Search Results

Search found 584 results on 24 pages for 'steering behaviors'.

Page 10/24 | < Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >

  • Receiving the post response using curl

    - by Larry Battle
    Hello, I'm trying to make a script that will download search results from a HTTPS website using POST. So far, I'm able to download the web page before the submission but not the response page containing the search results. The problem seems to be that curl isn't waiting long enough for the response page to appear. The website behaviors likes this. Website appears- input form data - click submit - progressing icon appears - returns new web page with search results( new data but the url doesn't change ) My code: curl -d "postData" -k url

    Read the article

  • Maximum nametable char count exceeded

    - by doc
    I'm having issues with the maximum nametable char count quota, I followed a couple of answers here and it solved the problem for a while, but now I'm having the same issue. My Server side config is as follows: <system.serviceModel> <bindings> <netTcpBinding> <binding name="GenericBinding" maxBufferPoolSize="2147483647" maxBufferSize="2147483647" maxReceivedMessageSize="2147483647"> <readerQuotas maxDepth="2147483647" maxStringContentLength="2147483647" maxArrayLength="2147483647" maxBytesPerRead="2147483647" maxNameTableCharCount="2147483647" /> <security mode="None" /> </binding> </netTcpBinding> </bindings> <behaviors> <serviceBehaviors> <behavior> <serviceMetadata httpGetEnabled="false" /> <serviceDebug includeExceptionDetailInFaults="true" /> <dataContractSerializer maxItemsInObjectGraph="1000000" /> </behavior> </serviceBehaviors> </behaviors> <services> <service name="REMWCF.RemWCFSvc"> <endpoint address="" binding="netTcpBinding" contract="REMWCF.IRemWCFSvc" bindingConfiguration="GenericBinding" /> <endpoint address="mex" binding="mexTcpBinding" contract="IMetadataExchange" /> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:9081/RemWCFSvc" /> </baseAddresses> </host> </service> </services> </system.serviceModel> I also have the same tcp binding on the devenv configuration. Have I reached the limit of contracts supported? Is there a way to turn off that quota? EDIT Error Message: Error: Cannot obtain Metadata from net.tcp://localhost:9081/RemWCFSvc/mex If this is a Windows (R) Communication Foundation service to which you have access, please check that you have enabled metadata publishing at the specified address. For help enabling metadata publishing, please refer to the MSDN documentation at http://go.microsoft.com/fwlink/?LinkId=65455.WS-Metadata Exchange Error URI: net.tcp://localhost:9081/RemWCFSvc/mex Metadata contains a reference that cannot be resolved: 'net.tcp://localhost:9081/RemWCFSvc/mex'. There is an error in the XML document. The maximum nametable character count quota (16384) has been exceeded while reading XML data. The nametable is a data structure used to store strings encountered during XML processing - long XML documents with non-repeating element names, attribute names and attribute values may trigger this quota. This quota may be increased by changing the MaxNameTableCharCount property on the XmlDictionaryReaderQuotas object used when creating the XML reader. I'm getting that error when trying to run the WCF (which is hosted in a windows service app).

    Read the article

  • GNU Emacs is crashing with -nw

    - by Jack
    When I run emacs with -nw option, the emacs really open, but I can't do more nothing. As if the user input is blocked and no keyboard signal is received and/or interpreted. I've tried run without load .emacs file and some other behaviors: emacs -nw -Q --no-desktop --debug-ini foo.c But makes no difference and strangely the GUI-version(using Gtk) is working fine. My gnu-emacs version is GNU Emacs 23.3.1 Any help to help to fix it is very appreciated.

    Read the article

  • How to use SSL with a WCF web service?

    - by Martin
    I have a web service in asp.net running and everything works fine. Now I need to access some methods in that web-service using SSL. It works perfect when I contact the web-service using http:// but with https:// I get "There was no endpoint listening at https://...". Can you please help me on how to set up my web.config to support both http and https access to my web service. I have tried to follow guidelines but I can't get it working. Some code: My TestService.svc: [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class TestService { [OperationContract] [WebGet(ResponseFormat = WebMessageFormat.Json)] public bool validUser(string email) { return true; } } My Web.config: <system.serviceModel> <serviceHostingEnvironment aspNetCompatibilityEnabled="true" multipleSiteBindingsEnabled="true" /> <behaviors> <endpointBehaviors> <behavior name="ServiceAspNetAjaxBehavior"> <enableWebScript /> </behavior> </endpointBehaviors> <serviceBehaviors> <behavior name="ServiceBehavior"> <serviceDebug includeExceptionDetailInFaults="true" /> </behavior> <behavior name=""> <serviceMetadata httpGetEnabled="true" /> <serviceDebug includeExceptionDetailInFaults="false" /> </behavior> </serviceBehaviors> </behaviors> <services> <service behaviorConfiguration="ServiceBehavior" name="TestService"> <endpoint address="" behaviorConfiguration="ServiceAspNetAjaxBehavior" binding="webHttpBinding" bindingConfiguration="ServiceBinding" contract="TestService" /> </service> </services> <bindings> <webHttpBinding> <binding name="ServiceBinding" maxBufferPoolSize="1000000" maxReceivedMessageSize="1000000"> <readerQuotas maxDepth="1000000" maxStringContentLength="1000000" maxArrayLength="1000000" maxBytesPerRead="1000000" maxNameTableCharCount="1000000"/> </binding> </webHttpBinding> </bindings> </system.serviceModel>

    Read the article

  • Stop overlooking minor details

    - by Mark Lubin
    Compared to most people on this site I am admittedly a novice. I wanted to get some advice from the pros on how to avoid making stupid errors in your code. Is there anyone else who had the problem when they were first starting out of missing some detail that causes big problems? Are there any habits or behaviors that helped you over come this.

    Read the article

  • How to let the UITable sorted by number?

    - by Tattat
    I loaded a plist from the UITable, but there is something wrong. my plist file is some data like that: 3 3uyyhuhu34 ..... 5 5uyyhuhu34 ..... 11 11uyyhuhu34 ..... I found that the list is sorted from 11, then 3, after that is 5. But I want to sorted from 3, 5 to 11. What can I do to change the behaviors? thx

    Read the article

  • Detecting when Bluetooth is disabled on iOS5

    - by Non Umemoto
    I'm developing blog speaker app. I wanna pause the audio when bluetooth is disabled like iPod app. I thought it's not possible without using private api after reading this. Check if Bluetooth is Enabled? But, my customer told me that Rhapsody and DI Radio apps both support it. Then I found iOS5 has Core Bluetooth framework. https://developer.apple.com/library/ios/documentation/CoreBluetooth/Reference/CoreBluetooth_Framework/CoreBluetooth_Framework.pdf CBCentralManagerStatePoweredOff status seems like the one. But, the description says this api only supports Bluetooth 4.0 low energy devices. Did anyone try doing the same thing? I want to support current popular bluetooth headsets, or bluetooth enabled steering wheel on the car. I don't know if it's worth trying when it only supports some brand new bluetooth.

    Read the article

  • What are the common programming mistakes in Python?

    - by Paul McGuire
    I was about to tag the recent question in which the OP accidentally shadowed the builtin operator module with his own local operator.py with the "common-mistakes" tag, and I saw that there are a number of interesting questions posted asking for common mistakes to avoid in Java, Ruby, Scala, Clojure, .Net, jQuery, Haskell, SQL, ColdFusion, and so on, but I didn't see any for Python. For the benefit of Python beginners, can we enumerate the common mistakes that we have all committed at one time or another, in the hopes of maybe steering a newbie or two clear of them? (In homage to "The Princess Bride", I call these the Classic Blunders.) If possible, a little supporting explanation on what the problem is, and the generally accepted resolution/workaround, so that the beginning Pythoner doesn't read your answer and say "ok, that's a mistake, how do I fix it?"

    Read the article

  • 2D Game: Fast(est) way to find x closest entities for another entity - huge amount of entities, high

    - by Pygmy
    I'm working on a 2D game that has a huge amount of dynamic entities. For fun's sake, let's call them soldiers, and let's say there are 50000 of them (which I just randomly thought up, it might be much more or much less :)). All these soldiers are moving every frame according to rules - think boids / flocking / steering behaviour. For each soldier, to update it's movement I need the X soldiers that are closest to the one I'm processing. What would be the best spatial hierarchy to store them to facilitate calculations like this without too much overhead ? (All entities are updated/moved every frame, so it has to handle dynamic entities very well)

    Read the article

  • When is it a good idea to use the CSS display property?

    - by allyourcode
    I think I first learned of this property when I thought "I should put this list of items in a ul, but I want it to be laid out horizontally. I wonder if I can do that with CSS?" When I googled this, I found a couple of sites suggesting that I create a CSS rule that would change the value of the display property of the li elements to inline. I've also seen the suggestion that a div (or other block element) be given display: table-cell in order to force the vertical align property to work. These techniques seem kind of hacky. Does that make sense? This might not be a good analogy, but it seems like trying to ride a car as if it were a motorcycle. Yeah, I could replace the steering wheel with handle bars, wear a helmet, and remove all the passenger seating, but how the heck is a car going to drive on two wheels??

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Hosting WCF service in Windows Service

    - by DigiMortal
    When building Windows services we often need a way to communicate with them. The natural way to communicate to service is to send signals to it. But this is very limited communication. Usually we need more powerful communication mechanisms with services. In this posting I will show you how to use service-hosted WCF web service to communicate with Windows service. Create Windows service Suppose you have Windows service created and service class is named as MyWindowsService. This is new service and all we have is default code that Visual Studio generates. Create WCF service Add reference to System.ServiceModel assembly to Windows service project and add new interface called IMyService. This interface defines our service contracts. [ServiceContract] public interface IMyService {     [OperationContract]     string SayHello(int value); } We keep this service simple so it is easy for you to follow the code. Now let’s add service implementation: [ServiceBehavior(InstanceContextMode=InstanceContextMode.Single)] public class MyService : IMyService {     public string SayHello(int value)     {         return string.Format("Hello, : {0}", value);     } } With ServiceBehavior attribute we say that we need only one instance of WCF service to serve all requests. Usually this is more than enough for us. Hosting WCF service in Windows Service Now it’s time to host our WCF service and make it available in Windows service. Here is the code in my Windows service: public partial class MyWindowsService : ServiceBase {     private ServiceHost _host;     private MyService _server;       public MyWindowsService()     {         InitializeComponent();     }       protected override void OnStart(string[] args)     {         _server = new MyService();         _host = new ServiceHost(_server);         _host.Open();     }       protected override void OnStop()     {         _host.Close();     } } Our Windows service now hosts our WCF service. WCF service will be available when Windows service is started and it is taken down when Windows service stops. Configuring WCF service To make WCF service usable we need to configure it. Add app.config file to your Windows service project and paste the following XML there: <system.serviceModel>   <serviceHostingEnvironment aspNetCompatibilityEnabled="true" />   <services>     <service name="MyWindowsService.MyService" behaviorConfiguration="def">       <host>         <baseAddresses>           <add baseAddress="http://localhost:8732/MyService/"/>         </baseAddresses>       </host>       <endpoint address="" binding="wsHttpBinding" contract="MyWindowsService.IMyService">       </endpoint>       <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange"/>     </service>   </services>   <behaviors>     <serviceBehaviors>       <behavior name="def">         <serviceMetadata httpGetEnabled="True"/>         <serviceDebug includeExceptionDetailInFaults="True"/>       </behavior>     </serviceBehaviors>   </behaviors> </system.serviceModel> Now you are ready to test your service. Install Windows service and start it. Open your browser and open the following address: http://localhost:8732/MyService/ You should see your WCF service page now. Conclusion WCF is not only web applications fun. You can use WCF also as self-hosted service. Windows services that lack good communication possibilities can be saved by using WCF self-hosted service as it is the best way to talk to service. We can also revert the context and say that Windows service is good host for our WCF service.

    Read the article

  • Enabling Service Availability in WCF Services

    - by cibrax
    It is very important for the enterprise to know which services are operational at any given point. There are many factors that can affect the availability of the services, some of them are external like a database not responding or any dependant service not working. However, in some cases, you only want to know whether a service is up or down, so a simple heart-beat mechanism with “Ping” messages would do the trick. Unfortunately, WCF does not provide a built-in mechanism to support this functionality, and you probably don’t to implement a “Ping” operation in any service that you have out there. For solving this in a generic way, there is a WCF extensibility point that comes to help us, the “Operation Invokers”. In a nutshell, an operation invoker is the class responsible invoking the service method with a set of parameters and generate the output parameters with the return value. What I am going to do here is to implement a custom operation invoker that intercepts any call to the service, and detects whether a “Ping” header was attached to the message. If the “Ping” header is detected, the operation invoker returns a new header to tell the client that the service is alive, and the real operation execution is omitted. In that way, we have a simple heart beat mechanism based on the messages that include a "Ping” header, so the client application can determine at any point whether the service is up or down. My operation invoker wraps the default implementation attached by default to any operation by WCF. internal class PingOperationInvoker : IOperationInvoker { IOperationInvoker innerInvoker; object[] outputs = null; object returnValue = null; public const string PingHeaderName = "Ping"; public const string PingHeaderNamespace = "http://tellago.serviceModel"; public PingOperationInvoker(IOperationInvoker innerInvoker, OperationDescription description) { this.innerInvoker = innerInvoker; outputs = description.SyncMethod.GetParameters() .Where(p => p.IsOut) .Select(p => DefaultForType(p.ParameterType)).ToArray(); var returnValue = DefaultForType(description.SyncMethod.ReturnType); } private static object DefaultForType(Type targetType) { return targetType.IsValueType ? Activator.CreateInstance(targetType) : null; } public object Invoke(object instance, object[] inputs, out object[] outputs) { object returnValue; if (Invoke(out returnValue, out outputs)) { return returnValue; } else { return this.innerInvoker.Invoke(instance, inputs, out outputs); } } private bool Invoke(out object returnValue, out object[] outputs) { object untypedProperty = null; if (OperationContext.Current .IncomingMessageProperties.TryGetValue(HttpRequestMessageProperty.Name, out untypedProperty)) { var httpRequestProperty = untypedProperty as HttpRequestMessageProperty; if (httpRequestProperty != null) { if (httpRequestProperty.Headers[PingHeaderName] != null) { outputs = this.outputs; if (OperationContext.Current .IncomingMessageProperties.TryGetValue(HttpRequestMessageProperty.Name, out untypedProperty)) { var httpResponseProperty = untypedProperty as HttpResponseMessageProperty; httpResponseProperty.Headers.Add(PingHeaderName, "Ok"); } returnValue = this.returnValue; return true; } } } var headers = OperationContext.Current.IncomingMessageHeaders; if (headers.FindHeader(PingHeaderName, PingHeaderNamespace) > -1) { outputs = this.outputs; MessageHeader<string> header = new MessageHeader<string>("Ok"); var untyped = header.GetUntypedHeader(PingHeaderName, PingHeaderNamespace); OperationContext.Current.OutgoingMessageHeaders.Add(untyped); returnValue = this.returnValue; return true; } returnValue = null; outputs = null; return false; } } The implementation above looks for the “Ping” header either in the Http Request or the Soap message. The next step is to implement a behavior for attaching this operation invoker to the services we want to monitor. [AttributeUsage(AttributeTargets.Method | AttributeTargets.Class, AllowMultiple = false, Inherited = true)] public class PingBehavior : Attribute, IServiceBehavior, IOperationBehavior { public void AddBindingParameters(ServiceDescription serviceDescription, ServiceHostBase serviceHostBase, Collection<ServiceEndpoint> endpoints, BindingParameterCollection bindingParameters) { } public void ApplyDispatchBehavior(ServiceDescription serviceDescription, ServiceHostBase serviceHostBase) { } public void Validate(ServiceDescription serviceDescription, ServiceHostBase serviceHostBase) { foreach (var endpoint in serviceDescription.Endpoints) { foreach (var operation in endpoint.Contract.Operations) { if (operation.Behaviors.Find<PingBehavior>() == null) operation.Behaviors.Add(this); } } } public void AddBindingParameters(OperationDescription operationDescription, BindingParameterCollection bindingParameters) { } public void ApplyClientBehavior(OperationDescription operationDescription, ClientOperation clientOperation) { } public void ApplyDispatchBehavior(OperationDescription operationDescription, DispatchOperation dispatchOperation) { dispatchOperation.Invoker = new PingOperationInvoker(dispatchOperation.Invoker, operationDescription); } public void Validate(OperationDescription operationDescription) { } } As an operation invoker can only be added in an “operation behavior”, a trick I learned in the past is that you can implement a service behavior as well and use the “Validate” method to inject it in all the operations, so the final configuration is much easier and cleaner. You only need to decorate the service with a simple attribute to enable the “Ping” functionality. [PingBehavior] public class HelloWorldService : IHelloWorld { public string Hello(string name) { return "Hello " + name; } } On the other hand, the client application needs to send a dummy message with a “Ping” header to detect whether the service is available or not. In order to simplify this task, I created a extension method in the WCF client channel to do this work. public static class ClientChannelExtensions { const string PingNamespace = "http://tellago.serviceModel"; const string PingName = "Ping"; public static bool IsAvailable<TChannel>(this IClientChannel channel, Action<TChannel> operation) { try { using (OperationContextScope scope = new OperationContextScope(channel)) { MessageHeader<string> header = new MessageHeader<string>(PingName); var untyped = header.GetUntypedHeader(PingName, PingNamespace); OperationContext.Current.OutgoingMessageHeaders.Add(untyped); try { operation((TChannel)channel); var headers = OperationContext.Current.IncomingMessageHeaders; if (headers.Any(h => h.Name == PingName && h.Namespace == PingNamespace)) { return true; } else { return false; } } catch (CommunicationException) { return false; } } } catch (Exception) { return false; } } } This extension method basically adds a “Ping” header to the request message, executes the operation passed as argument (Action<TChannel> operation), and looks for the corresponding “Ping” header in the response to see the results. The client application can use this extension with a single line of code, var client = new ServiceReference.HelloWorldClient(); var isAvailable = client.InnerChannel.IsAvailable<IHelloWorld>((c) => c.Hello(null)); The “isAvailable” variable will tell the client application whether the service is available or not. You can download the complete implementation from this location.    

    Read the article

  • WIF, ADFS 2 and WCF&ndash;Part 2: The Service

    - by Your DisplayName here!
    OK – so let’s first start with a simple WCF service and connect that to ADFS 2 for authentication. The service itself simply echoes back the user’s claims – just so we can make sure it actually works and to see how the ADFS 2 issuance rules emit claims for the service: [ServiceContract(Namespace = "urn:leastprivilege:samples")] public interface IService {     [OperationContract]     List<ViewClaim> GetClaims(); } public class Service : IService {     public List<ViewClaim> GetClaims()     {         var id = Thread.CurrentPrincipal.Identity as IClaimsIdentity;         return (from c in id.Claims                 select new ViewClaim                 {                     ClaimType = c.ClaimType,                     Value = c.Value,                     Issuer = c.Issuer,                     OriginalIssuer = c.OriginalIssuer                 }).ToList();     } } The ViewClaim data contract is simply a DTO that holds the claim information. Next is the WCF configuration – let’s have a look step by step. First I mapped all my http based services to the federation binding. This is achieved by using .NET 4.0’s protocol mapping feature (this can be also done the 3.x way – but in that scenario all services will be federated): <protocolMapping>   <add scheme="http" binding="ws2007FederationHttpBinding" /> </protocolMapping> Next, I provide a standard configuration for the federation binding: <bindings>   <ws2007FederationHttpBinding>     <binding>       <security mode="TransportWithMessageCredential">         <message establishSecurityContext="false">           <issuerMetadata address="https://server/adfs/services/trust/mex" />         </message>       </security>     </binding>   </ws2007FederationHttpBinding> </bindings> This binding points to our ADFS 2 installation metadata endpoint. This is all that is needed for svcutil (aka “Add Service Reference”) to generate the required client configuration. I also chose mixed mode security (SSL + basic message credential) for best performance. This binding also disables session – you can control that via the establishSecurityContext setting on the binding. This has its pros and cons. Something for a separate blog post, I guess. Next, the behavior section adds support for metadata and WIF: <behaviors>   <serviceBehaviors>     <behavior>       <serviceMetadata httpsGetEnabled="true" />       <federatedServiceHostConfiguration />     </behavior>   </serviceBehaviors> </behaviors> The next step is to add the WIF specific configuration (in <microsoft.identityModel />). First we need to specify the key material that we will use to decrypt the incoming tokens. This is optional for web applications but for web services you need to protect the proof key – so this is mandatory (at least for symmetric proof keys, which is the default): <serviceCertificate>   <certificateReference storeLocation="LocalMachine"                         storeName="My"                         x509FindType="FindBySubjectDistinguishedName"                         findValue="CN=Service" /> </serviceCertificate> You also have to specify which incoming tokens you trust. This is accomplished by registering the thumbprint of the signing keys you want to accept. You get this information from the signing certificate configured in ADFS 2: <issuerNameRegistry type="...ConfigurationBasedIssuerNameRegistry">   <trustedIssuers>     <add thumbprint="d1 … db"           name="ADFS" />   </trustedIssuers> </issuerNameRegistry> The last step (promised) is to add the allowed audience URIs to the configuration – WCF clients use (by default – and we’ll come back to this) the endpoint address of the service: <audienceUris>   <add value="https://machine/soapadfs/service.svc" /> </audienceUris> OK – that’s it – now we have a basic WCF service that uses ADFS 2 for authentication. The next step will be to set-up ADFS to issue tokens for this service. Afterwards we can explore various options on how to use this service from a client. Stay tuned… (if you want to have a look at the full source code or peek at the upcoming parts – you can download the complete solution here)

    Read the article

  • Smarter Ways to Unlock Your Unused Contingency Budgets

    - by Melissa Centurio Lopes
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Cash flow is becoming increasingly important in the current economy; senior executives are looking for smarter ways of unlocking unused funds for new or ongoing capital expenditure projects. With project contingency budgets on average equaling 10 percent of overall costs, are you confident that you can release this cash without risking existing investments or the health of your overall project portfolio? This is the central question posed in a new report from the EPPM board, Hedging Your Bets? Optimizing Investment Opportunities for Great Cash Flow. The board is Oracle’s international steering committee, which brings together senior figures from leading organizations to discuss the critical role of enterprise project portfolio management (EPPM). C-Level Visibility Will Unlock Funds In addition to exploring how unlocking your contingency funds enables you to augment your cash flow (without resorting to expensive borrowing), the report offers a number of suggestions on how this can be done in a risk-free way, including Building an effective governance framework that shows the demonstrable value of every project within the portfolio Undertaking contingency planning risk assessments that give you complete portfolio wide visibility into all risk factors Establishing executive ownership of the portfolio to promote a more realistic appreciation of the risk levels inherent in the portfolio Creating a chief risk officer role that can review consolidated contingencies and risks so they are not considered in isolation The overriding message behind the report—and the work carried out by the EPPM board—is the need for increased C-level visibility across the entire enterprise project portfolio to enable better business decisions. Read the complete report in English, Chinese, German, or French. Read more in the October Edition of the quarterly Information InDepth EPPM Newsletter

    Read the article

  • Glm Vector Transformations [duplicate]

    - by Reanimation
    This question already has an answer here: Car-like Physics - Basic Maths to Simulate Steering 2 answers I have a cube rendered on the screen which represents a car (or similar). Using Projection/Model matrices and Glm I am able to move it back and fourth along the axes and rotate it left or right. I'm having trouble with the vector mathematics to make the cube move forwards no matter which direction it's current orientation is. (ie. if I would like, if it's rotated right 30degrees, when it's move forwards, it travels along the 30degree angle on a new axes). I hope I've explained that correctly. This is what I've managed to do so far in terms of using glm to move the cube: glm::vec3 vel; //velocity vector void renderMovingCube(){ glUseProgram(movingCubeShader.handle()); GLuint matrixLoc4MovingCube = glGetUniformLocation(movingCubeShader.handle(), "ProjectionMatrix"); glUniformMatrix4fv(matrixLoc4MovingCube, 1, GL_FALSE, &ProjectionMatrix[0][0]); glm::mat4 viewMatrixMovingCube; viewMatrixMovingCube = glm::lookAt(camOrigin, camLookingAt, camNormalXYZ); vel.x = cos(rotX); vel.y=sin(rotX); vel*=moveCube; //move cube ModelViewMatrix = glm::translate(viewMatrixMovingCube,globalPos*vel); //bring ground and cube to bottom of screen ModelViewMatrix = glm::translate(ModelViewMatrix, glm::vec3(0,-48,0)); ModelViewMatrix = glm::rotate(ModelViewMatrix, rotX, glm::vec3(0,1,0)); //manually turn glUniformMatrix4fv(glGetUniformLocation(movingCubeShader.handle(), "ModelViewMatrix"), 1, GL_FALSE, &ModelViewMatrix[0][0]); //pass matrix to shader movingCube.render(); //draw glUseProgram(0); } keyboard input: void keyboard() { char BACKWARD = keys['S']; char FORWARD = keys['W']; char ROT_LEFT = keys['A']; char ROT_RIGHT = keys['D']; if (FORWARD) //W - move forwards { globalPos += vel; //globalPos.z -= moveCube; BACKWARD = false; } if (BACKWARD)//S - move backwards { globalPos.z += moveCube; FORWARD = false; } if (ROT_LEFT)//A - turn left { rotX +=0.01f; ROT_LEFT = false; } if (ROT_RIGHT)//D - turn right { rotX -=0.01f; ROT_RIGHT = false; } Where am I going wrong with my vectors? I would like change the direction of the cube (which it does) but then move forwards in that direction.

    Read the article

  • Could I be going crazy with Event Handlers? Am I going the "wrong way" with my design?

    - by sensae
    I guess I've decided that I really like event handlers. I may be suffering a bit from analysis paralysis, but I'm concerned about making my design unwieldy or running into some other unforeseen consequence to my design decisions. My game engine currently does basic sprite-based rendering with a panning overhead camera. My design looks a bit like this: SceneHandler Contains a list of classes that implement the SceneListener interface (currently only Sprites). Calls render() once per tick, and sends onCameraUpdate(); messages to SceneListeners. InputHandler Polls the input once per tick, and sends a simple "onKeyPressed" message to InputListeners. I have a Camera InputListener which holds a SceneHandler instance and triggers updateCamera(); events based on what the input is. AgentHandler Calls default actions on any Agents (AI) once per tick, and will check a stack for any new events that are registered, dispatching them to specific Agents as needed. So I have basic sprite objects that can move around a scene and use rudimentary steering behaviors to travel. I've gotten onto collision detection, and this is where I'm not sure the direction my design is going is good. Is it a good practice to have many, small event handlers? I imagine going the way I am that I'd have to implement some kind of CollisionHandler. Would I be better off with a more consolidated EntityHandler which handles AI, collision updates, and other entity interactions in one class? Or will I be fine just implementing many different event handling subsystems which pass messages to each other based on what kind of event it is? Should I write an EntityHandler which is simply responsible for coordinating all these sub event handlers? I realize in some cases, such as my InputHandler and SceneHandler, those are very specific types of events. A large portion of my game code won't care about input, and a large portion won't care about updates that happen purely in the rendering of the scene. Thus I feel my isolation of those systems is justified. However, I'm asking this question specifically approaching game logic type events.

    Read the article

  • When attaching AI to a vehicle should I define all steps or try Line of Sight?

    - by ThorDivDev
    This problem is related to an intersection simulation I am building for university. I will try to make it as general as possible. I am trying to assign AI to a vehicle using the JMonkeyEngine platform. AIGama_JmonkeyEngine explains that if you wish to create a car that follows a path you can define the path in steps. If there was no physics attached whatsoever then all you need to do is define the x,y,z values of where you want the object to appear in all subsequent steps. I am attaching the vehicleControl that implements jBullet. In this case the author mentions that I would need to define the steering and accelerating behaviors at each step. I was trying to use ghost controls that represented waypoints and when on colliding the car would decide what to do next like stopping at a red light. This didn't work so well. Car doesn't face right. public void update(float tpf) { Vector3f currentPos = aiVehicle.getPhysicsLocation(); Vector3f baseforwardVector = currentPos.clone(); Vector3f forwardVector; Vector3f subsVector; if (currentState == ObjectState.Running) { aiVehicle.accelerate(-800); } else if (currentState == ObjectState.Seeking) { baseforwardVector = baseforwardVector.normalize(); forwardVector = aiVehicle.getForwardVector(baseforwardVector); subsVector = pointToSeek.subtract(currentPos.clone()); System.out.printf("baseforwardVector: %f, %f, %f\n", baseforwardVector.x, baseforwardVector.y, baseforwardVector.z); System.out.printf("subsVector: %f, %f, %f\n", subsVector.x, subsVector.y, subsVector.z); System.out.printf("ForwardVector: %f, %f, %f\n", forwardVector.x, forwardVector.y, forwardVector.z); if (pointToSeek != null && pointToSeek.x + 3 >= currentPos.x && pointToSeek.x - 3 <= currentPos.x) { aiVehicle.steer(0.0f); aiVehicle.accelerate(-40); } else if (pointToSeek != null && pointToSeek.x > currentPos.x) { aiVehicle.steer(-0.5f); aiVehicle.accelerate(-40); } else if (pointToSeek != null && pointToSeek.x < currentPos.x) { aiVehicle.steer(0.5f); aiVehicle.accelerate(-40); } } else if (currentState == ObjectState.Stopped) { aiVehicle.accelerate(0); aiVehicle.brake(40); } }

    Read the article

  • Unknown user in terminal

    - by Giles B
    Im having a strange problem with the terminal in OS X. When I open the terminal the username at the command prompt is: unknown-04-0c-ce-e3-0d-c2: ~ I can't pinpoint when this first started or why unfortunately. I usually use iTerm for web development purposes but this also occurs in the normal OS X Terminal app. Any ideas/help would be really appreciated. Thanks Update: Thanks to @fayadfami and @aliasgar for the correct answers and steering me in the right direction. Also this forum post helped http://forums.macrumors.com/showthread.php?t=152407 The extract from the right post: Having run into the exact same issue myself, and having come across this thread while attempting to figure it out, I thought I'd post the answer. OS X is initially setting your hostname to what's set for your Computer Name in Sharing; however, if you're set up for DHCP and you match a current lease on your DHCP server (i.e., match the IP address of another recent user), OS X will then set your hostname to whatever the DHCP server currently has for that lease. This freaked me out incredibly at first, as I had just reformatted (having just purchased my first Mac and wanting to see how the installer worked) and knew I had not yet changed the Computer Name in Sharing -- yet my system hostname at the Terminal prompt was indeed changed to what I had previously set, pre-format. I grepped around, not finding the name anywhere save log entries; I thought either the format didn't actually properly wipe everything, or I was losing my mind. Finally I logged into my router (it's a Linksys WRT54GS running OpenWRT), and found the hostname in the current leases file. I then manually set my Mac's IP to something different, and volia! -- the hostname was back to what I expected. I hope this helps save someone from the same paranoia I went through.

    Read the article

  • Displaying Multimedia Content In A Floating Window Using FancyBox

    While surfing the web you may have come across websites with images and other multimedia content that, when clicked, were displayed in a floating window that hovered above the web page. Perhaps it was a page that showed a series of thumbnail images of products for sale, where clicking on a thumbnail displayed the full sized image in a floating window, dimming out the web page behind it. Have you ever wondered how this was accomplished or whether you could add such functionality to your ASP.NET website? In years past, adding such rich client-side functionality to a website required a solid understanding of JavaScript and the "eccentricities" of various web browsers. Today, thanks to powerful JavaScript libraries like jQuery, along with an active developer community creating plugins and tools that integrate with jQuery, it's possible to add snazzy client-side behaviors without being a JavaScript whiz. This article shows how to display text, images, and other multimedia content in a floating window using FancyBox, a free client-side library. You'll learn how it works, see what steps to take to get started using it, and explore a number of FancyBox demos. There's also a demo available for download that shows using FancyBox to display both text and images in a floating window in an ASP.NET website. Read on to learn more! Read More >

    Read the article

  • Displaying Multimedia Content In A Floating Window Using FancyBox

    While surfing the web you may have come across websites with images and other multimedia content that, when clicked, were displayed in a floating window that hovered above the web page. Perhaps it was a page that showed a series of thumbnail images of products for sale, where clicking on a thumbnail displayed the full sized image in a floating window, dimming out the web page behind it. Have you ever wondered how this was accomplished or whether you could add such functionality to your ASP.NET website? In years past, adding such rich client-side functionality to a website required a solid understanding of JavaScript and the "eccentricities" of various web browsers. Today, thanks to powerful JavaScript libraries like jQuery, along with an active developer community creating plugins and tools that integrate with jQuery, it's possible to add snazzy client-side behaviors without being a JavaScript whiz. This article shows how to display text, images, and other multimedia content in a floating window using FancyBox, a free client-side library. You'll learn how it works, see what steps to take to get started using it, and explore a number of FancyBox demos. There's also a demo available for download that shows using FancyBox to display both text and images in a floating window in an ASP.NET website. Read on to learn more! Read More >Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Howto WCF Service HTTPS Binding and Endpoint Configuration in IIS with Load Balancer?

    - by Mike G
    We have a WCF service that is being hosted on a set of 12 machines. There is a load balancer that is a gateway to these machines. Now the site is setup as SSL; as in a user accesses it through using an URL with https. I know this much, the URL that addresses the site is https, but none of the servers has a https binding or is setup to require SSL. This leads me to believe that the load balancer handles the https and the connection from the balancer to the servers are unencrypted (this takes place behind the firewall so no biggie there). The problem we're having is that when a Silverlight client tries to access a WCF service it is getting a "Not Found" error. I've set up a test site along with our developer machines and have made sure that the bindings and endpoints in the web.config work with the client. It seems to be the case in the production environment that we get this error. Is there anything wrong with the following web.config? Should we be setting up how https is handled in a different manner? We're at a loss on this currently since I've tried every programmatic solution with endpoints and bindings. None of the solutions I have found deal with a load balancer in the manner we're dealing. Web.config service model info: <system.serviceModel> <behaviors> <serviceBehaviors> <behavior name="TradePMR.OMS.Framework.Services.CRM.CRMServiceBehavior"> <serviceMetadata httpsGetEnabled="true" /> <serviceDebug includeExceptionDetailInFaults="false" /> </behavior> <behavior name="TradePMR.OMS.Framework.Services.AccountAggregation.AccountAggregationBehavior"> <serviceMetadata httpsGetEnabled="true" /> <serviceDebug includeExceptionDetailInFaults="false" /> </behavior> </serviceBehaviors> </behaviors> <bindings> <customBinding> <binding name="SecureCRMCustomBinding"> <binaryMessageEncoding /> <httpsTransport /> </binding> <binding name="SecureAACustomBinding"> <binaryMessageEncoding /> <httpsTransport /> </binding> </customBinding> <mexHttpsBinding> <binding name="SecureMex" /> </mexHttpsBinding> </bindings> <serviceHostingEnvironment aspNetCompatibilityEnabled="true" /> <!--Defines the services to be used in the application--> <services> <service behaviorConfiguration="TradePMR.OMS.Framework.Services.CRM.CRMServiceBehavior" name="TradePMR.OMS.Framework.Services.CRM.CRMService"> <endpoint address="" binding="customBinding" bindingConfiguration="SecureCRMCustomBinding" contract="TradePMR.OMS.Framework.Services.CRM.CRMService" name="SecureCRMEndpoint" /> <!--This is required in order to be able to use the "Update Service Reference" in the Silverlight application--> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> <service behaviorConfiguration="TradePMR.OMS.Framework.Services.AccountAggregation.AccountAggregationBehavior" name="TradePMR.OMS.Framework.Services.AccountAggregation.AccountAggregation"> <endpoint address="" binding="customBinding" bindingConfiguration="SecureAACustomBinding" contract="TradePMR.OMS.Framework.Services.AccountAggregation.AccountAggregation" name="SecureAAEndpoint" /> <!--This is required in order to be able to use the "Update Service Reference" in the Silverlight application--> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services> </system.serviceModel> </configuration> The ServiceReferences.ClientConfig looks like this: <configuration> <system.serviceModel> <bindings> <customBinding> <binding name="StandardAAEndpoint"> <binaryMessageEncoding /> <httpTransport maxReceivedMessageSize="2147483647" maxBufferSize="2147483647" /> </binding> <binding name="SecureAAEndpoint"> <binaryMessageEncoding /> <httpsTransport maxReceivedMessageSize="2147483647" maxBufferSize="2147483647" /> </binding> <binding name="StandardCRMEndpoint"> <binaryMessageEncoding /> <httpTransport maxReceivedMessageSize="2147483647" maxBufferSize="2147483647" /> </binding> <binding name="SecureCRMEndpoint"> <binaryMessageEncoding /> <httpsTransport maxReceivedMessageSize="2147483647" maxBufferSize="2147483647" /> </binding> </customBinding> </bindings> <client> <endpoint address="https://Service2.svc" binding="customBinding" bindingConfiguration="SecureAAEndpoint" contract="AccountAggregationService.AccountAggregation" name="SecureAAEndpoint" /> <endpoint address="https://Service1.svc" binding="customBinding" bindingConfiguration="SecureCRMEndpoint" contract="CRMService.CRMService" name="SecureCRMEndpoint" /> </client> </system.serviceModel> </configuration> (The addresses are of no consequence since those are dynamically built so that they will point to a dev's machine or to the production server)

    Read the article

< Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >