Search Results

Search found 75 results on 3 pages for 'frustum'.

Page 1/3 | 1 2 3  | Next Page >

  • problem with frustum AABB culling in DirectX

    - by Matthew Poole
    Hi, I am currently working on a project with a few friends, and I am trying to get frustum culling working. Every single tutorial or article I go to shows that my math is correct and that this should be working. I thought maybe posting here, somebody would catch something I could not. Thank you. Here are the important code snippets /create the projection matrix void CD3DCamera::SetLens(float fov, float aspect, float nearZ, float farZ) { D3DXMatrixPerspectiveFovLH(&projMat, D3DXToRadian(fov), aspect, nearZ, farZ); } //build the view matrix after changes have been made to camera void CD3DCamera::BuildView() { //keep axes orthoganal D3DXVec3Normalize(&look, &look); //up D3DXVec3Cross(&up, &look, &right); D3DXVec3Normalize(&up, &up); //right D3DXVec3Cross(&right, &up, &look); D3DXVec3Normalize(&right, &right); //fill view matrix float x = -D3DXVec3Dot(&position, &right); float y = -D3DXVec3Dot(&position, &up); float z = -D3DXVec3Dot(&position, &look); viewMat(0,0) = right.x; viewMat(1,0) = right.y; viewMat(2,0) = right.z; viewMat(3,0) = x; viewMat(0,1) = up.x; viewMat(1,1) = up.y; viewMat(2,1) = up.z; viewMat(3,1) = y; viewMat(0,2) = look.x; viewMat(1,2) = look.y; viewMat(2,2) = look.z; viewMat(3,2) = z; viewMat(0,3) = 0.0f; viewMat(1,3) = 0.0f; viewMat(2,3) = 0.0f; viewMat(3,3) = 1.0f; } void CD3DCamera::BuildFrustum() { D3DXMATRIX VP; D3DXMatrixMultiply(&VP, &viewMat, &projMat); D3DXVECTOR4 col0(VP(0,0), VP(1,0), VP(2,0), VP(3,0)); D3DXVECTOR4 col1(VP(0,1), VP(1,1), VP(2,1), VP(3,1)); D3DXVECTOR4 col2(VP(0,2), VP(1,2), VP(2,2), VP(3,2)); D3DXVECTOR4 col3(VP(0,3), VP(1,3), VP(2,3), VP(3,3)); // Planes face inward frustum[0] = (D3DXPLANE)(col2); // near frustum[1] = (D3DXPLANE)(col3 - col2); // far frustum[2] = (D3DXPLANE)(col3 + col0); // left frustum[3] = (D3DXPLANE)(col3 - col0); // right frustum[4] = (D3DXPLANE)(col3 - col1); // top frustum[5] = (D3DXPLANE)(col3 + col1); // bottom // Normalize the frustum for( int i = 0; i < 6; ++i ) D3DXPlaneNormalize( &frustum[i], &frustum[i] ); } bool FrustumCheck(D3DXVECTOR3 max, D3DXVECTOR3 min, const D3DXPLANE* frustum) { // Test assumes frustum planes face inward. D3DXVECTOR3 P; D3DXVECTOR3 Q; bool ret = false; for(int i = 0; i < 6; ++i) { // For each coordinate axis x, y, z... for(int j = 0; j < 3; ++j) { // Make PQ point in the same direction as the plane normal on this axis. if( frustum[i][j] > 0.0f ) { P[j] = min[j]; Q[j] = max[j]; } else { P[j] = max[j]; Q[j] = min[j]; } } if(D3DXPlaneDotCoord(&frustum[i], &Q) < 0.0f ) ret = false; } return true; }

    Read the article

  • Compute directional light frustum from view furstum points and light direction

    - by Fabian
    I'm working on a friends engine project and my task is to construct a new frustum from the light direction that overlaps the view frustum and possible shadow casters. The project already has a function that creates a frustum for this but its way to big and includes way to many casters (shadows) which can't be seen in the view frustum. Now the only parameter of this function are the normalized light direction vector and a view class which lets me extract the 8 view frustum points in world space. I don't have any additional infos about the scene. I have read some of the related Questions here but non seem to fit very well to my problem as they often just point to cascaded shadow maps. Sadly i can't use DX or openGl functions directly because this engine has a dedicated math library. From what i've read so far the steps are: Transform view frustum points into light space and find min/max x and y values (or sometimes minima and maxima of all three axis) and create a AABB using the min/max vectors. But what comes after this step? How do i transform this new AABB back to world space? What i've done so far: CVector3 Points[8], MinLight = CVector3(FLT_MAX), MaxLight = CVector3(FLT_MAX); for(int i = 0; i<8;++i){ Points[i] = Points[i] * WorldToShadowMapMatrix; MinLight = Math::Min(Points[i],MinLight); MaxLight = Math::Max(Points[i],MaxLight); } AABox box(MinLight,MaxLight); I don't think this is the right way to do it. The near plain probably has to extend into the direction of the light source to include potentional shadow casters. I've read the Microsoft article about cascaded shadow maps http://msdn.microsoft.com/en-us/library/windows/desktop/ee416307%28v=vs.85%29.aspx which also includes some sample code. But they seem to use the scenes AABB to determine the near and far plane which I can't since i cant access this information from the funtion I'm working in. Could you guys please link some example code which shows the calculation of such frustum? Thanks in advance! Additional questio: is there a way to construct a WorldToFrustum matrix that represents the above transformation?

    Read the article

  • Finding cubes in frustum

    - by salmonmoose
    Working with an infinite set of cubes, is there a way of detecting which cubes exist within a frustum? Most frustum culling seems to work along the lines of running through all objects and seeing if they intersect - this is ok with a finite set of objects, or something like Octrees. I'm currently finding all cubes within the frustum's bounding box - but that's far more than I really need. I could then test these all against it, but I was wondering if I could skip a step.

    Read the article

  • Arbitrary projection matrix from 6 arbitrary frustum planes

    - by Doub
    A projection matrix represent a tranformation from the camera view space to the rendering system clip space. In other words, it defines the transormation between a 6-sided frustum to the clip cube. The glOrtho and glFrustum use only 6 parameter to define such a projection, but impose several constraints on the frustum that will get projected to the clip cube: the near and far planes are parallel, the left and right planes intersect on a vertical line, and the top and bottom planes intersect on a horizontal lines, both lines being parallel to the near and far planes. I'd like to lift these restrictions. So, from the definition of the 6 frustum side planes (in whatever representation you see fit), how can I compute a general projection matrix?

    Read the article

  • Extracting Frustum Planes (Hartmann & Gribbs method)

    - by DAVco
    I have been grappling with the Hartmann/Gribbs method of extracting the Frustum planes for some time now, with little success. There doesn't appear to be a "definitive" topic or tutorial which combines all the necessary information, so perhaps this can be it First of all, I am attempting to do this in C# (For Playstation Mobile), using OpenGL style Column-Major matrices in a Right-Handed coordinate system but obviously the math will work in any language. My projection matrix has a Near plane at 1.0, Far plane at 1000, FOV of 45.0 and Aspect of 1.7647. I want to get my planes in World-Space, so I build my frustum from the View-Projection Matrix (that's projectionMatrix * viewMatrix). The view Matrix is the inverse of the camera's World-Transform. The problem is; regardless of what I tweak, I can't seem to get a correct frustum. I think that I may be missing something obvious. Focusing on the Near and Far planes for the moment (since they have the most obvious normals when correct), when my camera is positioned looking down the negative z-axis, I get two planes facing in the same direction, rather than opposite directions. If i strafe my camera left and right (while still looking along the z axis) the x value of the normal vector changes. Obviously, something is fundamentally wrong here; I just can't figure out what - maybe someone here can?

    Read the article

  • Determine percentage of screen covered by an object without using frustum culling

    - by Meltac
    On the CPU-side of an 3D first-person / ego perspective game I need to check whether what the players currently sees on screen is the inside of a box object defined by world space coordinates (the player might be outside of that box but on screen sees only/mostly the inside of the box, or vice-versa, looks from within the box to the outside). The "casual" way of performing such a check would incorporate frustum culling but such an approach would be hard to achieve with my given set of engine parameters which I'd like to avoid if there is a simpler way. What I actually have at the point where I would like to do the check (high-level script on CPU, not GPU side): Camera world position Camera direction Camera FOV Two Box corner world coordinates (left-bottom-front, right-top-back) What I do not have right away: View frustrum definition (near/far plane or say 6 planes defining frustum) Any specific pixel information (uv, view space position, depth or the like) What I would like to calculate: Percentage of screen "covered" by box. Any hints on how to perform such calculation?

    Read the article

  • View Frustum Alternative

    - by Kuros
    I am working on a simulation project that requires me to have entities walking around in a 3D world. I have all that working, matrix transformations, etc. I'm at the point where I need what is essentially a view frustum, so I can give each entity a visible area. However, when looking over the calculations required to do it, it seems like a perspective frustum is only required to be able to project it onto a 2D screen. Is there another, easier to code solution, that would function better, such as an orthogonal perspective? Could I just define a shape mathematically and test wether the coordinates of the objects are inside or out? I am not really a 3D coder (and I am doing this all from scratch, not using an engine or anything), so I would like the simplest solution possible for my needs. Thank you!

    Read the article

  • Camera frustum calculation coming out wrong

    - by Telanor
    I'm trying to calculate a view/projection/bounding frustum for the 6 directions of a point light and I'm having trouble with the views pointing along the Y axis. Our game uses a right-handed, Y-up system. For the other 4 directions I create the LookAt matrix using (0, 1, 0) as the up vector. Obviously that doesn't work when looking along the Y axis so for those I use an up vector of (-1, 0, 0) for -Y and (1, 0, 0) for +Y. The view matrix seems to come out correctly (and the projection matrix always stays the same), but the bounding frustum is definitely wrong. Can anyone see what I'm doing wrong? This is the code I'm using: camera.Projection = Matrix.PerspectiveFovRH((float)Math.PI / 2, ShadowMapSize / (float)ShadowMapSize, 1, 5); for(var i = 0; i < 6; i++) { var renderTargetView = shadowMap.GetRenderTargetView((TextureCubeFace)i); var up = DetermineLightUp((TextureCubeFace) i); var forward = DirectionToVector((TextureCubeFace) i); camera.View = Matrix.LookAtRH(this.Position, this.Position + forward, up); camera.BoundingFrustum = new BoundingFrustum(camera.View * camera.Projection); } private static Vector3 DirectionToVector(TextureCubeFace direction) { switch (direction) { case TextureCubeFace.NegativeX: return -Vector3.UnitX; case TextureCubeFace.NegativeY: return -Vector3.UnitY; case TextureCubeFace.NegativeZ: return -Vector3.UnitZ; case TextureCubeFace.PositiveX: return Vector3.UnitX; case TextureCubeFace.PositiveY: return Vector3.UnitY; case TextureCubeFace.PositiveZ: return Vector3.UnitZ; default: throw new ArgumentOutOfRangeException("direction"); } } private static Vector3 DetermineLightUp(TextureCubeFace direction) { switch (direction) { case TextureCubeFace.NegativeY: return -Vector3.UnitX; case TextureCubeFace.PositiveY: return Vector3.UnitX; default: return Vector3.UnitY; } } Edit: Here's what the values are coming out to for the PositiveX and PositiveY directions: Constants: Position = {X:0 Y:360 Z:0} camera.Projection = [M11:0.9999999 M12:0 M13:0 M14:0] [M21:0 M22:0.9999999 M23:0 M24:0] [M31:0 M32:0 M33:-1.25 M34:-1] [M41:0 M42:0 M43:-1.25 M44:0] PositiveX: up = {X:0 Y:1 Z:0} target = {X:1 Y:360 Z:0} camera.View = [M11:0 M12:0 M13:-1 M14:0] [M21:0 M22:1 M23:0 M24:0] [M31:1 M32:0 M33:0 M34:0] [M41:0 M42:-360 M43:0 M44:1] camera.BoundingFrustum: Matrix = [M11:0 M12:0 M13:1.25 M14:1] [M21:0 M22:0.9999999 M23:0 M24:0] [M31:0.9999999 M32:0 M33:0 M34:0] [M41:0 M42:-360 M43:-1.25 M44:0] Top = {A:0.7071068 B:-0.7071068 C:0 D:254.5584} Bottom = {A:0.7071068 B:0.7071068 C:0 D:-254.5584} Left = {A:0.7071068 B:0 C:0.7071068 D:0} Right = {A:0.7071068 B:0 C:-0.7071068 D:0} Near = {A:1 B:0 C:0 D:-1} Far = {A:-1 B:0 C:0 D:5} PositiveY: up = {X:0 Y:0 Z:-1} target = {X:0 Y:361 Z:0} camera.View = [M11:-1 M12:0 M13:0 M14:0] [M21:0 M22:0 M23:-1 M24:0] [M31:0 M32:-1 M33:0 M34:0] [M41:0 M42:0 M43:360 M44:1] camera.BoundingFrustum: Matrix = [M11:-0.9999999 M12:0 M13:0 M14:0] [M21:0 M22:0 M23:1.25 M24:1] [M31:0 M32:-0.9999999 M33:0 M34:0] [M41:0 M42:0 M43:-451.25 M44:-360] Top = {A:0 B:0.7071068 C:0.7071068 D:-254.5585} Bottom = {A:0 B:0.7071068 C:-0.7071068 D:-254.5585} Left = {A:-0.7071068 B:0.7071068 C:0 D:-254.5585} Right = {A:0.7071068 B:0.7071068 C:0 D:-254.5585} Near = {A:0 B:1 C:0 D:-361} Far = {A:0 B:-1 C:0 D:365} When I use the resulting BoundingFrustum to cull regions outside of it, this is the result: Pass PositiveX: Drew 3 regions Pass NegativeX: Drew 6 regions Pass PositiveY: Drew 400 regions Pass NegativeY: Drew 36 regions Pass PositiveZ: Drew 3 regions Pass NegativeZ: Drew 6 regions There are only 400 regions to draw and the light is in the center of them. As you can see, the PositiveY direction is drawing every single region. With the near/far planes of the perspective matrix set as small as they are, there's no way a single frustum could contain every single region.

    Read the article

  • Determine corners of a specific plane in the frustum

    - by Takumi
    I'm working on a game with a 2D view in a 3D world. It's a kind of shoot'em up. I've a spaceship at the center of the screen and i want that ennemies appear at the borders of my window. Now i don't know how to determine positions of the borders of the window. For example, my camera is at (0,0,0) and looking forward (0,0,1). I set my spaceship at (0,0,50). I also know the near plane (1) and the far plane(1000). I think i'd have to find the 4 corners of the plane in the frustum whose z position is 50, and with these corner i can determine borders. But i don't know how to determine x and y.

    Read the article

  • Linear search vs Octree (Frustum cull)

    - by Dave
    I am wondering whether I should look into implementing an octree of some kind. I have a very simple game which consists of a 3d plane for the floor. There are multiple objects scattered around on the ground, each one has an aabb in world space. Currently I just do a loop through the list of all these objects and check if its bounding box intersects with the frustum, it works great but I am wondering if if it would be a good investment in an octree. I only have max 512 of these objects on the map and they all contain bounding boxes. I am not sure if an octree would make it faster since I have so little objects in the scene.

    Read the article

  • My frustum culling is culling from the wrong point

    - by Xbetas
    I'm having problems with my frustum being in the wrong origin. It follows the rotation of my camera but not the position. In my camera class I'm generating a view-matrix: void Camera::Update() { UpdateViewMatrix(); glMatrixMode(GL_MODELVIEW); //glLoadIdentity(); glLoadMatrixf(GetViewMatrix().m); } Then extracting the planes using the projection matrix and modelview matrix: void UpdateFrustum() { Matrix4x4 projection, model, clip; glGetFloatv(GL_PROJECTION_MATRIX, projection.m); glGetFloatv(GL_MODELVIEW_MATRIX, model.m); clip = model * projection; m_Planes[RIGHT][0] = clip.m[ 3] - clip.m[ 0]; m_Planes[RIGHT][1] = clip.m[ 7] - clip.m[ 4]; m_Planes[RIGHT][2] = clip.m[11] - clip.m[ 8]; m_Planes[RIGHT][3] = clip.m[15] - clip.m[12]; NormalizePlane(RIGHT); m_Planes[LEFT][0] = clip.m[ 3] + clip.m[ 0]; m_Planes[LEFT][1] = clip.m[ 7] + clip.m[ 4]; m_Planes[LEFT][2] = clip.m[11] + clip.m[ 8]; m_Planes[LEFT][3] = clip.m[15] + clip.m[12]; NormalizePlane(LEFT); m_Planes[BOTTOM][0] = clip.m[ 3] + clip.m[ 1]; m_Planes[BOTTOM][1] = clip.m[ 7] + clip.m[ 5]; m_Planes[BOTTOM][2] = clip.m[11] + clip.m[ 9]; m_Planes[BOTTOM][3] = clip.m[15] + clip.m[13]; NormalizePlane(BOTTOM); m_Planes[TOP][0] = clip.m[ 3] - clip.m[ 1]; m_Planes[TOP][1] = clip.m[ 7] - clip.m[ 5]; m_Planes[TOP][2] = clip.m[11] - clip.m[ 9]; m_Planes[TOP][3] = clip.m[15] - clip.m[13]; NormalizePlane(TOP); m_Planes[NEAR][0] = clip.m[ 3] + clip.m[ 2]; m_Planes[NEAR][1] = clip.m[ 7] + clip.m[ 6]; m_Planes[NEAR][2] = clip.m[11] + clip.m[10]; m_Planes[NEAR][3] = clip.m[15] + clip.m[14]; NormalizePlane(NEAR); m_Planes[FAR][0] = clip.m[ 3] - clip.m[ 2]; m_Planes[FAR][1] = clip.m[ 7] - clip.m[ 6]; m_Planes[FAR][2] = clip.m[11] - clip.m[10]; m_Planes[FAR][3] = clip.m[15] - clip.m[14]; NormalizePlane(FAR); } void NormalizePlane(int side) { float length = 1.0/(float)sqrt(m_Planes[side][0] * m_Planes[side][0] + m_Planes[side][1] * m_Planes[side][1] + m_Planes[side][2] * m_Planes[side][2]); m_Planes[side][0] /= length; m_Planes[side][1] /= length; m_Planes[side][2] /= length; m_Planes[side][3] /= length; } And check against it with: bool PointInFrustum(float x, float y, float z) { for(int i = 0; i < 6; i++) { if( m_Planes[i][0] * x + m_Planes[i][1] * y + m_Planes[i][2] * z + m_Planes[i][3] <= 0 ) return false; } return true; } Then i render using: camera->Update(); UpdateFrustum(); int numCulled = 0; for(int i = 0; i < (int)meshes.size(); i++) { if(!PointInFrustum(meshCenter.x, meshCenter.y, meshCenter.z)) { meshes[i]->SetDraw(false); numCulled++; } else meshes[i]->SetDraw(true); } What am i doing wrong?

    Read the article

  • My frustum culling is culling from the wrong point [SOLVED]

    - by Xbetas
    I'm having problems with my frustum being in the wrong origin. It follows the rotation of my camera but not the position. In my camera class I'm generating a view-matrix: void Camera::Update() { UpdateViewMatrix(); glMatrixMode(GL_MODELVIEW); //glLoadIdentity(); glLoadMatrixf(GetViewMatrix().m); } Then extracting the planes using the projection matrix and modelview matrix: void UpdateFrustum() { Matrix4x4 projection, model, clip; glGetFloatv(GL_PROJECTION_MATRIX, projection.m); glGetFloatv(GL_MODELVIEW_MATRIX, model.m); clip = model * projection; m_Planes[RIGHT][0] = clip.m[ 3] - clip.m[ 0]; m_Planes[RIGHT][1] = clip.m[ 7] - clip.m[ 4]; m_Planes[RIGHT][2] = clip.m[11] - clip.m[ 8]; m_Planes[RIGHT][3] = clip.m[15] - clip.m[12]; NormalizePlane(RIGHT); m_Planes[LEFT][0] = clip.m[ 3] + clip.m[ 0]; m_Planes[LEFT][1] = clip.m[ 7] + clip.m[ 4]; m_Planes[LEFT][2] = clip.m[11] + clip.m[ 8]; m_Planes[LEFT][3] = clip.m[15] + clip.m[12]; NormalizePlane(LEFT); m_Planes[BOTTOM][0] = clip.m[ 3] + clip.m[ 1]; m_Planes[BOTTOM][1] = clip.m[ 7] + clip.m[ 5]; m_Planes[BOTTOM][2] = clip.m[11] + clip.m[ 9]; m_Planes[BOTTOM][3] = clip.m[15] + clip.m[13]; NormalizePlane(BOTTOM); m_Planes[TOP][0] = clip.m[ 3] - clip.m[ 1]; m_Planes[TOP][1] = clip.m[ 7] - clip.m[ 5]; m_Planes[TOP][2] = clip.m[11] - clip.m[ 9]; m_Planes[TOP][3] = clip.m[15] - clip.m[13]; NormalizePlane(TOP); m_Planes[NEAR][0] = clip.m[ 3] + clip.m[ 2]; m_Planes[NEAR][1] = clip.m[ 7] + clip.m[ 6]; m_Planes[NEAR][2] = clip.m[11] + clip.m[10]; m_Planes[NEAR][3] = clip.m[15] + clip.m[14]; NormalizePlane(NEAR); m_Planes[FAR][0] = clip.m[ 3] - clip.m[ 2]; m_Planes[FAR][1] = clip.m[ 7] - clip.m[ 6]; m_Planes[FAR][2] = clip.m[11] - clip.m[10]; m_Planes[FAR][3] = clip.m[15] - clip.m[14]; NormalizePlane(FAR); } void NormalizePlane(int side) { float length = 1.0/(float)sqrt(m_Planes[side][0] * m_Planes[side][0] + m_Planes[side][1] * m_Planes[side][1] + m_Planes[side][2] * m_Planes[side][2]); m_Planes[side][0] *= length; m_Planes[side][1] *= length; m_Planes[side][2] *= length; m_Planes[side][3] *= length; } And check against it with: bool PointInFrustum(float x, float y, float z) { for(int i = 0; i < 6; i++) { if( m_Planes[i][0] * x + m_Planes[i][1] * y + m_Planes[i][2] * z + m_Planes[i][3] <= 0 ) return false; } return true; } Then i render using: camera->Update(); UpdateFrustum(); int numCulled = 0; for(int i = 0; i < (int)meshes.size(); i++) { if(!PointInFrustum(meshCenter.x, meshCenter.y, meshCenter.z)) { meshes[i]->SetDraw(false); numCulled++; } else meshes[i]->SetDraw(true); } Matrices look like (Camera is at (5, 0, 0)): ModelView [0,0,0.99,0] [0,1,0,0] [-0.99,0,0,0] [0,0,-5,1] Projection [0.814,0,0,0] [0,1.303,0,0] [0,0,-1,0] [0,0,-0.02,0] Clip [0,0,-1,-0.999] [0,1.30,0,0] [-0.814,0,0,0] [0,0,4.98,4.99] What am i doing wrong?

    Read the article

  • Unity Frustum Culling Issue

    - by N0xus
    I'm creating a game that utilizes off center projection. I've got my game set up in a CAVE being rendered in a cluster, over 8 PC's with 4 of these PC's being used for each eye (this creates a stereoscopic effect). To help with alignment in the CAVE I've implemented an off center projection class. This class simply tells the camera what its top left, bottom left & bottom right corners are. From here, it creates a new projection matrix showing the the player the left and right of their world. However, inside Unity's editor, the camera is still facing forwards and, as a result the culling inside Unity isn't rendering half of the image that appears on the left and right screens. Does anyone know of a way to to either turn off the culling in Unity, or find a way to fix the projection matrix issue?

    Read the article

  • Build a view frustum from angles

    - by MulletDevil
    I have 4 angles, left, right, top & bottom. These angles are in degrees. They define the angle between the forward vector and the corresponding side. I am trying to use these to calculate the required values for Perseective Off Centre function found here http://docs.unity3d.com/Documentation/ScriptReference/Camera-projectionMatrix.html I tried doing (near plane-far plane) * Tan(angle) But that didn't give the correct results.

    Read the article

  • Unity3D - Projection matrix camera frustum

    - by MulletDevil
    I've used off centre projection to create a custom projection matrix for my camera. When I run the game I can see the scene correctly in the game view but in the editor view the camera frustum is not correct. It still shows the original frustum shape not the new one. It also appears that Unity is using the original frustum for frustum culling and not the new one as I can see object being culled which are visible to the new frustum but would not be visible in the old one. Am I wrong in thinking that a custom projection matrix would alter the view frustum? Or am I missing something else?

    Read the article

  • OpenGL - Frustum not culling polygons beyond far plane

    - by Pladnius Brooks
    I have implemented frustum culling and am checking the bounding box for its intersection with the frustum planes. I added the ability to pause frustum updates which lets me see if the frustum culling has been working correctly. When I turn around after I have paused it, nothing renders behind me and to the left and right side, they taper off as well just as you would expect. Beyond the clip distance (far plane), they still render and I am not sure whether it is a problem with my frustum updating or bounding box checking code or I am using the wrong matrix or what. As I put the distance in the projection matrix at 3000.0f, it still says that bounding boxes well past that are still in the frustum, which isn't the case. Here is where I create my modelview matrix: projectionMatrix = glm::perspective(newFOV, 4.0f / 3.0f, 0.1f, 3000.0f); viewMatrix = glm::mat4(1.0); viewMatrix = glm::scale(viewMatrix, glm::vec3(1.0, 1.0, -1.0)); viewMatrix = glm::rotate(viewMatrix, anglePitch, glm::vec3(1.0, 0.0, 0.0)); viewMatrix = glm::rotate(viewMatrix, angleYaw, glm::vec3(0.0, 1.0, 0.0)); viewMatrix = glm::translate(viewMatrix, glm::vec3(-x, -y, -z)); modelViewProjectiomMatrix = projectionMatrix * viewMatrix; The reason I scale it by -1 in the Z direction is because the levels were designed to be rendered with DirectX so I reverse the Z direction. Here is where I update my frustum: void CFrustum::calculateFrustum() { glm::mat4 mat = camera.getModelViewProjectionMatrix(); // Calculate the LEFT side m_Frustum[LEFT][A] = (mat[0][3]) + (mat[0][0]); m_Frustum[LEFT][B] = (mat[1][3]) + (mat[1][0]); m_Frustum[LEFT][C] = (mat[2][3]) + (mat[2][0]); m_Frustum[LEFT][D] = (mat[3][3]) + (mat[3][0]); // Calculate the RIGHT side m_Frustum[RIGHT][A] = (mat[0][3]) - (mat[0][0]); m_Frustum[RIGHT][B] = (mat[1][3]) - (mat[1][0]); m_Frustum[RIGHT][C] = (mat[2][3]) - (mat[2][0]); m_Frustum[RIGHT][D] = (mat[3][3]) - (mat[3][0]); // Calculate the TOP side m_Frustum[TOP][A] = (mat[0][3]) - (mat[0][1]); m_Frustum[TOP][B] = (mat[1][3]) - (mat[1][1]); m_Frustum[TOP][C] = (mat[2][3]) - (mat[2][1]); m_Frustum[TOP][D] = (mat[3][3]) - (mat[3][1]); // Calculate the BOTTOM side m_Frustum[BOTTOM][A] = (mat[0][3]) + (mat[0][1]); m_Frustum[BOTTOM][B] = (mat[1][3]) + (mat[1][1]); m_Frustum[BOTTOM][C] = (mat[2][3]) + (mat[2][1]); m_Frustum[BOTTOM][D] = (mat[3][3]) + (mat[3][1]); // Calculate the FRONT side m_Frustum[FRONT][A] = (mat[0][3]) + (mat[0][2]); m_Frustum[FRONT][B] = (mat[1][3]) + (mat[1][2]); m_Frustum[FRONT][C] = (mat[2][3]) + (mat[2][2]); m_Frustum[FRONT][D] = (mat[3][3]) + (mat[3][2]); // Calculate the BACK side m_Frustum[BACK][A] = (mat[0][3]) - (mat[0][2]); m_Frustum[BACK][B] = (mat[1][3]) - (mat[1][2]); m_Frustum[BACK][C] = (mat[2][3]) - (mat[2][2]); m_Frustum[BACK][D] = (mat[3][3]) - (mat[3][2]); // Normalize all the sides NormalizePlane(m_Frustum, LEFT); NormalizePlane(m_Frustum, RIGHT); NormalizePlane(m_Frustum, TOP); NormalizePlane(m_Frustum, BOTTOM); NormalizePlane(m_Frustum, FRONT); NormalizePlane(m_Frustum, BACK); } And finally, where I check the bounding box: bool CFrustum::BoxInFrustum( float x, float y, float z, float x2, float y2, float z2) { // Go through all of the corners of the box and check then again each plane // in the frustum. If all of them are behind one of the planes, then it most // like is not in the frustum. for(int i = 0; i < 6; i++ ) { if(m_Frustum[i][A] * x + m_Frustum[i][B] * y + m_Frustum[i][C] * z + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * x2 + m_Frustum[i][B] * y + m_Frustum[i][C] * z + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * x + m_Frustum[i][B] * y2 + m_Frustum[i][C] * z + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * x2 + m_Frustum[i][B] * y2 + m_Frustum[i][C] * z + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * x + m_Frustum[i][B] * y + m_Frustum[i][C] * z2 + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * x2 + m_Frustum[i][B] * y + m_Frustum[i][C] * z2 + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * x + m_Frustum[i][B] * y2 + m_Frustum[i][C] * z2 + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * x2 + m_Frustum[i][B] * y2 + m_Frustum[i][C] * z2 + m_Frustum[i][D] > 0) continue; // If we get here, it isn't in the frustum return false; } // Return a true for the box being inside of the frustum return true; }

    Read the article

  • width of a frustum at a given distance from the near plane

    - by structolite
    I'm using CML to manage the 3D math in an OpenGL-based interface project I'm making for work. I need to know the width of the viewing frustum at a given distance from the eye point, which is kept as a part of a 4x4 matrix that represents the camera. My goal is to position gui objects along the apparent edge of the viewport, but at some distance into the screen from the near clipping plane. CML has a function to extract the planes of the frustum, giving them back in Ax + By + Cz + D = 0 form. This frustum is perpendicular to the camera, which isn't necessarily aligned with the z axis of the perspective projection. I'd like to extract x and z coordinates so as to pin graphical elements to the sides of the screen at different distances from the camera. What is the best way to go about doing it? Thanks!

    Read the article

  • Incorrect results for frustum cull

    - by DeadMG
    Previously, I had a problem with my frustum culling producing too optimistic results- that is, including many objects that were not in the view volume. Now I have refactored that code and produced a cull that should be accurate to the actual frustum, instead of an axis-aligned box approximation. The problem is that now it never returns anything to be in the view volume. As the mathematical support library I'm using does not provide plane support functions, I had to code much of this functionality myself, and I'm not really the mathematical type, so it's likely that I've made some silly error somewhere. As follows is the relevant code: class Plane { public: Plane() { r0 = Math::Vector(0,0,0); normal = Math::Vector(0,1,0); } Plane(Math::Vector p1, Math::Vector p2, Math::Vector p3) { r0 = p1; normal = Math::Cross((p2 - p1), (p3 - p1)); } Math::Vector r0; Math::Vector normal; }; This class represents one plane as a point and a normal vector. class Frustum { public: Frustum( const std::array<Math::Vector, 8>& points ) { planes[0] = Plane(points[0], points[1], points[2]); planes[1] = Plane(points[4], points[5], points[6]); planes[2] = Plane(points[0], points[1], points[4]); planes[3] = Plane(points[2], points[3], points[6]); planes[4] = Plane(points[0], points[2], points[4]); planes[5] = Plane(points[1], points[3], points[5]); } Plane planes[6]; }; The points are passed in order where (the inverse of) each bit of the index of each point indicates whether it's the left, top, and back of the frustum, respectively. As such, I just picked any three points where they all shared one bit in common to define the planes. My intersection test is as follows (based on this): bool Intersects(Math::AABB lhs, const Frustum& rhs) const { for(int i = 0; i < 6; i++) { Math::Vector pvertex = lhs.TopRightFurthest; Math::Vector nvertex = lhs.BottomLeftClosest; if (rhs.planes[i].normal.x <= -0.0f) { std::swap(pvertex.x, nvertex.x); } if (rhs.planes[i].normal.y <= -0.0f) { std::swap(pvertex.y, nvertex.y); } if (rhs.planes[i].normal.z <= -0.0f) { std::swap(pvertex.z, nvertex.z); } if (Math::Dot(rhs.planes[i].r0, nvertex) < 0.0f) { return false; } } return true; } Also of note is that because I'm using a left-handed co-ordinate system, I wrote my Cross function to return the negative of the formula given on Wikipedia. Any suggestions as to where I've made a mistake?

    Read the article

  • Yet another frustum culling question

    - by Christian Frantz
    This one is kinda specific. If I'm to implement frustum culling in my game, that means each one of my cubes would need a bounding sphere. My first question is can I make the sphere so close to the edge of the cube that its still easily clickable for destroying and building? Frustum culling is easily done in XNA as I've recently learned, I just need to figure out where to place the code for the culling. I'm guessing in my method that draws all my cubes but I could be wrong. My camera class currently implements a bounding frustum which is in the update method like so frustum.Matrix = (view * proj); Simple enough, as I can call that when I have a camera object in my class. This works for now, as I only have a camera in my main game class. The problem comes when I decide to move my camera to my player class, but I can worry about that later. ContainmentType CurrentContainmentType = ContainmentType.Disjoint; CurrentContainmentType = CamerasFrustrum.Contains(cubes.CollisionSphere); Can it really be as easy as adding those two lines to my foreach loop in my draw method? Or am I missing something bigger here? UPDATE: I have added the lines to my draw methods and it works great!! So great infact that just moving a little bit removes the whole map. Many factors could of caused this, so I'll try to break it down. cubeBoundingSphere = new BoundingSphere(cubePosition, 0.5f); This is in my cube constructor. cubePosition is stored in an array, The vertices that define my cube are factors of 1 ie: (1,0,1) so the radius should be .5. I least I think it should. The spheres are created every time a cube is created of course. ContainmentType CurrentContainmentType = ContainmentType.Disjoint; foreach (Cube block in cube.cubes) { CurrentContainmentType = cam.frustum.Contains(cube.cubeBoundingSphere); ///more code here if (CurrentContainmentType != ContainmentType.Disjoint) { cube.Draw(effect); } Within my draw method. Now I know this works because the map disappears, its just working wrong. Any idea on what I'm doing wrong?

    Read the article

  • Need some help implementing VBO's with Frustum Culling

    - by Isracg
    i'm currently developing my first 3D game for a school project, the game world is completely inspired by minecraft (world completely made out of cubes). I'm currently seeking to improve the performance trying to implement vertex buffer objects but i'm stuck, i already have this methods implemented: Frustum culling, only drawing exposed faces and distance culling but i have the following doubts: I currently have about 2^24 cubes in my world, divided in 1024 chunks of 16*16*64 cubes, right now i'm doing immediate mode rendering, which works well with frustum culling, if i implement one VBO per chunk, do i have to update that VBO each time i move the camera (to update the frustum)? is there a performance hit with this? Can i dynamically change the size of each VBO? of do i have to make each one the biggest possible size (the chunk completely filled with objects)?. Would i have to keep each visited chunk in memory or could i efficiently remove that VBO and recreated it when needed?.

    Read the article

  • Improving the efficiency of frustum culling

    - by DeadMG
    I've got some code which performs frustum culling. However, this defines the "frustum" way too broadly- when I have ~10 objects on screen, the code returns 42 objects to be rendered. I've tried taking "slices" through the frustum to attempt to increase the accuracy of the technique, but it doesn't seem to have made much impact. I also significantly reduced the far plane, so that the objects are barely at the edge. Here's my code (where size is the size in screen space- the resolution of the client area of the window I'm rendering into). Any suggestions? auto&& size = GetDimensions(); D3DVIEWPORT9 vp = { 0, 0, size.x, size.y, 0, 1 }; D3DCALL(device->SetViewport(&vp)); static const int slices = 10; std::vector<Object*> result; for(int i = 0; i < slices; i++) { D3DXVECTOR3 WorldSpaceFrustrumPoints[8] = { D3DXVECTOR3(0, size.y, static_cast<float>(i) / slices), D3DXVECTOR3(size.x, 0, static_cast<float>(i) / slices), D3DXVECTOR3(size.x, size.y, static_cast<float>(i) / slices), D3DXVECTOR3(0, 0, static_cast<float>(i) / slices), D3DXVECTOR3(0, 0, static_cast<float>(i + 1) / slices), D3DXVECTOR3(size.x, 0, static_cast<float>(i + 1) / slices), D3DXVECTOR3(size.x, size.y, static_cast<float>(i + 1) / slices), D3DXVECTOR3(0, size.y, static_cast<float>(i + 1) / slices) }; D3DXMATRIXA16 Identity; D3DXMatrixIdentity(&Identity); D3DXVec3UnprojectArray( WorldSpaceFrustrumPoints, sizeof(D3DXVECTOR3), WorldSpaceFrustrumPoints, sizeof(D3DXVECTOR3), &vp, &Projection, &View, &Identity, 8 ); Math::AABB Frustrum; auto world_begin = std::begin(WorldSpaceFrustrumPoints); auto world_end = std::end(WorldSpaceFrustrumPoints); auto world_initial = WorldSpaceFrustrumPoints[0]; Frustrum.BottomLeftClosest.x = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.x < rhs.x ? lhs : rhs; }).x; Frustrum.BottomLeftClosest.y = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.y < rhs.y ? lhs : rhs; }).y; Frustrum.BottomLeftClosest.z = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.z < rhs.z ? lhs : rhs; }).z; Frustrum.TopRightFurthest.x = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.x > rhs.x ? lhs : rhs; }).x; Frustrum.TopRightFurthest.y = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.y > rhs.y ? lhs : rhs; }).y; Frustrum.TopRightFurthest.z = std::accumulate(world_begin, world_end, world_initial, [](D3DXVECTOR3 lhs, D3DXVECTOR3 rhs) { return lhs.z > rhs.z ? lhs : rhs; }).z; auto slices_result = ObjectTree.collision(Frustrum); result.insert(result.end(), slices_result.begin(), slices_result.end()); } return result;

    Read the article

  • Frustum culling with third person camera

    - by Christian Frantz
    I have a third person camera that contains two matrices: view and projection, and two Vector3's: camPosition and camTarget. I've read up on frustum culling and it makes it seem easy enough for a first person camera, but how would I implement this for a third person camera? I need to take into effect the objects I can see behind me too. How would I implement this into my camera class so it runs at the same time as my update method? public void CameraUpdate(Matrix objectToFollow) { camPosition = objectToFollow.Translation + (objectToFollow.Backward *backward) + (objectToFollow.Up * up); camTarget = objectToFollow.Translation; view = Matrix.CreateLookAt(camPosition, camTarget, Vector3.Up); } Can I just create another method within the class which creates a bounding sphere with a value from my camera and then uses the culling based on that? And if so, which value am I using to create the bounding sphere from? After this is implemented, I'm planning on using occlusion culling for the faces of my objects adjacent to other objects. Will using just one or the other make a difference? Or will both of them be better? I'm trying to keep my framerate as high as possible

    Read the article

  • Largest sphere inside a frustum

    - by Will
    How do you find the largest sphere that you can draw in perspective? Viewed from the top, it'd be this: Added: on the frustum on the right, I've marked four points I think we know something about. We can unproject all eight corners of the frusum, and the centres of the near and far ends. So we know point 1, 3 and 4. We also know that point 2 is the same distance from 3 as 4 is from 3. So then we can compute the nearest point on the line 1 to 4 to point 2 in order to get the centre? But the actual math and code escapes me. I want to draw models (which are approximately spherical and which I have a miniball bounding sphere for) as large as possible. Update: I've tried to implement the incircle-on-two-planes approach as suggested by bobobobo and Nathan Reed : function getFrustumsInsphere(viewport,invMvpMatrix) { var midX = viewport[0]+viewport[2]/2, midY = viewport[1]+viewport[3]/2, centre = unproject(midX,midY,null,null,viewport,invMvpMatrix), incircle = function(a,b) { var c = ray_ray_closest_point_3(a,b); a = a[1]; // far clip plane b = b[1]; // far clip plane c = c[1]; // camera var A = vec3_length(vec3_sub(b,c)), B = vec3_length(vec3_sub(a,c)), C = vec3_length(vec3_sub(a,b)), P = 1/(A+B+C), x = ((A*a[0])+(B*a[1])+(C*a[2]))*P, y = ((A*b[0])+(B*b[1])+(C*b[2]))*P, z = ((A*c[0])+(B*c[1])+(C*c[2]))*P; c = [x,y,z]; // now the centre of the incircle c.push(vec3_length(vec3_sub(centre[1],c))); // add its radius return c; }, left = unproject(viewport[0],midY,null,null,viewport,invMvpMatrix), right = unproject(viewport[2],midY,null,null,viewport,invMvpMatrix), horiz = incircle(left,right), top = unproject(midX,viewport[1],null,null,viewport,invMvpMatrix), bottom = unproject(midX,viewport[3],null,null,viewport,invMvpMatrix), vert = incircle(top,bottom); return horiz[3]<vert[3]? horiz: vert; } I admit I'm winging it; I'm trying to adapt 2D code by extending it into 3 dimensions. It doesn't compute the insphere correctly; the centre-point of the sphere seems to be on the line between the camera and the top-left each time, and its too big (or too close). Is there any obvious mistakes in my code? Does the approach, if fixed, work?

    Read the article

  • How do I create a bounding frustrum from a view & projection matrix?

    - by Narf the Mouse
    Given a left-handed Projection matrix, a left-handed View matrix, a ViewProj matrix of View * Projection - How do I create a bounding Frustum comprised of near, far, left, right and top, bottom planes? The only example I could find on Google (Tutorial 16: Frustum Culling) seems to not work; for example, if the math is used as given, the near-plane's distance is a negative. This places the near-plane behind the camera...

    Read the article

  • library for octree or kdtree

    - by Will
    Are there any robust performant libraries for indexing objects? It would need frustum culling and visiting objects hit by a ray as well as neighbourhood searches. I can find lots of articles showing the math for the component parts, often as algebra rather than simple C, but nothing that puts it all together (apart from perhaps Ogre, which has rather more involved and isn't so stand-alone). Surely hobby game makers don't all have to make their own octrees? (Python or C/C++ w/bindings preferred)

    Read the article

1 2 3  | Next Page >