Search Results

Search found 2727 results on 110 pages for 'operator overloading'.

Page 1/110 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • what's the point of method overloading?

    - by David
    I am following a textbook in which I have just come across method overloading. It briefly described method overloading as: when the same method name is used with different parameters its called method overloading. From what I've learned so far in OOP is that if I want different behaviors from an object via methods, I should use different method names that best indicate the behavior, so why should I bother with method overloading in the first place?

    Read the article

  • C# Operator Overloading post-fix increment

    - by Victor
    I'm coding a date class and am having trouble with the post-fix increment (the prefix increment seems fine). Here is the sample code: public class date { int year, month, day; public date(int d, int m, int y) { day = d; month = m; year = y; } static public date operator ++(date d) { return d.Next(d); } } The method "Next(date d)" takes a date and returns tomorrows date (I left it out for brevity). I'm to young in C# to understand why the prefix is fine but postfix increment does nothing. But remember in C++ we would have to have two methods instead of just one - for prefix and postfix increments. Also no errors or warnings on compile.

    Read the article

  • Why friend overloaded operator is preferred to conversion operator in this case

    - by skydoor
    Hi I have a code like this, I think both the friend overloaded operator and conversion operator have the similar function. However, why does the friend overloaded operator is called in this case? What's the rules? Thanks so much! class A{ double i; public: A(int i):i(i) {} operator double () const { cout<<"conversion operator"<<endl;return i;} // a conversion operator friend bool operator>(int i, A a); // a friend funcion of operator > }; bool operator>(int i, A a ){ cout<<"Friend"<<endl; return i>a.i; } int main() { A aa(1); if (0 > aa){ return 1; } }

    Read the article

  • Constructor overloading in Java - best practice

    - by errr
    There are a few topics similar to this, but I couldn't find one with a sufficient answer. I would like to know what is the best practice for constructor overloading in Java. I already have my own thoughts on the subject, but I'd like to hear more advice. I'm referring to both constructor overloading in a simple class and constructor overloading while inheriting an already overloaded class (meaning the base class has overloaded constructors). Thanks :)

    Read the article

  • Shortcut "or-assignment" (|=) operator in Java

    - by Dr. Monkey
    I have a long set of comparisons to do in Java, and I'd like to know if one or more of them come out as true. The string of comparisons was long and difficult to read, so I broke it up for readability, and automatically went to use a shortcut operator |= rather than negativeValue = negativeValue || boolean. boolean negativeValue = false; negativeValue |= (defaultStock < 0); negativeValue |= (defaultWholesale < 0); negativeValue |= (defaultRetail < 0); negativeValue |= (defaultDelivery < 0); I expect negativeValue to be true if any of the default<something> values are negative. Is this valid? Will it do what I expect? I couldn't see it mentioned on Sun's site or stackoverflow, but Eclipse doesn't seem to have a problem with it and the code compiles and runs.

    Read the article

  • new and delete operator overloading

    - by Angus
    I am writing a simple program to understand the new and delete operator overloading. How is the size parameter passed into the new operator? For reference, here is my code: #include<iostream> #include<stdlib.h> #include<malloc.h> using namespace std; class loc{ private: int longitude,latitude; public: loc(){ longitude = latitude = 0; } loc(int lg,int lt){ longitude -= lg; latitude -= lt; } void show(){ cout << "longitude" << endl; cout << "latitude" << endl; } void* operator new(size_t size); void operator delete(void* p); void* operator new[](size_t size); void operator delete[](void* p); }; void* loc :: operator new(size_t size){ void* p; cout << "In overloaded new" << endl; p = malloc(size); cout << "size :" << size << endl; if(!p){ bad_alloc ba; throw ba; } return p; } void loc :: operator delete(void* p){ cout << "In delete operator" << endl; free(p); } void* loc :: operator new[](size_t size){ void* p; cout << "In overloaded new[]" << endl; p = malloc(size); cout << "size :" << size << endl; if(!p){ bad_alloc ba; throw ba; } return p; } void loc :: operator delete[](void* p){ cout << "In delete operator - array" << endl; free(p); } int main(){ loc *p1,*p2; int i; cout << "sizeof(loc)" << sizeof(loc) << endl; try{ p1 = new loc(10,20); } catch (bad_alloc ba){ cout << "Allocation error for p1" << endl; return 1; } try{ p2 = new loc[10]; } catch(bad_alloc ba){ cout << "Allocation error for p2" << endl; return 1; } p1->show(); for(i = 0;i < 10;i++){ p2[i].show(); } delete p1; delete[] p2; return 0; }

    Read the article

  • += Overloading in C++ problem.

    - by user69514
    I am trying to overload the += operator for my rational number class, but I don't believe that it's working because I always end up with the same result: RationalNumber RationalNumber::operator+=(const RationalNumber &rhs){ int den = denominator * rhs.denominator; int a = numerator * rhs.denominator; int b = rhs.numerator * denominator; int num = a+b; RationalNumber ratNum(num, den); return ratNum; } Inside main //create two rational numbers RationalNumber a(1, 3); a.print(); RationalNumber b(6, 7); b.print(); //test += operator a+=(b); a.print(); After calling a+=(b), a is still 1/3, it should be 25/21. Any ideas what I am doing wrong?

    Read the article

  • C# Nested Property Accessing overloading OR Sequential Operator Overloading

    - by Tim
    Hey, I've been searching around for a solution to a tricky problem we're having with our code base. To start, our code resembles the following: class User { int id; int accountId; Account account { get { return Account.Get(accountId); } } } class Account { int accountId; OnlinePresence Presence { get { return OnlinePresence.Get(accountId); } } public static Account Get(int accountId) { // hits a database and gets back our object. } } class OnlinePresence { int accountId; bool isOnline; public static OnlinePresence Get(int accountId) { // hits a database and gets back our object. } } What we're often doing in our code is trying to access the account Presence of a user by doing var presence = user.Account.Presence; The problem with this is that this is actually making two requests to the database. One to get the Account object, and then one to get the Presence object. We could easily knock this down to one request if we did the following : var presence = UserPresence.Get(user.id); This works, but sort of requires developers to have an understanding of the UserPresence class/methods that would be nice to eliminate. I've thought of a couple of cool ways to be able to handle this problem, and was wondering if anyone knows if these are possible, if there are other ways of handling this, or if we just need to think more as we're coding and do the UserPresence.Get instead of using properties. Overload nested accessors. It would be cool if inside the User class I could write some sort of "extension" that would say "any time a User object's Account property's Presence object is being accessed, do this instead". Overload the . operator with knowledge of what comes after. If I could somehow overload the . operator only in situations where the object on the right is also being "dotted" it would be great. Both of these seem like things that could be handled at compile time, but perhaps I'm missing something (would reflection make this difficult?). Am I looking at things completely incorrectly? Is there a way of enforcing this that removes the burden from the user of the business logic? Thanks! Tim

    Read the article

  • Working with operator[] and operator=

    - by calebthorne
    Given a simple class that overloads the '[ ]' operator: class A { public: int operator[](int p_index) { return a[p_index]; } private: int a[5]; }; I would like to accomplish the following: void main() { A Aobject; Aobject[0] = 1; // Problem here } How can I overload the assignment '=' operator in this case to work with the '[ ]' operator?

    Read the article

  • VB.NET overloading array access?

    - by Wayne Werner
    Hi, Is it possible to overload the array/dict access operators in VB.net? For example, you can state something like: Dim mydict As New Hashtable() mydict.add("Cool guy", "Overloading is dangerous!") mydict("Cool guy") = "Overloading is cool!" And that works just fine. But what I would like to do is be able to say: mydict("Cool guy") = "3" and then have 3 automagically converted to the Integer 3. I mean, sure I can have a private member mydict.coolguy and have setCoolguy() and getCoolguy() methods, but I would prefer to be able to write it the former way if at all possible. Thanks

    Read the article

  • How can I build pyv8 from source on FreeBSD against the v8 port?

    - by Utkonos
    I am unable to build pyv8 from source on FreeBSD. I have installed the /usr/ports/lang/v8 port, and I'm running into the following error. It seems that pyv8 wants to build v8 itself even though v8 is already built and installed. How can I point pyv8 to the already installed location of v8? # python setup.py build Found Google v8 base on V8_HOME , update it to the latest SVN trunk at running build ==================== INFO: Installing or updating GYP... -------------------- INFO: Check out GYP from SVN ... DEBUG: make dependencies ERROR: Check out GYP from SVN failed: code=2 DEBUG: "Makefile", line 43: Missing dependency operator "Makefile", line 45: Need an operator "Makefile", line 46: Need an operator "Makefile", line 48: Need an operator "Makefile", line 50: Need an operator "Makefile", line 52: Need an operator "Makefile", line 54: Missing dependency operator "Makefile", line 56: Need an operator "Makefile", line 58: Missing dependency operator "Makefile", line 60: Need an operator "Makefile", line 62: Missing dependency operator "Makefile", line 64: Need an operator "Makefile", line 66: Missing dependency operator "Makefile", line 68: Need an operator "Makefile", line 70: Missing dependency operator "Makefile", line 72: Need an operator "Makefile", line 73: Missing dependency operator "Makefile", line 75: Need an operator "Makefile", line 77: Missing dependency operator "Makefile", line 79: Need an operator "Makefile", line 81: Missing dependency operator "Makefile", line 83: Need an operator "Makefile", line 85: Missing dependency operator "Makefile", line 87: Need an operator "Makefile", line 89: Need an operator "Makefile", line 91: Missing dependency operator "Makefile", line 93: Need an operator "Makefile", line 95: Need an operator "Makefile", line 97: Need an operator "Makefile", line 99: Missing dependency operator "Makefile", line 101: Need an operator "Makefile", line 103: Missing dependency operator "Makefile", line 105: Need an operator "Makefile", line 107: Missing dependency operator "Makefile", line 109: Need an operator "Makefile", line 111: Missing dependency operator "Makefile", line 113: Need an operator "Makefile", line 115: Missing dependency operator "Makefile", line 117: Need an operator Error expanding embedded variable. ==================== INFO: Patching the GYP scripts INFO: patch the Google v8 build/standalone.gypi file to enable RTTI and C++ Exceptions ==================== INFO: building Google v8 with GYP for x64 platform with release mode -------------------- INFO: build v8 from SVN ... DEBUG: make verifyheap=off component=shared_library visibility=on gdbjit=off liveobjectlist=off regexp=native disassembler=off objectprint=off debuggersupport=on extrachecks=off snapshot=on werror=on x64.release ERROR: build v8 from SVN failed: code=2 DEBUG: "Makefile", line 43: Missing dependency operator "Makefile", line 45: Need an operator "Makefile", line 46: Need an operator "Makefile", line 48: Need an operator "Makefile", line 50: Need an operator "Makefile", line 52: Need an operator "Makefile", line 54: Missing dependency operator "Makefile", line 56: Need an operator "Makefile", line 58: Missing dependency operator "Makefile", line 60: Need an operator "Makefile", line 62: Missing dependency operator "Makefile", line 64: Need an operator "Makefile", line 66: Missing dependency operator "Makefile", line 68: Need an operator "Makefile", line 70: Missing dependency operator "Makefile", line 72: Need an operator "Makefile", line 73: Missing dependency operator "Makefile", line 75: Need an operator "Makefile", line 77: Missing dependency operator "Makefile", line 79: Need an operator "Makefile", line 81: Missing dependency operator "Makefile", line 83: Need an operator "Makefile", line 85: Missing dependency operator "Makefile", line 87: Need an operator "Makefile", line 89: Need an operator "Makefile", line 91: Missing dependency operator "Makefile", line 93: Need an operator "Makefile", line 95: Need an operator "Makefile", line 97: Need an operator "Makefile", line 99: Missing dependency operator "Makefile", line 101: Need an operator "Makefile", line 103: Missing dependency operator "Makefile", line 105: Need an operator "Makefile", line 107: Missing dependency operator "Makefile", line 109: Need an operator "Makefile", line 111: Missing dependency operator "Makefile", line 113: Need an operator "Makefile", line 115: Missing dependency operator "Makefile", line 117: Need an operator Error expanding embedded variable. The files that are installed by the v8 port are the following (in /usr/local): bin/d8 include/v8.h include/v8-debug.h include/v8-preparser.h include/v8-profiler.h include/v8-testing.h include/v8stdint.h lib/libv8.so lib/libv8.so.1

    Read the article

  • Java method overloading + double dispatch

    - by Max
    Can anybody explain in detail the reason the overloaded method print(Parent parent) is invoked when working with Child instance in my test piece of code? Any pecularities of virtual methods or methods overloading/resolution in Java involved here? Any direct reference to Java Lang Spec? Which term describes this behaviour? Thanks a lot. public class InheritancePlay { public static class Parent { public void doJob(Worker worker) { System.out.println("this is " + this.getClass().getName()); worker.print(this); } } public static class Child extends Parent { } public static class Worker { public void print(Parent parent) { System.out.println("Why this method resolution happens?"); } public void print(Child child) { System.out.println("This is not called"); } } public static void main(String[] args) { Child child = new Child(); Worker worker = new Worker(); child.doJob(worker); } }

    Read the article

  • Const operator overloading problems in C++

    - by steigers
    Hello everybody, I'm having trouble with overloading operator() with a const version: #include <iostream> #include <vector> using namespace std; class Matrix { public: Matrix(int m, int n) { vector<double> tmp(m, 0.0); data.resize(n, tmp); } ~Matrix() { } const double & operator()(int ii, int jj) const { cout << " - const-version was called - "; return data[ii][jj]; } double & operator()(int ii, int jj) { cout << " - NONconst-version was called - "; if (ii!=1) { throw "Error: you may only alter the first row of the matrix."; } return data[ii][jj]; } protected: vector< vector<double> > data; }; int main() { try { Matrix A(10,10); A(1,1) = 8.8; cout << "A(1,1)=" << A(1,1) << endl; cout << "A(2,2)=" << A(2,2) << endl; double tmp = A(3,3); } catch (const char* c) { cout << c << endl; } } This gives me the following output: NONconst-version was called - - NONconst-version was called - A(1,1)=8.8 NONconst-version was called - Error: you may only alter the first row of the matrix. How can I achieve that C++ call the const-version of operator()? I am using GCC 4.4.0. Thanks for your help! Sebastian

    Read the article

  • Overloading assignment operator in C++

    - by jasonline
    As I've understand, when overloading operator=, the return value should should be a non-const reference. A& A::operator=( const A& ) { // check for self-assignment, do assignment return *this; } It is non-const to allow non-const member functions to be called in cases like: ( a = b ).f(); But why should it return a reference? In what instance will it give a problem if the return value is not declared a reference, let's say return by value?

    Read the article

  • Polynomial division overloading operator (solved)

    - by Vlad
    Ok. here's the operations i successfully code so far thank's to your help: Adittion: polinom operator+(const polinom& P) const { polinom Result; constIter i = poly.begin(), j = P.poly.begin(); while (i != poly.end() && j != P.poly.end()) { //logic while both iterators are valid if (i->pow > j->pow) { //if the current term's degree of the first polynomial is bigger Result.insert(i->coef, i->pow); i++; } else if (j->pow > i->pow) { // if the other polynomial's term degree is bigger Result.insert(j->coef, j->pow); j++; } else { // if both are equal Result.insert(i->coef + j->coef, i->pow); i++; j++; } } //handle the remaining items in each list //note: at least one will be equal to end(), but that loop will simply be skipped while (i != poly.end()) { Result.insert(i->coef, i->pow); ++i; } while (j != P.poly.end()) { Result.insert(j->coef, j->pow); ++j; } return Result; } Subtraction: polinom operator-(const polinom& P) const //fixed prototype re. const-correctness { polinom Result; constIter i = poly.begin(), j = P.poly.begin(); while (i != poly.end() && j != P.poly.end()) { //logic while both iterators are valid if (i->pow > j->pow) { //if the current term's degree of the first polynomial is bigger Result.insert(-(i->coef), i->pow); i++; } else if (j->pow > i->pow) { // if the other polynomial's term degree is bigger Result.insert(-(j->coef), j->pow); j++; } else { // if both are equal Result.insert(i->coef - j->coef, i->pow); i++; j++; } } //handle the remaining items in each list //note: at least one will be equal to end(), but that loop will simply be skipped while (i != poly.end()) { Result.insert(i->coef, i->pow); ++i; } while (j != P.poly.end()) { Result.insert(j->coef, j->pow); ++j; } return Result; } Multiplication: polinom operator*(const polinom& P) const { polinom Result; constIter i, j, lastItem = Result.poly.end(); Iter it1, it2, first, last; int nr_matches; for (i = poly.begin() ; i != poly.end(); i++) { for (j = P.poly.begin(); j != P.poly.end(); j++) Result.insert(i->coef * j->coef, i->pow + j->pow); } Result.poly.sort(SortDescending()); lastItem--; while (true) { nr_matches = 0; for (it1 = Result.poly.begin(); it1 != lastItem; it1++) { first = it1; last = it1; first++; for (it2 = first; it2 != Result.poly.end(); it2++) { if (it2->pow == it1->pow) { it1->coef += it2->coef; nr_matches++; } } nr_matches++; do { last++; nr_matches--; } while (nr_matches != 0); Result.poly.erase(first, last); } if (nr_matches == 0) break; } return Result; } Division(Edited): polinom operator/(const polinom& P) const { polinom Result, temp2; polinom temp = *this; Iter i = temp.poly.begin(); constIter j = P.poly.begin(); int resultSize = 0; if (temp.poly.size() < 2) { if (i->pow >= j->pow) { Result.insert(i->coef / j->coef, i->pow - j->pow); temp = temp - Result * P; } else { Result.insert(0, 0); } } else { while (true) { if (i->pow >= j->pow) { Result.insert(i->coef / j->coef, i->pow - j->pow); if (Result.poly.size() < 2) temp2 = Result; else { temp2 = Result; resultSize = Result.poly.size(); for (int k = 1 ; k != resultSize; k++) temp2.poly.pop_front(); } temp = temp - temp2 * P; } else break; } } return Result; } }; The first three are working correctly but division doesn't as it seems the program is in a infinite loop. Final Update After listening to Dave, I finally made it by overloading both / and & to return the quotient and the remainder so thanks a lot everyone for your help and especially you Dave for your great idea! P.S. If anyone wants for me to post these 2 overloaded operator please ask it by commenting on my post (and maybe give a vote up for everyone involved).

    Read the article

  • Polynomial division overloading operator

    - by Vlad
    Ok. here's the operations i successfully code so far thank's to your help: Adittion: polinom operator+(const polinom& P) const { polinom Result; constIter i = poly.begin(), j = P.poly.begin(); while (i != poly.end() && j != P.poly.end()) { //logic while both iterators are valid if (i->pow > j->pow) { //if the current term's degree of the first polynomial is bigger Result.insert(i->coef, i->pow); i++; } else if (j->pow > i->pow) { // if the other polynomial's term degree is bigger Result.insert(j->coef, j->pow); j++; } else { // if both are equal Result.insert(i->coef + j->coef, i->pow); i++; j++; } } //handle the remaining items in each list //note: at least one will be equal to end(), but that loop will simply be skipped while (i != poly.end()) { Result.insert(i->coef, i->pow); ++i; } while (j != P.poly.end()) { Result.insert(j->coef, j->pow); ++j; } return Result; } Subtraction: polinom operator-(const polinom& P) const //fixed prototype re. const-correctness { polinom Result; constIter i = poly.begin(), j = P.poly.begin(); while (i != poly.end() && j != P.poly.end()) { //logic while both iterators are valid if (i->pow > j->pow) { //if the current term's degree of the first polynomial is bigger Result.insert(-(i->coef), i->pow); i++; } else if (j->pow > i->pow) { // if the other polynomial's term degree is bigger Result.insert(-(j->coef), j->pow); j++; } else { // if both are equal Result.insert(i->coef - j->coef, i->pow); i++; j++; } } //handle the remaining items in each list //note: at least one will be equal to end(), but that loop will simply be skipped while (i != poly.end()) { Result.insert(i->coef, i->pow); ++i; } while (j != P.poly.end()) { Result.insert(j->coef, j->pow); ++j; } return Result; } Multiplication: polinom operator*(const polinom& P) const { polinom Result; constIter i, j, lastItem = Result.poly.end(); Iter it1, it2, first, last; int nr_matches; for (i = poly.begin() ; i != poly.end(); i++) { for (j = P.poly.begin(); j != P.poly.end(); j++) Result.insert(i->coef * j->coef, i->pow + j->pow); } Result.poly.sort(SortDescending()); lastItem--; while (true) { nr_matches = 0; for (it1 = Result.poly.begin(); it1 != lastItem; it1++) { first = it1; last = it1; first++; for (it2 = first; it2 != Result.poly.end(); it2++) { if (it2->pow == it1->pow) { it1->coef += it2->coef; nr_matches++; } } nr_matches++; do { last++; nr_matches--; } while (nr_matches != 0); Result.poly.erase(first, last); } if (nr_matches == 0) break; } return Result; } Division(Edited): polinom operator/(const polinom& P) { polinom Result, temp; Iter i = poly.begin(); constIter j = P.poly.begin(); if (poly.size() < 2) { if (i->pow >= j->pow) { Result.insert(i->coef, i->pow - j->pow); *this = *this - Result; } } else { while (true) { if (i->pow >= j->pow) { Result.insert(i->coef, i->pow - j->pow); temp = Result * P; *this = *this - temp; } else break; } } return Result; } The first three are working correctly but division doesn't as it seems the program is in a infinite loop. Update Because no one seems to understand how i thought the algorithm, i'll explain: If the dividend contains only one term, we simply insert the quotient in Result, then we multiply it with the divisor ans subtract it from the first polynomial which stores the remainder. If the polynomial we do this until the second polynomial( P in this case) becomes bigger. I think this algorithm is called long division, isn't it? So based on these, can anyone help me with overloading the / operator correctly for my class? Thanks!

    Read the article

  • Overloading *(iterator + n) and *(n + iterator) in a C++ iterator class?

    - by exscape
    (Note: I'm writing this project for learning only; comments about it being redundant are... uh, redundant. ;) I'm trying to implement a random access iterator, but I've found very little literature on the subject, so I'm going by trial and error combined with Wikpedias list of operator overload prototypes. It's worked well enough so far, but I've hit a snag. Code such as exscape::string::iterator i = string_instance.begin(); std::cout << *i << std::endl; works, and prints the first character of the string. However, *(i + 1) doesn't work, and neither does *(1 + i). My full implementation would obviously be a bit too much, but here's the gist of it: namespace exscape { class string { friend class iterator; ... public: class iterator : public std::iterator<std::random_access_iterator_tag, char> { ... char &operator*(void) { return *p; // After some bounds checking } char *operator->(void) { return p; } char &operator[](const int offset) { return *(p + offset); // After some bounds checking } iterator &operator+=(const int offset) { p += offset; return *this; } const iterator operator+(const int offset) { iterator out (*this); out += offset; return out; } }; }; } int main() { exscape::string s = "ABCDEF"; exscape::string::iterator i = s.begin(); std::cout << *(i + 2) << std::endl; } The above fails with (line 632 is, of course, the *(i + 2) line): string.cpp: In function ‘int main()’: string.cpp:632: error: no match for ‘operator*’ in ‘*exscape::string::iterator::operator+(int)(2)’ string.cpp:105: note: candidates are: char& exscape::string::iterator::operator*() *(2 + i) fails with: string.cpp: In function ‘int main()’: string.cpp:632: error: no match for ‘operator+’ in ‘2 + i’ string.cpp:434: note: candidates are: exscape::string exscape::operator+(const char*, const exscape::string&) My guess is that I need to do some more overloading, but I'm not sure what operator I'm missing.

    Read the article

  • C++: call original definition of operator equals

    - by Luis Daniel
    I am overloading the operator equals (==) as show bellow: #include <string> #include <algorithm> bool operator == (std::string str1, std::string str2) { std::transform(str1.begin(), str1.end(), str1.begin(), ::tolower); std::transform(str2.begin(), str2.end(), str2.begin(), ::tolower); return (str1 == str2); } but, the problem appear on line return (str1 == str2), because operator == is called recursively. So, how can I call the original definition for operator equals (not the overloaded) ? Best regards

    Read the article

  • Operator Overloading in C++ as int + obj

    - by Azher
    Hi Guys, I have following class:- class myclass { size_t st; myclass(size_t pst) { st=pst; } operator int() { return (int)st; } int operator+(int intojb) { return int(st) + intobj; } }; this works fine as long as I use it like this:- char* src="This is test string"; int i= myclass(strlen(src)) + 100; but I am unable to do this:- int i= 100+ myclass(strlen(src)); Any idea, how can I achieve this?? Thanks in advance. Regards,

    Read the article

  • Overloading + to add two pointers

    - by iAdam
    I have a String class and I want to overload + to add two String* pointers. something like this doesn't work: String* operator+(String* s1, String* s2); Is there any way to avoid passing by reference. Consider this example: String* s1 = new String("Hello"); String* s2 = new String("World"); String* s3 = s1 + s2; I need this kind of addition to work. Please suggest.

    Read the article

  • Can operator<< in derived class call another operator<< in base class in c++?

    - by ivory
    In my code, Manager is derived from Employee and each of them have an operator<< override. class Employee{ protected: int salary; int rank; public: int getSalary()const{return salary;} int getRank()const{return rank;} Employee(int s, int r):salary(s), rank(r){}; }; ostream& operator<< (ostream& out, Employee& e){ out << "Salary: " << e.getSalary() << " Rank: " << e.getRank() << endl; return out; } class Manager: public Employee{ public: Manager(int s, int r): Employee(s, r){}; }; ostream& operator<< (ostream& out, Manager& m){ out << "Manager: "; cout << (Employee)m << endl; //can not compile, how to call function of Employee? return out; } I hoped cout << (Employee)m << endl; would call ostream& operator<< (ostream& out, Employee& e), but it failed.

    Read the article

  • Implementing operator< in C++

    - by Vulcan Eager
    I have a class with a few numeric fields such as: class Class1 { int a; int b; int c; public: // constructor and so on... bool operator<(const Class1& other) const; }; I need to use objects of this class as a key in an std::map. I therefore implement operator<. What is the simplest implementation of operator< to use here?

    Read the article

  • Why does operator<< not work with something returned by operator-?

    - by Felix
    Here's a small test program I wrote: #include <iostream> using namespace std; class A { public: int val; A(int _val=0):val(_val) { } A operator+(A &a) { return A(val + a.val); } A operator-(A &a) { return A(val - a.val); } friend ostream& operator<<(ostream &, A &); }; ostream& operator<<(ostream &out, A &a) { out<<a.val; return out; } int main() { A a(3), b(4), c = b - a; cout<<c<<endl; // this works cout<<(b-a)<<endl; // this doesn't return 0; } I can't seem to get why the line marked "this works" works and the one marked "this doesn't" doesn't. When I try to compile the program with the cout<<(b-a); line, here's what I get: [felix@the-machine C]$ g++ test.cpp test.cpp: In function ‘int main()’: test.cpp:26:13: error: no match for ‘operator<<’ in ‘std::cout << b.A::operator-(((A&)(& a)))’ /usr/lib/gcc/i686-pc-linux-gnu/4.5.0/../../../../include/c++/4.5.0/ostream:108:7: note: candidates are: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(std::basic_ostream<_CharT, _Traits>::__ostream_type& (*)(std::basic_ostream<_CharT, _Traits>::__ostream_type&)) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream<char>] /usr/lib/gcc/i686-pc-linux-gnu/4.5.0/../../../../include/c++/4.5.0/ostream:117:7: note: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(std::basic_ostream<_CharT, _Traits>::__ios_type& (*)(std::basic_ostream<_CharT, _Traits>::__ios_type&)) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream<char>, std::basic_ostream<_CharT, _Traits>::__ios_type = std::basic_ios<char>] /usr/lib/gcc/i686-pc-linux-gnu/4.5.0/../../../../include/c++/4.5.0/ostream:127:7: note: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(std::ios_base& (*)(std::ios_base&)) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream<char>] /usr/lib/gcc/i686-pc-linux-gnu/4.5.0/../../../../include/c++/4.5.0/ostream:165:7: note: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(long int) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream<char>] /usr/lib/gcc/i686-pc-linux-gnu/4.5.0/../../../../include/c++/4.5.0/ostream:169:7: note: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(long unsigned int) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream<char>] /usr/lib/gcc/i686-pc-linux-gnu/4.5.0/../../../../include/c++/4.5.0/ostream:173:7: note: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(bool) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream<char>] /usr/lib/gcc/i686-pc-linux-gnu/4.5.0/../../../../include/c++/4.5.0/bits/ostream.tcc:91:5: note: std::basic_ostream<_CharT, _Traits>& std::basic_ostream<_CharT, _Traits>::operator<<(short int) [with _CharT = char, _Traits = std::char_traits<char>] /usr/lib/gcc/i686-pc-linux-gnu/4.5.0/../../../../include/c++/4.5.0/ostream:180:7: note: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(short unsigned int) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream<char>] /usr/lib/gcc/i686-pc-linux-gnu/4.5.0/../../../../include/c++/4.5.0/bits/ostream.tcc:105:5: note: std::basic_ostream<_CharT, _Traits>& std::basic_ostream<_CharT, _Traits>::operator<<(int) [with _CharT = char, _Traits = std::char_traits<char>] /usr/lib/gcc/i686-pc-linux-gnu/4.5.0/../../../../include/c++/4.5.0/ostream:191:7: note: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(unsigned int) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream<char>] /usr/lib/gcc/i686-pc-linux-gnu/4.5.0/../../../../include/c++/4.5.0/ostream:200:7: note: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(long long int) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream<char>] /usr/lib/gcc/i686-pc-linux-gnu/4.5.0/../../../../include/c++/4.5.0/ostream:204:7: note: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(long long unsigned int) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream<char>] /usr/lib/gcc/i686-pc-linux-gnu/4.5.0/../../../../include/c++/4.5.0/ostream:209:7: note: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(double) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream<char>] /usr/lib/gcc/i686-pc-linux-gnu/4.5.0/../../../../include/c++/4.5.0/ostream:213:7: note: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(float) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream<char>] /usr/lib/gcc/i686-pc-linux-gnu/4.5.0/../../../../include/c++/4.5.0/ostream:221:7: note: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(long double) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream<char>] /usr/lib/gcc/i686-pc-linux-gnu/4.5.0/../../../../include/c++/4.5.0/ostream:225:7: note: std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(const void*) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_ostream<_CharT, _Traits>::__ostream_type = std::basic_ostream<char>] /usr/lib/gcc/i686-pc-linux-gnu/4.5.0/../../../../include/c++/4.5.0/bits/ostream.tcc:119:5: note: std::basic_ostream<_CharT, _Traits>& std::basic_ostream<_CharT, _Traits>::operator<<(std::basic_ostream<_CharT, _Traits>::__streambuf_type*) [with _CharT = char, _Traits = std::char_traits<char>, std::basic_ostream<_CharT, _Traits>::__streambuf_type = std::basic_streambuf<char>] test.cpp:18:11: note: std::ostream& operator<<(std::ostream&, A&) [felix@the-machine C]$ Quite nasty.

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >