Search Results

Search found 18319 results on 733 pages for 'reference parameters'.

Page 104/733 | < Previous Page | 100 101 102 103 104 105 106 107 108 109 110 111  | Next Page >

  • How to reference a cell in a external excel file based on a variable?

    - by Totty
    Hy I have a Excel File (a) and a cell into it that is equal to another cell in another file (b); The of the (b) excel file is "2010 something"; Now The cell (c) is ='[2010 something.xls]test'!$K$224 What I want is to make a variable that mantains the year and will be stored into a cell Then the cell (c) will change its reference based on the year; So in 2011 instead of looking for the 2010 something.xls will be looking for the 2011 something.xls How to do it? thanks

    Read the article

  • Why pass by const reference instead of by value?

    - by Maulrus
    From what I understand: when you pass by value, the function makes a local copy of the passed argument and uses that; when the function ends, it goes out of scope. When you pass by const reference, the function uses a reference to the passed argument that can't be modified. I don't understand, however, why one would choose one over the other, except in a situation where an argument needs to be modified and returned. If you had a void function where nothing is getting returned, why choose one over the other?

    Read the article

  • How to reference individual cells in Excel to variable data from records in an external SQL table

    - by user273476
    I have a SQL table containing date oriented financial data eg. multiple daily records with fields for Date, Account code and Value. I want to set up dynamic links (formulas) from cells in an Excel speadsheet to this data so when the spreadsheet is loaded the data is fetched from all the relevant records. The spreadsheet has the Account codes on the x axis and Dates on the y. Each day the SQL table has new data in it for the new day and I want the spreadsheet to reference this new data for the column for the new day. Any ideas? I have seen how you can generally bring in data from a SQL table (in our case using ODBC as it is not MS SQL) but the data is not simply bringing in multiple records as you would a CVS file but specific records in the SQL table referencing to specific cells and columns in the spreadsheet.

    Read the article

  • Java data structure to use with Hibernate to store unknown number of parameters?

    - by Lunikon
    Following problem: I want to render a news stream of short messages based on localized texts. In various places of these messages I have to insert parameters to "customize" them. I guess you know what I mean ;) My question probably falls into the "Which is the best style to do it?" category: How would you store these parameters (they may be Strings and Numbers that need to be formatted according to Locale) in the database? I'm using Hibernate to do the ORM and I can think of the following solutions: build a combined String and save it as such (ugly and hard to maintain I think) do some kind of fancy normalization and and make every parameter a single row on the database (clean I guess, but a performance nightmare) Put the params into an Array, Map or other Java data structure and save it in binary format (probably causes a lot of overhead size-wise) I tend towards option #3 but I'm afraid that it might be to costly in terms of size in the database. What do you think?

    Read the article

  • How do I retain a requested url with parameters after redirecting to a login page?

    - by Brent Parker
    I have been asked to set up some authentication for some content on our website using JSP. What I would like to do seems simple to me but I can't quite figure out how to do it in JSP. What I would like to do is this: When a user requests a page that you must be logged in to see, I have a tag that checks their cookies for an authentication token. If it is not there, they are redirected to a login page. After they log in, I want to redirect them back to the page they first requested along with any parameters they were sending. Now, I have the tag that is checking their authentication and redirecting them to the login page. That part is working just fine. But I'm not sure how to maintain the first requested url and parameters so they can be redirected after they login. How might I accomplish this?

    Read the article

  • Can I detect unused extra parameters passed to javascript methods?

    - by Pablojim
    In Javascript I can call any method with more than the necessary amount of parameters and the extra parameters are silently ignored. e.g. letters = ['a','b','c'] //correct letters.indexOf('a') //This also works without error or warning letters.indexOf('a', "blah", "ignore me", 38) Are there ways to detect cases where this occurs? My motivation is that in my experience cases where this occurs are usually bugs. Identification of these by code analysis or at runtime would help track these errors down. These cases are especially prevalent where people are expecting alterations to base types which may not have occurred. Logging a warning where this happens e.g. Date.parse('02--12--2012', 'dd--MM--YYYY') Notes: To be clear I would like a solution that doesn't involve me sprinkling checks all over my code and other peoples' code.

    Read the article

  • Can I use a string variable to reference a class variable?

    - by rson
    Here's the scenario: I have an external swf file with x number of movieclips in its library that I load into a containing swf. Each MC in the external swf is linked with a class name and referenced on frame 1 as such var unique1:lineSequence1 = new lineSequence1(); the unique1 variable name will match a string variable I create in the containing swf: function initLines():void{ lineLoader = new Loader(); lineLoader.load(new URLRequest("theLines.swf")); //load external swf lineLoader.contentLoaderInfo.addEventListener(Event.COMPLETE, linesLoaded); } function linesLoaded(e:Event):void{ var loadedswf:MovieClip = e.target.content as MovieClip; var initialLines = projects[0].pageid; //projects is an xmllist trace("initialLines: "+initialLines); //returns "initialLines: unique1" lines_holder_mc.addChild(loadedswf.[initialLines]); } I would like to use the initialLines variable as the reference to unique1 instead of hardcoding unique1 into loadedswf.unique1 to reference said variable in the loaded swf.

    Read the article

  • Databinding in combo box

    - by muralekarthick
    Hi I have two forms, and a class, queries return in Stored procedure. Stored Procedure: ALTER PROCEDURE [dbo].[Payment_Join] @reference nvarchar(20) AS BEGIN -- SET NOCOUNT ON added to prevent extra result sets from -- interfering with SELECT statements. SET NOCOUNT ON; -- Insert statements for procedure here SELECT p.iPaymentID,p.nvReference,pt.nvPaymentType,p.iAmount,m.nvMethod,u.nvUsers,p.tUpdateTime FROM Payment p, tblPaymentType pt, tblPaymentMethod m, tblUsers u WHERE p.nvReference = @reference and p.iPaymentTypeID = pt.iPaymentTypeID and p.iMethodID = m.iMethodID and p.iUsersID = u.iUsersID END payment.cs using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Data; using System.Data.SqlClient; using System.Windows.Forms; namespace Finance { class payment { string connection = global::Finance.Properties.Settings.Default.PaymentConnectionString; #region Fields int _paymentid = 0; string _reference = string.Empty; string _paymenttype; double _amount = 0; string _paymentmethod; string _employeename; DateTime _updatetime = DateTime.Now; #endregion #region Properties public int paymentid { get { return _paymentid; } set { _paymentid = value; } } public string reference { get { return _reference; } set { _reference = value; } } public string paymenttype { get { return _paymenttype; } set { _paymenttype = value; } } public string paymentmethod { get { return _paymentmethod; } set { _paymentmethod = value; } } public double amount { get { return _amount;} set { _amount = value; } } public string employeename { get { return _employeename; } set { _employeename = value; } } public DateTime updatetime { get { return _updatetime; } set { _updatetime = value; } } #endregion #region Constructor public payment() { } public payment(string refer) { reference = refer; } public payment(int paymentID, string Reference, string Paymenttype, double Amount, string Paymentmethod, string Employeename, DateTime Time) { paymentid = paymentID; reference = Reference; paymenttype = Paymenttype; amount = Amount; paymentmethod = Paymentmethod; employeename = Employeename; updatetime = Time; } #endregion #region Methods public void Save() { try { SqlConnection connect = new SqlConnection(connection); SqlCommand command = new SqlCommand("payment_create", connect); command.CommandType = CommandType.StoredProcedure; command.Parameters.Add(new SqlParameter("@reference", reference)); command.Parameters.Add(new SqlParameter("@paymenttype", paymenttype)); command.Parameters.Add(new SqlParameter("@amount", amount)); command.Parameters.Add(new SqlParameter("@paymentmethod", paymentmethod)); command.Parameters.Add(new SqlParameter("@employeename", employeename)); command.Parameters.Add(new SqlParameter("@updatetime", updatetime)); connect.Open(); command.ExecuteScalar(); connect.Close(); } catch { } } public void Load(string reference) { try { SqlConnection connect = new SqlConnection(connection); SqlCommand command = new SqlCommand("Payment_Join", connect); command.CommandType = CommandType.StoredProcedure; command.Parameters.Add(new SqlParameter("@Reference", reference)); //MessageBox.Show("ref = " + reference); connect.Open(); SqlDataReader reader = command.ExecuteReader(); while (reader.Read()) { this.reference = Convert.ToString(reader["nvReference"]); // MessageBox.Show(reference); // MessageBox.Show("here"); // MessageBox.Show("payment type id = " + reader["nvPaymentType"]); // MessageBox.Show("here1"); this.paymenttype = Convert.ToString(reader["nvPaymentType"]); // MessageBox.Show(paymenttype.ToString()); this.amount = Convert.ToDouble(reader["iAmount"]); this.paymentmethod = Convert.ToString(reader["nvMethod"]); this.employeename = Convert.ToString(reader["nvUsers"]); this.updatetime = Convert.ToDateTime(reader["tUpdateTime"]); } reader.Close(); } catch (Exception ex) { MessageBox.Show("Check it again" + ex); } } #endregion } } i have already binded the combo box items through designer, When i run the application i just get the reference populated in form 2 and combo box just populated not the particular value which is fetched. New to c# so help me to get familiar

    Read the article

  • How to make pytest display a custom string representation for fixture parameters?

    - by Björn Pollex
    When using builtin types as fixture parameters, pytest prints out the value of the parameters in the test report. For example: @fixture(params=['hello', 'world'] def data(request): return request.param def test_something(data): pass Running this with py.test --verbose will print something like: test_example.py:7: test_something[hello] PASSED test_example.py:7: test_something[world] PASSED Note that the value of the parameter is printed in square brackets after the test name. Now, when using an object of a user-defined class as parameter, like so: class Param(object): def __init__(self, text): self.text = text @fixture(params=[Param('hello'), Param('world')] def data(request): return request.param def test_something(data): pass pytest will simply enumerate the number of values (p0, p1, etc.): test_example.py:7: test_something[p0] PASSED test_example.py:7: test_something[p1] PASSED This behavior does not change even when the user-defined class provides custom __str__ and __repr__ implementations. Is there any way to make pytest display something more useful than just p0 here? I am using pytest 2.5.2 on Python 2.7.6 on Windows 7.

    Read the article

  • Is it possible to set different select2 parameters at different times?

    - by ReiMasuro
    From playing around I can see that this code $("#Selected3").select2({ minimumInputLength: 3 }); $("#Selected3").select2({ placeholder: "Show a placeholder" }); will show me the placeholder but remove the minimumInputLength parameters value. Does anyone know a way please that this example could be modified so that the placeholder will be added without losing the minimum..Length value. Any answers will need to allow for the possibility of the statements being in separate files, i.e. one on the page and another in a referenced .js file. I am aware that this would be much easier if I set all the parameters at once, e.g. $("#Selected3").select2({ minimumInputLength: 3, placeholder: "Show a placeholder" }); but I am working within a framework which won't currently allow that. EDIT: For anyone who is willing to give this a shot but doesn't know select2 the library comes from here Select2 on GitHub

    Read the article

  • How to make instance of mxml and pass parameters?

    - by toshe
    i want to create instance of mxml (in my case EventList) and pass parameters. My Event List is a list of panels so I want to pass parameters and generate dynamically n number of panels (n-parameter to pass). I have the main app where I have toggle button bar when I click on the first I want for example to generate 3 panels (n=3) on the second button 20 panels (n=20) etc. How can I do this? How can I pass n and what is the best way to show the list? I whant to generate the list when I click on the toggle button!

    Read the article

  • How to generate links to the android Classes' reference in javadoc ?

    - by Kaillash
    Hi, When I generate Javadoc for my android project in eclipse, there are lots of warnings like cannot find symbol symbol : class TextView and warning - Tag @see: reference not found: android.app.Dialog I also tried -link http://developer.android.com/reference/ -link http://java.sun.com/j2se/1.4.2/docs/api/ in Extra javadoc options tab in Configure Javadoc Arguments dialog of eclipse-Export Javadoc. But only -link http://java.sun.com/j2se/1.4.2/docs/api/ is working i.e for String class link http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html?is-external=true is generated. but for android.app.Dialog , no link is generated. Please help !!

    Read the article

  • Excel - Dynamic reference based on the row I paste into?

    - by michaelmichael
    I have a simple, oft-used formula that I paste into spreadsheets I receive. It looks like this: =IF(AND(D8="COMPLETE",E8=""),A8,"") It looks in D8 for the word "COMPLETE" and checks that E8 is blank. If both conditions are fulfilled it grabs the contents of A8. It works fine. The only problem with this is that I don't always paste it into row 8. Every spreadsheet is different. I usually end up spending a few seconds making the formula fit the current spreadsheet I'm working on by dragging the cell references to the appropriate row. Hence, my question: Is there a way to make an absolute row reference based on whatever row I paste into? For example, if I paste the above formula into a cell in row 25, the formula would automatically look like this: =IF(AND(D25="COMPLETE", E25=""), A25, "")

    Read the article

  • Class Template Instantiation: any way round this circular reference?

    - by TimYorke34
    I have two classes that I'm using to represent some hardware: A Button and an InputPin class which represent a button that will change the value of an IC's input pin when it's pressed down. A simple example of them is: template <int pinNumber> class InputPin { static bool IsHigh() { return ( (*portAddress) & (1<<pinNumber) ); } }; template <typename InputPin> class Button { static bool IsPressed() { return !InputPin::IsHigh(); } }; This works beautifully and by using class templates, the condition below will compile as tightly as if I'd handwritten it in assembly (a single instruction). Button < InputPin<1> > powerButton; if (powerButton.IsPressed()) ........; However, I am extending it to deal with interrupts and have got a problem with circular references. Compared to the original InputPin, a new InputPinIRQ class has an extra static member function that will be called automatically by the hardware when the pin value changes. I'd like it to be able to notify the Button class of this, so that the Button class can then notify the main application that it has been pressed/released. I am currently doing this with function pointers to callbacks. In order for the callback code to be inlined by the compiler, I need to pass the function pointers as template parameters. So now, both of the new classes have an extra template parameter that is a pointer to a callback function. Unfortunately this gives me a circular reference because to instantiate a ButtonIRQ class I now have to do something like this: ButtonIRQ< InputPinIRQ< A1, ButtonIRQ<....>::OnPinChange, OnButtonChange > pB; where the <...... represents the circular reference. Does anyone know how I can avoid this circular reference? I am new to templates, so might be missing something really simple. It's important that the compiler knows exactly what code will be run when the interrupt occurs as it then does some very useful optimisation - it is able to inline the callback function and literally inserts the callback function's code at the exact address that is called on a h/w interrupt.

    Read the article

  • Why does the assignment operator return a value and not a reference?

    - by Nick Lowman
    I saw the example below explained on this site and thought both answers would be 20 and not the 10 that is returned. He wrote that both the comma and assignment returns a value, not a reference. I don't quite understand what that means. I understand it in relation to passing variables into functions or methods i.e primitive types are passed in by value and objects by reference but I'm not sure how it applies in this case. I also understand about context and the value of 'this' (after help from stackoverflow) but I thought in both cases I would still be invoking it as a method, foo.bar() which would mean foo is the context but it seems both result in a function call bar(). Why is that and what does it all mean? var x = 10; var foo = { x: 20, bar: function () {return this.x;} }; (foo.bar = foo.bar)();//returns 10 (foo.bar, foo.bar)();//returns 10

    Read the article

  • Why my oracleParameter doesnt work?

    - by user1824356
    I'm a .NET developer and this is the first time i work with oracle provider (Oracle 10g and Framework 4.0). When i add parameter to my command in this way: objCommand.Parameters.Add("pc_cod_id", OracleType.VarChar, 4000).Value = codId; objCommand.Parameters.Add("pc_num_id", OracleType.VarChar, 4000).Value = numId; objCommand.Parameters.Add("return_value", OracleType.Number).Direction = ParameterDirection.ReturnValue; objCommand.Parameters.Add("pc_email", OracleType.VarChar, 4000).Direction = ParameterDirection.Output; I have no problem with the result. But when a add parameter in this way: objCommand.Parameters.Add(CreateParameter(PC_COD_ID, OracleType.VarChar, codId, ParameterDirection.Input)); objCommand.Parameters.Add(CreateParameter(PC_NUM_ID, OracleType.VarChar, numId, ParameterDirection.Input)); objCommand.Parameters.Add(CreateParameter(RETURN_VALUE, OracleType.Number, ParameterDirection.ReturnValue)); objCommand.Parameters.Add(CreateParameter(PC_EMAIL, OracleType.VarChar, ParameterDirection.Output)); The implementation of that function is: protected OracleParameter CreateParameter(string name, OracleType type, ParameterDirection direction) { OracleParameter objParametro = new OracleParameter(name, type); objParametro.Direction = direction; if (type== OracleType.VarChar) { objParametro.Size = 4000; } return objParametro; } All my result are a empty string. My question is, these way to add parameters are not the same? And if no, what is the difference? Thanks :) Add: Sorry i forgot mention "CreateParameter" is a function with multiple implementations the base is the above function, the other use that. protected OracleParameter CreateParameter(string name, OracleType type, object value, ParameterDirection direction) { OracleParameter objParametro = CreateParameter(name, type, value); objParametro.Direction = direction; return objParametro; } The last parameters doesn't need value because those are output parameter, those bring me data from the database.

    Read the article

  • scala coalesces multiple function call parameters into a Tuple -- can this be disabled?

    - by landon9720
    This is a troublesome violation of type safety in my project, so I'm looking for a way to disable it. It seems that if a function takes an AnyRef (or a java.lang.Object), you can call the function with any combination of parameters, and Scala will coalesce the parameters into a Tuple object and invoke the function. In my case the function isn't expecting a Tuple, and fails at runtime. I would expect this situation to be caught at compile time. object WhyTuple { def main(args: Array[String]): Unit = { fooIt("foo", "bar") } def fooIt(o: AnyRef) { println(o.toString) } } Output: (foo,bar)

    Read the article

  • Creating HTML5 Offline Web Applications with ASP.NET

    - by Stephen Walther
    The goal of this blog entry is to describe how you can create HTML5 Offline Web Applications when building ASP.NET web applications. I describe the method that I used to create an offline Web application when building the JavaScript Reference application. You can read about the HTML5 Offline Web Application standard by visiting the following links: Offline Web Applications Firefox Offline Web Applications Safari Offline Web Applications Currently, the HTML5 Offline Web Applications feature works with all modern browsers with one important exception. You can use Offline Web Applications with Firefox, Chrome, and Safari (including iPhone Safari). Unfortunately, however, Internet Explorer does not support Offline Web Applications (not even IE 9). Why Build an HTML5 Offline Web Application? The official reason to build an Offline Web Application is so that you do not need to be connected to the Internet to use it. For example, you can use the JavaScript Reference Application when flying in an airplane, riding a subway, or hiding in a cave in Borneo. The JavaScript Reference Application works great on my iPhone even when I am completely disconnected from any network. The following screenshot shows the JavaScript Reference Application running on my iPhone when airplane mode is enabled (notice the little orange airplane):   Admittedly, it is becoming increasingly difficult to find locations where you can’t get Internet access. A second, and possibly better, reason to create Offline Web Applications is speed. An Offline Web Application must be downloaded only once. After it gets downloaded, all of the files required by your Web application (HTML, CSS, JavaScript, Image) are stored persistently on your computer. Think of Offline Web Applications as providing you with a super browser cache. Normally, when you cache files in a browser, the files are cached on a file-by-file basis. For each HTML, CSS, image, or JavaScript file, you specify how long the file should remain in the cache by setting cache headers. Unlike the normal browser caching mechanism, the HTML5 Offline Web Application cache is used to specify a caching policy for an entire set of files. You use a manifest file to list the files that you want to cache and these files are cached until the manifest is changed. Another advantage of using the HTML5 offline cache is that the HTML5 standard supports several JavaScript events and methods related to the offline cache. For example, you can be notified in your JavaScript code whenever the offline application has been updated. You can use JavaScript methods, such as the ApplicationCache.update() method, to update the cache programmatically. Creating the Manifest File The HTML5 Offline Cache uses a manifest file to determine the files that get cached. Here’s what the manifest file looks like for the JavaScript Reference application: CACHE MANIFEST # v30 Default.aspx # Standard Script Libraries Scripts/jquery-1.4.4.min.js Scripts/jquery-ui-1.8.7.custom.min.js Scripts/jquery.tmpl.min.js Scripts/json2.js # App Scripts App_Scripts/combine.js App_Scripts/combine.debug.js # Content (CSS & images) Content/default.css Content/logo.png Content/ui-lightness/jquery-ui-1.8.7.custom.css Content/ui-lightness/images/ui-bg_glass_65_ffffff_1x400.png Content/ui-lightness/images/ui-bg_glass_100_f6f6f6_1x400.png Content/ui-lightness/images/ui-bg_highlight-soft_100_eeeeee_1x100.png Content/ui-lightness/images/ui-icons_222222_256x240.png Content/ui-lightness/images/ui-bg_glass_100_fdf5ce_1x400.png Content/ui-lightness/images/ui-bg_diagonals-thick_20_666666_40x40.png Content/ui-lightness/images/ui-bg_gloss-wave_35_f6a828_500x100.png Content/ui-lightness/images/ui-icons_ffffff_256x240.png Content/ui-lightness/images/ui-icons_ef8c08_256x240.png Content/browsers/c8.png Content/browsers/es3.png Content/browsers/es5.png Content/browsers/ff3_6.png Content/browsers/ie8.png Content/browsers/ie9.png Content/browsers/sf5.png NETWORK: Services/EntryService.svc http://superexpert.com/resources/JavaScriptReference/ A Cache Manifest file always starts with the line of text Cache Manifest. In the manifest above, all of the CSS, image, and JavaScript files required by the JavaScript Reference application are listed. For example, the Default.aspx ASP.NET page, jQuery library, JQuery UI library, and several images are listed. Notice that you can add comments to a manifest by starting a line with the hash character (#). I use comments in the manifest above to group JavaScript and image files. Finally, notice that there is a NETWORK: section of the manifest. You list any file that you do not want to cache (any file that requires network access) in this section. In the manifest above, the NETWORK: section includes the URL for a WCF Service named EntryService.svc. This service is called to get the JavaScript entries displayed by the JavaScript Reference. There are two important things that you need to be aware of when using a manifest file. First, all relative URLs listed in a manifest are resolved relative to the manifest file. The URLs listed in the manifest above are all resolved relative to the root of the application because the manifest file is located in the application root. Second, whenever you make a change to the manifest file, browsers will download all of the files contained in the manifest (all of them). For example, if you add a new file to the manifest then any browser that supports the Offline Cache standard will detect the change in the manifest and download all of the files listed in the manifest automatically. If you make changes to files in the manifest (for example, modify a JavaScript file) then you need to make a change in the manifest file in order for the new version of the file to be downloaded. The standard way of updating a manifest file is to include a comment with a version number. The manifest above includes a # v30 comment. If you make a change to a file then you need to modify the comment to be # v31 in order for the new file to be downloaded. When Are Updated Files Downloaded? When you make changes to a manifest, the changes are not reflected the very next time you open the offline application in your web browser. Your web browser will download the updated files in the background. This can be very confusing when you are working with JavaScript files. If you make a change to a JavaScript file, and you have cached the application offline, then the changes to the JavaScript file won’t appear when you reload the application. The HTML5 standard includes new JavaScript events and methods that you can use to track changes and make changes to the Application Cache. You can use the ApplicationCache.update() method to initiate an update to the application cache and you can use the ApplicationCache.swapCache() method to switch to the latest version of a cached application. My heartfelt recommendation is that you do not enable your application for offline storage until after you finish writing your application code. Otherwise, debugging the application can become a very confusing experience. Offline Web Applications versus Local Storage Be careful to not confuse the HTML5 Offline Web Application feature and HTML5 Local Storage (aka DOM storage) feature. The JavaScript Reference Application uses both features. HTML5 Local Storage enables you to store key/value pairs persistently. Think of Local Storage as a super cookie. I describe how the JavaScript Reference Application uses Local Storage to store the database of JavaScript entries in a separate blog entry. Offline Web Applications enable you to store static files persistently. Think of Offline Web Applications as a super cache. Creating a Manifest File in an ASP.NET Application A manifest file must be served with the MIME type text/cache-manifest. In order to serve the JavaScript Reference manifest with the proper MIME type, I added two files to the JavaScript Reference Application project: Manifest.txt – This text file contains the actual manifest file. Manifest.ashx – This generic handler sends the Manifest.txt file with the MIME type text/cache-manifest. Here’s the code for the generic handler: using System.Web; namespace JavaScriptReference { public class Manifest : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/cache-manifest"; context.Response.WriteFile(context.Server.MapPath("Manifest.txt")); } public bool IsReusable { get { return false; } } } } The Default.aspx file contains a reference to the manifest. The opening HTML tag in the Default.aspx file looks like this: <html manifest="Manifest.ashx"> Notice that the HTML tag contains a manifest attribute that points to the Manifest.ashx generic handler. Internet Explorer simply ignores this attribute. Every other modern browser will download the manifest when the Default.aspx page is requested. Seeing the Offline Web Application in Action The experience of using an HTML5 Web Application is different with different browsers. When you first open the JavaScript Reference application with Firefox, you get the following warning: Notice that you are provided with the choice of whether you want to use the application offline or not. Browsers other than Firefox, such as Chrome and Safari, do not provide you with this choice. Chrome and Safari will create an offline cache automatically. If you click the Allow button then Firefox will download all of the files listed in the manifest. You can view the files contained in the Firefox offline application cache by typing about:cache in the Firefox address bar: You can view the actual items being cached by clicking the List Cache Entries link: The Offline Web Application experience is different in the case of Google Chrome. You can view the entries in the offline cache by opening the Developer Tools (hit Shift+CTRL+I), selecting the Storage tab, and selecting Application Cache: Notice that you view the status of the Application Cache. In the screen shot above, the status is UNCACHED which means that the files listed in the manifest have not been downloaded and cached yet. The different possible values for the status are included in the HTML5 Offline Web Application standard: UNCACHED – The Application Cache has not been initialized. IDLE – The Application Cache is not currently being updated. CHECKING – The Application Cache is being fetched and checked for updates. DOWNLOADING – The files in the Application Cache are being updated. UPDATEREADY – There is a new version of the Application. OBSOLETE – The contents of the Application Cache are obsolete. Summary In this blog entry, I provided a description of how you can use the HTML5 Offline Web Application feature in the context of an ASP.NET application. I described how this feature is used with the JavaScript Reference Application to store the entire application on a user’s computer. By taking advantage of this new feature of the HTML5 standard, you can improve the performance of your ASP.NET web applications by requiring users of your web application to download your application once and only once. Furthermore, you can enable users to take advantage of your applications anywhere -- regardless of whether or not they are connected to the Internet.

    Read the article

  • Passing multiple simple POST Values to ASP.NET Web API

    - by Rick Strahl
    A few weeks backs I posted a blog post  about what does and doesn't work with ASP.NET Web API when it comes to POSTing data to a Web API controller. One of the features that doesn't work out of the box - somewhat unexpectedly -  is the ability to map POST form variables to simple parameters of a Web API method. For example imagine you have this form and you want to post this data to a Web API end point like this via AJAX: <form> Name: <input type="name" name="name" value="Rick" /> Value: <input type="value" name="value" value="12" /> Entered: <input type="entered" name="entered" value="12/01/2011" /> <input type="button" id="btnSend" value="Send" /> </form> <script type="text/javascript"> $("#btnSend").click( function() { $.post("samples/PostMultipleSimpleValues?action=kazam", $("form").serialize(), function (result) { alert(result); }); }); </script> or you might do this more explicitly by creating a simple client map and specifying the POST values directly by hand:$.post("samples/PostMultipleSimpleValues?action=kazam", { name: "Rick", value: 1, entered: "12/01/2012" }, $("form").serialize(), function (result) { alert(result); }); On the wire this generates a simple POST request with Url Encoded values in the content:POST /AspNetWebApi/samples/PostMultipleSimpleValues?action=kazam HTTP/1.1 Host: localhost User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64; rv:15.0) Gecko/20100101 Firefox/15.0.1 Accept: application/json Connection: keep-alive Content-Type: application/x-www-form-urlencoded; charset=UTF-8 X-Requested-With: XMLHttpRequest Referer: http://localhost/AspNetWebApi/FormPostTest.html Content-Length: 41 Pragma: no-cache Cache-Control: no-cachename=Rick&value=12&entered=12%2F10%2F2011 Seems simple enough, right? We are basically posting 3 form variables and 1 query string value to the server. Unfortunately Web API can't handle request out of the box. If I create a method like this:[HttpPost] public string PostMultipleSimpleValues(string name, int value, DateTime entered, string action = null) { return string.Format("Name: {0}, Value: {1}, Date: {2}, Action: {3}", name, value, entered, action); }You'll find that you get an HTTP 404 error and { "Message": "No HTTP resource was found that matches the request URI…"} Yes, it's possible to pass multiple POST parameters of course, but Web API expects you to use Model Binding for this - mapping the post parameters to a strongly typed .NET object, not to single parameters. Alternately you can also accept a FormDataCollection parameter on your API method to get a name value collection of all POSTed values. If you're using JSON only, using the dynamic JObject/JValue objects might also work. ModelBinding is fine in many use cases, but can quickly become overkill if you only need to pass a couple of simple parameters to many methods. Especially in applications with many, many AJAX callbacks the 'parameter mapping type' per method signature can lead to serious class pollution in a project very quickly. Simple POST variables are also commonly used in AJAX applications to pass data to the server, even in many complex public APIs. So this is not an uncommon use case, and - maybe more so a behavior that I would have expected Web API to support natively. The question "Why aren't my POST parameters mapping to Web API method parameters" is already a frequent one… So this is something that I think is fairly important, but unfortunately missing in the base Web API installation. Creating a Custom Parameter Binder Luckily Web API is greatly extensible and there's a way to create a custom Parameter Binding to provide this functionality! Although this solution took me a long while to find and then only with the help of some folks Microsoft (thanks Hong Mei!!!), it's not difficult to hook up in your own projects. It requires one small class and a GlobalConfiguration hookup. Web API parameter bindings allow you to intercept processing of individual parameters - they deal with mapping parameters to the signature as well as converting the parameters to the actual values that are returned. Here's the implementation of the SimplePostVariableParameterBinding class:public class SimplePostVariableParameterBinding : HttpParameterBinding { private const string MultipleBodyParameters = "MultipleBodyParameters"; public SimplePostVariableParameterBinding(HttpParameterDescriptor descriptor) : base(descriptor) { } /// <summary> /// Check for simple binding parameters in POST data. Bind POST /// data as well as query string data /// </summary> public override Task ExecuteBindingAsync(ModelMetadataProvider metadataProvider, HttpActionContext actionContext, CancellationToken cancellationToken) { // Body can only be read once, so read and cache it NameValueCollection col = TryReadBody(actionContext.Request); string stringValue = null; if (col != null) stringValue = col[Descriptor.ParameterName]; // try reading query string if we have no POST/PUT match if (stringValue == null) { var query = actionContext.Request.GetQueryNameValuePairs(); if (query != null) { var matches = query.Where(kv => kv.Key.ToLower() == Descriptor.ParameterName.ToLower()); if (matches.Count() > 0) stringValue = matches.First().Value; } } object value = StringToType(stringValue); // Set the binding result here SetValue(actionContext, value); // now, we can return a completed task with no result TaskCompletionSource<AsyncVoid> tcs = new TaskCompletionSource<AsyncVoid>(); tcs.SetResult(default(AsyncVoid)); return tcs.Task; } private object StringToType(string stringValue) { object value = null; if (stringValue == null) value = null; else if (Descriptor.ParameterType == typeof(string)) value = stringValue; else if (Descriptor.ParameterType == typeof(int)) value = int.Parse(stringValue, CultureInfo.CurrentCulture); else if (Descriptor.ParameterType == typeof(Int32)) value = Int32.Parse(stringValue, CultureInfo.CurrentCulture); else if (Descriptor.ParameterType == typeof(Int64)) value = Int64.Parse(stringValue, CultureInfo.CurrentCulture); else if (Descriptor.ParameterType == typeof(decimal)) value = decimal.Parse(stringValue, CultureInfo.CurrentCulture); else if (Descriptor.ParameterType == typeof(double)) value = double.Parse(stringValue, CultureInfo.CurrentCulture); else if (Descriptor.ParameterType == typeof(DateTime)) value = DateTime.Parse(stringValue, CultureInfo.CurrentCulture); else if (Descriptor.ParameterType == typeof(bool)) { value = false; if (stringValue == "true" || stringValue == "on" || stringValue == "1") value = true; } else value = stringValue; return value; } /// <summary> /// Read and cache the request body /// </summary> /// <param name="request"></param> /// <returns></returns> private NameValueCollection TryReadBody(HttpRequestMessage request) { object result = null; // try to read out of cache first if (!request.Properties.TryGetValue(MultipleBodyParameters, out result)) { // parsing the string like firstname=Hongmei&lastname=Ge result = request.Content.ReadAsFormDataAsync().Result; request.Properties.Add(MultipleBodyParameters, result); } return result as NameValueCollection; } private struct AsyncVoid { } }   The ExecuteBindingAsync method is fired for each parameter that is mapped and sent for conversion. This custom binding is fired only if the incoming parameter is a simple type (that gets defined later when I hook up the binding), so this binding never fires on complex types or if the first type is not a simple type. For the first parameter of a request the Binding first reads the request body into a NameValueCollection and caches that in the request.Properties collection. The request body can only be read once, so the first parameter request reads it and then caches it. Subsequent parameters then use the cached POST value collection. Once the form collection is available the value of the parameter is read, and the value is translated into the target type requested by the Descriptor. SetValue writes out the value to be mapped. Once you have the ParameterBinding in place, the binding has to be assigned. This is done along with all other Web API configuration tasks at application startup in global.asax's Application_Start:GlobalConfiguration.Configuration.ParameterBindingRules .Insert(0, (HttpParameterDescriptor descriptor) => { var supportedMethods = descriptor.ActionDescriptor.SupportedHttpMethods; // Only apply this binder on POST and PUT operations if (supportedMethods.Contains(HttpMethod.Post) || supportedMethods.Contains(HttpMethod.Put)) { var supportedTypes = new Type[] { typeof(string), typeof(int), typeof(decimal), typeof(double), typeof(bool), typeof(DateTime) }; if (supportedTypes.Where(typ => typ == descriptor.ParameterType).Count() > 0) return new SimplePostVariableParameterBinding(descriptor); } // let the default bindings do their work return null; });   The ParameterBindingRules.Insert method takes a delegate that checks which type of requests it should handle. The logic here checks whether the request is POST or PUT and whether the parameter type is a simple type that is supported. Web API calls this delegate once for each method signature it tries to map and the delegate returns null to indicate it's not handling this parameter, or it returns a new parameter binding instance - in this case the SimplePostVariableParameterBinding. Once the parameter binding and this hook up code is in place, you can now pass simple POST values to methods with simple parameters. The examples I showed above should now work in addition to the standard bindings. Summary Clearly this is not easy to discover. I spent quite a bit of time digging through the Web API source trying to figure this out on my own without much luck. It took Hong Mei at Micrsoft to provide a base example as I asked around so I can't take credit for this solution :-). But once you know where to look, Web API is brilliantly extensible to make it relatively easy to customize the parameter behavior. I'm very stoked that this got resolved  - in the last two months I've had two customers with projects that decided not to use Web API in AJAX heavy SPA applications because this POST variable mapping wasn't available. This might actually change their mind to still switch back and take advantage of the many great features in Web API. I too frequently use plain POST variables for communicating with server AJAX handlers and while I could have worked around this (with untyped JObject or the Form collection mostly), having proper POST to parameter mapping makes things much easier. I said this in my last post on POST data and say it again here: I think POST to method parameter mapping should have been shipped in the box with Web API, because without knowing about this limitation the expectation is that simple POST variables map to parameters just like query string values do. I hope Microsoft considers including this type of functionality natively in the next version of Web API natively or at least as a built-in HttpParameterBinding that can be just added. This is especially true, since this binding doesn't affect existing bindings. Resources SimplePostVariableParameterBinding Source on GitHub Global.asax hookup source Mapping URL Encoded Post Values in  ASP.NET Web API© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api  AJAX   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Effective handling of variables in non-object oriented programming

    - by srnka
    What is the best method to use and share variables between functions in non object-oriented program languages? Let's say that I use 10 parameters from DB, ID and 9 other values linked to it. I need to work with all 10 parameters in many functions. I can do it next ways: 1. call functions only with using ID and in every function get the other parameters from DB. Advantage: local variables are clear visible, there is only one input parameter to function Disadvantage: it's slow and there are the same rows for getting parameters in every function, which makes function longer and not so clear 2. call functions with all 10 parameters Advantage: working with local variables, clear function code Disadvantage: many input parameters, what is not nice 3. getting parameters as global variables once and using them everywhere Advantage - clearer code, shorter functions, faster processing Disadvantage - global variables - loosing control of them, possibility of unwanted overwriting (Especially when some functions should change their values) Maybe there is some another way how to implement this and make program cleaner and more effective. Can you say which way is the best for solving this issue?

    Read the article

  • Why can't I compile this version of Postfix?

    - by Coofucoo
    I just installed postfix 2.7.11 in Ubuntu server from source code. I do not use the ubuntu own one because I need the old version. I found a very interesting problem. Before, in both CentOS 5 and 6, I can build the source code without any problem. But, in Ubuntu server 12.04 is totally different. I got the following problems: dict_nis.c:173: error: undefined reference to 'yp_match' dict_nis.c:187: error: undefined reference to 'yp_match' dns_lookup.c:347: error: undefined reference to '__dn_expand' dns_lookup.c:218: error: undefined reference to '__res_search' dns_lookup.c:287: error: undefined reference to '__dn_expand' dns_lookup.c:498: error: undefined reference to '__dn_expand' dns_lookup.c:383: error: undefined reference to '__dn_expand' Yes, this reason is obviously. I just search related library and add it to the makefile. It works. The question is why? What is the difference between Ubuntu Server and CentOS? One possibility is gcc and ld version. Ubuntu server use different version of gcc and ld with CentOS. But I am not sure.

    Read the article

  • A Better Way to Plan, Execute and Manage Enterprise Architecture

    - by JuergenKress
    IT Strategies from Oracle is an authorized library of guidelines and reference architectures that will help you better plan, execute, and manage your enterprise architecture and IT initiatives. The IT Strategies from Oracle library offers two types of best practice documents: practitioner guides containing pragmatic advice and approaches, and reference architectures containing the proven technology patterns to jumpstart your initiative. The IT Strategies from Oracle library can help you establish a reliable set of principles and standards to guide your use of Oracle technology. We will expand this library over time across all of Oracle's technologies. Today, you can access: Overview documents providing an introduction to all the resources available in the library and best practices maturity models Oracle Reference Architectures covering the application infrastructure foundation, management and monitoring, security, software engineering, service-oriented integration, service orientation, user interaction, engineered systems, and a master glossary. Enterprise Technology Strategies for Service-Oriented Architecture offering practitioner guides on creating a SOA roadmap, frameworks for governance, determining ROI, identifying services, software engineering, and white papers. Enterprise Technology Strategies for Event-Driven Architecture offering practitioner guides on creating an EDA roadmap and reference architectures on an EDA foundation and EDA infrastructure. Enterprise Technology Strategies for Business Process Management including practitioner guides on creating a BPM roadmap, business process engineering, governance, and reference architectures on a BPM foundation and BPM infrastructure. Enterprise Technology Strategies for Cloud Computing including reference architectures on a Cloud foundation and Cloud infrastructure. Enterprise Technology Strategies for Business Analytics includes a practitioner guide for creating a BA roadmap, and reference architectures for a BA foundation and BA infrastructure. Get the Oracle Enterprise Architecture content here. SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Facebook Wiki Mix Forum Technorati Tags: Architecture,SOA Community,Oracle SOA,Oracle BPM,Community,OPN,Jürgen Kress

    Read the article

  • Custom ASP.NET Routing to an HttpHandler

    - by Rick Strahl
    As of version 4.0 ASP.NET natively supports routing via the now built-in System.Web.Routing namespace. Routing features are automatically integrated into the HtttpRuntime via a few custom interfaces. New Web Forms Routing Support In ASP.NET 4.0 there are a host of improvements including routing support baked into Web Forms via a RouteData property available on the Page class and RouteCollection.MapPageRoute() route handler that makes it easy to route to Web forms. To map ASP.NET Page routes is as simple as setting up the routes with MapPageRoute:protected void Application_Start(object sender, EventArgs e) { RegisterRoutes(RouteTable.Routes); } void RegisterRoutes(RouteCollection routes) { routes.MapPageRoute("StockQuote", "StockQuote/{symbol}", "StockQuote.aspx"); routes.MapPageRoute("StockQuotes", "StockQuotes/{symbolList}", "StockQuotes.aspx"); } and then accessing the route data in the page you can then use the new Page class RouteData property to retrieve the dynamic route data information:public partial class StockQuote1 : System.Web.UI.Page { protected StockQuote Quote = null; protected void Page_Load(object sender, EventArgs e) { string symbol = RouteData.Values["symbol"] as string; StockServer server = new StockServer(); Quote = server.GetStockQuote(symbol); // display stock data in Page View } } Simple, quick and doesn’t require much explanation. If you’re using WebForms most of your routing needs should be served just fine by this simple mechanism. Kudos to the ASP.NET team for putting this in the box and making it easy! How Routing Works To handle Routing in ASP.NET involves these steps: Registering Routes Creating a custom RouteHandler to retrieve an HttpHandler Attaching RouteData to your HttpHandler Picking up Route Information in your Request code Registering routes makes ASP.NET aware of the Routes you want to handle via the static RouteTable.Routes collection. You basically add routes to this collection to let ASP.NET know which URL patterns it should watch for. You typically hook up routes off a RegisterRoutes method that fires in Application_Start as I did in the example above to ensure routes are added only once when the application first starts up. When you create a route, you pass in a RouteHandler instance which ASP.NET caches and reuses as routes are matched. Once registered ASP.NET monitors the routes and if a match is found just prior to the HttpHandler instantiation, ASP.NET uses the RouteHandler registered for the route and calls GetHandler() on it to retrieve an HttpHandler instance. The RouteHandler.GetHandler() method is responsible for creating an instance of an HttpHandler that is to handle the request and – if necessary – to assign any additional custom data to the handler. At minimum you probably want to pass the RouteData to the handler so the handler can identify the request based on the route data available. To do this you typically add  a RouteData property to your handler and then assign the property from the RouteHandlers request context. This is essentially how Page.RouteData comes into being and this approach should work well for any custom handler implementation that requires RouteData. It’s a shame that ASP.NET doesn’t have a top level intrinsic object that’s accessible off the HttpContext object to provide route data more generically, but since RouteData is directly tied to HttpHandlers and not all handlers support it it might cause some confusion of when it’s actually available. Bottom line is that if you want to hold on to RouteData you have to assign it to a custom property of the handler or else pass it to the handler via Context.Items[] object that can be retrieved on an as needed basis. It’s important to understand that routing is hooked up via RouteHandlers that are responsible for loading HttpHandler instances. RouteHandlers are invoked for every request that matches a route and through this RouteHandler instance the Handler gains access to the current RouteData. Because of this logic it’s important to understand that Routing is really tied to HttpHandlers and not available prior to handler instantiation, which is pretty late in the HttpRuntime’s request pipeline. IOW, Routing works with Handlers but not with earlier in the pipeline within Modules. Specifically ASP.NET calls RouteHandler.GetHandler() from the PostResolveRequestCache HttpRuntime pipeline event. Here’s the call stack at the beginning of the GetHandler() call: which fires just before handler resolution. Non-Page Routing – You need to build custom RouteHandlers If you need to route to a custom Http Handler or other non-Page (and non-MVC) endpoint in the HttpRuntime, there is no generic mapping support available. You need to create a custom RouteHandler that can manage creating an instance of an HttpHandler that is fired in response to a routed request. Depending on what you are doing this process can be simple or fairly involved as your code is responsible based on the route data provided which handler to instantiate, and more importantly how to pass the route data on to the Handler. Luckily creating a RouteHandler is easy by implementing the IRouteHandler interface which has only a single GetHttpHandler(RequestContext context) method. In this method you can pick up the requestContext.RouteData, instantiate the HttpHandler of choice, and assign the RouteData to it. Then pass back the handler and you’re done.Here’s a simple example of GetHttpHandler() method that dynamically creates a handler based on a passed in Handler type./// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } Note that this code checks for a specific type of handler and if it matches assigns the RouteData to this handler. This is optional but quite a common scenario if you want to work with RouteData. If the handler you need to instantiate isn’t under your control but you still need to pass RouteData to Handler code, an alternative is to pass the RouteData via the HttpContext.Items collection:IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; requestContext.HttpContext.Items["RouteData"] = requestContext.RouteData; return handler; } The code in the handler implementation can then pick up the RouteData from the context collection as needed:RouteData routeData = HttpContext.Current.Items["RouteData"] as RouteData This isn’t as clean as having an explicit RouteData property, but it does have the advantage that the route data is visible anywhere in the Handler’s code chain. It’s definitely preferable to create a custom property on your handler, but the Context work-around works in a pinch when you don’t’ own the handler code and have dynamic code executing as part of the handler execution. An Example of a Custom RouteHandler: Attribute Based Route Implementation In this post I’m going to discuss a custom routine implementation I built for my CallbackHandler class in the West Wind Web & Ajax Toolkit. CallbackHandler can be very easily used for creating AJAX, REST and POX requests following RPC style method mapping. You can pass parameters via URL query string, POST data or raw data structures, and you can retrieve results as JSON, XML or raw string/binary data. It’s a quick and easy way to build service interfaces with no fuss. As a quick review here’s how CallbackHandler works: You create an Http Handler that derives from CallbackHandler You implement methods that have a [CallbackMethod] Attribute and that’s it. Here’s an example of an CallbackHandler implementation in an ashx.cs based handler:// RestService.ashx.cs public class RestService : CallbackHandler { [CallbackMethod] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } } CallbackHandler makes it super easy to create a method on the server, pass data to it via POST, QueryString or raw JSON/XML data, and then retrieve the results easily back in various formats. This works wonderful and I’ve used these tools in many projects for myself and with clients. But one thing missing has been the ability to create clean URLs. Typical URLs looked like this: http://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuote&symbol=msfthttp://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuotes&symbolList=msft,intc,gld,slw,mwe&format=xml which works and is clear enough, but also clearly very ugly. It would be much nicer if URLs could look like this: http://www.west-wind.com//WestwindWebtoolkit/Samples/StockQuote/msfthttp://www.west-wind.com/WestwindWebtoolkit/Samples/StockQuotes/msft,intc,gld,slw?format=xml (the Virtual Root in this sample is WestWindWebToolkit/Samples and StockQuote/{symbol} is the route)(If you use FireFox try using the JSONView plug-in make it easier to view JSON content) So, taking a clue from the WCF REST tools that use RouteUrls I set out to create a way to specify RouteUrls for each of the endpoints. The change made basically allows changing the above to: [CallbackMethod(RouteUrl="RestService/StockQuote/{symbol}")] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod(RouteUrl = "RestService/StockQuotes/{symbolList}")] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } where a RouteUrl is specified as part of the Callback attribute. And with the changes made with RouteUrls I can now get URLs like the second set shown earlier. So how does that work? Let’s find out… How to Create Custom Routes As mentioned earlier Routing is made up of several steps: Creating a custom RouteHandler to create HttpHandler instances Mapping the actual Routes to the RouteHandler Retrieving the RouteData and actually doing something useful with it in the HttpHandler In the CallbackHandler routing example above this works out to something like this: Create a custom RouteHandler that includes a property to track the method to call Set up the routes using Reflection against the class Looking for any RouteUrls in the CallbackMethod attribute Add a RouteData property to the CallbackHandler so we can access the RouteData in the code of the handler Creating a Custom Route Handler To make the above work I created a custom RouteHandler class that includes the actual IRouteHandler implementation as well as a generic and static method to automatically register all routes marked with the [CallbackMethod(RouteUrl="…")] attribute. Here’s the code:/// <summary> /// Route handler that can create instances of CallbackHandler derived /// callback classes. The route handler tracks the method name and /// creates an instance of the service in a predictable manner /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler type</typeparam> public class CallbackHandlerRouteHandler : IRouteHandler { /// <summary> /// Method name that is to be called on this route. /// Set by the automatically generated RegisterRoutes /// invokation. /// </summary> public string MethodName { get; set; } /// <summary> /// The type of the handler we're going to instantiate. /// Needed so we can semi-generically instantiate the /// handler and call the method on it. /// </summary> public Type CallbackHandlerType { get; set; } /// <summary> /// Constructor to pass in the two required components we /// need to create an instance of our handler. /// </summary> /// <param name="methodName"></param> /// <param name="callbackHandlerType"></param> public CallbackHandlerRouteHandler(string methodName, Type callbackHandlerType) { MethodName = methodName; CallbackHandlerType = callbackHandlerType; } /// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } /// <summary> /// Generic method to register all routes from a CallbackHandler /// that have RouteUrls defined on the [CallbackMethod] attribute /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler Type</typeparam> /// <param name="routes"></param> public static void RegisterRoutes<TCallbackHandler>(RouteCollection routes) { // find all methods var methods = typeof(TCallbackHandler).GetMethods(BindingFlags.Instance | BindingFlags.Public); foreach (var method in methods) { var attrs = method.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (attrs.Length < 1) continue; CallbackMethodAttribute attr = attrs[0] as CallbackMethodAttribute; if (string.IsNullOrEmpty(attr.RouteUrl)) continue; // Add the route routes.Add(method.Name, new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler)))); } } } The RouteHandler implements IRouteHandler, and its responsibility via the GetHandler method is to create an HttpHandler based on the route data. When ASP.NET calls GetHandler it passes a requestContext parameter which includes a requestContext.RouteData property. This parameter holds the current request’s route data as well as an instance of the current RouteHandler. If you look at GetHttpHandler() you can see that the code creates an instance of the handler we are interested in and then sets the RouteData property on the handler. This is how you can pass the current request’s RouteData to the handler. The RouteData object also has a  RouteData.RouteHandler property that is also available to the Handler later, which is useful in order to get additional information about the current route. In our case here the RouteHandler includes a MethodName property that identifies the method to execute in the handler since that value no longer comes from the URL so we need to figure out the method name some other way. The method name is mapped explicitly when the RouteHandler is created and here the static method that auto-registers all CallbackMethods with RouteUrls sets the method name when it creates the routes while reflecting over the methods (more on this in a minute). The important point here is that you can attach additional properties to the RouteHandler and you can then later access the RouteHandler and its properties later in the Handler to pick up these custom values. This is a crucial feature in that the RouteHandler serves in passing additional context to the handler so it knows what actions to perform. The automatic route registration is handled by the static RegisterRoutes<TCallbackHandler> method. This method is generic and totally reusable for any CallbackHandler type handler. To register a CallbackHandler and any RouteUrls it has defined you simple use code like this in Application_Start (or other application startup code):protected void Application_Start(object sender, EventArgs e) { // Register Routes for RestService CallbackHandlerRouteHandler.RegisterRoutes<RestService>(RouteTable.Routes); } If you have multiple CallbackHandler style services you can make multiple calls to RegisterRoutes for each of the service types. RegisterRoutes internally uses reflection to run through all the methods of the Handler, looking for CallbackMethod attributes and whether a RouteUrl is specified. If it is a new instance of a CallbackHandlerRouteHandler is created and the name of the method and the type are set. routes.Add(method.Name,           new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler) )) ); While the routing with CallbackHandlerRouteHandler is set up automatically for all methods that use the RouteUrl attribute, you can also use code to hook up those routes manually and skip using the attribute. The code for this is straightforward and just requires that you manually map each individual route to each method you want a routed: protected void Application_Start(objectsender, EventArgs e){    RegisterRoutes(RouteTable.Routes);}void RegisterRoutes(RouteCollection routes) { routes.Add("StockQuote Route",new Route("StockQuote/{symbol}",                     new CallbackHandlerRouteHandler("GetStockQuote",typeof(RestService) ) ) );     routes.Add("StockQuotes Route",new Route("StockQuotes/{symbolList}",                     new CallbackHandlerRouteHandler("GetStockQuotes",typeof(RestService) ) ) );}I think it’s clearly easier to have CallbackHandlerRouteHandler.RegisterRoutes() do this automatically for you based on RouteUrl attributes, but some people have a real aversion to attaching logic via attributes. Just realize that the option to manually create your routes is available as well. Using the RouteData in the Handler A RouteHandler’s responsibility is to create an HttpHandler and as mentioned earlier, natively IHttpHandler doesn’t have any support for RouteData. In order to utilize RouteData in your handler code you have to pass the RouteData to the handler. In my CallbackHandlerRouteHandler when it creates the HttpHandler instance it creates the instance and then assigns the custom RouteData property on the handler:IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; Again this only works if you actually add a RouteData property to your handler explicitly as I did in my CallbackHandler implementation:/// <summary> /// Optionally store RouteData on this handler /// so we can access it internally /// </summary> public RouteData RouteData {get; set; } and the RouteHandler needs to set it when it creates the handler instance. Once you have the route data in your handler you can access Route Keys and Values and also the RouteHandler. Since my RouteHandler has a custom property for the MethodName to retrieve it from within the handler I can do something like this now to retrieve the MethodName (this example is actually not in the handler but target is an instance pass to the processor): // check for Route Data method name if (target is CallbackHandler) { var routeData = ((CallbackHandler)target).RouteData; if (routeData != null) methodToCall = ((CallbackHandlerRouteHandler)routeData.RouteHandler).MethodName; } When I need to access the dynamic values in the route ( symbol in StockQuote/{symbol}) I can retrieve it easily with the Values collection (RouteData.Values["symbol"]). In my CallbackHandler processing logic I’m basically looking for matching parameter names to Route parameters: // look for parameters in the routeif(routeData != null){    string parmString = routeData.Values[parameter.Name] as string;    adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType);} And with that we’ve come full circle. We’ve created a custom RouteHandler() that passes the RouteData to the handler it creates. We’ve registered our routes to use the RouteHandler, and we’ve utilized the route data in our handler. For completeness sake here’s the routine that executes a method call based on the parameters passed in and one of the options is to retrieve the inbound parameters off RouteData (as well as from POST data or QueryString parameters):internal object ExecuteMethod(string method, object target, string[] parameters, CallbackMethodParameterType paramType, ref CallbackMethodAttribute callbackMethodAttribute) { HttpRequest Request = HttpContext.Current.Request; object Result = null; // Stores parsed parameters (from string JSON or QUeryString Values) object[] adjustedParms = null; Type PageType = target.GetType(); MethodInfo MI = PageType.GetMethod(method, BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic); if (MI == null) throw new InvalidOperationException("Invalid Server Method."); object[] methods = MI.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (methods.Length < 1) throw new InvalidOperationException("Server method is not accessible due to missing CallbackMethod attribute"); if (callbackMethodAttribute != null) callbackMethodAttribute = methods[0] as CallbackMethodAttribute; ParameterInfo[] parms = MI.GetParameters(); JSONSerializer serializer = new JSONSerializer(); RouteData routeData = null; if (target is CallbackHandler) routeData = ((CallbackHandler)target).RouteData; int parmCounter = 0; adjustedParms = new object[parms.Length]; foreach (ParameterInfo parameter in parms) { // Retrieve parameters out of QueryString or POST buffer if (parameters == null) { // look for parameters in the route if (routeData != null) { string parmString = routeData.Values[parameter.Name] as string; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // GET parameter are parsed as plain string values - no JSON encoding else if (HttpContext.Current.Request.HttpMethod == "GET") { // Look up the parameter by name string parmString = Request.QueryString[parameter.Name]; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // POST parameters are treated as methodParameters that are JSON encoded else if (paramType == CallbackMethodParameterType.Json) //string newVariable = methodParameters.GetValue(parmCounter) as string; adjustedParms[parmCounter] = serializer.Deserialize(Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject( Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); } else if (paramType == CallbackMethodParameterType.Json) adjustedParms[parmCounter] = serializer.Deserialize(parameters[parmCounter], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject(parameters[parmCounter], parameter.ParameterType); parmCounter++; } Result = MI.Invoke(target, adjustedParms); return Result; } The code basically uses Reflection to loop through all the parameters available on the method and tries to assign the parameters from RouteData, QueryString or POST variables. The parameters are converted into their appropriate types and then used to eventually make a Reflection based method call. What’s sweet is that the RouteData retrieval is just another option for dealing with the inbound data in this scenario and it adds exactly two lines of code plus the code to retrieve the MethodName I showed previously – a seriously low impact addition that adds a lot of extra value to this endpoint callback processing implementation. Debugging your Routes If you create a lot of routes it’s easy to run into Route conflicts where multiple routes have the same path and overlap with each other. This can be difficult to debug especially if you are using automatically generated routes like the routes created by CallbackHandlerRouteHandler.RegisterRoutes. Luckily there’s a tool that can help you out with this nicely. Phill Haack created a RouteDebugging tool you can download and add to your project. The easiest way to do this is to grab and add this to your project is to use NuGet (Add Library Package from your Project’s Reference Nodes):   which adds a RouteDebug assembly to your project. Once installed you can easily debug your routes with this simple line of code which needs to be installed at application startup:protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); // Debug your routes RouteDebug.RouteDebugger.RewriteRoutesForTesting(RouteTable.Routes); } Any routed URL then displays something like this: The screen shows you your current route data and all the routes that are mapped along with a flag that displays which route was actually matched. This is useful – if you have any overlap of routes you will be able to see which routes are triggered – the first one in the sequence wins. This tool has saved my ass on a few occasions – and with NuGet now it’s easy to add it to your project in a few seconds and then remove it when you’re done. Routing Around Custom routing seems slightly complicated on first blush due to its disconnected components of RouteHandler, route registration and mapping of custom handlers. But once you understand the relationship between a RouteHandler, the RouteData and how to pass it to a handler, utilizing of Routing becomes a lot easier as you can easily pass context from the registration to the RouteHandler and through to the HttpHandler. The most important thing to understand when building custom routing solutions is to figure out how to map URLs in such a way that the handler can figure out all the pieces it needs to process the request. This can be via URL routing parameters and as I did in my example by passing additional context information as part of the RouteHandler instance that provides the proper execution context. In my case this ‘context’ was the method name, but it could be an actual static value like an enum identifying an operation or category in an application. Basically user supplied data comes in through the url and static application internal data can be passed via RouteHandler property values. Routing can make your application URLs easier to read by non-techie types regardless of whether you’re building Service type or REST applications, or full on Web interfaces. Routing in ASP.NET 4.0 makes it possible to create just about any extensionless URLs you can dream up and custom RouteHanmdler References Sample ProjectIncludes the sample CallbackHandler service discussed here along with compiled versionsof the Westwind.Web and Westwind.Utilities assemblies.  (requires .NET 4.0/VS 2010) West Wind Web Toolkit includes full implementation of CallbackHandler and the Routing Handler West Wind Web Toolkit Source CodeContains the full source code to the Westwind.Web and Westwind.Utilities assemblies usedin these samples. Includes the source described in the post.(Latest build in the Subversion Repository) CallbackHandler Source(Relevant code to this article tree in Westwind.Web assembly) JSONView FireFoxPluginA simple FireFox Plugin to easily view JSON data natively in FireFox.For IE you can use a registry hack to display JSON as raw text.© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  AJAX  HTTP  

    Read the article

  • List of Commonly Used Value Types in XNA Games

    - by Michael B. McLaughlin
    Most XNA programmers are concerned about generating garbage. More specifically about allocating GC-managed memory (GC stands for “garbage collector” and is both the name of the class that provides access to the garbage collector and an acronym for the garbage collector (as a concept) itself). Two of the major target platforms for XNA (Windows Phone 7 and Xbox 360) use variants of the .NET Compact Framework. On both variants, the GC runs under various circumstances (Windows Phone 7 and Xbox 360). Of concern to XNA programmers is the fact that it runs automatically after a fixed amount of GC-managed memory has been allocated (currently 1MB on both systems). Many beginning XNA programmers are unaware of what constitutes GC-managed memory, though. So here’s a quick overview. In .NET, there are two different “types” of types: value types and reference types. Only reference types are managed by the garbage collector. Value types are not managed by the garbage collector and are instead managed in other ways that are implementation dependent. For purposes of XNA programming, the important point is that they are not managed by the GC and thus do not, by themselves, increment that internal 1 MB allocation counter. (n.b. Structs are value types. If you have a struct that has a reference type as a member, then that reference type, when instantiated, will still be allocated in the GC-managed memory and will thus count against the 1 MB allocation counter. Putting it in a struct doesn’t change the fact that it gets allocated on the GC heap, but the struct itself is created outside of the GC’s purview). Both value types and reference types use the keyword ‘new’ to allocate a new instance of them. Sometimes this keyword is hidden by a method which creates new instances for you, e.g. XmlReader.Create. But the important thing to determine is whether or not you are dealing with a value types or a reference type. If it’s a value type, you can use the ‘new’ keyword to allocate new instances of that type without incrementing the GC allocation counter (except as above where it’s a struct with a reference type in it that is allocated by the constructor, but there are no .NET Framework or XNA Framework value types that do this so it would have to be a struct you created or that was in some third-party library you were using for that to even become an issue). The following is a list of most all of value types you are likely to use in a generic XNA game: AudioCategory (used with XACT; not available on WP7) AvatarExpression (Xbox 360 only, but exposed on Windows to ease Xbox development) bool BoundingBox BoundingSphere byte char Color DateTime decimal double any enum (System.Enum itself is a class, but all enums are value types such that there are no GC allocations for enums) float GamePadButtons GamePadCapabilities GamePadDPad GamePadState GamePadThumbSticks GamePadTriggers GestureSample int IntPtr (rarely but occasionally used in XNA) KeyboardState long Matrix MouseState nullable structs (anytime you see, e.g. int? something, that ‘?’ denotes a nullable struct, also called a nullable type) Plane Point Quaternion Ray Rectangle RenderTargetBinding sbyte (though I’ve never seen it used since most people would just use a short) short TimeSpan TouchCollection TouchLocation TouchPanelCapabilities uint ulong ushort Vector2 Vector3 Vector4 VertexBufferBinding VertexElement VertexPositionColor VertexPositionColorTexture VertexPositionNormalTexture VertexPositionTexture Viewport So there you have it. That’s not quite a complete list, mind you. For example: There are various structs in the .NET framework you might make use of. I left out everything from the Microsoft.Xna.Framework.Graphics.PackedVector namespace, since everything in there ventures into the realm of advanced XNA programming anyway (n.b. every single instantiable thing in that namespace is a struct and thus a value type; there are also two interfaces but interfaces cannot be instantiated at all and thus don’t figure in to this discussion). There are so many enums you’re likely to use (PlayerIndex, SpriteSortMode, SpriteEffects, SurfaceFormat, etc.) that including them would’ve flooded the list and reduced its utility. So I went with “any enum” and trust that you can figure out what the enums are (and it’s rare to use ‘new’ with an enum anyway). That list also doesn’t include any of the pre-defined static instances of some of the classes (e.g. BlendState.AlphaBlend, BlendState.Opaque, etc.) which are already allocated such that using them doesn’t cause any new allocations and therefore doesn’t increase that 1 MB counter. That list also has a few misleading things. VertexElement, VertexPositionColor, and all the other vertex types are structs. But you’re only likely to ever use them as an array (for use with VertexBuffer or DynamicVertexBuffer), and all arrays are reference types (even arrays of value types such as VertexPositionColor[ ] or int[ ]). * So that’s it for now. The note below may be a bit confusing (it deals with how the GC works and how arrays are managed in .NET). If so, you can probably safely ignore it for now but feel free to ask any questions regardless. * Arrays of value types (where the value type doesn’t contain any reference type members) are much faster for the GC to examine than arrays of reference types, so there is a definite benefit to using arrays of value types where it makes sense. But creating arrays of value types does cause the GC’s allocation counter to increase. Indeed, allocating a large array of a value type is one of the quickest ways to increment the allocation counter since a .NET array is a sequential block of memory. An array of reference types is just a sequential block of references (typically 4 bytes each) while an array of value types is a sequential block of instances of that type. So for an array of Vector3s it would be 12 bytes each since each float is 4 bytes and there are 3 in a Vector3; for an array of VertexPositionNormalTexture structs it would typically be 32 bytes each since it has two Vector3s and a Vector2. (Note that there are a few additional bytes taken up in the creation of an array, typically 12 but sometimes 16 or possibly even more, which depend on the implementation details of the array type on the particular platform the code is running on).

    Read the article

  • How do I provide dpkg configuration parameters to aptitude or apt-get?

    - by troutwine
    When installing gitolite I find that: # aptitude install gitolite The following NEW packages will be installed: gitolite 0 packages upgraded, 1 newly installed, 0 to remove and 29 not upgraded. Need to get 114 kB of archives. After unpacking 348 kB will be used. Get:1 http://security.debian.org/ squeeze/updates/main gitolite all 1.5.4-2+squeeze1 [114 kB] Fetched 114 kB in 0s (202 kB/s) Preconfiguring packages ... Selecting previously deselected package gitolite. (Reading database ... 30593 files and directories currently installed.) Unpacking gitolite (from .../gitolite_1.5.4-2+squeeze1_all.deb) ... Setting up gitolite (1.5.4-2+squeeze1) ... No adminkey given - not initializing gitolite in /var/lib/gitolite. The last line is of interest to me. If I run dpkg-reconfigure -plow gitolite I am presented with a dialog and can modify: the system user name for gitolite, the location of the gitolite repositories and provide the admin pubkey. I'd prefer to use the git system user and provide the admin pubkey on installation, say something of the sort: # aptitude install gitolite --user git --admin-pubkey 'ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQDAc7kCAi2WkvqpAL1fK1sIw6xjpatJ+Ms2nrwLJPhdovEY3MPZF7mtH+rv1CHFDn66fLGiWevOFp...' That, of course, doesn't work. Can something similar be done? How do I determine the configuration parameters ahead of time? This would be remarkably useful, for instance, when installing gitolite automatically, via puppet or chef.

    Read the article

< Previous Page | 100 101 102 103 104 105 106 107 108 109 110 111  | Next Page >