Search Results

Search found 3456 results on 139 pages for 'vector art'.

Page 101/139 | < Previous Page | 97 98 99 100 101 102 103 104 105 106 107 108  | Next Page >

  • How do we name test methods where we are checking for more than one condition?

    - by Sandbox
    I follow the technique specified in Roy Osherove's The Art Of Unit Testing book while naming test methods - MethodName_Scenario_Expectation. It suits perfectly well for my 'unit' tests. But,for tests that I write in 'controller' or 'coordinator' class, there isn't necessarily a method which I want to test. For these tests, I generate multiple conditions which make up one scenario and then I verify the expectation. For example, I may set some properties on different instances, generate an event and then verify that my expectation from controller/coordinator is being met. Now, my controller handles events using a private event handler. Here my scenario is that, I set some properties, say 3 condition1,condition2 and condition3 Also, my scenario includes an event is raised I don't have a method name as my event handler is private. How do I name such a test method?

    Read the article

  • iPhone OS Memory Warnings. What Do The Different Levels Mean?

    - by dugla
    Regarding the black art of managing memory on iPhone OS devices: what do the different levels of memory warning mean. Level 1? Level 2? Does the dial go to 11? Context: After an extensive memory stress testing period - including running my iPad app with the iPod music player app playing, I am inclined to ignore the random yet infrequent memory warnings I am receiving. My app never crashes. Ever. My app is leak free. And, well, the mems warnings just don't seem to matter. Thanks, Doug

    Read the article

  • Are ASCII diagrams worth my time?

    - by Jesse Stimpson
    Are ASCII diagrams within source code worth the time they take to create? I could create a bitmap diagram much faster, but images are much more difficult to in line in a source file (until VS2010). For the record, I'm not talking about decorative ASCII art. Here's an example of a diagram I recently created for my code that I probably could have constructed in half the time in MS Paint. Scenario A: v (U)_________________(N)_______<--(P) Legend: ' / | J = ... ' / | P = ... ' /d | U = ... ' / | v = ... ' / | d = ... '/ | N = ... (J) | | | |___________________|

    Read the article

  • arg function not using URL alias

    - by cinqoTimo
    I am running Drupal 6, and I'm using PHP for block visibility. <?php $city = arg(0); $page = arg(1); if ($city == 'tampa' && $page != 'art'){ return 'TRUE'; } else{ return FALSE; } ?> I was having trouble with this block of code, so I decided to insert: <?php print arg(0).arg(1); ?> in my page.tpl.php. What I found was that on some of my pages, arg(0) was showing 'node' when the URL is actually 'tampa', and of course, arg(1) is showing the node ID. However, on other pages, such as my calendar, arg(0) is actually showing 'tampa' instead of 'node'. I have used this a lot in the past, and have never had this problem. Is there a reason why Drupal is disregarding my aliases on certain pages? If so, how can I fix it?

    Read the article

  • What is considered bleeding edge in programming these days?

    - by iestyn
    What is "bleeding edge" these days? has it all been done before us, and we are just discovering new ways of implementing mathematical constructs within programming? Functional Programming seems to be making inroads in all areas, but is this just marketing to create interest in a programming arena where it appears that the state of the art has climaxed too soon. have the sales men got hold of the script, and selling ideas that can be sold, dumbing down the future? I see very old ideas making their way into the market place....what are the truly new things that should be considered fresh and new in 2010 onwards, and not some 1960-1980 idea being refocused.

    Read the article

  • How to like a page on fanpage on facebook without a mouse

    - by Matthew Harwood
    BACKGROUND I'm doing an interactive art project for school. PROCESS For this project the last step is to go to a facebook fanpage and like the facebook page. PROBLEM is there will be no mouse for this interaction. SOLUTIONS Is there a script I(or stackoverflow) can write me that I may execute that will like a facebook page? Or is there any other solution that you guys can think of? TOOLS/LANG. BEING USED: ARDURINO/JAVA, HTML, JAVASCRIPT and CSS.

    Read the article

  • Which are the current/emerging desktop development technologies worth looking into?

    - by heeboir
    Greetings, With all the existing development towards web development and emerging technologies in that area, I'm left wondering; what is a state of the art way to implement desktop applications in this day and age? If you were to start a new application of considerable size from scratch what technology would you invest your efforts in (focusing on cross platform portability, decent performance and interoperability with existing standards)? I've looked into the Adobe Air platform which appears quite impressive but seems rather limited to support a large application. Would something like Java/SWT still be the sensible choice? Do things like GWT fit the bill? Thanks P.S. I'm leaving my question a bit open-ended in an effort to gather diverse answers. Surely this a subjective matter and there is no right and wrong answer.

    Read the article

  • How big can a SQL Server row be before it's a problem?

    - by John Leidegren
    Occasionally I run into this limitation using SQL Server 2000 that a row size can not exceed 8K bytes. SQL Server 2000 isn't really state of the art, but it's still in production code and because some tables are denormalized that's a problem. However, this seems to be a non issue with SQL Server 2005. At least, it won't complain that row sizes are bigger than 8K, but what happens instead and why was this a problem in SQL Server 2000? Do I need to care about my rows growing? Should I try and avoid large rows? Are varchar(max) and varbinary(max) a solution or expensive, in terms of size in database and/or CPU time? Why do I care at all about specifying the length of a particular column, when it seems like it's just a matter of time before someones going to hit that upper limit?

    Read the article

  • Aside from performance concerns, is Java still chosen over Groovy/JRuby etc.?

    - by yar
    [This is an empirical question about the state-of-the-art: I am NOT asking if Java is cooler or less cool than the dynamic languages that work in the JVM.] Aside from cases where performance is a main decision factor, do companies/developers still willingly chose Java over Groovy, JRuby or JPython? Personal Note: The reason I am asking is that, while I do some subset of my professional work in Ruby (not JRuby, for now), in my personal projects I use Java. While I have written non-trivial apps in Groovy, I prefer Java, but I wonder if I should just get over it and do everything in Groovy. I like Java because I feel that static typing saves me time and aids refactoring. (No, I am not familiar with Scala.) However, I feel that this very empirical, on-topic programming question may inform my decision.

    Read the article

  • Unicode string handling using Windows API

    - by DeadMG
    I always assumed that Unicode string handling was some dark art. However, I've seen that the Windows API has functions for comparing Unicode strings, for example. Does that mean that it's actually feasible to write a Unicode string class that can perform simple actions like sorting, equality comparison, and extraction from a file? Or are there hidden gotchas in the use of these functions that makes it actually a really bad idea? I'm just looking at libraries like ICU and they seem incredibly over-complicated compared to what a Unicode string class backed by the Windows API could actually look like, which would resemble the Standard string classes quite closely.

    Read the article

  • Showing and hidding a DIV

    - by user1741568
    I'm in the process of building a gallery for my public art pieces. I was wondering if there was an easy way to show and hide a div? I only want the concept text to be seen on the first page of the following link: http://www.gerardtonti.com/PresentTense/PresentTense.html Right now I have the concept in a div called "concept" set to absolute positioning. Is there also a way for the text to conform relative to the size of the window like the background image? I've also tried using an iframe and colorbox instead of a div but had no idea how to make the iframe visible only on the first slide as well. Wether using an iframe or div, I was wondering if it was possible to hide either on the frames that follow the first slide. Any help would be greatly appreciated. Thank you, Gerry

    Read the article

  • .NET string contains string[]

    - by Mike
    I'm having a small issue putting together this contains statement any help would be awesome. string betaFilePath = @"C:\resultsalpha.txt"; StringBuilder sb = new StringBuilder(); using (FileStream fs = new FileStream(betaFilePath, FileMode.Open)) using (StreamReader rdr = new StreamReader((fs))) { while (!rdr.EndOfStream) { string betaFileLine = rdr.ReadLine(); { string[] onlythese = {@"apple/",@"aee/",@"www/",@"blk/",@"art/",@"purp/",@"ora/",@"red/",@"brd/",@"biek/",@"biz/"}; if (betaFileLine.Contains(onlythese)) { File.AppendAllText(@"C:\testtestest.txt", betaFileLine); } } } Error: Argument '1': cannot convert from 'string[]' to 'string' - if (betaFileLine.Contains(onlythese))

    Read the article

  • DirectX11 CreateWICTextureFromMemory Using PNG

    - by seethru
    I've currently got textures loading using CreateWICTextureFromFile however I'd like a little more control over it, and I'd like to store images in their byte form in a resource loader. Below is just two sets of test code that return two separate results and I'm looking for any insight into a possible solution. ID3D11ShaderResourceView* srv; std::basic_ifstream<unsigned char> file("image.png", std::ios::binary); file.seekg(0,std::ios::end); int length = file.tellg(); file.seekg(0,std::ios::beg); unsigned char* buffer = new unsigned char[length]; file.read(&buffer[0],length); file.close(); HRESULT hr; hr = DirectX::CreateWICTextureFromMemory(_D3D->GetDevice(), _D3D->GetDeviceContext(), &buffer[0], sizeof(buffer), nullptr, &srv, NULL); As a return for the above code I get Component not found. std::ifstream file; ID3D11ShaderResourceView* srv; file.open("../Assets/Textures/osg.png", std::ios::binary); file.seekg(0,std::ios::end); int length = file.tellg(); file.seekg(0,std::ios::beg); std::vector<char> buffer(length); file.read(&buffer[0],length); file.close(); HRESULT hr; hr = DirectX::CreateWICTextureFromMemory(_D3D->GetDevice(), _D3D->GetDeviceContext(), (const uint8_t*)&buffer[0], sizeof(buffer), nullptr, &srv, NULL); The above code returns that the image format is unknown. I'm clearly doing something wrong here, any help is greatly appreciated. Tried finding anything even similar on stackoverflow, and google to no avail.

    Read the article

  • error X3501: 'main': entrypoint not found

    - by Pasha
    I am trying to learn DX10 by following this tutorial. However, my shader won't compile. Below is the detailed error message. Build started 9/10/2012 10:22:46 PM. 1>Project "D:\code\dx\Engine\Engine\Engine.vcxproj" on node 2 (Build target(s)). C:\Program Files (x86)\Windows Kits\8.0\bin\x86\fxc.exe /nologo /E"main" /Fo "D:\code\dx\Engine\Debug\color.cso" /Od /Zi color.fx 1>FXC : error X3501: 'main': entrypoint not found compilation failed; no code produced 1>Done Building Project "D:\code\dx\Engine\Engine\Engine.vcxproj" (Build target(s)) -- FAILED. Build FAILED. Time Elapsed 00:00:00.05 I can easily compile the downloaded code, but I want to know how to fix this error myself. My color.fx looks like this //////////////////////////////////////////////////////////////////////////////// // Filename: color.fx //////////////////////////////////////////////////////////////////////////////// ///////////// // GLOBALS // ///////////// matrix worldMatrix; matrix viewMatrix; matrix projectionMatrix; ////////////// // TYPEDEFS // ////////////// struct VertexInputType { float4 position : POSITION; float4 color : COLOR; }; struct PixelInputType { float4 position : SV_POSITION; float4 color : COLOR; }; //////////////////////////////////////////////////////////////////////////////// // Vertex Shader //////////////////////////////////////////////////////////////////////////////// PixelInputType ColorVertexShader(VertexInputType input) { PixelInputType output; // Change the position vector to be 4 units for proper matrix calculations. input.position.w = 1.0f; // Calculate the position of the vertex against the world, view, and projection matrices. output.position = mul(input.position, worldMatrix); output.position = mul(output.position, viewMatrix); output.position = mul(output.position, projectionMatrix); // Store the input color for the pixel shader to use. output.color = input.color; return output; } //////////////////////////////////////////////////////////////////////////////// // Pixel Shader //////////////////////////////////////////////////////////////////////////////// float4 ColorPixelShader(PixelInputType input) : SV_Target { return input.color; } //////////////////////////////////////////////////////////////////////////////// // Technique //////////////////////////////////////////////////////////////////////////////// technique10 ColorTechnique { pass pass0 { SetVertexShader(CompileShader(vs_4_0, ColorVertexShader())); SetPixelShader(CompileShader(ps_4_0, ColorPixelShader())); SetGeometryShader(NULL); } }

    Read the article

  • C# Neural Networks with Encog

    - by JoshReuben
    Neural Networks ·       I recently read a book Introduction to Neural Networks for C# , by Jeff Heaton. http://www.amazon.com/Introduction-Neural-Networks-C-2nd/dp/1604390093/ref=sr_1_2?ie=UTF8&s=books&qid=1296821004&sr=8-2-spell. Not the 1st ANN book I've perused, but a nice revision.   ·       Artificial Neural Networks (ANNs) are a mechanism of machine learning – see http://en.wikipedia.org/wiki/Artificial_neural_network , http://en.wikipedia.org/wiki/Category:Machine_learning ·       Problems Not Suited to a Neural Network Solution- Programs that are easily written out as flowcharts consisting of well-defined steps, program logic that is unlikely to change, problems in which you must know exactly how the solution was derived. ·       Problems Suited to a Neural Network – pattern recognition, classification, series prediction, and data mining. Pattern recognition - network attempts to determine if the input data matches a pattern that it has been trained to recognize. Classification - take input samples and classify them into fuzzy groups. ·       As far as machine learning approaches go, I thing SVMs are superior (see http://en.wikipedia.org/wiki/Support_vector_machine ) - a neural network has certain disadvantages in comparison: an ANN can be overtrained, different training sets can produce non-deterministic weights and it is not possible to discern the underlying decision function of an ANN from its weight matrix – they are black box. ·       In this post, I'm not going to go into internals (believe me I know them). An autoassociative network (e.g. a Hopfield network) will echo back a pattern if it is recognized. ·       Under the hood, there is very little maths. In a nutshell - Some simple matrix operations occur during training: the input array is processed (normalized into bipolar values of 1, -1) - transposed from input column vector into a row vector, these are subject to matrix multiplication and then subtraction of the identity matrix to get a contribution matrix. The dot product is taken against the weight matrix to yield a boolean match result. For backpropogation training, a derivative function is required. In learning, hill climbing mechanisms such as Genetic Algorithms and Simulated Annealing are used to escape local minima. For unsupervised training, such as found in Self Organizing Maps used for OCR, Hebbs rule is applied. ·       The purpose of this post is not to mire you in technical and conceptual details, but to show you how to leverage neural networks via an abstraction API - Encog   Encog ·       Encog is a neural network API ·       Links to Encog: http://www.encog.org , http://www.heatonresearch.com/encog, http://www.heatonresearch.com/forum ·       Encog requires .Net 3.5 or higher – there is also a Silverlight version. Third-Party Libraries – log4net and nunit. ·       Encog supports feedforward, recurrent, self-organizing maps, radial basis function and Hopfield neural networks. ·       Encog neural networks, and related data, can be stored in .EG XML files. ·       Encog Workbench allows you to edit, train and visualize neural networks. The Encog Workbench can generate code. Synapses and layers ·       the primary building blocks - Almost every neural network will have, at a minimum, an input and output layer. In some cases, the same layer will function as both input and output layer. ·       To adapt a problem to a neural network, you must determine how to feed the problem into the input layer of a neural network, and receive the solution through the output layer of a neural network. ·       The Input Layer - For each input neuron, one double value is stored. An array is passed as input to a layer. Encog uses the interface INeuralData to hold these arrays. The class BasicNeuralData implements the INeuralData interface. Once the neural network processes the input, an INeuralData based class will be returned from the neural network's output layer. ·       convert a double array into an INeuralData object : INeuralData data = new BasicNeuralData(= new double[10]); ·       the Output Layer- The neural network outputs an array of doubles, wraped in a class based on the INeuralData interface. ·        The real power of a neural network comes from its pattern recognition capabilities. The neural network should be able to produce the desired output even if the input has been slightly distorted. ·       Hidden Layers– optional. between the input and output layers. very much a “black box”. If the structure of the hidden layer is too simple it may not learn the problem. If the structure is too complex, it will learn the problem but will be very slow to train and execute. Some neural networks have no hidden layers. The input layer may be directly connected to the output layer. Further, some neural networks have only a single layer. A single layer neural network has the single layer self-connected. ·       connections, called synapses, contain individual weight matrixes. These values are changed as the neural network learns. Constructing a Neural Network ·       the XOR operator is a frequent “first example” -the “Hello World” application for neural networks. ·       The XOR Operator- only returns true when both inputs differ. 0 XOR 0 = 0 1 XOR 0 = 1 0 XOR 1 = 1 1 XOR 1 = 0 ·       Structuring a Neural Network for XOR  - two inputs to the XOR operator and one output. ·       input: 0.0,0.0 1.0,0.0 0.0,1.0 1.0,1.0 ·       Expected output: 0.0 1.0 1.0 0.0 ·       A Perceptron - a simple feedforward neural network to learn the XOR operator. ·       Because the XOR operator has two inputs and one output, the neural network will follow suit. Additionally, the neural network will have a single hidden layer, with two neurons to help process the data. The choice for 2 neurons in the hidden layer is arbitrary, and often comes down to trial and error. ·       Neuron Diagram for the XOR Network ·       ·       The Encog workbench displays neural networks on a layer-by-layer basis. ·       Encog Layer Diagram for the XOR Network:   ·       Create a BasicNetwork - Three layers are added to this network. the FinalizeStructure method must be called to inform the network that no more layers are to be added. The call to Reset randomizes the weights in the connections between these layers. var network = new BasicNetwork(); network.AddLayer(new BasicLayer(2)); network.AddLayer(new BasicLayer(2)); network.AddLayer(new BasicLayer(1)); network.Structure.FinalizeStructure(); network.Reset(); ·       Neural networks frequently start with a random weight matrix. This provides a starting point for the training methods. These random values will be tested and refined into an acceptable solution. However, sometimes the initial random values are too far off. Sometimes it may be necessary to reset the weights again, if training is ineffective. These weights make up the long-term memory of the neural network. Additionally, some layers have threshold values that also contribute to the long-term memory of the neural network. Some neural networks also contain context layers, which give the neural network a short-term memory as well. The neural network learns by modifying these weight and threshold values. ·       Now that the neural network has been created, it must be trained. Training a Neural Network ·       construct a INeuralDataSet object - contains the input array and the expected output array (of corresponding range). Even though there is only one output value, we must still use a two-dimensional array to represent the output. public static double[][] XOR_INPUT ={ new double[2] { 0.0, 0.0 }, new double[2] { 1.0, 0.0 }, new double[2] { 0.0, 1.0 }, new double[2] { 1.0, 1.0 } };   public static double[][] XOR_IDEAL = { new double[1] { 0.0 }, new double[1] { 1.0 }, new double[1] { 1.0 }, new double[1] { 0.0 } };   INeuralDataSet trainingSet = new BasicNeuralDataSet(XOR_INPUT, XOR_IDEAL); ·       Training is the process where the neural network's weights are adjusted to better produce the expected output. Training will continue for many iterations, until the error rate of the network is below an acceptable level. Encog supports many different types of training. Resilient Propagation (RPROP) - general-purpose training algorithm. All training classes implement the ITrain interface. The RPROP algorithm is implemented by the ResilientPropagation class. Training the neural network involves calling the Iteration method on the ITrain class until the error is below a specific value. The code loops through as many iterations, or epochs, as it takes to get the error rate for the neural network to be below 1%. Once the neural network has been trained, it is ready for use. ITrain train = new ResilientPropagation(network, trainingSet);   for (int epoch=0; epoch < 10000; epoch++) { train.Iteration(); Debug.Print("Epoch #" + epoch + " Error:" + train.Error); if (train.Error > 0.01) break; } Executing a Neural Network ·       Call the Compute method on the BasicNetwork class. Console.WriteLine("Neural Network Results:"); foreach (INeuralDataPair pair in trainingSet) { INeuralData output = network.Compute(pair.Input); Console.WriteLine(pair.Input[0] + "," + pair.Input[1] + ", actual=" + output[0] + ",ideal=" + pair.Ideal[0]); } ·       The Compute method accepts an INeuralData class and also returns a INeuralData object. Neural Network Results: 0.0,0.0, actual=0.002782538818034049,ideal=0.0 1.0,0.0, actual=0.9903741937121177,ideal=1.0 0.0,1.0, actual=0.9836807956566187,ideal=1.0 1.0,1.0, actual=0.0011646072586172778,ideal=0.0 ·       the network has not been trained to give the exact results. This is normal. Because the network was trained to 1% error, each of the results will also be within generally 1% of the expected value.

    Read the article

  • Pluralsight Meet the Author Podcast on HTML5 Canvas Programming

    - by dwahlin
      In the latest installment of Pluralsight’s Meet the Author podcast series, Fritz Onion and I talk about my new course, HTML5 Canvas Fundamentals.  In the interview I describe different canvas technologies covered throughout the course and a sample application at the end of the course that covers how to build a custom business chart from start to finish. Meet the Author:  Dan Wahlin on HTML5 Canvas Fundamentals   Transcript [Fritz] Hi. This is Fritz Onion. I’m here today with Dan Wahlin to talk about his new course HTML5 Canvas Fundamentals. Dan founded the Wahlin Group, which you can find at thewahlingroup.com, which specializes in ASP.NET, jQuery, Silverlight, and SharePoint consulting. He’s a Microsoft Regional Director and has been awarded Microsoft’s MVP for ASP.NET, Connected Systems, and Silverlight. Dan is on the INETA Bureau’s — Speaker’s Bureau, speaks at conferences and user groups around the world, and has written several books on .NET. Thanks for talking to me today, Dan. [Dan] Always good to talk with you, Fritz. [Fritz] So this new course of yours, HTML5 Canvas Fundamentals, I have to say that most of the really snazzy demos I’ve seen with HTML5 have involved Canvas, so I thought it would be a good starting point to chat with you about why we decided to create a course dedicated just to Canvas. If you want to kind of give us that perspective. [Dan] Sure. So, you know, there’s quite a bit of material out there on HTML5 in general, and as people that have done a lot with HTML5 are probably aware, a lot of HTML5 is actually JavaScript centric. You know, a lot of people when they first learn it, think it’s tags, but most of it’s actually JavaScript, and it just so happens that the HTML5 Canvas is one of those things. And so it’s not just, you know, a tag you add and it just magically draws all these things. You mentioned there’s a lot of cool things you can do from games to there’s some really cool multimedia applications out there where they integrate video and audio and all kinds of things into the Canvas, to more business scenarios such as charting and things along those lines. So the reason we made a course specifically on it is, a lot of the material out there touches on it but the Canvas is actually a pretty deep topic. You can do some pretty advanced stuff or easy stuff depending on what your application requirements are, and the API itself, you know, there’s over 30 functions just in the Canvas API and then a whole set of properties that actually go with that as well. So it’s a pretty big topic, and that’s why we created a course specifically tailored towards just the Canvas. [Fritz] Right. And let’s — let me just review the outline briefly here for everyone. So you start off with an introduction to getting started with Canvas, drawing with the HTML5 Canvas, then you talk about manipulating pixels, and you finish up with building a custom data chart. So I really like your example flow here. I think it will appeal to even business developers, right. Even if you’re not into HTML5 for the games or the media capabilities, there’s still something here for everyone I think working with the Canvas. Which leads me to another question, which is, where do you see the Canvas fitting in to kind of your day-to-day developer, people that are working business applications and maybe vanilla websites that aren’t doing kind of cutting edge stuff with interactivity with users? Is there a still a place for the Canvas in those scenarios? [Dan] Yeah, definitely. I think a lot of us — and I include myself here — over the last few years, the focus has generally been, especially if you’re, let’s say, a PHP or ASP.NET or Java type of developer, we’re kind of accustomed to working on the server side, and, you know, we kind of relied on Flash or Silverlight or these other plug-ins for the client side stuff when it was kind of fancy, like charts and graphs and things along those lines. With the what I call massive shift of applications, you know, mainly because of mobile, to more of client side, one of the big benefits I think from a maybe corporate standard way of thinking of things, since we do a lot of work with different corporations, is that, number one, rather than having to have the plug-in, which of course isn’t going to work on iPad and some of these other devices out there that are pretty popular, you can now use a built-in technology that all the modern browsers support, and that includes things like Safari on the iPad and iPhone and the Android tablets and things like that with their browsers, and actually render some really sophisticated charts. Whether you do it by scratch or from scratch or, you know, get a third party type of library involved, it’s just JavaScript. So it downloads fast so it’s good from a performance perspective; and when it comes to what you can render, it’s extremely robust. You can do everything from, you know, your basic circles to polygons or polylines to really advanced gradients as well and even provide some interactivity and animations, and that’s some of the stuff I touch upon in the class. In fact, you mentioned the last part of the outline there is building a custom data chart and that’s kind of gears towards more of the, what I’d call enterprise or corporate type developer. [Fritz] Yeah, that makes sense. And it’s, you know, a lot of the demos I’ve seen with HTML5 focus on more the interactivity and kind of game side of things, but the Canvas is such a diverse element within HTML5 that I can see it being applicable pretty much anywhere. So why don’t we talk a little bit about some of the specifics of what you cover? You talk about drawing and then manipulating pixels. You want to kind of give us the different ways of working with the Canvas and what some of those APIs provide for you? [Dan] Sure. So going all the way back to the start of the outline, we actually started off by showing different demonstrations of the Canvas in action, and we show some fun stuff — multimedia apps and games and things like that — and then also some more business scenarios; and then once you see that, hopefully it kinds of piques your interest and you go, oh, wow, this is actually pretty phenomenal what you can do. So then we start you off with, so how to you actually draw things. Now, there are some libraries out there that will draw things like graphs, but if you want to customize those or just build something you have from scratch, you need to know the basics, such as, you know, how do you draw circles and lines and arcs and Bezier curves and all those fancy types of shapes that a given chart may have on it or that a game may have in it for that matter. So we start off by covering what I call the core API functions; how do you, for instance, fill a rectangle or convert that to a square by setting the height and the width; how do you draw arcs or different types of curves and there’s different types supported such as I mentioned Bezier curves or quadratic curves; and then we also talk about how do you integrate text into it. You might have some images already that are just regular bitmap type images that you want to integrate, you can do that with a Canvas. And you can even sync video into the Canvas, which actually opens up some pretty interesting possibilities for both business and I think just general multimedia apps. Once you kind of get those core functions down for the basic shapes that you need to be able to draw on any type of Canvas, then we go a little deeper into what are the pixels that are there to manipulate. And that’s one of the important things to understand about the HTML5 Canvas, scalable vector graphics is another thing you can use now in the modern browsers; it’s vector based. Canvas is pixel based. And so we talk about how to do gradients, how can you do transforms, you know, how do you scale things or rotate things, which is extremely useful for charts ’cause you might have text that, you know, flips up on its side for a y-axis or something like that. And you can even do direct pixel manipulation. So it’s really, really powerful. If you want to get down to the RGBA level, you can do that, and I show how to do that in the course, and then kind of wrap that section up with some animation fundamentals. [Fritz] Great. Yeah, that’s really powerful stuff for programmatically rendering data to clients and responding to user inputs. Look forward to seeing what everyone’s going to come up with building this stuff. So great. That’s — that’s HTML5 Canvas Fundamentals with Dan Wahlin. Thanks very much, Dan. [Dan] Thanks again. I appreciate it.

    Read the article

  • New Release: ImageGlue 7.0 .NET

    When it comes to manipulating images dynamically there are few toolkits that can compete with ImageGlue 6 in terms of versatility and performance. With extensive support for a huge range of graphic formats including JPEG2000, Very Large TIFF Support™, and fully multi-threaded processing, ImageGlue has proved a popular choice for use in ASP and ASP.NET server environments. Now ImageGlue 7 has arrived, introducing support for 64-bit systems, improved PostScript handling, and many other enhancements. We've also used the opportunity to revise the API, to make it more friendly and familiar to .NET coders. But don't worry about rewriting legacy code - you'll find the 'string parameter' interface is still available through the WebSupergoo.ImageGlue6 namespace. So what's new in ImageGlue 7.0? Support for 64-bit systems. ImageGlue now incorporates the PostScript rendering engine as used by ABCpdf, our PDF component, which has proven to be fast, robust and accurate. This greatly improves support for importing and exporting PS, EPS, and PDF files, and also enables you to make use of powerful PostScript drawing operations for drawing to canvas. Leveraging ABCpdf's powerful vector graphics import and export functionality also makes it possible to interoperate with XPS and MS Office documents. An improved API with new classes, methods and properties, more in keeping with normal .NET development. Plus of course the usual range of bug fixes and minor enhancements. span.fullpost {display:none;}

    Read the article

  • Cocos2d-x v3 invalid conversion from 'cocos2d::Layer* [on hold]

    - by Hammerh5
    Hello guys I'm learning cocos2d-x v3 right but most of the code that I can find is to the version 2. My specific error is this one, when I try to compile my cocos2s-x 3 project this error shows. invalid conversion from 'cocos2d::Layer to Game* [-fpermisive]* What I want to do is create a new game scene in the following code: //Game.cpp #include "Game.h" Scene* Game::scene() { scene *sc = CCScene::create(); sc->setTag(TAG_GAME_SCENE); const Game *g = Game::create(); //Here is where the conversions fails. sc->addChild(g, 0, TAG_GAME_LAYER); return sc; } Of course this is my header file //Game.h #include "cocos2d.h" #include "Mole.h" #include "AppDelegate.h" using namespace cocos2d; class Game: public cocos2d::Layer { cocos2d::CCArray *moles; float timeBetweenMoles, timeElapsed, increaseMolesAtTime, increaseElapsed, lastMoleHiTime; int molesAtOnce; cocos2d::CCSize s; bool isPaused; public: CCString *missSound, *hitSound; static cocos2d::Scene* scene(); virtual bool init(); void showMole(); void initializeGame(); void onEnterTransitionDidFinish(); void onExit(); void onTouchesBegan(const std::vector<cocos2d::Touch *> &touches, cocos2d::Event *event); void tick(float dt); cocos2d::CCArray* getMoles(bool isUp); //LAYER_CREATE_FUNC(Game); }; #endif /* GAME_H_ */ I don't know what's wrong I suppose this code works fine in Cocos2d-x v2. It's maybe some changes in the C++ version ?

    Read the article

  • How to implement curved movement while tracking the appropriate angle?

    - by Vexille
    I'm currently coding a 2D top-down car game which will be turn-based. And since it's turn-based, the cars won't be controlled directly (i.e. with a simple velocity vector that adjusts its angle when the player wants to turn), but instead it's movement path has to be planned beforehand, and then the car needs to follow the path when the turn ends (think Steambirds). This question has some interesting information, but its focus is on homing-missile behaviour, which I kinda had figured out, but doesn't really apply to my case, I think, since I need to show a preview of the path when the player is planning his turn, then have the car follow that path. In that same question, there's an excellent answer by Andrew Russel which mentions Equations of Motion and Bézier's Curve. Some of his other suggestions of implementation are specific to XNA though, so they don't help much (I'm using Marmalade SDK). If I assume Bézier's Curve as the solution of choice, I'm left with one specific problem: I'll have the car's position (the first endpoint) and the target/final position (the last endpoint), but what should I use as the control point (assuming a square/quadratic curve)? And whether I use Bézier's Curve or another parametric equation, I'd still be left with another issue: the car can't just follow the curve, it must turn (i.e. adjust its angle) accordingly. So how can I figure out which way the car should be pointing to at any given point in the curve?

    Read the article

  • Achieving forward compatibility with C++11

    - by mcmcc
    I work on a large software application that must run on several platforms. Some of these platforms support some features of C++11 (e.g. MSVS 2010) and some don't support any (e.g. GCC 4.3.x). I see this situation continuing on for several years (my best guess: 3-5 years). Given that, I would like set up a compatibility interface such that (to whatever degree possible) people can write C++11 code that will still compile with older compilers with a minimum of maintenance. Overall, the goal is to minimize #ifdef's as much as reasonably possible while still enabling basic C++11 syntax/features on the platforms that support them, and provide emulation on the platforms that don't. Let's start with std::move(). The most obvious way to achieve compatibility would be to put something like this in a common header file: #if !defined(HAS_STD_MOVE) namespace std { // C++11 emulation template <typename T> inline T& move(T& v) { return v; } template <typename T> inline const T& move(const T& v) { return v; } } #endif // !defined(HAS_STD_MOVE) This allow people to write things like std::vector<Thing> x = std::move(y); ... with impugnity. It does what they want in C++11 and it does the best it can in C++03. When we finally drop the last of the C++03 compilers, this code can remain as is. However, according to the standard, it is illegal to inject new symbols into the std namespace. That's the theory. My question is, practically speaking, is there any harm in doing this as a way of achieving forward compatibility?

    Read the article

  • Render rivers in a grid.

    - by Gabriel A. Zorrilla
    I have created a random height map and now i want to create rivers. I've made an algorithm based on a* to make rivers flow from peaks to sea and now i'm in the quest of figuring out an elegant algorithm to render them. It's a 2D, square, mapgrid. The cells which the river pases has a simple integer value with this form :rivernumber && pointOrder. Ie: 10, 11, 12, 13, 14, 15, 16...1+N for the first river, 20,21,22,23...2+N for the second, etc. This is created in the map grid generation time and it's executed just once, when the world is generated. I wanted to treat each river as a vector, but there is a problem, if the same river has branches (because i put some noise to generate branches), i can not just connect the points in order. The second alternative is to generate a complex algorithm where analizes each point, checks if the next is not a branch, if so trigger another algorithm that take care of the branch then returns to the main river, etc. Very complex and inelegant. Perhaps there is a solution in the world generation algorithm or in the river rendering algorithm that is commonly used in these cases and i'm not aware of. Any tips? Thanks!!

    Read the article

  • Stage3D Camera problem

    - by Thomas Versteeg
    I am trying to create a 2D Stage3D game where you can move the camera around the level in an RTS style. I thought about using Orthographic Matrix3D functions for this but when I try to scroll the whole "stage" also scrolls. This is the Camera code: public function Camera2D(width:int, height:int, zoom:Number = 1) { resize(width, height); _zoom = zoom; } public function resize(width:Number, height:Number):void { _width = width; _height = height; _projectionMatrix = makeMatrix(0, width, 0, height); _recalculate = true; } protected function makeMatrix(left:Number, right:Number, top:Number, bottom:Number, zNear:Number = 0, zFar:Number = 1):Matrix3D { return new Matrix3D(Vector.<Number>([ 2 / (right - left), 0, 0, 0, 0, 2 / (top - bottom), 0, 0, 0, 0, 1 / (zFar - zNear), 0, 0, 0, zNear / (zNear - zFar), 1 ])); } public function get viewMatrix():Matrix3D { if (_recalculate) { _recalculate = false; _viewMatrix.identity(); _viewMatrix.appendTranslation( -_width / 2 - _x, -_height / 2 - y, 0); _viewMatrix.appendScale(_zoom, _zoom, 1); _renderMatrix.identity(); _renderMatrix.append(_viewMatrix); _renderMatrix.append(_projectionMatrix); } return _renderMatrix; } Here are two screenshots to show what I mean: How do I only let the inside of the stage3D scroll and not the whole stage?

    Read the article

  • How do I classify using GLCM and SVM Classifier in Matlab?

    - by Gomathi
    I'm on a project of liver tumor segmentation and classification. I used Region Growing and FCM for liver and tumor segmentation respectively. Then, I used Gray Level Co-occurence matrix for texture feature extraction. I have to use Support Vector Machine for Classification. But I don't know how to normalize the feature vectors. Can anyone tell how to program it in Matlab? To the GLCM program, I gave the tumor segmented image as input. Was I correct? If so, I think, then, my output will also be correct. My glcm coding, as far as I have tried is, I = imread('fzliver3.jpg'); GLCM = graycomatrix(I,'Offset',[2 0;0 2]); stats = graycoprops(GLCM,'all') t1= struct2array(stats) I2 = imread('fzliver4.jpg'); GLCM2 = graycomatrix(I2,'Offset',[2 0;0 2]); stats2 = graycoprops(GLCM2,'all') t2= struct2array(stats2) I3 = imread('fzliver5.jpg'); GLCM3 = graycomatrix(I3,'Offset',[2 0;0 2]); stats3 = graycoprops(GLCM3,'all') t3= struct2array(stats3) t=[t1;t2;t3] xmin = min(t); xmax = max(t); scale = xmax-xmin; tf=(x-xmin)/scale Was this a correct implementation? Also, I get an error at the last line. My output is: stats = Contrast: [0.0510 0.0503] Correlation: [0.9513 0.9519] Energy: [0.8988 0.8988] Homogeneity: [0.9930 0.9935] t1 = Columns 1 through 6 0.0510 0.0503 0.9513 0.9519 0.8988 0.8988 Columns 7 through 8 0.9930 0.9935 stats2 = Contrast: [0.0345 0.0339] Correlation: [0.8223 0.8255] Energy: [0.9616 0.9617] Homogeneity: [0.9957 0.9957] t2 = Columns 1 through 6 0.0345 0.0339 0.8223 0.8255 0.9616 0.9617 Columns 7 through 8 0.9957 0.9957 stats3 = Contrast: [0.0230 0.0246] Correlation: [0.7450 0.7270] Energy: [0.9815 0.9813] Homogeneity: [0.9971 0.9970] t3 = Columns 1 through 6 0.0230 0.0246 0.7450 0.7270 0.9815 0.9813 Columns 7 through 8 0.9971 0.9970 t = Columns 1 through 6 0.0510 0.0503 0.9513 0.9519 0.8988 0.8988 0.0345 0.0339 0.8223 0.8255 0.9616 0.9617 0.0230 0.0246 0.7450 0.7270 0.9815 0.9813 Columns 7 through 8 0.9930 0.9935 0.9957 0.9957 0.9971 0.9970 ??? Error using ==> minus Matrix dimensions must agree. The images are:

    Read the article

  • Converting to and from local and world 3D coordinate spaces?

    - by James Bedford
    Hey guys, I've been following a guide I found here (http://knol.google.com/k/matrices-for-3d-applications-view-transformation) on constructing a matrix that will allow me to 3D coordinates to an object's local coordinate space, and back again. I've tried to implement these two matrices using my object's look, side, up and location vectors and it seems to be working for the first three coordinates. I'm a little confused as to what I should expect for the w coordinate. Here are couple of examples from the print outs I've made of the matricies that are constructed. I'm passing a test vector of [9, 8, 14, 1] each time to see if I can convert both ways: Basic example: localize matrix: Matrix: 0.000000 -0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 5.237297 -45.530716 11.021271 1.000000 globalize matrix: Matrix: 0.000000 0.000000 1.000000 0.000000 -0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 -11.021271 -45.530716 -5.237297 1.000000 test: Vector4f(9.000000, 8.000000, 14.000000, 1.000000) localTest: Vector4f(14.000000, 8.000000, 9.000000, -161.812256) worldTest: Vector4f(9.000000, 8.000000, 14.000000, -727.491455) More complicated example: localize matrix: Matrix: 0.052504 -0.000689 -0.998258 0.000000 0.052431 0.998260 0.002068 0.000000 0.997241 -0.052486 0.052486 0.000000 58.806095 2.979346 -39.396252 1.000000 globalize matrix: Matrix: 0.052504 0.052431 0.997241 0.000000 -0.000689 0.998260 -0.052486 0.000000 -0.998258 0.002068 0.052486 0.000000 -42.413120 5.975957 -56.419727 1.000000 test: Vector4f(9.000000, 8.000000, 14.000000, 1.000000) localTest: Vector4f(-13.508600, 8.486917, 9.290090, 2.542114) worldTest: Vector4f(9.000190, 7.993863, 13.990230, 102.057129) As you can see in the more complicated example, the coordinates after converting both ways loose some precision, but this isn't a problem. I'm just wondering how I should deal with the last (w) coordinate? Should I just set it to 1 after performing the matrix multiplication, or does it look like I've done something wrong? Thanks in advance for your help!

    Read the article

  • Extreme Optimization Numerical Libraries for .NET – Part 1 of n

    - by JoshReuben
    While many of my colleagues are fascinated in constructing the ultimate ViewModel or ServiceBus, I feel that this kind of plumbing code is re-invented far too many times – at some point in the near future, it will be out of the box standard infra. How many times have you been to a customer site and built a different variation of the same kind of code frameworks? How many times can you abstract Prism or reliable and discoverable WCF communication? As the bar is raised for whats bundled with the framework and more tasks become declarative, automated and configurable, Information Systems will expose a higher level of abstraction, forcing software engineers to focus on more advanced computer science and algorithmic tasks. I've spent the better half of the past decade building skills in .NET and expanding my mathematical horizons by working through the Schaums guides. In this series I am going to examine how these skillsets come together in the implementation provided by ExtremeOptimization. Download the trial version here: http://www.extremeoptimization.com/downloads.aspx Overview The library implements a set of algorithms for: linear algebra, complex numbers, numerical integration and differentiation, solving equations, optimization, random numbers, regression, ANOVA, statistical distributions, hypothesis tests. EONumLib combines three libraries in one - organized in a consistent namespace hierarchy. Mathematics Library - Extreme.Mathematics namespace Vector and Matrix Library - Extreme.Mathematics.LinearAlgebra namespace Statistics Library - Extreme.Statistics namespace System Requirements -.NET framework 4.0  Mathematics Library The classes are organized into the following namespace hierarchy: Extreme.Mathematics – common data types, exception types, and delegates. Extreme.Mathematics.Calculus - numerical integration and differentiation of functions. Extreme.Mathematics.Curves - points, lines and curves, including polynomials and Chebyshev approximations. curve fitting and interpolation. Extreme.Mathematics.Generic - generic arithmetic & linear algebra. Extreme.Mathematics.EquationSolvers - root finding algorithms. Extreme.Mathematics.LinearAlgebra - vectors , matrices , matrix decompositions, solvers for simultaneous linear equations and least squares. Extreme.Mathematics.Optimization – multi-d function optimization + linear programming. Extreme.Mathematics.SignalProcessing - one and two-dimensional discrete Fourier transforms. Extreme.Mathematics.SpecialFunctions

    Read the article

< Previous Page | 97 98 99 100 101 102 103 104 105 106 107 108  | Next Page >