.draw(p); break; } case CIRCLE: { f.getShape(); } default: } f = f.getNext(); } g.popTransform(); current = current.getNext(); } } public Color getColor(Body b) { Color c = new Color(1f, 1f, 1f); switch(b.m_type) { case DYNAMIC: if(b.isActive()) { c = new Color(255, 123, 0); } else { c = new Color(99, 99, 99); } break; case KINEMATIC: break; case STATIC: c = new Color(111, 111, 111); break; default: break; } return c; } } Any help with fixing the collisions would be greatly appreciated, and if you need any other code snippets I would be happy to provide them.

    Read the article

  • Converting convex hull to binary mask

    - by Jonas
    I want to generate a binary mask that has ones for all pixels inside and zeros for all pixels outside a volume. The volume is defined by the convex hull around a set of 3D coordinates (<100; some of the coordinates are inside the volume). I can get the convex hull using CONVHULLN, but how do I convert that into a binary mask? In case there is no good way to go via the convex hull, do you have any other idea how I could create the binary mask?

    Read the article

  • Breaking a concave polygon into convex ones.

    - by Bart van Heukelom
    I'm using a game physics library (Box2D) which only supports convex polygon shapes. However, I'd like the level builder to be able to just specify concave polygons without having to worry about that. So, how can I automatically break apart a concave polygon into convex ones (or even all triangles). Speed would be cool, but ease of implementation is more important. The breaking apart will only be done on game initialization. (My language is Flash/ActionScript 3, but that shouldn't matter)

    Read the article

  • Point in polygon OR point on polygon using LINQ

    - by wageoghe
    As noted in an earlier question, How to Zip enumerable with itself, I am working on some math algorithms based on lists of points. I am currently working on point in polygon. I have the code for how to do that and have found several good references here on SO, such as this link Hit test. So, I can figure out whether or not a point is in a polygon. As part of determining that, I want to determine if the point is actually on the polygon. This I can also do. If I can do all of that, what is my question you might ask? Can I do it efficiently using LINQ? I can already do something like the following (assuming a Pairwise extension method as described in my earlier question as well as in links to which my question/answers links, and assuming a Position type that has X and Y members). I have not tested much, so the lambda might not be 100% correct. Also, it does not take very small differences into account. public static PointInPolygonLocation PointInPolygon(IEnumerable<Position> pts, Position pt) { int numIntersections = pts.Pairwise( (p1, p2) => { if (p1.Y != p2.Y) { if ((p1.Y >= pt.Y && p2.Y < pt.Y) || (p1.Y < pt.Y && p2.Y >= pt.Y)) { if (p1.X < p1.X && p2.X < pt.X) { return 1; } if (p1.X < pt.X || p2.X < pt.X) { if (((pt.Y - p1.Y) * ((p1.X - p2.X) / (p1.Y - p2.Y)) * p1.X) < pt.X) { return 1; } } } } return 0; }).Sum(); if (numIntersections % 2 == 0) { return PointInPolygonLocation.Outside; } else { return PointInPolygonLocation.Inside; } } This function, PointInPolygon, takes the input Position, pt, iterates over the input sequence of position values, and uses the Jordan Curve method to determine how many times a ray extended from pt to the left intersects the polygon. The lambda expression will yield, into the "zipped" list, 1 for every segment that is crossed, and 0 for the rest. The sum of these values determines if pt is inside or outside of the polygon (odd == inside, even == outside). So far, so good. Now, for any consecutive pairs of position values in the sequence (i.e. in any execution of the lambda), we can also determine if pt is ON the segment p1, p2. If that is the case, we can stop the calculation because we have our answer. Ultimately, my question is this: Can I perform this calculation (maybe using Aggregate?) such that we will only iterate over the sequence no more than 1 time AND can we stop the iteration if we encounter a segment that pt is ON? In other words, if pt is ON the very first segment, there is no need to examine the rest of the segments because we have the answer. It might very well be that this operation (particularly the requirement/desire to possibly stop the iteration early) does not really lend itself well to the LINQ approach. It just occurred to me that maybe the lambda expression could yield a tuple, the intersection value (1 or 0 or maybe true or false) and the "on" value (true or false). Maybe then I could use TakeWhile(anontype.PointOnPolygon == false). If I Sum the tuples and if ON == 1, then the point is ON the polygon. Otherwise, the oddness or evenness of the sum of the other part of the tuple tells if the point is inside or outside.

    Read the article

  • Java2D: Fill a convex rounded polygon (QuadCurves)

    - by Martijn Courteaux
    Hi, If I have a QuadCurve like this (+ = node): + + \ ./ +--?? And I fill it in Java 2D the result is something like this: (x = colored) +xxxxxxxxx+ \xxxxxx./ +--?? But I want to color the other side: + + x\ ./x xxx +--??xx xxxxxxxxxxx This succeeds by drawing a rectangle around the curve in the color I want to color the other side and then fill the curve with the background color. But this isn't good enough to fill a convex rounded (based on QuadCurves) polygon. In case of some coordinates for the rectangles (as explained in the trick I used) overlap other pieces of the polygon. Here are two images (the green area is my polygon): So, the question is simple: "How can I color a shape build of curves?" But to the answer will not be simple I think... Any advice would be VERY VERY appreciated. Thanks in advance. Maybe I'm going to make a bounty for this question if I don't get an answer

    Read the article

  • How to decompose a rectangular shape in a Voronoi diagram, only generating convex shapes?

    - by DevilWithin
    I think this is a very straighforward question, lets say i have a building in 2D, a rectangle shape. Now i want to decompose that area in a lot of convex shapes, as seen in a voronoi diagram, or closely like it, just so I can add those shapes to the physics engine, and have a realistic destruction. Bonus: Possible suggestions on how to make the effect more dynamic and interesting. Please keep in mind we re talking about realtime calculations..

    Read the article

  • Greiner-Hormann clipping problem

    - by Belgin
    I have a set of planar polygons in 3D space defined by their vertices in counterclockwise order. Let's define the 'positive face' as being the face of the 3D polygon such as when observed, the vertices appear in counterclockwise order, and the 'negative face', the face which when observed, the vertices appear in clockwise order. I'm doing perspective projection of the set of polygons onto a projection polygon defined by the points in this order: (0, h, 0), (0, 0, 0), (w, 0, 0), and (w, h, 0), where w and h are strictly positive integers. The positive face of this projection polygon is oriented towards positive Z, and the camera point is somewhere at (0, 0, d), where d is a strictly negative number. In order to 'clip' the projected polygons into the projection polygon, I'm applying the Greiner-Hormann (PDF) clipping algorithm, which requires that the clipper and the to-be-clipped polygons be in the same order (i.e. clockwise or counterclockwise). My question is the following: How can I determine whether the projected face of the 3D polygon is the negative or the positive one? Meaning, how do I find out if I have to work with the vertices in normal or inverted order for the algorithm to work? I noticed that only if the 3D polygon is facing the projection polygon with its negative face, both of them are in the same order (counterclockwise), otherwise, a modification needs to be done. Here is a picture (PNG) that illustrates this. Note that the planes described by the polygon from the set and the projection polygon may not always be parallel.

    Read the article

  • how to subtract circle from an arbitrary polygon

    - by George
    Given an arbitary polygon with vertices stored in either clockwise/counterclockwise fashion (depicted as a black rectangle in the diagram), I need to be able to subtract an arbitrary number of circles (in red on the diagram) from that polygon. Removing a circle could possibly split the polygon into two seperate polygons (as depicted by the second line in the diagram). I'm not sure where to start. http://www.freeimagehosting.net/image.php?89a0276d9d.jpg

    Read the article

  • Problem drawing a polygon on data clusters in MATLAB

    - by Hossein
    Hi, I have some data points which I have devided into them into some clusters with some clustering algorithms as the picture below:(it might takes some time for the image to appear) Each color represents different cluster. I have to draw polygons around each cluster. I use convhull for this reason. But as you can see the polygon for the red cluster is very big and covers a lot of areas, which is not the one I am looking for. I need to draw lines(ploygons) exactly around my data sets. For example in the picture above I want a polygon that is drawn exactly the same(and around) as the red cluster with the 3 branches. In other words, in this case I need a polygon with 3 branches to cover my red clusters not that big polygon that covers the whole area. Can anyone help me with this? Please Note that the solution should be general, because the clusters will change in each run of the algorithm, so it needs to be in a way that is general.

    Read the article

  • A simple algorithm for polygon intersection

    - by Elazar Leibovich
    I'm looking for a very simple algorithm for computing the polygon intersection/clipping. That is, given polygons P, Q, I wish to find polygon T which is contained in P and in Q, and I wish T to be maximal among all possible polygons. I don't mind the run time (I have a few very small polygons), I can also afford getting an approximation of the polygons' intersection (that is, a polygon with less points, but which is still contained in the polygons' intersection). But it is really important for me that the algorithm will be simple (cheaper testing) and preferably short (less code). edit: please note, I wish to obtain a polygon which represent the intersection. I don't need only a boolean answer to the question of whether the two polygons intersect.

    Read the article

  • Polygon triangulation

    - by Saurabh
    Hey, I am working on nesting of sheet metal parts and am implementing Minkowski Sums to find No Fit Polygons for nesting. The problem is I can give only convex sets as input to the code which calculates Minkowski sums for me. Hence I need to break a concave polygon, with holes into Convex sets. I am open to triangulation also, but I am looking for a working code on VC++ (6.0). I am slightly running short on time as my whole code is ready and just waiting for input in the form of convex sets. I would really appreciate if somebody with prior experience can help me in this. I have gone through other posts but did not find anything matching to this. I am a student of mechanical engineering and really dun have much idea about computer languages. All I can handle is compiling a code on VC++ and incorporate it with my existing code. Looking forward to responses!! Thanks Warm regards Saurabh India

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >