Search Results

Search found 4944 results on 198 pages for 'multi threaded'.

Page 102/198 | < Previous Page | 98 99 100 101 102 103 104 105 106 107 108 109  | Next Page >

  • Le SDK de Kinect compatible avec la preview de Windows 8 et les applications 64bits, la deuxième Beta est disponible en téléchargement

    Le SDK de Kinect compatible avec la preview de Windows 8 Et les applications 64bits, sortie de la deuxième Beta Mise à jour du 14 novembre 2011 par Idelways Microsoft a mis à jour le SDK Windows de son capteur Kinect, en vue de son lancement commercial début 2012. Cette deuxième Beta gratuite est compatible avec la version Preview pour développeurs de Windows 8. La documentation de cette Beta proclame une amélioration significative des performances de suivi des silhouettes (jusqu'à 20 % plus rapide), tout en étant plus précis. Le support fraîchement introduit du multi-threading et des processeurs multicoeurs contribue à...

    Read the article

  • Microsoft diffuse le premier spot TV de Windows 8, la campagne de promotion de l'OS s'annonce plus dynamique que les précédentes

    Microsoft diffuse le premier spot TV de Windows 8 La campagne de promotion de l'OS s'annonce plus dynamique que les précédentes Pour sa sortie officielle prévue le 26 octobre, Microsoft entame la campagne marketing pour Windows 8 et diffuse une première vidéo promotionnelle. Souplesse, rapidité et habilité, telle est la ligne directrice de ce spot TV qui donne le ton d'une méga-campagne qui s'annonce plus dynamique, et de loin, par rapport aux précédentes. Le spot, diffusé aux États-Unis et sur YouTube, commence par un compte positif qui stagne à 8, suivi du déroulement rapide des fonctionnalités du nouvel OS centrées sur le multi-touch avec des clichés du numéro 8 qui re...

    Read the article

  • Game Database Connectivity Java

    - by The Kraken
    I'm developing a simple multi-player puzzle game in Java. Both players should be able to view the same game board on his own computer. Then, when one player makes an action in the game (ex. drags an object onto a coordinate space), the game's view should update automatically on the other computer's game screen. I'd like all this to happen over the internet, not requiring both computers to be on the same LAN connection. If I need to use SQL/PHP to accomplish this, I'm unsure how to design the database to accomplish something as simple as the following: Player A drags element onscreen Game sends coordinates of element to database/server Player B's computer detects a change to an item in the database Player B's computer grabs the coordinates of Player A's item Player B's machine draws onscreen elements at the received coordinates Could somebody point me in the right direction?

    Read the article

  • ??????30?????WebLogic Server 11g????|WebLogic Channel|??????

    - by ???02
    Oracle WebLogic Server 11g?????????????30?????????????No1??????????????????????????WebLogic Server??11g???????????????????????????ActiveCache?Real Operations?Enterprise Grid Messaging????11gR1?????????????????????????????????????????????????????????????????????? ???? ¦Oracle WebLogic Server 11g R1 ????¦Oracle WebLogic Server 11g R1 Update¦Real Operations¦Oracle TopLink 11g¦Multi Data Source¦Enterprise Grid Messaging(JMS)¦ActiveCache¦Web Tier Utilities(OHS,WebCache)¦???¦??? ??Oracle WebLogic Server 11g R1 ?? <??:?30?>http://otndnld.oracle.co.jp/ondemand/otn-seminar/fm/WLS11g/index.htmlhttp://www.oracle.com/technetwork/jp/ondemand/application-grid/wls11gr1-overview-265878-ja.pdf ??????????(????????)What's New in Oracle WebLogic Server 11g Release 1 (10.3.5)(??)http://download.oracle.com/docs/cd/E21764_01/web.1111/e13852/toc.htmOracle WebLogic Server11g ????1(10.3.4)????(???)http://download.oracle.com/docs/cd/E23549_01/web.1111/b55571/toc.htm

    Read the article

  • ????????

    - by ???02
    ????????Oracle Database VaultOracle Database Vault???????2???????????????????(DBA)???????????·?????????????????????????????????????????????????????????????????????????????????????????????????????????????????? ???????????????????????????????(??????)??????????????????????? Oracle Database Vault????????????DBA????????????????????DBA????????????????????????????? ??????????????????????????????????????Oracle Database Vault??Oracle-EBS?PeopleSoft?Siebel?SAP?????????????????????????????·?????????????????1. Separation of Duties (????)DBA(?????????)????????????????????????????????????????????????????·????? ????·???????????????????????????DBA????????????????????????????????????? ??????????????????Database Vault??DBA?????????????????????????????????????????????????????????????? ?????????????????????????????????????????2. ???(????)???????·?????????????·???????????????????????????????????????????????????????????????????????????????????????????????????????? SELECT/DML/EXECUTE ???????????????????????????????????????????????????????????????????????? DDL ???????????????????????????3. Multi-Factor Access Control Policy Enforcement (???????·??????)Oracle Database Vault???????????????????????????????????????????????????????·???????????????????????????????????????????????????DDL?DML???????????????????????????4. ???????·?????? ???????????????? (ex ???IP??????)??????? ??????????????? "??" or "???" ????????????????1???????????????????? ???·??? ???????????????? ???????????5. ????·???SQL???????????·???????????????·????true ???????????SQL??????????????????? ?????? Oracle Direct

    Read the article

  • Content Management for WebCenter Installation Guide

    - by Gary Niu
    Overvew As we known, there are two way to install Content Management for WebCenter. One way is install it by WebCenter installer wizard, another way is to install it use their own installer. This guide is for the later one. For SSO purpose, I also mentioned how to config OID identity store for Content Management for WebCenter. Content Management for WebCenter( 10.1.3.5.1) Oracle Enterprise Linux R5U4 Basic Installation -bash-3.2$ ./setup.sh Please select your locale from the list.           1. Chinese-Simplified           2. Chinese-Traditional           3. Deutsch          *4. English-US           5. English-UK           6. Español           7. Français           8. Italiano           9. Japanese          10. Korean          11. Nederlands          12. Português-Brazil Choice? Throughout the install, when entering a text value, you can press Enter to accept the default that appears between square brackets ([]). When selecting from a list, you can select the choice followed by an asterisk by pressing Enter. Select installation type from the list.         *1. Install new server          2. Update a server Choice? Content Server Installation Directory Please enter the full pathname to the installation directory. Content Server Core Folder [/oracle/ucm/server]:/opt/oracle/ucm/server Create Directory         *1. yes          2. no Choice? Java virtual machine         *1. Sun Java 1.5.0_11 JDK          2. Specify a custom Java virtual machine Choice? Installing with Java version 1.5.0_11. Enter the location of the native file repository. This directory contains the native files checked in by contributors. Content Server Native Vault Folder [/opt/oracle/ucm/server/vault/]: Create Directory         *1. yes          2. no Choice? Enter the location of the web-viewable file repository. This directory contains files that can be accessed through the web server. Content Server Weblayout Folder [/opt/oracle/ucm/server/weblayout/]: Create Directory         *1. yes          2. no Choice? This server can be configured to manage its own authentication or to allow another master to act as an authentication proxy. Configure this server as a master or proxied server.         *1. Configure as a master server.          2. Configure as server proxied by a local master server. Choice? During installation, an admin server can be installed and configured to manage this server. If there is already an admin server on this system, you can have the installer configure it to administrate this server instead. Select admin server configuration.         *1. Install an admin server to manage this server.          2. Configure an existing admin server to manage this server.          3. Don't configure an admin server. Choice? Enter the location of an executable to start your web browser. This browser will be used to display the online help. Web Browser Path [/usr/bin/firefox]: Content Server System locale           1. Chinese-Simplified           2. Chinese-Traditional           3. Deutsch          *4. English-US           5. English-UK           6. Español           7. Français           8. Italiano           9. Japanese          10. Korean          11. Nederlands          12. Português-Brazil Choice? Please select the region for your timezone from the list.         *1. Use the timezone setting for your operating system          2. Pacific          3. America          4. Atlantic          5. Europe          6. Africa          7. Asia          8. Indian          9. Australia Choice? Please enter the port number that will be used to connect to the Content Server. This port must be otherwise unused. Content Server Port [4444]: Please enter the port number that will be used to connect to the Admin Server. This port must be otherwise unused. Admin Server Port [4440]: Enter a security filter for the server port. Hosts which are allowed to communicate directly with the server port may access any resources managed by the server. Insure that hosts which need access are included in the filter. See the installation guide for more details. Incoming connection address filter [127.0.0.1]:*.*.*.* *** Content Server URL Prefix The URL prefix specified here is used when generating HTML pages that refer to the contents of the weblayout directory within the installation. This prefix must be mapped in the web server Additional Document Directories section of the Content Management administration menu to the physical location of the weblayout directory. For example, "/idc/" would be used in your installation to refer to the URL http://ucm.company.com/idc which would be mapped in the web server to the physical location /oracle/ucm/server/weblayout. Web Server Relative Root [/idc/]: Enter the name of the local mail server. The server will contact this system to deliver email. Company Mail Server [mail]: Enter the e-mail address for the system administrator. Administrator E-Mail Address [sysadmin@mail]: *** Web Server Address Many generated HTML pages refer to the web server you are using. The address specified here will be used when generating those pages. The address should include the host and domain name in most cases. If your webserver is running on a port other than 80, append a colon and the port number. Examples: www.company.com, ucm.company.com:90 Web Server HTTP Address [yekki]:yekki.cn.oracle.com:7777 Enter the name for this instance. This name should be unique across your entire enterprise. It may not contain characters other than letters, numbers, and underscores. Server Instance Name [idc]: Enter a short label for this instance. This label is used on web pages to identify this instance. It should be less than 12 characters long. Server Instance Label [idc]: Enter a long description for this instance. Server Description [Content Server idc]: Web Server         *1. Apache          2. Sun ONE          3. Configure manually Choice? Please select a database from the list below to use with the Content Server. Content Server Database         *1. Oracle          2. Microsoft SQL Server 2005          3. Microsoft SQL Server 2000          4. Sybase          5. DB2          6. Custom JDBC settings          7. Skip database configuration Choice? Manually configure JDBC settings for this database          1. yes         *2. no Choice? Oracle Server Hostname [localhost]: Oracle Listener Port Number [1521]: *** Database User ID The user name is used to log into the database used by the content server. Oracle User [user]:YEKKI_OCSERVER *** Database Password The password is used to log into the database used by the content server. Oracle Password []:oracle Oracle Instance Name [ORACLE]:orcl Configure the JVM to find the JDBC driver in a specific jar file          1. yes         *2. no Choice? The installer can attempt to create the database tables or you can manually create them. If you choose to manually create the tables, you should create them now. Attempt to create database tables          1. yes         *2. no Choice? Select components to install.          1. ContentFolios: Collect related items in folios          2. Folders_g: Organize content into hierarchical folders          3. LinkManager8: Hypertext link management support          4. OracleTextSearch: External Oracle 11g database as search indexer support          5. ThreadedDiscussions: Threaded discussion management Enter numbers separated by commas to toggle, 0 to unselect all, F to finish: 1,2,3,4,5         *1. ContentFolios: Collect related items in folios         *2. Folders_g: Organize content into hierarchical folders         *3. LinkManager8: Hypertext link management support         *4. OracleTextSearch: External Oracle 11g database as search indexer support         *5. ThreadedDiscussions: Threaded discussion management Enter numbers separated by commas to toggle, 0 to unselect all, F to finish: F Checking configuration. . . Configuration OK. Review install settings. . . Content Server Core Folder: /opt/oracle/ucm/server Java virtual machine: Sun Java 1.5.0_11 JDK Content Server Native Vault Folder: /opt/oracle/ucm/server/vault/ Content Server Weblayout Folder: /opt/oracle/ucm/server/weblayout/ Proxy authentication through another server: no Install admin server: yes Web Browser Path: /usr/bin/firefox Content Server System locale: English-US Content Server Port: 4444 Admin Server Port: 4440 Incoming connection address filter: *.*.*.* Web Server Relative Root: /idc/ Company Mail Server: mail Administrator E-Mail Address: sysadmin@mail Web Server HTTP Address: yekki.cn.oracle.com:7777 Server Instance Name: idc Server Instance Label: idc Server Description: Content Server idc Web Server: Apache Content Server Database: Oracle Manually configure JDBC settings for this database: false Oracle Server Hostname: localhost Oracle Listener Port Number: 1521 Oracle User: YEKKI_OCSERVER Oracle Password: 6GP1gBgzSyKa4JW10U8UqqPznr/lzkNn/Ojf6M8GJ8I= Oracle Instance Name: orcl Configure the JVM to find the JDBC driver in a specific jar file: false Attempt to create database tables: no Components: ContentFolios,Folders_g,LinkManager8,OracleTextSearch,ThreadedDiscussions Proceed with install         *1. Proceed          2. Change configuration          3. Recheck the configuration          4. Abort installation Choice? Finished install type Install with warnings at 4/2/10 12:32 AM. Run Scripts -bash-3.2$ ./wc_contentserverconfig.sh /opt/oracle/ucm/server /mnt/hgfs/SOFTWARE/ofm_ucm_generic_10.1.3.5.1_disk1_1of1/ContentServer/webcenter-conf Installing '/mnt/hgfs/SOFTWARE/ofm_ucm_generic_10.1.3.5.1_disk1_1of1/ContentServer/webcenter-conf/CS10gR35UpdateBundle.zip' Service 'DELETE_DOC' Extended Service 'DELETE_BYREV_REVISION' Extended Installing '/mnt/hgfs/SOFTWARE/ofm_ucm_generic_10.1.3.5.1_disk1_1of1/ContentServer/webcenter-conf/ContentAccess/ContentAccess-linux.zip' (internal)      04.02 00:40:38.019      main    updateDocMetaDefinitionV11: adding decimal column Installing '/opt/oracle/ucm/server/custom/CS10gR35UpdateBundle/extras/Folders_g.zip' Installing '/opt/oracle/ucm/server/custom/CS10gR35UpdateBundle/extras/FusionLibraries.zip' Installing '/opt/oracle/ucm/server/custom/CS10gR35UpdateBundle/extras/JpsUserProvider.zip' Installing '/mnt/hgfs/SOFTWARE/ofm_ucm_generic_10.1.3.5.1_disk1_1of1/ContentServer/webcenter-conf/WcConfigure.zip' Apr 2, 2010 12:41:24 AM oracle.security.jps.internal.core.util.JpsConfigUtil getPasswordCredential WARNING: A password credential is expected; instead found . Apr 2, 2010 12:41:24 AM oracle.security.jps.internal.idstore.util.IdentityStoreUtil getUnamePwdFromCredStore WARNING: The credential with map JPS and key ldap.credential does not exist. Apr 2, 2010 12:41:27 AM oracle.security.jps.internal.core.util.JpsConfigUtil getPasswordCredential WARNING: A password credential is expected; instead found . Apr 2, 2010 12:41:27 AM oracle.security.jps.internal.idstore.util.IdentityStoreUtil getUnamePwdFromCredStore WARNING: The credential with map JPS and key ldap.credential does not exist. Apr 2, 2010 12:41:28 AM oracle.security.jps.internal.core.util.JpsConfigUtil getPasswordCredential WARNING: A password credential is expected; instead found . Apr 2, 2010 12:41:28 AM oracle.security.jps.internal.idstore.util.IdentityStoreUtil getUnamePwdFromCredStore WARNING: The credential with map JPS and key ldap.credential does not exist. Restart Content Server to apply updates. Configuring Apache Web Server append the following lines at httpd.conf: include "/opt/oracle/ucm/server/data/users/apache22/apache.conf" Configuring the Identity Store( Optional ) 1.  Stop Oracle Content Server and the Admin Server 2.  Update the Oracle Content Server's JPS configuration file, jps-config.xml: a. add a service instance <serviceInstance provider="idstore.ldap.provider" name="idstore.oid"> <property name="subscriber.name" value="dc=cn,dc=oracle,dc=com"></property> <property name="idstore.type" value="OID"></property> <property name="security.principal.key" value="ldap.credential"></property> <property name="security.principal.alias" value="JPS"></property> <property name="ldap.url" value="ldap://yekki.cn.oracle.com:3060"></property> <extendedProperty> <name>user.search.bases</name> <values> <value>cn=users,dc=cn,dc=oracle,dc=com</value> </values> </extendedProperty> <extendedProperty> <name>group.search.bases</name> <values> <value>cn=groups,dc=cn,dc=oracle,dc=com</value> </values> </extendedProperty> <property name="username.attr" value="uid"></property> <property name="user.login.attr" value="uid"></property> <property name="groupname.attr" value="cn"></property> </serviceInstance> b. Ensure that the <jpsContext> entry in the jps-config.xml file refers to the new serviceInstance, that is, idstore.oid and not idstore.ldap: <jpsContext name="default"> <serviceInstanceRef ref="idstore.oid"/> 3. Run the new script to setup the credentials for idstore.oid in the credential store: cd CONTENT_SERVER_HOME/custom/FusionLibraries/tools -bash-3.2$ ./run_credtool.sh Buildfile: ./../tools/credtool.xml     [input] skipping input as property action has already been set.     [input] Alias: [JPS]     [input] Key: [ldap.credential]     [input] User Name: cn=orcladmin     [input] Password: welcome1     [input] JPS Config: [/opt/oracle/ucm/server/custom/FusionLibraries/tools/../../../config/jps-config.xml] manage-creds:      [echo] @@@ Help: run 'ant manage-creds' command to see the detailed usage      [java] Using default context in /opt/oracle/ucm/server/custom/FusionLibraries/tools/../../../config/jps-config.xml file for credential store.      [java] Credential store location : /opt/oracle/ucm/server/config      [java] Credential with map JPS key ldap.credential stored successfully!      [java]      [java]      [java]     Credential for map JPS and key ldap.credential is:      [java]             PasswordCredential name : cn=orcladmin      [java]             PasswordCredential password : welcome1 BUILD SUCCESSFUL Total time: 1 minute 27 seconds Testing 1. acces http://yekki.cn.oracle.com:7777/idc 2. login in with OID user, for example: orcladmin/welcome1 3. make sure your JpsUserProvider status is "good"

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Silverlight Cream for April 02, 2010 -- #828

    - by Dave Campbell
    In this Issue: Phil Middlemiss, Robert Kozak, Kathleen Dollard, Avi Pilosof, Nokola, Jeff Wilcox, David Anson, Timmy Kokke, Tim Greenfield, and Josh Smith. Shoutout: SmartyP has additional info up on his WP7 Pivot app: Preview of My Current Windows Phone 7 Pivot Work From SilverlightCream.com: A Chrome and Glass Theme - Part I Phil Middlemiss is starting a tutorial series on building a new theme for Silverlight, in this first one we define some gradients and color resources... good stuff Phil Intercepting INotifyPropertyChanged This is Robert Kozak's first post on this blog, but it's a good one about INotifyPropertyChanged and MVVM and has a solution in the post with lots of code and discussion. How do I Display Data of Complex Bound Criteria in Horizontal Lists in Silverlight? Kathleen Dollard's latest article in Visual Studio magazine is in answer to a question about displaying a list of complex bound criteria including data, child data, and photos, and displaying them horizontally one at a time. Very nice-looking result, and all the code. Windows Phone: Frame/Page navigation and transitions using the TransitioningContentControl Avi Pilosof discusses the built-in (boring) navigation on WP7, and then shows using the TransitionContentControl from the Toolkit to apply transitions to the navigation. EasyPainter: Cloud Turbulence and Particle Buzz Nokola returns with a couple more effects for EasyPainter: Cloud Turbulence and Particle Buzz ... check out the example screenshots, then go grab the code. Property change notifications for multithreaded Silverlight applications Jeff Wilcox is discussing the need for getting change notifications to always happen on the UI thread in multi-threaded apps... great diagrams to see what's going on. Tip: The default value of a DependencyProperty is shared by all instances of the class that registers it David Anson has a tip up about setting the default value of a DependencyProperty, and the consequence that may have depending upon the type. Building a “real” extension for Expression Blend Timmy Kokke's code is WPF, but the subject is near and dear to us all, Timmy has a real-world Expression Blend extension up... a search for controls in the Objects and Timelines pane ... and even if that doesn't interest you... it's the source to a Blend extension! XPath support in Silverlight 4 + XPathPad Tim Greenfield not only talks about XPath in SL4RC, but he has produced a tool, XPathPad, and provided the source... if you've used XPath, you either are a higher thinker than me(not a big stretch), or you need this :) Using a Service Locator to Work with MessageBoxes in an MVVM Application Josh Smith posted about a question that comes up a lot: showing a messagebox from a ViewModel object. This might not work for custom message boxes or unit testing. This post covers the Unit Testing aspect. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • ArchBeat Link-o-Rama for 11/17/2011

    - by Bob Rhubart
    Building an Infrastructure Cloud with Oracle VM for x86 + Enterprise Manager 12c | Richard Rotter Richard Rotter demonstrates "how easy it could be to build a cloud infrastructure with Oracle's solution for cloud computing." Article: Social + Lean = Agile | Dave Duggal In today’s increasingly dynamic business environment, organizations must continuously adapt to survive. Change management has become a major bottleneck. Organizations’ need a practical mechanism for managing controlled variance and change in-flight to break the logjam. This paper provides a foundation for applying lean and agile principles to achieve Enterprise Agility through social collaboration. Stress Testing Java EE 6 Applications - Free Article In Free Java Magazine : Adam Bien "It is strange," says Adam Bien, "everyone is obsessed about green bars and code coverage, but testing of multi threaded behavior is widely ignored - until the applications run into massive problems." Using Access Manager to Secure Applications Deployed on WebLogic | Rene van Wijk Another great how-to post from Oracle ACE Rene van Wijk, this time involving JBoss RichFaces, Facelets, Oracle Coherence, and Oracle WebLogic Server. DOAG 2011 vs. Devoxx - Value and Attraction | Markus Eisele Oracle ACE Director Markus Eisele compares and contrasts these popular conferences with the aim of helping others decide which to attend. SOA All the Time; Architects in AZ; Clearing Info Integration hurdles SOA all the Time; Architects in AZ; Clearing Info Integration Hurdles This week on the Architect Home Page on OTN. Webcast: Oracle Business Intelligence Mobile Event Date: Wednesday, December 7, 2011 Time: 10 a.m. PT/1 p.m. ET Featuring Manan Goel (Director BI Product Marketing, Oracle) and Shailesh Shedge (Director BI and Analytics Practice, Ascentt). Webcast: Maximum Availability on Private Clouds A discussion of Oracle’s Maximum Availability Architecture, Oracle Database 11g, Oracle Exadata Database Machine, and Oracle Database appliance, featuring Margaret Hamburger (Director, Product Marketing, Oracle) and Joe Meeks (Director, Product Management, Oracle). November 30, 2011 at 10:00am PT / 1:00pm ET. Oracle Technology Network Architect Day - Phoenix, AZ Wednesday December 14, 2011, 8:30am - 5:00pm. The Ritz-Carlton, Phoenix, 2401 East Camelback Road, Phoenix, AZ 85016. Registration is free, but seating is limited.

    Read the article

  • How can I make a universal construction more efficient?

    - by VF1
    A "universal construction" is a wrapper class for a sequential object that enables it to be linearized (a strong consistency condition for concurrent objects). For instance, here's an adapted wait-free construction, in Java, from [1], which presumes the existence of a wait-free queue that satisfies the interface WFQ (which only requires one-time consensus between threads) and assumes a Sequential interface: public interface WFQ<T> // "FIFO" iteration { int enqueue(T t); // returns the sequence number of t Iterable<T> iterateUntil(int max); // iterates until sequence max } public interface Sequential { // Apply an invocation (method + arguments) // and get a response (return value + state) Response apply(Invocation i); } public interface Factory<T> { T generate(); } // generate new default object public interface Universal extends Sequential {} public class SlowUniversal implements Universal { Factory<? extends Sequential> generator; WFQ<Invocation> wfq = new WFQ<Invocation>(); Universal(Factory<? extends Sequential> g) { generator = g; } public Response apply(Invocation i) { int max = wfq.enqueue(i); Sequential s = generator.generate(); for(Invocation invoc : wfq.iterateUntil(max)) s.apply(invoc); return s.apply(i); } } This implementation isn't very satisfying, however, since it presumes determinism of a Sequential and is really slow. I attempted to add memory recycling: public interface WFQD<T> extends WFQ<T> { T dequeue(int n); } // dequeues only when n is the tail, else assists other threads public interface CopyableSequential extends Sequential { CopyableSequential copy(); } public class RecyclingUniversal implements Universal { WFQD<CopyableSequential> wfqd = new WFQD<CopyableSequential>(); Universal(CopyableSequential init) { wfqd.enqueue(init); } public Response apply(Invocation i) { int max = wfqd.enqueue(i); CopyableSequential cs = null; int ctr = max; for(CopyableSequential csq : wfq.iterateUntil(max)) if(--max == 0) cs = csq.copy(); wfqd.dequeue(max); return cs.apply(i); } } Here are my specific questions regarding the extension: Does my implementation create a linearizable multi-threaded version of a CopyableSequential? Is it possible extend memory recycling without extending the interface (perhaps my new methods trivialize the problem)? My implementation only reduces memory when a thread returns, so can this be strengthened? [1] provided an implementation for WFQ<T>, not WFQD<T> - one does exist, though, correct? [1] Herlihy and Shavit, The Art of Multiprocessor Programming.

    Read the article

  • Why would more CPU cores on virtual machine slow compile times?

    - by Sid
    [edit#2] If anyone from VMWare can hit me up with a copy of VMWare Fusion, I'd be more than happy to do the same as a VirtualBox vs VMWare comparison. Somehow I suspect the VMWare hypervisor will be better tuned for hyperthreading (see my answer too) I'm seeing something curious. As I increase the number of cores on my Windows 7 x64 virtual machine, the overall compile time increases instead of decreasing. Compiling is usually very well suited for parallel processing as in the middle part (post dependency mapping) you can simply call a compiler instance on each of your .c/.cpp/.cs/whatever file to build partial objects for the linker to take over. So I would have imagined that compiling would actually scale very well with # of cores. But what I'm seeing is: 8 cores: 1.89 sec 4 cores: 1.33 sec 2 cores: 1.24 sec 1 core: 1.15 sec Is this simply a design artifact due to a particular vendor's hypervisor implementation (type2:virtualbox in my case) or something more pervasive across more VMs to make hypervisor implementations more simpler? With so many factors, I seem to be able to make arguments both for and against this behavior - so if someone knows more about this than me, I'd be curious to read your answer. Thanks Sid [edit:addressing comments] @MartinBeckett: Cold compiles were discarded. @MonsterTruck: Couldn't find an opensource project to compile directly. Would be great but can't screwup my dev env right now. @Mr Lister, @philosodad: Have 8 hw threads, using VirtualBox, so should be 1:1 mapping without emulation @Thorbjorn: I have 6.5GB for the VM and a smallish VS2012 project - it's quite unlikely that I'm swapping in/out trashing the page file. @All: If someone can point to an open source VS2010/VS2012 project, that might be a better community reference than my (proprietary) VS2012 project. Orchard and DNN seem to need environment tweaking to compile in VS2012. I really would like to see if someone with VMWare Fusion also sees this (for VMWare vs VirtualBox compartmentalization) Test details: Hardware: Macbook Pro Retina CPU : Core i7 @ 2.3Ghz (quad core, hyper threaded = 8 cores in windows task manager) Memory : 16 GB Disk : 256GB SSD Host OS: Mac OS X 10.8 VM type: VirtualBox 4.1.18 (type 2 hypervisor) Guest OS: Windows 7 x64 SP1 Compiler: VS2012 compiling a solution with 3 C# Azure projects Compile times measure by VS2012 plugin called 'VSCommands' All tests run 5 times, first 2 runs discarded, last 3 averaged

    Read the article

  • Java @Contented annotation to help reduce false sharing

    - by Dave
    See this posting by Aleksey Shipilev for details -- @Contended is something we've wanted for a long time. The JVM provides automatic layout and placement of fields. Usually it'll (a) sort fields by descending size to improve footprint, and (b) pack reference fields so the garbage collector can process a contiguous run of reference fields when tracing. @Contended gives the program a way to provide more explicit guidance with respect to concurrency and false sharing. Using this facility we can sequester hot frequently written shared fields away from other mostly read-only or cold fields. The simple rule is that read-sharing is cheap, and write-sharing is very expensive. We can also pack fields together that tend to be written together by the same thread at about the same time. More generally, we're trying to influence relative field placement to minimize coherency misses. Fields that are accessed closely together in time should be placed proximally in space to promote cache locality. That is, temporal locality should condition spatial locality. Fields accessed together in time should be nearby in space. That having been said, we have to be careful to avoid false sharing and excessive invalidation from coherence traffic. As such, we try to cluster or otherwise sequester fields that tend to written at approximately the same time by the same thread onto the same cache line. Note that there's a tension at play: if we try too hard to minimize single-threaded capacity misses then we can end up with excessive coherency misses running in a parallel environment. Theres no single optimal layout for both single-thread and multithreaded environments. And the ideal layout problem itself is NP-hard. Ideally, a JVM would employ hardware monitoring facilities to detect sharing behavior and change the layout on the fly. That's a bit difficult as we don't yet have the right plumbing to provide efficient and expedient information to the JVM. Hint: we need to disintermediate the OS and hypervisor. Another challenge is that raw field offsets are used in the unsafe facility, so we'd need to address that issue, possibly with an extra level of indirection. Finally, I'd like to be able to pack final fields together as well, as those are known to be read-only.

    Read the article

  • Code Design question, circular reference across classes?

    - by dsollen
    I have no code here, as this is more of a design question (I assume this is still the best place to ask it). I have a very simple server in java which stores a mapping between certain values and UUID which are to be used by many systems across multiple platforms. It accepts a connection from a client and creates a clientSocket which stores the socket and all the other relevant data unique to that connection. Each clientSocket will run in their own thread and will block on the socket waiting for a read. I expect very little strain on this system, it will rarely get called, but when it does get a call it will need to respond quickly and due to the risk of it having a peak time with multiple calls coming in at once threaded is still better. Each thread has a reference to a Mapper class which stores the mapping of UUID which it's reporting to others (with proper synchronization of course). This all works until I have to add a new UUID to the list. When this happens I want to report to all clients that care about that particular UUID that a new one was added. I can't multicast (limitation of the system I'm running on) so I'm having each socket send the message to the client through the established socket. However, since each thread only knows about the socket it's waiting on I didn't have a clear method of looking up every thread/socket that cares about the data to inform them of the new UUID. Polling is out mostly because it seems a little too convoluted to try to maintain a list of newly added UUID. My solution as of now is to have the 'parent' class which creates the mapper class and spawns all the threads pass itself as an argument to the mapper. Then when the mapper creates a new UUID it can make a call to the parent class telling it to send out updates to all the other sockets that care about the change. I'm concerned that this may be a bad design due to the use of a circular reference; parent has a reference to mapper (to pass it to new ClientSocket threads) and mapper points to parent. It doesn't really feel like a bad design to me but I wanted to check since circular references are suppose to be bad. Note: I realize this means that the thread associated with whatever socket originally received the request that spawned the creation of a UUID is going to pay the 'cost' of outputting to all the other clients that care about the new UUID. I don't care about this; as I said I suspect the client to receive only intermittent messages. It's unlikely for one socket to receive multiple messages at one time, and there won't be that many sockets so it shouldn't take too long to send messages to each of them. Perhaps later I'll fix the fact that I'm saddling higher work load on whatever unfortunate thread gets the first request; but for now I think it's fine.

    Read the article

  • Threads slowing down application and not working properly

    - by Belgin
    I'm making a software renderer which does per-polygon rasterization using a floating point digital differential analyzer algorithm. My idea was to create two threads for rasterization and have them work like so: one thread draws each even scanline in a polygon and the other thread draws each odd scanline, and they both start working at the same time, but the main application waits for both of them to finish and then pauses them before continuing with other computations. As this is the first time I'm making a threaded application, I'm not sure if the following method for thread synchronization is correct: First of all, I use two global variables to control the two threads, if a global variable is set to 1, that means the thread can start working, otherwise it must not work. This is checked by the thread running an infinite loop and if it detects that the global variable has changed its value, it does its job and then sets the variable back to 0 again. The main program also uses an empty while to check when both variables become 0 after setting them to 1. Second, each thread is assigned a global structure which contains information about the triangle that is about to be rasterized. The structures are filled in by the main program before setting the global variables to 1. My dilemma is that, while this process works under some conditions, it slows down the program considerably, and also it fails to run properly when compiled for Release in Visual Studio, or when compiled with any sort of -O optimization with gcc (i.e. nothing on screen, even SEGFAULTs). The program isn't much faster by default without threads, which you can see for yourself by commenting out the #define THREADS directive, but if I apply optimizations, it becomes much faster (especially with gcc -Ofast -march=native). N.B. It might not compile with gcc because of fscanf_s calls, but you can replace those with the usual fscanf, if you wish to use gcc. Because there is a lot of code, too much for here or pastebin, I created a git repository where you can view it. My questions are: Why does adding these two threads slow down my application? Why doesn't it work when compiling for Release or with optimizations? Can I speed up the application with threads? If so, how? Thanks in advance.

    Read the article

  • Taking too long to get skills for entry level programmer position [closed]

    - by greenonion
    I don't have the skills for an entry level position as a .Net programmer. I am trying to learn what I need but there is too much to learn and too little time. What can I do? About two months ago, I went to a job interview for an entry level C# .Net programming/consultant position in NYC. When I heard back from them, they told me that the knowledge gap between what I knew and what they needed me to know was too big and I might have been a better fit if I had 6 months of experience. This was the first interview that I went on since graduating college. before the interview, I read a book on visual C#. Turns out it wasn't a very good book and I was missing a lot of key areas of knowledge such as ADO.net SQL (I had learned some LINQ) A little bit about how memory is handled Multiple threaded programming, etc. Because the book wasn't very good, the stuff I did know, I didn't know very well. I felt crushed. I've applied for jobs to gain experience but when recruiters hear that I have no experience they lose interest. I figured that I can at least work on my knowledge. Since then, I read "SQL Essentials" to cover the SQL bit and I found a pretty awesome book that is good enough to clear up what's hazy in my mind and covers almost all of the extra topics. The book is "C# 4.0: The Complete Reference" by Herbert Schildt. I'm even learning a lot about the topics I was familiar with. For a month now I've been working my way through this beast of a book. However, gaining the knowledge I need is taking too long. I can't hold off not having a full-time job much longer. I'm not stupid and I'm studying constantly pouring through the book, asking questions on stackoverflow, referencing the C# specification, etc. I have made great progress but there is just too much ground to cover. I'm on chapter 12 which is about a 3rd through the book. To get an idea of what I know vs don't know, the table of contents is on amazon: http://www.amazon.com/C-4-0-The-Complete-Reference/dp/007174116X How on earth can someone know enough to function as a programmer in the real world? Can I try for a job in academia? Will I have time to finish learning the rest of the C# language or am I just un-hireable?

    Read the article

  • Sharepoint: Convert a SPFieldMultilineText to SPFieldText

    - by driAn
    Hi Is it possible to programmatically change a "multi-line text field" to "single-line text field" ? SPFieldMultiLineText field = list.Fields["sample"] as SPFieldMultiLineText; // how to change the type to 'single line' now ? Or do I need to create an additional field (with a similiar name) and migrate the content? Thanks for any help.

    Read the article

  • Facebook connect displaying invite friends dialog and closing on completion

    - by Dougnukem
    I'm trying to create a Facebook Connect application that displays a friend invite dialog within the page using Facebook's Javascript API (through a FBMLPopupDialog). The trouble is to display a friend invite dialog you use a multi-friend form which requires an action="url" attribute that represents the URL to redirect your page to when the user completes or skips the form. The problem is that I want to just close the FBMLPopupDialog (the same behavior as if the user just hit the 'X' button on the popup dialog). The best I can do is redirect the user back to the page they were on basically a reload but they lose all AJAX/Flash application state. I'm wondering if any Facebook Connect developers have run into this issue and have a good way to simply display a friend invite "lightbox" dialog within their website where they don't want to "refresh" or "redirect" when the user finishes. The facebook connect JS API provides a FB.Connect.inviteConnectUsers, which provides a nice dialog but only connects existing users of your application who also have a Facebook account and haven't connected. http://bugs.developers.facebook.com/show%5Fbug.cgi?id=4916 function fb_inviteFriends() { //Invite users log("Inviting users..."); FB.Connect.requireSession( function() { //Connect succes var uid = FB.Facebook.apiClient.get_session().uid; log('FB CONNECT SUCCESS: ' + uid); //Invite users log("Inviting users..."); //Update server with connected account updateAccountFacebookUID(); var fbml = fb_getInviteFBML() ; var dialog = new FB.UI. FBMLPopupDialog("Weblings Invite", fbml) ; //dialog.setFBMLContent(fbml); dialog.setContentWidth(650); dialog.setContentHeight(450); dialog.show(); }, //Connect cancelled function() { //User cancelled the connect log("FB Connect cancelled:"); } ); } function fb_getInviteFBML() { var uid = FB.Facebook.apiClient.get_session().uid; var fbml = ""; fbml = '<fb:fbml>\n' + '<fb:request-form\n'+ //Redirect back to this page ' action="'+ document.location +'"\n'+ ' method="POST"\n'+ ' invite="true"\n'+ ' type="Weblings Invite"\n' + ' content="I need your help to discover all the Weblings and save the Internet! WebWars: Weblings is a cool new game where we can collect fantastic creatures while surfing our favorite websites. Come find the missing Weblings with me!'+ //Callback the server with the appropriate Webwars Account URL ' <fb:req-choice url=\''+ WebwarsFB.WebwarsAccountServer +'/SplashPage.aspx?action=ref&reftype=Facebook' label=\'Check out WebWars: Weblings\' />"\n'+ '>\n'+ ' <fb:multi-friend-selector\n'+ ' rows="2"\n'+ ' cols="4"\n'+ ' bypass="Cancel"\n'+ ' showborder="false"\n'+ ' actiontext="Use this form to invite your friends to connect with WebWars: Weblings."/>\n'+ ' </fb:request-form>'+ ' </fb:fbml>'; return fbml; }

    Read the article

  • WPF DataGrid multiselect binding

    - by JZ
    I have a datagrid that is multi-select enabled. I need to change the selection in the viewmodel. However, the SelectedItems property is read only and can't be directly bound to a property in the viewmodel. So how do I signal to the view that the selection has changed?

    Read the article

  • Uploading multiple images through Tumblr API

    - by Joseph Carrington
    I have about 300 images I want to upload to my new Tumblr account, becuase my old wordpress site got hacked and I no longer wish to use wordpress. I uploaded one image a day for 300 days, and I'd like to be able to take these images and upload them to my tumblr site using the api. The images are currently local, stored in /images/. They all have the date they were uploaded as the first ten characters of the filename, (01-01-2009-filename.png) and I went to send this date parameter along as well. I want to be able to see the progress of the script by outputting the responses from the API to my error_log. Here is what I have so far, based on the tumblr api page. // Authorization info $tumblr_email = '[email protected]'; $tumblr_password = 'password'; // Tumblr script parameters $source_directory = "images/"; // For each file, assign the file to a pointer here's the first stumbling block. How do I get all of the images in the directory and loop through them? Once I have a for or while loop set up I assume this is the next step $post_data = fopen(dir(__FILE__) . $source_directory . $current_image, 'r'); $post_date = substr($current_image, 0, 10); // Data for new record $post_type = 'photo'; // Prepare POST request $request_data = http_build_query( array( 'email' => $tumblr_email, 'password' => $tumblr_password, 'type' => $post_type, 'data' => $post_data, 'date' => $post_date, 'generator' => 'Multi-file uploader' ) ); // Send the POST request (with cURL) $c = curl_init('http://www.tumblr.com/api/write'); curl_setopt($c, CURLOPT_POST, true); curl_setopt($c, CURLOPT_POSTFIELDS, $request_data); curl_setopt($c, CURLOPT_RETURNTRANSFER, true); $result = curl_exec($c); $status = curl_getinfo($c, CURLINFO_HTTP_CODE); curl_close($c); // Output response to error_log error_log($result); So, I'm stuck on how to use PHP to read a file directory, loop through each of the files, and do things to the name / with the file itself. I also need to know how to set the data parameter, as in choosing multi-part / formdata. I also don't know anything about cURL.

    Read the article

  • Custom fonts, ellipsis on MultiLine TextViews, Glyphs and glitches.

    - by Samuh
    I am required to use custom fonts in my application. Problem: For ListViews that contain rows with Multi-Line TextViews having ellipsize property set to true, I can see some illegible characters after the ellipsis. Apparently Android pads the String(in TextView) with some characters unknown to my custom font. Single line TextView seem to work just fine. What is the best way to hide these characters or remove the padding? Thanks.

    Read the article

  • How to synchronize a python dict with multiprocessing

    - by Peter Smit
    I am using Python 2.6 and the multiprocessing module for multi-threading. Now I would like to have a synchronized dict (where the only atomic operation I really need is the += operator on a value). Should I wrap the dict with a multiprocessing.sharedctypes.synchronized() call? Or is another way the way to go?

    Read the article

< Previous Page | 98 99 100 101 102 103 104 105 106 107 108 109  | Next Page >