Search Results

Search found 25946 results on 1038 pages for 'cost based optimizer'.

Page 1/1038 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Power and Cooling Cost compared with Server/Hardware Cost

    - by psaccounts
    Has anyone done, or is aware of any, calculations to compare the cost of power and cooling compared to the cost of hardware (servers) in a typical data center? This is to compute a true total cost of ownership of self-hosting servers. Of course real TCO includes: hardware_cost + power + cooling + rental + human_cost + maintenance Is there any study that says something like (TCO - hardware_cost) = 40% of hardware_cost in 3 years? Any pointers will be appreciated.

    Read the article

  • Adding interactive graphical elements to text-based browser game with HTML5

    - by st9
    I'm re-writing an old virtual world/browser based game. It is text and HTML form based with some static graphics. The client is HTML and JS. I want to introduce some interactive graphical elements to certain parts of the game, for example a 'customise character' page, with hooks to server side and local data storage. I want to use HTML5/JS, what is the best approach to designing the web-site? For example could I use Boilerplate and then embed these interactive elements in the page? Thanks

    Read the article

  • Alternatives to Google Website Optimizer

    - by yahelc
    What (affordable) alternatives are there to Google Website Optimizer for A/B and multivariate tests? The pro's with GWO are basically that its free and that it integrates with Google Analytics. The cons: The relative high time cost of setting up a test. Some alternatives I've seen so far: Optimizely.com VisualWebsiteOptimizer.com Genetify (wiki.github.com/gregdingle/genetify/) Free, open-source, but seems like there's no developer community committed to the project.

    Read the article

  • Wierd Results A/B Test in Google Website Optimizer

    - by Yisroel
    I set up a test in Google Website Optimizer that has a 3 variations - original (A), B, and C. In order to further validate the results of the test, I added a variation C that is exactly the same as the original. And thats where the results get weird. 6 days in to the test, the best performing variation is C. It outperforms the original by 18.4%! How is that possible? Do I now discount the results of this test entirely?

    Read the article

  • Wierd Results A/B Test in Google Website Optimizer

    - by Yisroel
    I set up a test in Google Website Optimizer that has a 3 variations - original (A), B, and C. In order to further validate the results of the test, I added a variation C that is exactly the same as the original. And thats where the results get weird. 6 days in to the test, the best performing variation is C. It outperforms the original by 18.4%! How is that possible? Do I now discount the results of this test entirely?

    Read the article

  • Weird Results A/B Test in Google Website Optimizer

    - by Yisroel
    I set up a test in Google Website Optimizer that has a 3 variations - original (A), B, and C. In order to further validate the results of the test, I added a variation C that is exactly the same as the original. And thats where the results get weird. 6 days into the test, the best performing variation is C. It outperforms the original by 18.4%! How is that possible? Do I now discount the results of this test entirely?

    Read the article

  • techniques for an AI for a highly cramped turn-based tactics game

    - by Adam M.
    I'm trying to write an AI for a tactics game in the vein of Final Fantasy Tactics or Vandal Hearts. I can't change the game rules in any way, only upgrade the AI. I have experience programming AI for classic board games (basically minimax and its variants), but I think the branching factor is too great for the approach to be reasonable here. I'll describe the game and some current AI flaws that I'd like to fix. I'd like to hear ideas for applicable techniques. I'm a decent enough programmer, so I only need the ideas, not an implementation (though that's always appreciated). I'd rather not expend effort chasing (too many) dead ends, so although speculation and brainstorming are good and probably helpful, I'd prefer to hear from somebody with actual experience solving this kind of problem. For those who know it, the game is the land battle mini-game in Sid Meier's Pirates! (2004) and you can skim/skip the next two paragraphs. For those who don't, here's briefly how it works. The battle is turn-based and takes place on a 16x16 grid. There are three terrain types: clear (no hindrance), forest (hinders movement, ranged attacks, and sight), and rock (impassible, but does not hinder attacks or sight). The map is randomly generated with roughly equal amounts of each type of terrain. Because there are many rock and forest tiles, movement is typically very cramped. This is tactically important. The terrain is not flat; higher terrain gives minor bonuses. The terrain is known to both sides. The player is always the attacker and the AI is always the defender, so it's perfectly valid for the AI to set up a defensive position and just wait. The player wins by killing all defenders or by getting a unit to the city gates (a tile on the other side of the map). There are very few units on each side, usually 4-8. Because of this, it's crucial not to take damage without gaining some advantage from it. Units can take multiple actions per turn. All units on one side move before any units on the other side. Order of execution is important, and interleaving of actions between units is often useful. Units have melee and ranged attacks. Melee attacks vary widely in strength; ranged attacks have the same strength but vary in range. The main challenges I face are these: Lots of useful move combinations start with a "useless" move that gains no immediate advantage, or even loses advantage, in order to set up a powerful flank attack in the future. And, since the player units are stronger and have longer range, the AI pretty much always has to take some losses before they can start to gain kills. The AI must be able to look ahead to distinguish between sacrificial actions that provide a future benefit and those that don't. Because the terrain is so cramped, most of the tactics come down to achieving good positioning with multiple units that work together to defend an area. For instance, two defenders can often dominate a narrow pass by positioning themselves so an enemy unit attempting to pass must expose itself to a flank attack. But one defender in the same pass would be useless, and three units can defend a slightly larger pass. Etc. The AI should be able to figure out where the player must go to reach the city gates and how to best position its few units to cover the approaches, shifting, splitting, or combining them appropriately as the player moves. Because flank attacks are extremely deadly (and engineering flank attacks is key to the player strategy), the AI should be competent at moving its units so that they cover each other's flanks unless the sacrifice of a unit would give a substantial benefit. They should also be able to force flank attacks on players, for instance by threatening a unit from two different directions such that responding to one threat exposes the flank to the other. The AI should attack if possible, but sometimes there are no good ways to approach the player's position. In that case, the AI should be able to recognize this and set up a defensive position of its own. But the AI shouldn't be vulnerable to a trivial exploit where the player repeatedly opens and closes a hole in his defense and shoots at the AI as it approaches and retreats. That is, the AI should ideally be able to recognize that the player is capable of establishing a solid defense of an area, even if the defense is not currently in place. (I suppose if a good unit allocation algorithm existed, as needed for the second bullet point, the AI could run it on the player units to see where they could defend.) Because it's important to choose a good order of action and interleave actions between units, it's not as simple as just finding the best move for each unit in turn. All of these can be accomplished with a minimax search in theory, but the search space is too large, so specialized techniques are needed. I thought about techniques such as influence mapping, but I don't see how to use the technique to great effect. I thought about assigning goals to the units. This can help them work together in some limited way, and the problem of "how do I accomplish this goal?" is easier to solve than "how do I win this battle?", but assigning good goals is a hard problem in itself, because it requires knowing whether the goal is achievable and whether it's a good use of resources. So, does anyone have specific ideas for techniques that can help cleverize this AI? Update: I found a related question on Stackoverflow: http://stackoverflow.com/questions/3133273/ai-for-a-final-fantasy-tactics-like-game The selected answer gives a decent approach to choosing between alternative actions, but it doesn't seem to have much ability to look into the future and discern beneficial sacrifices from wasteful ones. It also focuses on a single unit at a time and it's not clear how it could be extended to support cooperation between units in defending or attacking.

    Read the article

  • Software cost estimation

    - by David Conde
    I've seen on my work place (a University) most students making the software estimation cost of their final diploma work using COCOMO. My guessing is that this way of estimating costs is somewhat old (COCOMO dates of 1981), hence my question: How do you estimate costs in your software? I've seen things like : Cost = ( HoursOfWork + EstimatedIddle ) * HourlyRate That's not what I want, I'm looking for a properly (scientifically) defined cost model EDIT I've found some related questions on SO: What are some of the software cost estimation methods and models? How do you estimate the cost of developing software requirements?

    Read the article

  • SQL Server Optimizer Malfunction?

    - by Tony Davis
    There was a sharp intake of breath from the audience when Adam Machanic declared the SQL Server optimizer to be essentially "stuck in 1997". It was during his fascinating "Query Tuning Mastery: Manhandling Parallelism" session at the recent PASS SQL Summit. Paraphrasing somewhat, Adam (blog | @AdamMachanic) offered a convincing argument that the optimizer often delivers flawed plans based on assumptions that are no longer valid with today’s hardware. In 1997, when Microsoft engineers re-designed the database engine for SQL Server 7.0, SQL Server got its initial implementation of a cost-based optimizer. Up to SQL Server 2000, the developer often had to deploy a steady stream of hints in SQL statements to combat the occasionally wilful plan choices made by the optimizer. However, with each successive release, the optimizer has evolved and improved in its decision-making. It is still prone to the occasional stumble when we tackle difficult problems, join large numbers of tables, perform complex aggregations, and so on, but for most of us, most of the time, the optimizer purrs along efficiently in the background. Adam, however, challenged further any assumption that the current optimizer is competent at providing the most efficient plans for our more complex analytical queries, and in particular of offering up correctly parallelized plans. He painted a picture of a present where complex analytical queries have become ever more prevalent; where disk IO is ever faster so that reads from disk come into buffer cache faster than ever; where the improving RAM-to-data ratio means that we have a better chance of finding our data in cache. Most importantly, we have more CPUs at our disposal than ever before. To get these queries to perform, we not only need to have the right indexes, but also to be able to split the data up into subsets and spread its processing evenly across all these available CPUs. Improvements such as support for ColumnStore indexes are taking things in the right direction, but, unfortunately, deficiencies in the current Optimizer mean that SQL Server is yet to be able to exploit properly all those extra CPUs. Adam’s contention was that the current optimizer uses essentially the same costing model for many of its core operations as it did back in the days of SQL Server 7, based on assumptions that are no longer valid. One example he gave was a "slow disk" bias that may have been valid back in 1997 but certainly is not on modern disk systems. Essentially, the optimizer assesses the relative cost of serial versus parallel plans based on the assumption that there is no IO cost benefit from parallelization, only CPU. It assumes that a single request will saturate the IO channel, and so a query would not run any faster if we parallelized IO because the disk system simply wouldn’t be able to handle the extra pressure. As such, the optimizer often decides that a serial plan is lower cost, often in cases where a parallel plan would improve performance dramatically. It was challenging and thought provoking stuff, as were his techniques for driving parallelism through query logic based on subsets of rows that define the "grain" of the query. I highly recommend you catch the session if you missed it. I’m interested to hear though, when and how often people feel the force of the optimizer’s shortcomings. Barring mistakes, such as stale statistics, how often do you feel the Optimizer fails to find the plan you think it should, and what are the most common causes? Is it fighting to induce it toward parallelism? Combating unexpected plans, arising from table partitioning? Something altogether more prosaic? Cheers, Tony.

    Read the article

  • “Query cost (relative to the batch)” <> Query cost relative to batch

    - by Dave Ballantyne
    OK, so that is quite a contradictory title, but unfortunately it is true that a common misconception is that the query with the highest percentage relative to batch is the worst performing.  Simply put, it is a lie, or more accurately we dont understand what these figures mean. Consider the two below simple queries: SELECT * FROM Person.BusinessEntity JOIN Person.BusinessEntityAddress ON Person.BusinessEntity.BusinessEntityID = Person.BusinessEntityAddress.BusinessEntityID go SELECT * FROM Sales.SalesOrderDetail JOIN Sales.SalesOrderHeader ON Sales.SalesOrderDetail.SalesOrderID = Sales.SalesOrderHeader.SalesOrderID After executing these and looking at the plans, I see this : So, a 13% / 87% split ,  but 13% / 87% of WHAT ? CPU ? Duration ? Reads ? Writes ? or some magical weighted algorithm ?  In a Profiler trace of the two we can find the metrics we are interested in. CPU and duration are well out but what about reads (210 and 1935)? To save you doing the maths, though you are more than welcome to, that’s a 90.2% / 9.8% split.  Close, but no cigar. Lets try a different tact.  Looking at the execution plan the “Estimated Subtree cost” of query 1 is 0.29449 and query 2 its 1.96596.  Again to save you the maths that works out to 13.03% and 86.97%, round those and thats the figures we are after.  But, what is the worrying word there ? “Estimated”.  So these are not “actual”  execution costs,  but what’s the problem in comparing the estimated costs to derive a meaning of “Most Costly”.  Well, in the case of simple queries such as the above , probably not a lot.  In more complicated queries , a fair bit. By modifying the second query to also show the total number of lines on each order SELECT *,COUNT(*) OVER (PARTITION BY Sales.SalesOrderDetail.SalesOrderID) FROM Sales.SalesOrderDetail JOIN Sales.SalesOrderHeader ON Sales.SalesOrderDetail.SalesOrderID = Sales.SalesOrderHeader.SalesOrderID The split in percentages is now 6% / 94% and the profiler metrics are : Even more of a discrepancy. Estimates can be out with actuals for a whole host of reasons,  scalar UDF’s are a particular bug bear of mine and in-fact the cost of a udf call is entirely hidden inside the execution plan.  It always estimates to 0 (well, a very small number). Take for instance the following udf Create Function dbo.udfSumSalesForCustomer(@CustomerId integer) returns money as begin Declare @Sum money Select @Sum= SUM(SalesOrderHeader.TotalDue) from Sales.SalesOrderHeader where CustomerID = @CustomerId return @Sum end If we have two statements , one that fires the udf and another that doesn't: Select CustomerID from Sales.Customer order by CustomerID go Select CustomerID,dbo.udfSumSalesForCustomer(Customer.CustomerID) from Sales.Customer order by CustomerID The costs relative to batch is a 50/50 split, but the has to be an actual cost of firing the udf. Indeed profiler shows us : No where even remotely near 50/50!!!! Moving forward to window framing functionality in SQL Server 2012 the optimizer sees ROWS and RANGE ( see here for their functional differences) as the same ‘cost’ too SELECT SalesOrderDetailID,SalesOrderId, SUM(LineTotal) OVER(PARTITION BY salesorderid ORDER BY Salesorderdetailid RANGE unbounded preceding) from Sales.SalesOrderdetail go SELECT SalesOrderDetailID,SalesOrderId, SUM(LineTotal) OVER(PARTITION BY salesorderid ORDER BY Salesorderdetailid Rows unbounded preceding) from Sales.SalesOrderdetail By now it wont be a great display to show you the Profiler trace reads a *tiny* bit different. So moral of the story, Percentage relative to batch can give a rough ‘finger in the air’ measurement, but dont rely on it as fact.

    Read the article

  • Oracle tuning optimizer index cost adj and optimizer index caching

    - by Darryl Braaten
    What is the correct way to set the optimizer index cost adj parameter for Oracle. As a developer I have observed huge performance improvements as this parameter is lowered. Common queries are reduced from 2 seconds to 200ms. There are lots of warnings on the net that lowering this value will cause dire issues with the database, but no detail is given on what will start going wrong. I am currently only seeing only an upside, much improved application performance and no downside. I need to better understand the possible negative repercussions of adjusting these parameters.

    Read the article

  • Determining Cost of API Calls

    - by Sam
    [This is a cross-post originally posted by me in SO. I think the question is more appropriate here.] I was going through the adwords API and came across their rate sheet - http://code.google.com/apis/adwords/docs/ratesheet.html . They charge $0.25 per 1000 API units and under the 'Operation Costs' sections list the cost (in API units) of different API calls. I am curious - based on what factors do they (and others API developers) calculate the cost of an API call? Is there any simple formula or a standard way to determine this? Note: When I say 'cost' of an API call, I don't mean the money but the API units. For example, how do you determine one API call costs 100 'units' and another 1000?

    Read the article

  • Quantitfying a cost for a software project

    - by The Elite Gentleman
    Disclaimer: I didn't know exactly where to put this question. If you feel that this question is not suitable for Programmers @ StackExchange, feel free to migrate it. Background: Broadening my last question, there is a request for tender for a software system that's open and I have decided to take it on. I am a software developer & engineer by profession and, in this tender process, I have to put on the pricing for my bid. I have been provided a documentation consisting of functional and non-functional requirements only. I have to put a project manager's cap on and think of all aspects, e.g. cost for implementation for the project, resources needed, etc. My question is: Is there a project framework that I can follow that breaks the project cycle into steps and corresponding cost aspect or how would I go about best calculating/approximating the cost for the project?

    Read the article

  • MySQL Connect 9 Days Away – Optimizer Sessions

    - by Bertrand Matthelié
    72 1024x768 Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Following my previous blog post focusing on InnoDB talks at MySQL Connect, let us review today the sessions focusing on the MySQL Optimizer: Saturday, 11.30 am, Room Golden Gate 6: MySQL Optimizer Overview—Olav Sanstå, Oracle The goal of MySQL optimizer is to take a SQL query as input and produce an optimal execution plan for the query. This session presents an overview of the main phases of the MySQL optimizer and the primary optimizations done to the query. These optimizations are based on a combination of logical transformations and cost-based decisions. Examples of optimization strategies the presentation covers are the main query transformations, the join optimizer, the data access selection strategies, and the range optimizer. For the cost-based optimizations, an overview of the cost model and the data used for doing the cost estimations is included. Saturday, 1.00 pm, Room Golden Gate 6: Overview of New Optimizer Features in MySQL 5.6—Manyi Lu, Oracle Many optimizer features have been added into MySQL 5.6. This session provides an introduction to these great features. Multirange read, index condition pushdown, and batched key access will yield huge performance improvements on large data volumes. Structured explain, explain for update/delete/insert, and optimizer tracing will help users analyze and speed up queries. And last but not least, the session covers subquery optimizations in Release 5.6. Saturday, 7.00 pm, Room Golden Gate 4: BoF: Query Optimizations: What Is New and What Is Coming? This BoF presents common techniques for query optimization, covers what is new in MySQL 5.6, and provides a discussion forum in which attendees can tell the MySQL optimizer team which optimizations they would like to see in the future. Sunday, 1.15 pm, Room Golden Gate 8: Query Performance Comparison of MySQL 5.5 and MySQL 5.6—Øystein Grøvlen, Oracle MySQL Release 5.6 contains several improvements in the query optimizer that create improved performance for complex queries. This presentation looks at how MySQL 5.6 improves the performance of many of the queries in the DBT-3 benchmark. Based on the observed improvements, the presentation discusses what makes the specific queries perform better in Release 5.6. It describes the relevant new optimization techniques and gives examples of the types of queries that will benefit from these techniques. Sunday, 4.15 pm, Room Golden Gate 4: Powerful EXPLAIN in MySQL 5.6—Evgeny Potemkin, Oracle The EXPLAIN command of MySQL has long been a very useful tool for understanding how MySQL will execute a query. Release 5.6 of the MySQL database offers several new additions that give more-detailed information about the query plan and make it easier to understand at the same time. This presentation gives an overview of new EXPLAIN features: structured EXPLAIN in JSON format, EXPLAIN for INSERT/UPDATE/DELETE, and optimizer tracing. Examples in the session give insights into how you can take advantage of the new features. They show how these features supplement and relate to each other and to classical EXPLAIN and how and why the MySQL server chooses a particular query plan. You can check out the full program here as well as in the September edition of the MySQL newsletter. Not registered yet? You can still save US$ 300 over the on-site fee – Register Now!

    Read the article

  • Cost effective way to provide static media content

    - by james
    I'd like to be able to deliver around 50MB of static content, either in about 30 individual files up to 10MB or grouped into 3 compressed files, around 5k to 20k times a day. Ideally I'd like to put some sort of very basic security around providing the data to ensure that a request is from the expected source, but if tossing the security for a big reduction in price is possible then it's an option. Does anyone have any suggestions other than what I've found: Google AppEngine is $0.12/GB & I believe has a file size limit of 10MB so I'd have to break the data up a bit. So a rough calculation would seem to be that this would cost me about $30 to $120 a day. Or I've seen something like what seems to be just public static content delivery with no type of logic capabilities like Usenet.nl at what I think calculates to about $0.025/GB which would cost me about $6 to $25 a day. Any idea if I'm going about these calculations right & if there might be a better option for just static content on a decently high volume delivery? Again some basic security would be great but if cost is greatly reduced without it then I'm up for that.

    Read the article

  • "Zend Optimizer not installed" after I updated to Ubuntu 10.04

    - by Eugene
    Hi guys, I've just updated from 9.10 to 10.04. Everything seems to run fine except for zend optimizer which is throwing "Zend Optimizer not installed" error. I went to php.ini and the following line is still there Code: zend_extension=/etc/php5/ZendOptimizer.so Also I checked that the file does exist and that the php.ini I am looking at is in fact the php.ini file that is being used by the server. Please let me know if you have any ideas about how to fix or debug this. Thanks, Eugene

    Read the article

  • Landed Cost Management Integration with OPM Financials

    - by Robert Story
    Upcoming WebcastTitle: Landed Cost Management Integration with OPM FinancialsDate: April 21, 2010 Time: 11:00 am EDT, 9:00 am PDT, 8:00 am MDT Product Family: EBS: Process Manufacturing Summary This one-hour session will present setup overview and detailed steps for a test case, and is recommended for functional users who are using OPM Financials module with an actual costing method. Topics will include: Overview on Landed Cost Management functionality Setup steps and a test case Some technical considerations Documentation and other reference materials available A short, live demonstration (only if applicable) and question and answer period will be included. Click here to register for this session....... ....... ....... ....... ....... ....... .......The above webcast is a service of the E-Business Suite Communities in My Oracle Support.For more information on other webcasts, please reference the Oracle Advisor Webcast Schedule.Click here to visit the E-Business Communities in My Oracle Support Note that all links require access to My Oracle Support.

    Read the article

  • Developing a Cost Model for Cloud Applications

    - by BuckWoody
    Note - please pay attention to the date of this post. As much as I attempt to make the information below accurate, the nature of distributed computing means that components, units and pricing will change over time. The definitive costs for Microsoft Windows Azure and SQL Azure are located here, and are more accurate than anything you will see in this post: http://www.microsoft.com/windowsazure/offers/  When writing software that is run on a Platform-as-a-Service (PaaS) offering like Windows Azure / SQL Azure, one of the questions you must answer is how much the system will cost. I will not discuss the comparisons between on-premise costs (which are nigh impossible to calculate accurately) versus cloud costs, but instead focus on creating a general model for estimating costs for a given application. You should be aware that there are (at this writing) two billing mechanisms for Windows and SQL Azure: “Pay-as-you-go” or consumption, and “Subscription” or commitment. Conceptually, you can consider the former a pay-as-you-go cell phone plan, where you pay by the unit used (at a slightly higher rate) and the latter as a standard cell phone plan where you commit to a contract and thus pay lower rates. In this post I’ll stick with the pay-as-you-go mechanism for simplicity, which should be the maximum cost you would pay. From there you may be able to get a lower cost if you use the other mechanism. In any case, the model you create should hold. Developing a good cost model is essential. As a developer or architect, you’ll most certainly be asked how much something will cost, and you need to have a reliable way to estimate that. Businesses and Organizations have been used to paying for servers, software licenses, and other infrastructure as an up-front cost, and power, people to the systems and so on as an ongoing (and sometimes not factored) cost. When presented with a new paradigm like distributed computing, they may not understand the true cost/value proposition, and that’s where the architect and developer can guide the conversation to make a choice based on features of the application versus the true costs. The two big buckets of use-types for these applications are customer-based and steady-state. In the customer-based use type, each successful use of the program results in a sale or income for your organization. Perhaps you’ve written an application that provides the spot-price of foo, and your customer pays for the use of that application. In that case, once you’ve estimated your cost for a successful traversal of the application, you can build that into the price you charge the user. It’s a standard restaurant model, where the price of the meal is determined by the cost of making it, plus any profit you can make. In the second use-type, the application will be used by a more-or-less constant number of processes or users and no direct revenue is attached to the system. A typical example is a customer-tracking system used by the employees within your company. In this case, the cost model is often created “in reverse” - meaning that you pilot the application, monitor the use (and costs) and that cost is held steady. This is where the comparison with an on-premise system becomes necessary, even though it is more difficult to estimate those on-premise true costs. For instance, do you know exactly how much cost the air conditioning is because you have a team of system administrators? This may sound trivial, but that, along with the insurance for the building, the wiring, and every other part of the system is in fact a cost to the business. There are three primary methods that I’ve been successful with in estimating the cost. None are perfect, all are demand-driven. The general process is to lay out a matrix of: components units cost per unit and then multiply that times the usage of the system, based on which components you use in the program. That sounds a bit simplistic, but using those metrics in a calculation becomes more detailed. In all of the methods that follow, you need to know your application. The components for a PaaS include computing instances, storage, transactions, bandwidth and in the case of SQL Azure, database size. In most cases, architects start with the first model and progress through the other methods to gain accuracy. Simple Estimation The simplest way to calculate costs is to architect the application (even UML or on-paper, no coding involved) and then estimate which of the components you’ll use, and how much of each will be used. Microsoft provides two tools to do this - one is a simple slider-application located here: http://www.microsoft.com/windowsazure/pricing-calculator/  The other is a tool you download to create an “Return on Investment” (ROI) spreadsheet, which has the advantage of leading you through various questions to estimate what you plan to use, located here: https://roianalyst.alinean.com/msft/AutoLogin.do?d=176318219048082115  You can also just create a spreadsheet yourself with a structure like this: Program Element Azure Component Unit of Measure Cost Per Unit Estimated Use of Component Total Cost Per Component Cumulative Cost               Of course, the consideration with this model is that it is difficult to predict a system that is not running or hasn’t even been developed. Which brings us to the next model type. Measure and Project A more accurate model is to actually write the code for the application, using the Software Development Kit (SDK) which can run entirely disconnected from Azure. The code should be instrumented to estimate the use of the application components, logging to a local file on the development system. A series of unit and integration tests should be run, which will create load on the test system. You can use standard development concepts to track this usage, and even use Windows Performance Monitor counters. The best place to start with this method is to use the Windows Azure Diagnostics subsystem in your code, which you can read more about here: http://blogs.msdn.com/b/sumitm/archive/2009/11/18/introducing-windows-azure-diagnostics.aspx This set of API’s greatly simplifies tracking the application, and in fact you can use this information for more than just a cost model. After you have the tracking logs, you can plug the numbers into ay of the tools above, which should give a representative cost or in some cases a unit cost. The consideration with this model is that the SDK fabric is not a one-to-one comparison with performance on the actual Windows Azure fabric. Those differences are usually smaller, but they do need to be considered. Also, you may not be able to accurately predict the load on the system, which might lead to an architectural change, which changes the model. This leads us to the next, most accurate method for a cost model. Sample and Estimate Using standard statistical and other predictive math, once the application is deployed you will get a bill each month from Microsoft for your Azure usage. The bill is quite detailed, and you can export the data from it to do analysis, and using methods like regression and so on project out into the future what the costs will be. I normally advise that the architect also extrapolate a unit cost from those metrics as well. This is the information that should be reported back to the executives that pay the bills: the past cost, future projected costs, and unit cost “per click” or “per transaction”, as your case warrants. The challenge here is in the model itself - statistical methods are not foolproof, and the larger the sample (in this case I recommend the entire population, not a smaller sample) is key. References and Tools Articles: http://blogs.msdn.com/b/patrick_butler_monterde/archive/2010/02/10/windows-azure-billing-overview.aspx http://technet.microsoft.com/en-us/magazine/gg213848.aspx http://blog.codingoutloud.com/2011/06/05/azure-faq-how-much-will-it-cost-me-to-run-my-application-on-windows-azure/ http://blogs.msdn.com/b/johnalioto/archive/2010/08/25/10054193.aspx http://geekswithblogs.net/iupdateable/archive/2010/02/08/qampa-how-can-i-calculate-the-tco-and-roi-when.aspx   Other Tools: http://cloud-assessment.com/ http://communities.quest.com/community/cloud_tools

    Read the article

  • Turn-based games [closed]

    - by Blue
    I've been looking for tutorials on turn-based games. I found an incomplete tutorial series by InsugentX about turn-based games. I haven't looked through it, but since it's incomplete, I worry that I won't be able to finish the scripts. I'm looking for tutorials or some good tips or advice to create turn-based games(similar to Worms). Recently I finished watching the WalkerBoys' tutorials so I am familiar with code. Where can I find some info and/or tutorials on creating Turn-based games? I'd prefer it to be video format. How can I create turn-based games (not the entire thing, only the set-up) or a turn-based event like in Worms? To explain more, How do I create 2 parties(1st player, 2nd player) exchanging turns(turn-based games and/or hotseat). While parties have characters similar to Worms(having more than 1 character within each party)? Do I use an array, an enum? I don't have any experience in turn-based games, so I would like to know how to actually make turn-based games. I can't find any reference to help me with construction of a turn-based game code similar to Worms in a programming language I can understand.

    Read the article

  • Is there a market for a Text-based empire-building game?

    - by Vishnu
    I am working on building a text-based in-browser empire building game. The screen will be split into a console and an EXTREMELY rough vector map of your empire (just squares in a bigger square). Commands such as building and expanding would be typed into the console and automatically reflected in the map. Would there be any market for such a game? Would anyone want to play? To clarify, it would be online and everyone's empire would be in the same 'world'.

    Read the article

  • need recommendation for running PHP/Zend based optimizer

    - by senorsmile
    Firstly, I must admit that I don't know much about setting up PHP beyond the basics. I have an Ubuntu 10.04 server system (hosted) running primarily as an FTP store for a commercial store software. The server that the commercial store is installed on is unfortunately not very reliable, and would like to move that to this Ubuntu 10.04 server. (We've already received permission from the store vendor to do this.) My problem is that they use Zend optimizer which is only compatible with PHP 5.2. I have tried a couple of "hacks" to downgrade PHP to 5.2, but it breaks so many other things that it doesn't seem worth it. My idea is to install some sort of container of Ubuntu 8.04 (like OpenVZ) on the server to house a native install of PHP 5.2 to meet the dependency of the store software. However, it appears that OpenVZ is no longer supported on Ubuntu. Is there another solution similar that I could run on a hosted server to installed a separate "container-like" 8.04 system?

    Read the article

  • .NET Libraries Cost More Than Windows?

    - by Kevin Mark
    When looking into libraries to make my programming life a little bit easier I've (almost) always been disappointed by the prices offered. For instance, Actipro's WPF Studio is $650. I suppose that's worth it if you plan to make money from the use of those controls. But take a look at, say, Windows. Windows 7 Ultimate is just about $220. I consider Windows to be a far more complex and "worth-it" product/purchase than a library that runs on it. Why the significant difference in pricing? Do libraries really need to be so expensive, or do they need to charge more in order to make a decent some of money?

    Read the article

  • Time based movement Vs Frame rate based movement?

    - by sil3nt
    Hello there, I'm new to Game programmming and SDL, and I have been following Lazyfoo's SDL tutorials. My question is related to time based motion and frame rate based motion, basically which is better or appropriate depending on situations?. Could you give me an example where each of these methods are used?. Another question I have is that, in lazyfoo's two Motion tutorials (FPS based and time based) The time based method showed a much smoother animation while the Frame rate based one was a little hiccupy, meaning you could clearly see the gap between the previous location of the dot and its current position when you compare the two programs. As beginner which method should I stick to?(all I want is smooth animations).

    Read the article

  • Component based game engine issue

    - by Mathias Hölzl
    We are just switching from a hierarchy based game engine to a component based game engine. My problem is that when I load a model which has has a hierarchy of meshes and the way I understand is that a entity in a component based system can not have multiple components of the same type, but I need a "meshComponent" for each mesh in a model. So how could I solve this problem. On this side they implemented a Component based game engine: http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy/

    Read the article

  • SQLAuthority News – Statistics Used by the Query Optimizer in Microsoft SQL Server 2008 – Microsoft Whitepaper

    - by pinaldave
    I recently presented session on Statistics and Best Practices in Virtual Tech Days on Nov 22, 2010. The sessions was very popular and I got many questions right after the sessions. The number question I had received was where everybody can get the further information. I am very much happy that my sessions created some curiosity for one of the most important feature of the SQL Server. Statistics are the heart of the SQL Server. Microsoft has published a white paper on the subject how statistics are useful to Query Optimizer. Here is the abstract of the same white paper from Microsoft. Statistics Used by the Query Optimizer in Microsoft SQL Server 2008 Writer: Eric N. Hanson and Yavor Angelov Microsoft SQL Server 2008 collects statistical information about indexes and column data stored in the database. These statistics are used by the SQL Server query optimizer to choose the most efficient plan for retrieving or updating data. This paper describes what data is collected, where it is stored, and which commands create, update, and delete statistics. By default, SQL Server 2008 also creates and updates statistics automatically, when such an operation is considered to be useful. This paper also outlines how these defaults can be changed on different levels (column, table, and database). In addition, it presents how certain query language features, such as Transact-SQL variables, interact with use of statistics by the optimizer, and it provides guidance for using these features when writing queries so you can obtain good query performance. Link to white paper Statistics Used by the Query Optimizer in Microsoft SQL Server 2008 ?Reference: Pinal Dave (http://blog.SQLAuthority.com)   Filed under: Pinal Dave, SQL, SQL Authority, SQL Documentation, SQL Download, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL White Papers, SQLAuthority News, T SQL, Technology

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >