Search Results

Search found 2727 results on 110 pages for 'operator overloading'.

Page 12/110 | < Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >

  • Play music by Operator in asterisk?

    - by Rev
    Hi I want in call duration between operator and caller,play sound for operator(something like hold music). But in order to play this sound, operator must dial unique code and then sound will be play for caller, and caller only hear that sound file! After that (sound fully played), caller back to operator's queue or something like this. So is this possible to do or not? (if possible, post dial-plan for this too)

    Read the article

  • What is the purpose of Java's unary plus operator?

    - by Syntactic
    Java's unary plus operator appears to have come over from C, via C++. As near as I can tell, it has the following effects: promotes its operand to int, if it's not already an int or wider unboxes its operand, if it's a wrapper object complicates slightly the parsing of evil expressions containing large numbers of consecutive plus signs It seems to me that there are better (or, at least, clearer) ways to do all of these things. In this SO question, concerning the counterpart operator in C#, someone said that "It's there to be overloaded if you feel the need." But in Java, one cannot overload any operator. So does this operator exist in Java just because it existed in C++?

    Read the article

  • In what situation should the built-in 'operator' module be used in python?

    - by apphacker
    I'm speaking of this module: http://docs.python.org/library/operator.html From the article: The operator module exports a set of functions implemented in C corresponding to the intrinsic operators of Python. For example, operator.add(x, y) is equivalent to the expression x+y. The function names are those used for special class methods; variants without leading and trailing __ are also provided for convenience. I'm not sure I understand the benefit or purpose of this module.

    Read the article

  • Why is Perl's smart-match operator considered broken?

    - by Sean McMillan
    I've seen a number of comments across the web Perl's smart-match operator is broken. I know it originally was part of Perl 6, then was implemented in Perl 5.10 off of an old version of the spec, and was then corrected in 5.10.1 to match the current Perl 6 spec. Is the problem fixed in 5.10.1+, or are there other problems with the smart-match operator that make it troublesome in practice? What are the problems? Is there a yet-more-updated version (Perl 6, perhaps) that fixes the problems?

    Read the article

  • Undocumented Gmail Search Operator Ferrets Out Large Email Attachments

    - by Jason Fitzpatrick
    If you’re looking for a way to quickly find large email attachments in your Gmail account, this undocumented search operator makes it simple to zero in on the hulking attachments hiding out in your inbox. To use the search operator simply plug in “size:” and some value to narrow your search to only emails that size or larger. In the screenshot above we searched for “size:20000000″ to search for files roughly 20MB or larger (if you want to be extremely precise, a true 20MB search would be “size:20971520″). If you’re looking to clean up your Gmail account this is a nearly zero-effort way to find the biggest space hogs–in our case, we found an email packed with massive PDF files from a 5 year old project that we were more than happy to purge. Finding Large Attachments in Google Mail/Gmail [via gHacks] 6 Ways Windows 8 Is More Secure Than Windows 7 HTG Explains: Why It’s Good That Your Computer’s RAM Is Full 10 Awesome Improvements For Desktop Users in Windows 8

    Read the article

  • Overloading interface buttons, what are the best practices?

    - by XMLforDummies
    Imagine you'll have always a button labeled "Continue" in the same position in your app's GUI. Would you rather make a single button instance that takes different actions depending on the current state? private State currentState = State.Step1; private ContinueButton_Click() { switch(currentState) { case State.Step1: DoThis(); currentState = State.Step2; break; case State.Step2: DoThat(); break; } } Or would you rather have something like this? public Form() { this.ContinueStep2Button.Visible = false; } private ContinueStep1Button_Click() { DoThis(); this.ContinueStep1Button.Visible = false; this.ContinueStep2Button.Visible = true; } private ContinueStep2Button_Click() { DoThat(); }

    Read the article

  • Why would one overload the && and & operator?

    - by acidzombie24
    The same question goes for | and ||. Why would one overload or 'use' the & and && operator? The only use i thought of are Bitwise Ands for int base types (but not float/decimals) using & logical short circuit for bools/functions that return bool. Using the && operator usually. I cant think of any classes that use those operators. Absolutely none. I know a class might support + (and not '-') which combine two strings together. I seen an object such as datetime overload '-' so two dates can be subtracted to make a timespan (obviously you cant add two dates) but i never seen &, &&, | and || used. Does anyone know of a use? In any language?

    Read the article

  • Null Values And The T-SQL IN Operator

    - by Jesse
    I came across some unexpected behavior while troubleshooting a failing test the other day that took me long enough to figure out that I thought it was worth sharing here. I finally traced the failing test back to a SELECT statement in a stored procedure that was using the IN t-sql operator to exclude a certain set of values. Here’s a very simple example table to illustrate the issue: Customers CustomerId INT, NOT NULL, Primary Key CustomerName nvarchar(100) NOT NULL SalesRegionId INT NULL   The ‘SalesRegionId’ column contains a number representing the sales region that the customer belongs to. This column is nullable because new customers get created all the time but assigning them to sales regions is a process that is handled by a regional manager on a periodic basis. For the purposes of this example, the Customers table currently has the following rows: CustomerId CustomerName SalesRegionId 1 Customer A 1 2 Customer B NULL 3 Customer C 4 4 Customer D 2 5 Customer E 3   How could we write a query against this table for all customers that are NOT in sales regions 2 or 4? You might try something like this: 1: SELECT 2: CustomerId, 3: CustomerName, 4: SalesRegionId 5: FROM Customers 6: WHERE SalesRegionId NOT IN (2,4)   Will this work? In short, no; at least not in the way that you might expect. Here’s what this query will return given the example data we’re working with: CustomerId CustomerName SalesRegionId 1 Customer A 1 5 Customer E 5   I was expecting that this query would also return ‘Customer B’, since that customer has a NULL SalesRegionId. In my mind, having a customer with no sales region should be included in a set of customers that are not in sales regions 2 or 4.When I first started troubleshooting my issue I made note of the fact that this query should probably be re-written without the NOT IN clause, but I didn’t suspect that the NOT IN clause was actually the source of the issue. This particular query was only one minor piece in a much larger process that was being exercised via an automated integration test and I simply made a poor assumption that the NOT IN would work the way that I thought it should. So why doesn’t this work the way that I thought it should? From the MSDN documentation on the t-sql IN operator: If the value of test_expression is equal to any value returned by subquery or is equal to any expression from the comma-separated list, the result value is TRUE; otherwise, the result value is FALSE. Using NOT IN negates the subquery value or expression. The key phrase out of that quote is, “… is equal to any expression from the comma-separated list…”. The NULL SalesRegionId isn’t included in the NOT IN because of how NULL values are handled in equality comparisons. From the MSDN documentation on ANSI_NULLS: The SQL-92 standard requires that an equals (=) or not equal to (<>) comparison against a null value evaluates to FALSE. When SET ANSI_NULLS is ON, a SELECT statement using WHERE column_name = NULL returns zero rows even if there are null values in column_name. A SELECT statement using WHERE column_name <> NULL returns zero rows even if there are nonnull values in column_name. In fact, the MSDN documentation on the IN operator includes the following blurb about using NULL values in IN sub-queries or expressions that are used with the IN operator: Any null values returned by subquery or expression that are compared to test_expression using IN or NOT IN return UNKNOWN. Using null values in together with IN or NOT IN can produce unexpected results. If I were to include a ‘SET ANSI_NULLS OFF’ command right above my SELECT statement I would get ‘Customer B’ returned in the results, but that’s definitely not the right way to deal with this. We could re-write the query to explicitly include the NULL value in the WHERE clause: 1: SELECT 2: CustomerId, 3: CustomerName, 4: SalesRegionId 5: FROM Customers 6: WHERE (SalesRegionId NOT IN (2,4) OR SalesRegionId IS NULL)   This query works and properly includes ‘Customer B’ in the results, but I ultimately opted to re-write the query using a LEFT OUTER JOIN against a table variable containing all of the values that I wanted to exclude because, in my case, there could potentially be several hundred values to be excluded. If we were to apply the same refactoring to our simple sales region example we’d end up with: 1: DECLARE @regionsToIgnore TABLE (IgnoredRegionId INT) 2: INSERT @regionsToIgnore values (2),(4) 3:  4: SELECT 5: c.CustomerId, 6: c.CustomerName, 7: c.SalesRegionId 8: FROM Customers c 9: LEFT OUTER JOIN @regionsToIgnore r ON r.IgnoredRegionId = c.SalesRegionId 10: WHERE r.IgnoredRegionId IS NULL By performing a LEFT OUTER JOIN from Customers to the @regionsToIgnore table variable we can simply exclude any rows where the IgnoredRegionId is null, as those represent customers that DO NOT appear in the ignored regions list. This approach will likely perform better if the number of sales regions to ignore gets very large and it also will correctly include any customers that do not yet have a sales region.

    Read the article

  • Template inheritence c++

    - by Chris Condy
    I have made a template singleton class, I have also made a data structure that is templated. My question is; how do I make my templated data structure inherit from a singleton so you can only have one float type of this structure? I have tested both seperate and have found no problems. Code provided under... (That is the problem) template <class Type> class AbstractRManagers : public Singleton<AbstractRManagers<Type> > The problem is the code above doesn't work I get alot of errors. I cant get it to no matter what I do template a templated singleton class... I was asking for maybe advice or maybe if the code above is incorrect guidence? #ifndef SINGLETON_H #define SINGLETON_H template <class Type> class Singleton { public: virtual ~Singleton(); Singleton(); static Type* m_instance; }; template <class Type> Type* Singleton<Type>::m_instance = 0; #include "Singleton.cpp" #endif #ifndef SINGLETON_CPP #define SINGLETON_CPP #include "Singleton.h" template <class Type> Singleton<Type>::Singleton() { } template <class Type> Singleton<Type>::~Singleton() { } template <class Type> Type* Singleton<Type>::getInstance() { if(m_instance==nullptr) { m_instance = new Type; } return m_instance; } #endif #ifndef ABSTRACTRMANAGERS_H #define ABSTRACTRMANAGERS_H #include <vector> #include <map> #include <stack> #include "Singleton.h" template <class Type> class AbstractRManagers : public Singleton<AbstractRManagers<Type> > { public: virtual ~AbstractRManagers(); int insert(Type* type, std::string name); Type* remove(int i); Type* remove(std::string name); Type* get(int i); Type* getS(std::string name); int get(std::string name); int get(Type* i); bool check(std::string name); int resourceSize(); protected: private: std::vector<Type*> m_resources; std::map<std::string,int> m_map; std::stack<int> m_freePos; }; #include "AbstractRManagers.cpp" #endif #ifndef ABSTRACTRMANAGERS_CPP #define ABSTRACTRMANAGERS_CPP #include "AbstractRManagers.h" template <class Type> int AbstractRManagers<Type>::insert(Type* type, std::string name) { int i=0; if(!check(name)) { if(m_freePos.empty()) { m_resources.push_back(type); i = m_resources.size()-1; m_map[name] = i; } else { i = m_freePos.top(); m_freePos.pop(); m_resources[i] = type; m_map[name] = i; } } else i = -1; return i; } template <class Type> int AbstractRManagers<Type>::resourceSize() { return m_resources.size(); } template <class Type> bool AbstractRManagers<Type>::check(std::string name) { std::map<std::string,int>::iterator it; it = m_map.find(name); if(it==m_map.end()) return false; return true; } template <class Type> Type* AbstractRManagers<Type>::remove(std::string name) { Type* temp = m_resources[m_map[name]]; if(temp!=NULL) { std::map<std::string,int>::iterator it; it = m_map[name]; m_resources[m_map[name]] = NULL; m_freePos.push(m_map[name]); delete (*it).second; delete (*it).first; return temp; } return NULL; } template <class Type> Type* AbstractRManagers<Type>::remove(int i) { if((i < m_resources.size())&&(i > 0)) { Type* temp = m_resources[i]; m_resources[i] = NULL; m_freePos.push(i); std::map<std::string,int>::iterator it; for(it=m_map.begin();it!=m_map.end();it++) { if((*it).second == i) { delete (*it).second; delete (*it).first; return temp; } } return temp; } return NULL; } template <class Type> int AbstractRManagers<Type>::get(Type* i) { for(int i2=0;i2<m_resources.size();i2++) { if(i == m_resources[i2]) { return i2; } } return -1; } template <class Type> Type* AbstractRManagers<Type>::get(int i) { if((i < m_resources.size())&&(i >= 0)) { return m_resources[i]; } return NULL; } template <class Type> Type* AbstractRManagers<Type>::getS(std::string name) { return m_resources[m_map[name]]; } template <class Type> int AbstractRManagers<Type>::get(std::string name) { return m_map[name]; } template <class Type> AbstractRManagers<Type>::~AbstractRManagers() { } #endif #include "AbstractRManagers.h" struct b { float x; }; int main() { b* a = new b(); AbstractRManagers<b>::getInstance()->insert(a,"a"); return 0; } This program produces next errors when compiled : 1> main.cpp 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::stack<_Ty,_Container> &,const std::stack<_Ty,_Container> &)' : could not deduce template argument for 'const std::stack<_Ty,_Container> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\stack(166) : see declaration of 'std::operator <' 1> c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(124) : while compiling class template member function 'bool std::less<_Ty>::operator ()(const _Ty &,const _Ty &) const' 1> with 1> [ 1> _Ty=std::string 1> ] 1> c:\program files\microsoft visual studio 10.0\vc\include\map(71) : see reference to class template instantiation 'std::less<_Ty>' being compiled 1> with 1> [ 1> _Ty=std::string 1> ] 1> c:\program files\microsoft visual studio 10.0\vc\include\xtree(451) : see reference to class template instantiation 'std::_Tmap_traits<_Kty,_Ty,_Pr,_Alloc,_Mfl>' being compiled 1> with 1> [ 1> _Kty=std::string, 1> _Ty=int, 1> _Pr=std::less<std::string>, 1> _Alloc=std::allocator<std::pair<const std::string,int>>, 1> _Mfl=false 1> ] 1> c:\program files\microsoft visual studio 10.0\vc\include\xtree(520) : see reference to class template instantiation 'std::_Tree_nod<_Traits>' being compiled 1> with 1> [ 1> _Traits=std::_Tmap_traits<std::string,int,std::less<std::string>,std::allocator<std::pair<const std::string,int>>,false> 1> ] 1> c:\program files\microsoft visual studio 10.0\vc\include\xtree(659) : see reference to class template instantiation 'std::_Tree_val<_Traits>' being compiled 1> with 1> [ 1> _Traits=std::_Tmap_traits<std::string,int,std::less<std::string>,std::allocator<std::pair<const std::string,int>>,false> 1> ] 1> c:\program files\microsoft visual studio 10.0\vc\include\map(81) : see reference to class template instantiation 'std::_Tree<_Traits>' being compiled 1> with 1> [ 1> _Traits=std::_Tmap_traits<std::string,int,std::less<std::string>,std::allocator<std::pair<const std::string,int>>,false> 1> ] 1> c:\users\chris\desktop\311\ideas\idea1\idea1\abstractrmanagers.h(28) : see reference to class template instantiation 'std::map<_Kty,_Ty>' being compiled 1> with 1> [ 1> _Kty=std::string, 1> _Ty=int 1> ] 1> c:\users\chris\desktop\311\ideas\idea1\idea1\abstractrmanagers.h(30) : see reference to class template instantiation 'AbstractRManagers<Type>' being compiled 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::stack<_Ty,_Container> &,const std::stack<_Ty,_Container> &)' : could not deduce template argument for 'const std::stack<_Ty,_Container> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\stack(166) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::stack<_Ty,_Container> &,const std::stack<_Ty,_Container> &)' : could not deduce template argument for 'const std::stack<_Ty,_Container> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\stack(166) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::deque<_Ty,_Alloc> &,const std::deque<_Ty,_Alloc> &)' : could not deduce template argument for 'const std::deque<_Ty,_Alloc> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\deque(1725) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::deque<_Ty,_Alloc> &,const std::deque<_Ty,_Alloc> &)' : could not deduce template argument for 'const std::deque<_Ty,_Alloc> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\deque(1725) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::deque<_Ty,_Alloc> &,const std::deque<_Ty,_Alloc> &)' : could not deduce template argument for 'const std::deque<_Ty,_Alloc> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\deque(1725) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::_Tree<_Traits> &,const std::_Tree<_Traits> &)' : could not deduce template argument for 'const std::_Tree<_Traits> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\xtree(1885) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::_Tree<_Traits> &,const std::_Tree<_Traits> &)' : could not deduce template argument for 'const std::_Tree<_Traits> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\xtree(1885) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::_Tree<_Traits> &,const std::_Tree<_Traits> &)' : could not deduce template argument for 'const std::_Tree<_Traits> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\xtree(1885) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::vector<_Ty,_Ax> &,const std::vector<_Ty,_Ax> &)' : could not deduce template argument for 'const std::vector<_Ty,_Ax> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\vector(1502) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::vector<_Ty,_Ax> &,const std::vector<_Ty,_Ax> &)' : could not deduce template argument for 'const std::vector<_Ty,_Ax> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\vector(1502) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::vector<_Ty,_Ax> &,const std::vector<_Ty,_Ax> &)' : could not deduce template argument for 'const std::vector<_Ty,_Ax> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\vector(1502) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::unique_ptr<_Ty,_Dx> &,const std::unique_ptr<_Ty2,_Dx2> &)' : could not deduce template argument for 'const std::unique_ptr<_Ty,_Dx> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\memory(2582) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::unique_ptr<_Ty,_Dx> &,const std::unique_ptr<_Ty2,_Dx2> &)' : could not deduce template argument for 'const std::unique_ptr<_Ty,_Dx> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\memory(2582) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::unique_ptr<_Ty,_Dx> &,const std::unique_ptr<_Ty2,_Dx2> &)' : could not deduce template argument for 'const std::unique_ptr<_Ty,_Dx> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\memory(2582) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::reverse_iterator<_RanIt> &,const std::reverse_iterator<_RanIt2> &)' : could not deduce template argument for 'const std::reverse_iterator<_RanIt> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\xutility(1356) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::reverse_iterator<_RanIt> &,const std::reverse_iterator<_RanIt2> &)' : could not deduce template argument for 'const std::reverse_iterator<_RanIt> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\xutility(1356) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::reverse_iterator<_RanIt> &,const std::reverse_iterator<_RanIt2> &)' : could not deduce template argument for 'const std::reverse_iterator<_RanIt> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\xutility(1356) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::_Revranit<_RanIt,_Base> &,const std::_Revranit<_RanIt2,_Base2> &)' : could not deduce template argument for 'const std::_Revranit<_RanIt,_Base> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\xutility(1179) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::_Revranit<_RanIt,_Base> &,const std::_Revranit<_RanIt2,_Base2> &)' : could not deduce template argument for 'const std::_Revranit<_RanIt,_Base> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\xutility(1179) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::_Revranit<_RanIt,_Base> &,const std::_Revranit<_RanIt2,_Base2> &)' : could not deduce template argument for 'const std::_Revranit<_RanIt,_Base> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\xutility(1179) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::pair<_Ty1,_Ty2> &,const std::pair<_Ty1,_Ty2> &)' : could not deduce template argument for 'const std::pair<_Ty1,_Ty2> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\utility(318) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::pair<_Ty1,_Ty2> &,const std::pair<_Ty1,_Ty2> &)' : could not deduce template argument for 'const std::pair<_Ty1,_Ty2> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\utility(318) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2784: 'bool std::operator <(const std::pair<_Ty1,_Ty2> &,const std::pair<_Ty1,_Ty2> &)' : could not deduce template argument for 'const std::pair<_Ty1,_Ty2> &' from 'const std::string' 1> c:\program files\microsoft visual studio 10.0\vc\include\utility(318) : see declaration of 'std::operator <' 1>c:\program files\microsoft visual studio 10.0\vc\include\xfunctional(125): error C2676: binary '<' : 'const std::string' does not define this operator or a conversion to a type acceptable to the predefined operator ========== Build: 0 succeeded, 1 failed, 0 up-to-date, 0 skipped ==========

    Read the article

  • What is the rationale to non allow overloading of C++ conversions operator with non-member functio

    - by Vicente Botet Escriba
    C++0x has added explicit conversion operators, but they must always be defined as members of the Source class. The same applies to the assignment operator, it must be defined on the Target class. When the Source and Target classes of the needed conversion are independent of each other, neither the Source can define a conversion operator, neither the Target can define a constructor from a Source. Usually we get it by defining a specific function such as Target ConvertToTarget(Source& v); If C++0x allowed to overload conversion operator by non member functions we could for example define the conversion implicitly or explicitly between unrelated types. template < typename To, typename From operator To(const From& val); For example we could specialize the conversion from chrono::time_point to posix_time::ptime as follows template < class Clock, class Duration operator boost::posix_time::ptime( const boost::chrono::time_point& from) { using namespace boost; typedef chrono::time_point time_point_t; typedef chrono::nanoseconds duration_t; typedef duration_t::rep rep_t; rep_t d = chrono::duration_cast( from.time_since_epoch()).count(); rep_t sec = d/1000000000; rep_t nsec = d%1000000000; return posix_time::from_time_t(0)+ posix_time::seconds(static_cast(sec))+ posix_time::nanoseconds(nsec); } And use the conversion as any other conversion. So the question is: What is the rationale to non allow overloading of C++ conversions operator with non-member functions?

    Read the article

  • C++ overloading comparative operators for a MyString class

    - by Taylor Gang
    bool operator == (const MyString& left, const MyString& right) { if(left.value == right.value) return true; else return false; } bool operator != (const MyString& left, const MyString& right) { if(left == right) return false; else return true; } bool operator < (const MyString& left, const MyString& right) { if(strcmp(left.value, right.value) == -1) return true; else return false; } bool operator > (const MyString& left, const MyString& right) { if(strcmp(left.value, right.value) == 1) return true; else return false; } bool operator <= (const MyString& left, const MyString& right) { if(strcmp(left.value, right.value) == -1 || strcmp(left.value, right.value) == 0) return true; else return false; } bool operator >= (const MyString& left, const MyString& right) { if(strcmp(left.value, right.value) == 1 || strcmp(left.value, right.value) == 0) return true; else return false; } So these are my implemented comparison operators for my MyString class, they fail the test program that my professor gave me and could use some direction. Thanks in advance for any and all help I receive.

    Read the article

  • How do I overload () operator with two parameters; like (3,5)?

    - by hkBattousai
    I have a mathematical matrix class. It contains a member function which is used to access any element of the class. template >class T> class Matrix { public: // ... void SetElement(T dbElement, uint64_t unRow, uint64_t unCol); // ... }; template <class T> void Matrix<T>::SetElement(T Element, uint64_t unRow, uint64_t unCol) { try { // "TheMatrix" is define as "std::vector<T> TheMatrix" TheMatrix.at(m_unColSize * unRow + unCol) = Element; } catch(std::out_of_range & e) { // Do error handling here } } I'm using this method in my code like this: // create a matrix with 2 rows and 3 columns whose elements are double Matrix<double> matrix(2, 3); // change the value of the element at 1st row and 2nd column to 6.78 matrix.SetElement(6.78, 1, 2); This works well, but I want to use operator overloading to simplify things, like below: Matrix<double> matrix(2, 3); matrix(1, 2) = 6.78; // HOW DO I DO THIS?

    Read the article

  • How do I overload an operator for an enumeration in C#?

    - by ChrisHDog
    I have an enumerated type that I would like to define the , <, =, and <= operators for. I know that these operators are implictly created on the basis of the enumerated type (as per the documentation) but I would like to explictly define these operators (for clarity, for control, to know how to do it, etc...) I was hoping I could do something like: public enum SizeType { Small = 0, Medium = 1, Large = 2, ExtraLarge = 3 } public SizeType operator >(SizeType x, SizeType y) { } But this doesn't seem to work ("unexpected toke") ... is this possible? It seems like it should be since there are implictly defined operators. Any suggestions?

    Read the article

  • Multiple (variant) arguments overloading in Java: What's the purpose?

    - by fortran
    Browsing google's guava collect library code, I've found the following: // Casting to any type is safe because the list will never hold any elements. @SuppressWarnings("unchecked") public static <E> ImmutableList<E> of() { return (ImmutableList<E>) EmptyImmutableList.INSTANCE; } public static <E> ImmutableList<E> of(E element) { return new SingletonImmutableList<E>(element); } public static <E> ImmutableList<E> of(E e1, E e2) { return new RegularImmutableList<E>( ImmutableList.<E>nullCheckedList(e1, e2)); } public static <E> ImmutableList<E> of(E e1, E e2, E e3) { return new RegularImmutableList<E>( ImmutableList.<E>nullCheckedList(e1, e2, e3)); } public static <E> ImmutableList<E> of(E e1, E e2, E e3, E e4) { return new RegularImmutableList<E>( ImmutableList.<E>nullCheckedList(e1, e2, e3, e4)); } public static <E> ImmutableList<E> of(E e1, E e2, E e3, E e4, E e5) { return new RegularImmutableList<E>( ImmutableList.<E>nullCheckedList(e1, e2, e3, e4, e5)); } public static <E> ImmutableList<E> of(E e1, E e2, E e3, E e4, E e5, E e6) { return new RegularImmutableList<E>( ImmutableList.<E>nullCheckedList(e1, e2, e3, e4, e5, e6)); } public static <E> ImmutableList<E> of( E e1, E e2, E e3, E e4, E e5, E e6, E e7) { return new RegularImmutableList<E>( ImmutableList.<E>nullCheckedList(e1, e2, e3, e4, e5, e6, e7)); } public static <E> ImmutableList<E> of( E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8) { return new RegularImmutableList<E>( ImmutableList.<E>nullCheckedList(e1, e2, e3, e4, e5, e6, e7, e8)); } public static <E> ImmutableList<E> of( E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8, E e9) { return new RegularImmutableList<E>( ImmutableList.<E>nullCheckedList(e1, e2, e3, e4, e5, e6, e7, e8, e9)); } public static <E> ImmutableList<E> of( E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8, E e9, E e10) { return new RegularImmutableList<E>(ImmutableList.<E>nullCheckedList( e1, e2, e3, e4, e5, e6, e7, e8, e9, e10)); } public static <E> ImmutableList<E> of( E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8, E e9, E e10, E e11) { return new RegularImmutableList<E>(ImmutableList.<E>nullCheckedList( e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11)); } public static <E> ImmutableList<E> of( E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8, E e9, E e10, E e11, E e12, E... others) { final int paramCount = 12; Object[] array = new Object[paramCount + others.length]; arrayCopy(array, 0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12); arrayCopy(array, paramCount, others); return new RegularImmutableList<E>(ImmutableList.<E>nullCheckedList(array)); } And although it seems reasonable to have overloads for empty and single arguments (as they are going to use special instances), I cannot see the reason behind having all the others, when just the last one (with two fixed arguments plus the variable argument instead the dozen) seems to be enough. As I'm writing, one explanation that pops into my head is that the API pre-dates Java 1.5; and although the signatures would be source-level compatible, the binary interface would differ. Isn't it?

    Read the article

  • == and === operators in php

    - by Lizard
    Lets say I have a variable that will always be a string. Now take the code below: if($myVar === "teststring") Note $myVar will always be a string, so my questions is Which is quicker/best, using === (Indentity) or the == (Equality)?

    Read the article

  • Overloading Console.ReadLine possible? (or any static class method)

    - by comecme
    I'm trying to create an overload of the System.Console.ReadLine() method that will take a string argument. My intention basically is to be able to write string s = Console.ReadLine("Please enter a number: "); in stead of Console.Write("Please enter a number: "); string s = Console.ReadLine(); I don't think it is possible to overload Console.ReadLine itself, so I tried implementing an inherited class, like this: public static class MyConsole : System.Console { public static string ReadLine(string s) { Write(s); return ReadLine(); } } That doesn't work though, cause it is not possible to inherit from System.Console (because it is a static class which automatically makes is a sealed class). Does it make sense what I'm trying to do here? Or is it never a good idea to want to overload something from a static class?

    Read the article

  • Why isn't the compiler smarter in this const function overloading problem?

    - by Frank
    The following code does not compile: #include <iostream> class Foo { std::string s; public: const std::string& GetString() const { return s; } std::string* GetString() { return &s; } }; int main(int argc, char** argv){ Foo foo; const std::string& s = foo.GetString(); // error return 0; } I get the following error: const1.cc:11: error: invalid initialization of reference of type 'const std::string&' from expression of type 'std::string* It does make some sense because foo is not of type const Foo, but just Foo, so the compiler wants to use the non-const function. But still, why can't it recognize that I want to call the const GetString function, by looking at the (type of) variable I assign it to? I found this kind of surprising.

    Read the article

  • Template function overloading with identical signatures, why does this work?

    - by user1843978
    Minimal program: #include <stdio.h> #include <type_traits> template<typename S, typename T> int foo(typename T::type s) { return 1; } template<typename S, typename T> int foo(S s) { return 2; } int main(int argc, char* argv[]) { int x = 3; printf("%d\n", foo<int, std::enable_if<true, int>>(x)); return 0; } output: 1 Why doesn't this give a compile error? When the template code is generated, wouldn't the functions int foo(typename T::type search) and int foo(S& search) have the same signature? If you change the template function signatures a little bit, it still works (as I would expect given the example above): template<typename S, typename T> void foo(typename T::type s) { printf("a\n"); } template<typename S, typename T> void foo(S s) { printf("b\n"); } Yet this doesn't and yet the only difference is that one has an int signature and the other is defined by the first template parameter. template<typename T> void foo(typename T::type s) { printf("a\n"); } template<typename T> void foo(int s) { printf("b\n"); } I'm using code similar to this for a project I'm working on and I'm afraid that there's a subtly to the language that I'm not understanding that will cause some undefined behavior in certain cases. I should also mention that it does compile on both Clang and in VS11 so I don't think it's just a compiler bug.

    Read the article

  • Why isn't my operator overloading working properly?

    - by Mithrax
    I have the following Polynomial class I'm working on: #include <iostream> using namespace std; class Polynomial { //define private member functions private: int coef[100]; // array of coefficients // coef[0] would hold all coefficients of x^0 // coef[1] would hold all x^1 // coef[n] = x^n ... int deg; // degree of polynomial (0 for the zero polynomial) //define public member functions public: Polynomial::Polynomial() //default constructor { for ( int i = 0; i < 100; i++ ) { coef[i] = 0; } } void set ( int a , int b ) //setter function { //coef = new Polynomial[b+1]; coef[b] = a; deg = degree(); } int degree() { int d = 0; for ( int i = 0; i < 100; i++ ) if ( coef[i] != 0 ) d = i; return d; } void print() { for ( int i = 99; i >= 0; i-- ) { if ( coef[i] != 0 ) { cout << coef[i] << "x^" << i << " "; } } } // use Horner's method to compute and return the polynomial evaluated at x int evaluate ( int x ) { int p = 0; for ( int i = deg; i >= 0; i-- ) p = coef[i] + ( x * p ); return p; } // differentiate this polynomial and return it Polynomial differentiate() { if ( deg == 0 ) { Polynomial t; t.set ( 0, 0 ); return t; } Polynomial deriv;// = new Polynomial ( 0, deg - 1 ); deriv.deg = deg - 1; for ( int i = 0; i < deg; i++ ) deriv.coef[i] = ( i + 1 ) * coef[i + 1]; return deriv; } Polynomial Polynomial::operator + ( Polynomial b ) { Polynomial a = *this; //a is the poly on the L.H.S Polynomial c; for ( int i = 0; i <= a.deg; i++ ) c.coef[i] += a.coef[i]; for ( int i = 0; i <= b.deg; i++ ) c.coef[i] += b.coef[i]; c.deg = c.degree(); return c; } Polynomial Polynomial::operator += ( Polynomial b ) { Polynomial a = *this; //a is the poly on the L.H.S Polynomial c; for ( int i = 0; i <= a.deg; i++ ) c.coef[i] += a.coef[i]; for ( int i = 0; i <= b.deg; i++ ) c.coef[i] += b.coef[i]; c.deg = c.degree(); for ( int i = 0; i < 100; i++) a.coef[i] = c.coef[i]; a.deg = a.degree(); return a; } Polynomial Polynomial::operator -= ( Polynomial b ) { Polynomial a = *this; //a is the poly on the L.H.S Polynomial c; for ( int i = 0; i <= a.deg; i++ ) c.coef[i] += a.coef[i]; for ( int i = 0; i <= b.deg; i++ ) c.coef[i] -= b.coef[i]; c.deg = c.degree(); for ( int i = 0; i < 100; i++) a.coef[i] = c.coef[i]; a.deg = a.degree(); return a; } Polynomial Polynomial::operator *= ( Polynomial b ) { Polynomial a = *this; //a is the poly on the L.H.S Polynomial c; for ( int i = 0; i <= a.deg; i++ ) for ( int j = 0; j <= b.deg; j++ ) c.coef[i+j] += ( a.coef[i] * b.coef[j] ); c.deg = c.degree(); for ( int i = 0; i < 100; i++) a.coef[i] = c.coef[i]; a.deg = a.degree(); return a; } Polynomial Polynomial::operator - ( Polynomial b ) { Polynomial a = *this; //a is the poly on the L.H.S Polynomial c; for ( int i = 0; i <= a.deg; i++ ) c.coef[i] += a.coef[i]; for ( int i = 0; i <= b.deg; i++ ) c.coef[i] -= b.coef[i]; c.deg = c.degree(); return c; } Polynomial Polynomial::operator * ( Polynomial b ) { Polynomial a = *this; //a is the poly on the L.H.S Polynomial c; for ( int i = 0; i <= a.deg; i++ ) for ( int j = 0; j <= b.deg; j++ ) c.coef[i+j] += ( a.coef[i] * b.coef[j] ); c.deg = c.degree(); return c; } }; int main() { Polynomial a, b, c, d; a.set ( 7, 4 ); //7x^4 a.set ( 1, 2 ); //x^2 b.set ( 6, 3 ); //6x^3 b.set ( -3, 2 ); //-3x^2 c = a - b; // (7x^4 + x^2) - (6x^3 - 3x^2) a -= b; c.print(); cout << "\n"; a.print(); cout << "\n"; c = a * b; // (7x^4 + x^2) * (6x^3 - 3x^2) c.print(); cout << "\n"; d = c.differentiate().differentiate(); d.print(); cout << "\n"; cout << c.evaluate ( 2 ); //substitue x with 2 cin.get(); } Now, I have the "-" operator overloaded and it works fine: Polynomial Polynomial::operator - ( Polynomial b ) { Polynomial a = *this; //a is the poly on the L.H.S Polynomial c; for ( int i = 0; i <= a.deg; i++ ) c.coef[i] += a.coef[i]; for ( int i = 0; i <= b.deg; i++ ) c.coef[i] -= b.coef[i]; c.deg = c.degree(); return c; } However, I'm having difficulty with my "-=" operator: Polynomial Polynomial::operator -= ( Polynomial b ) { Polynomial a = *this; //a is the poly on the L.H.S Polynomial c; for ( int i = 0; i <= a.deg; i++ ) c.coef[i] += a.coef[i]; for ( int i = 0; i <= b.deg; i++ ) c.coef[i] -= b.coef[i]; c.deg = c.degree(); // overwrite value of 'a' with the newly computed 'c' before returning 'a' for ( int i = 0; i < 100; i++) a.coef[i] = c.coef[i]; a.deg = a.degree(); return a; } I just slightly modified my "-" operator method to overwrite the value in 'a' and return 'a', and just use the 'c' polynomial as a temp. I've put in some debug print statement and I confirm that at the time of computation, both: c = a - b; and a -= b; are computed to the same value. However, when I go to print them, their results are different: Polynomial a, b; a.set ( 7, 4 ); //7x^4 a.set ( 1, 2 ); //x^2 b.set ( 6, 3 ); //6x^3 b.set ( -3, 2 ); //-3x^2 c = a - b; // (7x^4 + x^2) - (6x^3 - 3x^2) a -= b; c.print(); cout << "\n"; a.print(); cout << "\n"; Result: 7x^4 -6x^3 4x^2 7x^4 1x^2 Why is my c = a - b and a -= b giving me different results when I go to print them?

    Read the article

  • How do I overload the square-bracket operator in C#?

    - by Coderer
    DataGridView, for example, lets you do this: DataGridView dgv = ...; DataGridViewCell cell = dgv[1,5]; but for the life of me I can't find the documentation on the index/square-bracket operator. What do they call it? Where is it implemented? Can it throw? How can I do the same thing in my own classes? ETA: Thanks for all the quick answers. Briefly: the relevant documentation is under the "Item" property; the way to overload is by declaring a property like public object this[int x, int y]{ get{...}; set{...} }; the indexer for DataGridView does not throw, at least according to the documentation. It doesn't mention what happens if you supply invalid coordinates. ETA Again: OK, even though the documentation makes no mention of it (naughty Microsoft!), it turns out that the indexer for DataGridView will in fact throw an ArgumentOutOfRangeException if you supply it with invalid coordinates. Fair warning.

    Read the article

< Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >