Search Results

Search found 10297 results on 412 pages for 'real tuty'.

Page 105/412 | < Previous Page | 101 102 103 104 105 106 107 108 109 110 111 112  | Next Page >

  • SQL SERVER Retrieve and Explore Database Backup without Restoring Database Idera virtual database

    I recently downloaded Ideras SQL virtual database, and tested it. There are a few things about this tool which caught my attention.My ScenarioIt is quite common in real life that sometimes observing or retrieving older data is necessary; however, it had changed as time passed by. The full database backup was 40 GB in size, [...]...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Advice needed on how to start web programming? [closed]

    - by Recursion
    Possible Duplicate: Best approach to learning web programming I have resisted doing web programming for a while, but I have come to the realization that I need to learn it and may have resisted do to fear of the unknown. I am a regular applications and systems programmer with no real idea of how to even get started. I have tried to start a few times, rails, django, tornado, web.py, cherrypy, but always get discouraged and quit. The most web programming I have done was in HTML during 1995 for my geocities site. I have pretty decent experience with regular programming in C, Python, Assembly and Java. Just looking for a way to get started and get a good overview of the different technologies and frameworks. I am not doing this for a job or employment, just to learn.

    Read the article

  • Set the Minimum and Maximum Tab Widths in Firefox without an Add-on

    - by Lori Kaufman
    If you tend to have a lot of tabs open in Firefox, there may be times when you can’t see all the tabs you have open, and you need to navigate among your tabs using the tab scrolling arrows. There are add-ons available for Firefox that will make multiple rows of tabs, such as Tab Utilities. However, this still may not be ideal, as it takes a lot of screen real estate when you have a lot of tabs open. There’s an easy way to set the width of the tabs, so they still display text or website icons, and, at the same time, allow more tabs to be visible. To change the width of the tabs, enter “about:config” in the address bar in Firefox and press Enter. HTG Explains: Do You Really Need to Defrag Your PC? Use Amazon’s Barcode Scanner to Easily Buy Anything from Your Phone How To Migrate Windows 7 to a Solid State Drive

    Read the article

  • Controlling Brightness in Sony Vaio SVE151A11W |Not Working|

    - by Rabimba Karanjai
    Disclaimer First: I have gone thorugh these following threads here and followed all of their advice but none of them worked Brightness Control Problem on Sony VAIO with NVIDIA GT-320M unable to change brightness settings in sony vaio e series laptop Brightness doesn't change on Sony laptop Now the Problem I have installed Ubuntu 12.10 (64bit) in this Sony Vaio laptop. After vanilla isntallation the brightness keys are workinga nd I can see the brightness indictaor going up and down buit its isn't having any effect on the real brightness of the device. I have installer additional drivers too but that didn't solve the problem. I can't seem to be able to change the brightness. Anyone knows how I can fix this?

    Read the article

  • Week in Geek: Facebook Valentine’s Day Scams Edition

    - by Asian Angel
    This week we learned how to get started with the Linux command-line text editor Nano, “speed up Start Menu searching, halt auto-rotating Android screens, & set up Dropbox-powered torrenting”, change the default application for Android tasks, find great gift recommendations for Valentine’s Day using the How-To Geek Valentine’s Day gift guide, had fun decorating our desktops with TRON and TRON Legacy theme items, and more Latest Features How-To Geek ETC Internet Explorer 9 RC Now Available: Here’s the Most Interesting New Stuff Here’s a Super Simple Trick to Defeating Fake Anti-Virus Malware How to Change the Default Application for Android Tasks Stop Believing TV’s Lies: The Real Truth About "Enhancing" Images The How-To Geek Valentine’s Day Gift Guide Inspire Geek Love with These Hilarious Geek Valentines Four Awesome TRON Legacy Themes for Chrome and Iron Anger is Illogical – Old School Style Instructional Video [Star Trek Mashup] Get the Old Microsoft Paint UI Back in Windows 7 Relax and Sleep Is a Soothing Sleep Timer Google Rolls Out Two-Factor Authentication Peaceful Early Morning by the Riverside Wallpaper

    Read the article

  • Guidance: A Branching strategy for Scrum Teams

    - by Martin Hinshelwood
    Having a good branching strategy will save your bacon, or at least your code. Be careful when deviating from your branching strategy because if you do, you may be worse off than when you started! This is one possible branching strategy for Scrum teams and I will not be going in depth with Scrum but you can find out more about Scrum by reading the Scrum Guide and you can even assess your Scrum knowledge by having a go at the Scrum Open Assessment. You can also read SSW’s Rules to Better Scrum using TFS which have been developed during our own Scrum implementations. Acknowledgements Bill Heys – Bill offered some good feedback on this post and helped soften the language. Note: Bill is a VS ALM Ranger and co-wrote the Branching Guidance for TFS 2010 Willy-Peter Schaub – Willy-Peter is an ex Visual Studio ALM MVP turned blue badge and has been involved in most of the guidance including the Branching Guidance for TFS 2010 Chris Birmele – Chris wrote some of the early TFS Branching and Merging Guidance. Dr Paul Neumeyer, Ph.D Parallel Processes, ScrumMaster and SSW Solution Architect – Paul wanted to have feature branches coming from the release branch as well. We agreed that this is really a spin-off that needs own project, backlog, budget and Team. Scenario: A product is developed RTM 1.0 is released and gets great sales.  Extra features are demanded but the new version will have double to price to pay to recover costs, work is approved by the guys with budget and a few sprints later RTM 2.0 is released.  Sales a very low due to the pricing strategy. There are lots of clients on RTM 1.0 calling out for patches. As I keep getting Reverse Integration and Forward Integration mixed up and Bill keeps slapping my wrists I thought I should have a reminder: You still seemed to use reverse and/or forward integration in the wrong context. I would recommend reviewing your document at the end to ensure that it agrees with the common understanding of these terms merge (forward integration) from parent to child (same direction as the branch), and merge  (reverse integration) from child to parent (the reverse direction of the branch). - one of my many slaps on the wrist from Bill Heys.   As I mentioned previously we are using a single feature branching strategy in our current project. The single biggest mistake developers make is developing against the “Main” or “Trunk” line. This ultimately leads to messy code as things are added and never finished. Your only alternative is to NEVER check in unless your code is 100%, but this does not work in practice, even with a single developer. Your ADD will kick in and your half-finished code will be finished enough to pass the build and the tests. You do use builds don’t you? Sadly, this is a very common scenario and I have had people argue that branching merely adds complexity. Then again I have seen the other side of the universe ... branching  structures from he... We should somehow convince everyone that there is a happy between no-branching and too-much-branching. - Willy-Peter Schaub, VS ALM Ranger, Microsoft   A key benefit of branching for development is to isolate changes from the stable Main branch. Branching adds sanity more than it adds complexity. We do try to stress in our guidance that it is important to justify a branch, by doing a cost benefit analysis. The primary cost is the effort to do merges and resolve conflicts. A key benefit is that you have a stable code base in Main and accept changes into Main only after they pass quality gates, etc. - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft The second biggest mistake developers make is branching anything other than the WHOLE “Main” line. If you branch parts of your code and not others it gets out of sync and can make integration a nightmare. You should have your Source, Assets, Build scripts deployment scripts and dependencies inside the “Main” folder and branch the whole thing. Some departments within MSFT even go as far as to add the environments used to develop the product in there as well; although I would not recommend that unless you have a massive SQL cluster to house your source code. We tried the “add environment” back in South-Africa and while it was “phenomenal”, especially when having to switch between environments, the disk storage and processing requirements killed us. We opted for virtualization to skin this cat of keeping a ready-to-go environment handy. - Willy-Peter Schaub, VS ALM Ranger, Microsoft   I think people often think that you should have separate branches for separate environments (e.g. Dev, Test, Integration Test, QA, etc.). I prefer to think of deploying to environments (such as from Main to QA) rather than branching for QA). - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft   You can read about SSW’s Rules to better Source Control for some additional information on what Source Control to use and how to use it. There are also a number of branching Anti-Patterns that should be avoided at all costs: You know you are on the wrong track if you experience one or more of the following symptoms in your development environment: Merge Paranoia—avoiding merging at all cost, usually because of a fear of the consequences. Merge Mania—spending too much time merging software assets instead of developing them. Big Bang Merge—deferring branch merging to the end of the development effort and attempting to merge all branches simultaneously. Never-Ending Merge—continuous merging activity because there is always more to merge. Wrong-Way Merge—merging a software asset version with an earlier version. Branch Mania—creating many branches for no apparent reason. Cascading Branches—branching but never merging back to the main line. Mysterious Branches—branching for no apparent reason. Temporary Branches—branching for changing reasons, so the branch becomes a permanent temporary workspace. Volatile Branches—branching with unstable software assets shared by other branches or merged into another branch. Note   Branches are volatile most of the time while they exist as independent branches. That is the point of having them. The difference is that you should not share or merge branches while they are in an unstable state. Development Freeze—stopping all development activities while branching, merging, and building new base lines. Berlin Wall—using branches to divide the development team members, instead of dividing the work they are performing. -Branching and Merging Primer by Chris Birmele - Developer Tools Technical Specialist at Microsoft Pty Ltd in Australia   In fact, this can result in a merge exercise no-one wants to be involved in, merging hundreds of thousands of change sets and trying to get a consolidated build. Again, we need to find a happy medium. - Willy-Peter Schaub on Merge Paranoia Merge conflicts are generally the result of making changes to the same file in both the target and source branch. If you create merge conflicts, you will eventually need to resolve them. Often the resolution is manual. Merging more frequently allows you to resolve these conflicts close to when they happen, making the resolution clearer. Waiting weeks or months to resolve them, the Big Bang approach, means you are more likely to resolve conflicts incorrectly. - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft   Figure: Main line, this is where your stable code lives and where any build has known entities, always passes and has a happy test that passes as well? Many development projects consist of, a single “Main” line of source and artifacts. This is good; at least there is source control . There are however a couple of issues that need to be considered. What happens if: you and your team are working on a new set of features and the customer wants a change to his current version? you are working on two features and the customer decides to abandon one of them? you have two teams working on different feature sets and their changes start interfering with each other? I just use labels instead of branches? That's a lot of “what if’s”, but there is a simple way of preventing this. Branching… In TFS, labels are not immutable. This does not mean they are not useful. But labels do not provide a very good development isolation mechanism. Branching allows separate code sets to evolve separately (e.g. Current with hotfixes, and vNext with new development). I don’t see how labels work here. - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft   Figure: Creating a single feature branch means you can isolate the development work on that branch.   Its standard practice for large projects with lots of developers to use Feature branching and you can check the Branching Guidance for the latest recommendations from the Visual Studio ALM Rangers for other methods. In the diagram above you can see my recommendation for branching when using Scrum development with TFS 2010. It consists of a single Sprint branch to contain all the changes for the current sprint. The main branch has the permissions changes so contributors to the project can only Branch and Merge with “Main”. This will prevent accidental check-ins or checkouts of the “Main” line that would contaminate the code. The developers continue to develop on sprint one until the completion of the sprint. Note: In the real world, starting a new Greenfield project, this process starts at Sprint 2 as at the start of Sprint 1 you would have artifacts in version control and no need for isolation.   Figure: Once the sprint is complete the Sprint 1 code can then be merged back into the Main line. There are always good practices to follow, and one is to always do a Forward Integration from Main into Sprint 1 before you do a Reverse Integration from Sprint 1 back into Main. In this case it may seem superfluous, but this builds good muscle memory into your developer’s work ethic and means that no bad habits are learned that would interfere with additional Scrum Teams being added to the Product. The process of completing your sprint development: The Team completes their work according to their definition of done. Merge from “Main” into “Sprint1” (Forward Integration) Stabilize your code with any changes coming from other Scrum Teams working on the same product. If you have one Scrum Team this should be quick, but there may have been bug fixes in the Release branches. (we will talk about release branches later) Merge from “Sprint1” into “Main” to commit your changes. (Reverse Integration) Check-in Delete the Sprint1 branch Note: The Sprint 1 branch is no longer required as its useful life has been concluded. Check-in Done But you are not yet done with the Sprint. The goal in Scrum is to have a “potentially shippable product” at the end of every Sprint, and we do not have that yet, we only have finished code.   Figure: With Sprint 1 merged you can create a Release branch and run your final packaging and testing In 99% of all projects I have been involved in or watched, a “shippable product” only happens towards the end of the overall lifecycle, especially when sprints are short. The in-between releases are great demonstration releases, but not shippable. Perhaps it comes from my 80’s brain washing that we only ship when we reach the agreed quality and business feature bar. - Willy-Peter Schaub, VS ALM Ranger, Microsoft Although you should have been testing and packaging your code all the way through your Sprint 1 development, preferably using an automated process, you still need to test and package with stable unchanging code. This is where you do what at SSW we call a “Test Please”. This is first an internal test of the product to make sure it meets the needs of the customer and you generally use a resource external to your Team. Then a “Test Please” is conducted with the Product Owner to make sure he is happy with the output. You can read about how to conduct a Test Please on our Rules to Successful Projects: Do you conduct an internal "test please" prior to releasing a version to a client?   Figure: If you find a deviation from the expected result you fix it on the Release branch. If during your final testing or your “Test Please” you find there are issues or bugs then you should fix them on the release branch. If you can’t fix them within the time box of your Sprint, then you will need to create a Bug and put it onto the backlog for prioritization by the Product owner. Make sure you leave plenty of time between your merge from the development branch to find and fix any problems that are uncovered. This process is commonly called Stabilization and should always be conducted once you have completed all of your User Stories and integrated all of your branches. Even once you have stabilized and released, you should not delete the release branch as you would with the Sprint branch. It has a usefulness for servicing that may extend well beyond the limited life you expect of it. Note: Don't get forced by the business into adding features into a Release branch instead that indicates the unspoken requirement is that they are asking for a product spin-off. In this case you can create a new Team Project and branch from the required Release branch to create a new Main branch for that product. And you create a whole new backlog to work from.   Figure: When the Team decides it is happy with the product you can create a RTM branch. Once you have fixed all the bugs you can, and added any you can’t to the Product Backlog, and you Team is happy with the result you can create a Release. This would consist of doing the final Build and Packaging it up ready for your Sprint Review meeting. You would then create a read-only branch that represents the code you “shipped”. This is really an Audit trail branch that is optional, but is good practice. You could use a Label, but Labels are not Auditable and if a dispute was raised by the customer you can produce a verifiable version of the source code for an independent party to check. Rare I know, but you do not want to be at the wrong end of a legal battle. Like the Release branch the RTM branch should never be deleted, or only deleted according to your companies legal policy, which in the UK is usually 7 years.   Figure: If you have made any changes in the Release you will need to merge back up to Main in order to finalise the changes. Nothing is really ever done until it is in Main. The same rules apply when merging any fixes in the Release branch back into Main and you should do a reverse merge before a forward merge, again for the muscle memory more than necessity at this stage. Your Sprint is now nearly complete, and you can have a Sprint Review meeting knowing that you have made every effort and taken every precaution to protect your customer’s investment. Note: In order to really achieve protection for both you and your client you would add Automated Builds, Automated Tests, Automated Acceptance tests, Acceptance test tracking, Unit Tests, Load tests, Web test and all the other good engineering practices that help produce reliable software.     Figure: After the Sprint Planning meeting the process begins again. Where the Sprint Review and Retrospective meetings mark the end of the Sprint, the Sprint Planning meeting marks the beginning. After you have completed your Sprint Planning and you know what you are trying to achieve in Sprint 2 you can create your new Branch to develop in. How do we handle a bug(s) in production that can’t wait? Although in Scrum the only work done should be on the backlog there should be a little buffer added to the Sprint Planning for contingencies. One of these contingencies is a bug in the current release that can’t wait for the Sprint to finish. But how do you handle that? Willy-Peter Schaub asked an excellent question on the release activities: In reality Sprint 2 starts when sprint 1 ends + weekend. Should we not cater for a possible parallelism between Sprint 2 and the release activities of sprint 1? It would introduce FI’s from main to sprint 2, I guess. Your “Figure: Merging print 2 back into Main.” covers, what I tend to believe to be reality in most cases. - Willy-Peter Schaub, VS ALM Ranger, Microsoft I agree, and if you have a single Scrum team then your resources are limited. The Scrum Team is responsible for packaging and release, so at least one run at stabilization, package and release should be included in the Sprint time box. If more are needed on the current production release during the Sprint 2 time box then resource needs to be pulled from Sprint 2. The Product Owner and the Team have four choices (in order of disruption/cost): Backlog: Add the bug to the backlog and fix it in the next Sprint Buffer Time: Use any buffer time included in the current Sprint to fix the bug quickly Make time: Remove a Story from the current Sprint that is of equal value to the time lost fixing the bug(s) and releasing. Note: The Team must agree that it can still meet the Sprint Goal. Cancel Sprint: Cancel the sprint and concentrate all resource on fixing the bug(s) Note: This can be a very costly if the current sprint has already had a lot of work completed as it will be lost. The choice will depend on the complexity and severity of the bug(s) and both the Product Owner and the Team need to agree. In this case we will go with option #2 or #3 as they are uncomplicated but severe bugs. Figure: Real world issue where a bug needs fixed in the current release. If the bug(s) is urgent enough then then your only option is to fix it in place. You can edit the release branch to find and fix the bug, hopefully creating a test so it can’t happen again. Follow the prior process and conduct an internal and customer “Test Please” before releasing. You can read about how to conduct a Test Please on our Rules to Successful Projects: Do you conduct an internal "test please" prior to releasing a version to a client?   Figure: After you have fixed the bug you need to ship again. You then need to again create an RTM branch to hold the version of the code you released in escrow.   Figure: Main is now out of sync with your Release. We now need to get these new changes back up into the Main branch. Do a reverse and then forward merge again to get the new code into Main. But what about the branch, are developers not working on Sprint 2? Does Sprint 2 now have changes that are not in Main and Main now have changes that are not in Sprint 2? Well, yes… and this is part of the hit you take doing branching. But would this scenario even have been possible without branching?   Figure: Getting the changes in Main into Sprint 2 is very important. The Team now needs to do a Forward Integration merge into their Sprint and resolve any conflicts that occur. Maybe the bug has already been fixed in Sprint 2, maybe the bug no longer exists! This needs to be identified and resolved by the developers before they continue to get further out of Sync with Main. Note: Avoid the “Big bang merge” at all costs.   Figure: Merging Sprint 2 back into Main, the Forward Integration, and R0 terminates. Sprint 2 now merges (Reverse Integration) back into Main following the procedures we have already established.   Figure: The logical conclusion. This then allows the creation of the next release. By now you should be getting the big picture and hopefully you learned something useful from this post. I know I have enjoyed writing it as I find these exploratory posts coupled with real world experience really help harden my understanding.  Branching is a tool; it is not a silver bullet. Don’t over use it, and avoid “Anti-Patterns” where possible. Although the diagram above looks complicated I hope showing you how it is formed simplifies it as much as possible.   Technorati Tags: Branching,Scrum,VS ALM,TFS 2010,VS2010

    Read the article

  • What a Performance! MySQL 5.5 and InnoDB 1.1 running on Oracle Linux

    - by zeynep.koch(at)oracle.com
    The MySQL performance team in Oracle has recently completed a series of benchmarks comparing Read / Write and Read-Only performance of MySQL 5.5 with the InnoDB and MyISAM storage engines. Compared to MyISAM, InnoDB delivered 35x higher throughput on the Read / Write test and 5x higher throughput on the Read-Only test, with 90% scalability across 36 CPU cores. A full analysis of results and MySQL configuration parameters are documented in a new whitepaperIn addition to the benchmark, the new whitepaper, also includes:- A discussion of the use-cases for each storage engine- Best practices for users considering the migration of existing applications from MyISAM to InnoDB- A summary of the performance and scalability enhancements introduced with MySQL 5.5 and InnoDB 1.1.The benchmark itself was based on Sysbench, running on AMD Opteron "Magny-Cours" processors, and Oracle Linux with the Unbreakable Enterprise Kernel You can learn more about MySQL 5.5 and InnoDB 1.1 from here and download it from here to test whether you witness performance gains in your real-world applications.  By Mat Keep

    Read the article

  • How to Play FLAC Files in Windows 7 Media Center & Player

    - by Mysticgeek
    An annoyance for music lovers who enjoy FLAC format, is there’s no native support for WMP or WMC. If you’re a music enthusiast who prefers FLAC format, we’ll look at adding support to Windows 7 Media Center and Player. For the following article we are using Windows 7 Home Premium 32-bit edition. Download and Install madFLAC v1.8 The first thing we need to do is download and install the madFLAC v1.8 decoder (link below). Just unzip the file and run install.bat… You’ll get a message that it has been successfully registered, click Ok. To verify everything is working, open up one of your FLAC files with WMP, and you’ll get the following message. Check the box Don’t ask me again for this extension and click Yes. Now Media Player should play the track you’ve chosen.   Delete Current Music Library But what if you want to add your entire collection of FLAC files to the Library? If you already have it set up as your default music player, unfortunately we need to remove the current library and delete the database. The best way to manage the music library in Windows 7 is via WMP 12. Since we don’t want to delete songs from the computer we need to Open WMP, press “Alt+T” and navigate to Tools \ Options \ Library.   Now uncheck the box Delete files from computer when deleted from library and click Ok. Now in your Library click “Ctrl + A” to highlight all of the songs in the Library, then hit the “Delete” key. If you have a lot of songs in your library (like on our system) you’ll see the following dialog box while it collects all of the information.   After all of the data is collected, make sure the radio button next to Delete from library only is marked and click Ok. Again you’ll see the Working progress window while the songs are deleted. Deleting Current Database Now we need to make sure we’re starting out fresh. Close out of Media Player, then we’ll basically follow the same directions The Geek pointed out for fixing the WMP Library. Click on Start and type in services.msc into the search box and hit Enter. Now scroll down and stop the service named Windows Media Player Network Sharing Service. Now, navigate to the following directory and the main file to delete CurrentDatabase_372.wmdb %USERPROFILE%\Local Settings\Application Data\Microsoft\Media Player\ Again, the main file to delete is CurrentDatabase_372.wmdb, though if you want, you can delete them all. If you’re uneasy about deleting these files, make sure to back them up first. Now after you restart WMP you can begin adding your FLAC files. For those of us with large collections, it’s extremely annoying to see WMP try to pick up all of your media by default. To delete the other directories go to Organize \ Manage Libraries then open the directories you want to remove. For example here we’re removing the default libraries it tries to check for music. Remove the directories you don’t want it to gather contents from in each of the categories. We removed all of the other collections and only added the FLAC music directory from our home server. SoftPointer Tag Support Plugin Even though we were able to get FLAC files to play in WMP and WMC at this point, there’s another utility from SoftPointer to add. It enables FLAC (and other file formats) to be picked up in the library much easier. It has a long name but is effective –M4a/FLAC/Ogg/Ape/Mpc Tag Support Plugin for Media Player and Media Center (link below). Just install it by accepting the defaults, and you’ll be glad you did. After installing it, and re-launching Media Player, give it some time to collect all of the data from your FLAC directory…it can take a while. In fact, if your collection is huge, just walk away and let it do its thing. If you try to use it right away, WMP slows down considerably while updating the library.   Once the library is setup you’ll be able to play your FLAC tunes in Windows 7 Media Center as well and Windows Media Player 12.   Album Art One caveat is that some of our albums didn’t show any cover art. But we were usually able to get it by right-clicking the album and selecting Find album info.   Then confirming the album information is correct…   Conclusion Although this seems like several steps to go through to play FLAC files in Windows 7 Media Center and Player, it seems to work really well after it’s set up. We haven’t tried this with a 64-bit machine, but the process should be similar, but you might want to make sure the codecs you use are 64-bit. We’re sure there are other methods out there that some of you use, and if so leave us a comment and tell us about it. Download madFlac V1.8  M4a/FLAC/Ogg/Ape/Mpc Tag Support Plugin for Media Player and Media Center from SoftPointer Similar Articles Productive Geek Tips How to Play .OGM Video Files in Windows VistaFixing When Windows Media Player Library Won’t Let You Add FilesUsing Netflix Watchnow in Windows Vista Media Center (Gmedia)Kantaris is a Unique Media Player Based on VLCEasily Change Audio File Formats with XRECODE TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional OutSync will Sync Photos of your Friends on Facebook and Outlook Windows 7 Easter Theme YoWindoW, a real time weather screensaver Optimize your computer the Microsoft way Stormpulse provides slick, real time weather data Geek Parents – Did you try Parental Controls in Windows 7?

    Read the article

  • Podcast: Advanced MVVM with Josh Smith

    - by craigshoemaker
    Author, Microsoft MVP and accomplished pianist Josh Smith, Sr. UX Developer at IdentityMine, joins the show to discuss some of Model View ViewModel’s more advanced scenarios. Full Speed: download Fast Version: download Josh shares is experience using MVVM gives some real-world advice on: Using modal dialogs Evils and virtues of code behind in views Use of attached behaviors Undo/redo strategies Working with animations Building a task based architecture for managing communication between View and ViewModel Frameworks in the MVVM space The Book Get first-hand experience implementing the solutions to the challenges discussed in the show by reading Josh’s new book ‘Advanced MVVM’. Resources The following resources are mentioned in the show: Laurent Bugnion's mix talk ‘Understanding the Model-View-ViewModel Pattern Josh Smith’s MVVM Foundation Laurent Bugnion’s MVVM Light framework Rob Eisenberg's Caliburn

    Read the article

  • A Taxonomy of Numerical Methods v1

    - by JoshReuben
    Numerical Analysis – When, What, (but not how) Once you understand the Math & know C++, Numerical Methods are basically blocks of iterative & conditional math code. I found the real trick was seeing the forest for the trees – knowing which method to use for which situation. Its pretty easy to get lost in the details – so I’ve tried to organize these methods in a way that I can quickly look this up. I’ve included links to detailed explanations and to C++ code examples. I’ve tried to classify Numerical methods in the following broad categories: Solving Systems of Linear Equations Solving Non-Linear Equations Iteratively Interpolation Curve Fitting Optimization Numerical Differentiation & Integration Solving ODEs Boundary Problems Solving EigenValue problems Enjoy – I did ! Solving Systems of Linear Equations Overview Solve sets of algebraic equations with x unknowns The set is commonly in matrix form Gauss-Jordan Elimination http://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination C++: http://www.codekeep.net/snippets/623f1923-e03c-4636-8c92-c9dc7aa0d3c0.aspx Produces solution of the equations & the coefficient matrix Efficient, stable 2 steps: · Forward Elimination – matrix decomposition: reduce set to triangular form (0s below the diagonal) or row echelon form. If degenerate, then there is no solution · Backward Elimination –write the original matrix as the product of ints inverse matrix & its reduced row-echelon matrix à reduce set to row canonical form & use back-substitution to find the solution to the set Elementary ops for matrix decomposition: · Row multiplication · Row switching · Add multiples of rows to other rows Use pivoting to ensure rows are ordered for achieving triangular form LU Decomposition http://en.wikipedia.org/wiki/LU_decomposition C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-lu-decomposition-for-solving.html Represent the matrix as a product of lower & upper triangular matrices A modified version of GJ Elimination Advantage – can easily apply forward & backward elimination to solve triangular matrices Techniques: · Doolittle Method – sets the L matrix diagonal to unity · Crout Method - sets the U matrix diagonal to unity Note: both the L & U matrices share the same unity diagonal & can be stored compactly in the same matrix Gauss-Seidel Iteration http://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method C++: http://www.nr.com/forum/showthread.php?t=722 Transform the linear set of equations into a single equation & then use numerical integration (as integration formulas have Sums, it is implemented iteratively). an optimization of Gauss-Jacobi: 1.5 times faster, requires 0.25 iterations to achieve the same tolerance Solving Non-Linear Equations Iteratively find roots of polynomials – there may be 0, 1 or n solutions for an n order polynomial use iterative techniques Iterative methods · used when there are no known analytical techniques · Requires set functions to be continuous & differentiable · Requires an initial seed value – choice is critical to convergence à conduct multiple runs with different starting points & then select best result · Systematic - iterate until diminishing returns, tolerance or max iteration conditions are met · bracketing techniques will always yield convergent solutions, non-bracketing methods may fail to converge Incremental method if a nonlinear function has opposite signs at 2 ends of a small interval x1 & x2, then there is likely to be a solution in their interval – solutions are detected by evaluating a function over interval steps, for a change in sign, adjusting the step size dynamically. Limitations – can miss closely spaced solutions in large intervals, cannot detect degenerate (coinciding) solutions, limited to functions that cross the x-axis, gives false positives for singularities Fixed point method http://en.wikipedia.org/wiki/Fixed-point_iteration C++: http://books.google.co.il/books?id=weYj75E_t6MC&pg=PA79&lpg=PA79&dq=fixed+point+method++c%2B%2B&source=bl&ots=LQ-5P_taoC&sig=lENUUIYBK53tZtTwNfHLy5PEWDk&hl=en&sa=X&ei=wezDUPW1J5DptQaMsIHQCw&redir_esc=y#v=onepage&q=fixed%20point%20method%20%20c%2B%2B&f=false Algebraically rearrange a solution to isolate a variable then apply incremental method Bisection method http://en.wikipedia.org/wiki/Bisection_method C++: http://numericalcomputing.wordpress.com/category/algorithms/ Bracketed - Select an initial interval, keep bisecting it ad midpoint into sub-intervals and then apply incremental method on smaller & smaller intervals – zoom in Adv: unaffected by function gradient à reliable Disadv: slow convergence False Position Method http://en.wikipedia.org/wiki/False_position_method C++: http://www.dreamincode.net/forums/topic/126100-bisection-and-false-position-methods/ Bracketed - Select an initial interval , & use the relative value of function at interval end points to select next sub-intervals (estimate how far between the end points the solution might be & subdivide based on this) Newton-Raphson method http://en.wikipedia.org/wiki/Newton's_method C++: http://www-users.cselabs.umn.edu/classes/Summer-2012/csci1113/index.php?page=./newt3 Also known as Newton's method Convenient, efficient Not bracketed – only a single initial guess is required to start iteration – requires an analytical expression for the first derivative of the function as input. Evaluates the function & its derivative at each step. Can be extended to the Newton MutiRoot method for solving multiple roots Can be easily applied to an of n-coupled set of non-linear equations – conduct a Taylor Series expansion of a function, dropping terms of order n, rewrite as a Jacobian matrix of PDs & convert to simultaneous linear equations !!! Secant Method http://en.wikipedia.org/wiki/Secant_method C++: http://forum.vcoderz.com/showthread.php?p=205230 Unlike N-R, can estimate first derivative from an initial interval (does not require root to be bracketed) instead of inputting it Since derivative is approximated, may converge slower. Is fast in practice as it does not have to evaluate the derivative at each step. Similar implementation to False Positive method Birge-Vieta Method http://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/polynomial%20methods/bv%20method.html C++: http://books.google.co.il/books?id=cL1boM2uyQwC&pg=SA3-PA51&lpg=SA3-PA51&dq=Birge-Vieta+Method+c%2B%2B&source=bl&ots=QZmnDTK3rC&sig=BPNcHHbpR_DKVoZXrLi4nVXD-gg&hl=en&sa=X&ei=R-_DUK2iNIjzsgbE5ID4Dg&redir_esc=y#v=onepage&q=Birge-Vieta%20Method%20c%2B%2B&f=false combines Horner's method of polynomial evaluation (transforming into lesser degree polynomials that are more computationally efficient to process) with Newton-Raphson to provide a computational speed-up Interpolation Overview Construct new data points for as close as possible fit within range of a discrete set of known points (that were obtained via sampling, experimentation) Use Taylor Series Expansion of a function f(x) around a specific value for x Linear Interpolation http://en.wikipedia.org/wiki/Linear_interpolation C++: http://www.hamaluik.com/?p=289 Straight line between 2 points à concatenate interpolants between each pair of data points Bilinear Interpolation http://en.wikipedia.org/wiki/Bilinear_interpolation C++: http://supercomputingblog.com/graphics/coding-bilinear-interpolation/2/ Extension of the linear function for interpolating functions of 2 variables – perform linear interpolation first in 1 direction, then in another. Used in image processing – e.g. texture mapping filter. Uses 4 vertices to interpolate a value within a unit cell. Lagrange Interpolation http://en.wikipedia.org/wiki/Lagrange_polynomial C++: http://www.codecogs.com/code/maths/approximation/interpolation/lagrange.php For polynomials Requires recomputation for all terms for each distinct x value – can only be applied for small number of nodes Numerically unstable Barycentric Interpolation http://epubs.siam.org/doi/pdf/10.1137/S0036144502417715 C++: http://www.gamedev.net/topic/621445-barycentric-coordinates-c-code-check/ Rearrange the terms in the equation of the Legrange interpolation by defining weight functions that are independent of the interpolated value of x Newton Divided Difference Interpolation http://en.wikipedia.org/wiki/Newton_polynomial C++: http://jee-appy.blogspot.co.il/2011/12/newton-divided-difference-interpolation.html Hermite Divided Differences: Interpolation polynomial approximation for a given set of data points in the NR form - divided differences are used to approximately calculate the various differences. For a given set of 3 data points , fit a quadratic interpolant through the data Bracketed functions allow Newton divided differences to be calculated recursively Difference table Cubic Spline Interpolation http://en.wikipedia.org/wiki/Spline_interpolation C++: https://www.marcusbannerman.co.uk/index.php/home/latestarticles/42-articles/96-cubic-spline-class.html Spline is a piecewise polynomial Provides smoothness – for interpolations with significantly varying data Use weighted coefficients to bend the function to be smooth & its 1st & 2nd derivatives are continuous through the edge points in the interval Curve Fitting A generalization of interpolating whereby given data points may contain noise à the curve does not necessarily pass through all the points Least Squares Fit http://en.wikipedia.org/wiki/Least_squares C++: http://www.ccas.ru/mmes/educat/lab04k/02/least-squares.c Residual – difference between observed value & expected value Model function is often chosen as a linear combination of the specified functions Determines: A) The model instance in which the sum of squared residuals has the least value B) param values for which model best fits data Straight Line Fit Linear correlation between independent variable and dependent variable Linear Regression http://en.wikipedia.org/wiki/Linear_regression C++: http://www.oocities.org/david_swaim/cpp/linregc.htm Special case of statistically exact extrapolation Leverage least squares Given a basis function, the sum of the residuals is determined and the corresponding gradient equation is expressed as a set of normal linear equations in matrix form that can be solved (e.g. using LU Decomposition) Can be weighted - Drop the assumption that all errors have the same significance –-> confidence of accuracy is different for each data point. Fit the function closer to points with higher weights Polynomial Fit - use a polynomial basis function Moving Average http://en.wikipedia.org/wiki/Moving_average C++: http://www.codeproject.com/Articles/17860/A-Simple-Moving-Average-Algorithm Used for smoothing (cancel fluctuations to highlight longer-term trends & cycles), time series data analysis, signal processing filters Replace each data point with average of neighbors. Can be simple (SMA), weighted (WMA), exponential (EMA). Lags behind latest data points – extra weight can be given to more recent data points. Weights can decrease arithmetically or exponentially according to distance from point. Parameters: smoothing factor, period, weight basis Optimization Overview Given function with multiple variables, find Min (or max by minimizing –f(x)) Iterative approach Efficient, but not necessarily reliable Conditions: noisy data, constraints, non-linear models Detection via sign of first derivative - Derivative of saddle points will be 0 Local minima Bisection method Similar method for finding a root for a non-linear equation Start with an interval that contains a minimum Golden Search method http://en.wikipedia.org/wiki/Golden_section_search C++: http://www.codecogs.com/code/maths/optimization/golden.php Bisect intervals according to golden ratio 0.618.. Achieves reduction by evaluating a single function instead of 2 Newton-Raphson Method Brent method http://en.wikipedia.org/wiki/Brent's_method C++: http://people.sc.fsu.edu/~jburkardt/cpp_src/brent/brent.cpp Based on quadratic or parabolic interpolation – if the function is smooth & parabolic near to the minimum, then a parabola fitted through any 3 points should approximate the minima – fails when the 3 points are collinear , in which case the denominator is 0 Simplex Method http://en.wikipedia.org/wiki/Simplex_algorithm C++: http://www.codeguru.com/cpp/article.php/c17505/Simplex-Optimization-Algorithm-and-Implemetation-in-C-Programming.htm Find the global minima of any multi-variable function Direct search – no derivatives required At each step it maintains a non-degenerative simplex – a convex hull of n+1 vertices. Obtains the minimum for a function with n variables by evaluating the function at n-1 points, iteratively replacing the point of worst result with the point of best result, shrinking the multidimensional simplex around the best point. Point replacement involves expanding & contracting the simplex near the worst value point to determine a better replacement point Oscillation can be avoided by choosing the 2nd worst result Restart if it gets stuck Parameters: contraction & expansion factors Simulated Annealing http://en.wikipedia.org/wiki/Simulated_annealing C++: http://code.google.com/p/cppsimulatedannealing/ Analogy to heating & cooling metal to strengthen its structure Stochastic method – apply random permutation search for global minima - Avoid entrapment in local minima via hill climbing Heating schedule - Annealing schedule params: temperature, iterations at each temp, temperature delta Cooling schedule – can be linear, step-wise or exponential Differential Evolution http://en.wikipedia.org/wiki/Differential_evolution C++: http://www.amichel.com/de/doc/html/ More advanced stochastic methods analogous to biological processes: Genetic algorithms, evolution strategies Parallel direct search method against multiple discrete or continuous variables Initial population of variable vectors chosen randomly – if weighted difference vector of 2 vectors yields a lower objective function value then it replaces the comparison vector Many params: #parents, #variables, step size, crossover constant etc Convergence is slow – many more function evaluations than simulated annealing Numerical Differentiation Overview 2 approaches to finite difference methods: · A) approximate function via polynomial interpolation then differentiate · B) Taylor series approximation – additionally provides error estimate Finite Difference methods http://en.wikipedia.org/wiki/Finite_difference_method C++: http://www.wpi.edu/Pubs/ETD/Available/etd-051807-164436/unrestricted/EAMPADU.pdf Find differences between high order derivative values - Approximate differential equations by finite differences at evenly spaced data points Based on forward & backward Taylor series expansion of f(x) about x plus or minus multiples of delta h. Forward / backward difference - the sums of the series contains even derivatives and the difference of the series contains odd derivatives – coupled equations that can be solved. Provide an approximation of the derivative within a O(h^2) accuracy There is also central difference & extended central difference which has a O(h^4) accuracy Richardson Extrapolation http://en.wikipedia.org/wiki/Richardson_extrapolation C++: http://mathscoding.blogspot.co.il/2012/02/introduction-richardson-extrapolation.html A sequence acceleration method applied to finite differences Fast convergence, high accuracy O(h^4) Derivatives via Interpolation Cannot apply Finite Difference method to discrete data points at uneven intervals – so need to approximate the derivative of f(x) using the derivative of the interpolant via 3 point Lagrange Interpolation Note: the higher the order of the derivative, the lower the approximation precision Numerical Integration Estimate finite & infinite integrals of functions More accurate procedure than numerical differentiation Use when it is not possible to obtain an integral of a function analytically or when the function is not given, only the data points are Newton Cotes Methods http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas C++: http://www.siafoo.net/snippet/324 For equally spaced data points Computationally easy – based on local interpolation of n rectangular strip areas that is piecewise fitted to a polynomial to get the sum total area Evaluate the integrand at n+1 evenly spaced points – approximate definite integral by Sum Weights are derived from Lagrange Basis polynomials Leverage Trapezoidal Rule for default 2nd formulas, Simpson 1/3 Rule for substituting 3 point formulas, Simpson 3/8 Rule for 4 point formulas. For 4 point formulas use Bodes Rule. Higher orders obtain more accurate results Trapezoidal Rule uses simple area, Simpsons Rule replaces the integrand f(x) with a quadratic polynomial p(x) that uses the same values as f(x) for its end points, but adds a midpoint Romberg Integration http://en.wikipedia.org/wiki/Romberg's_method C++: http://code.google.com/p/romberg-integration/downloads/detail?name=romberg.cpp&can=2&q= Combines trapezoidal rule with Richardson Extrapolation Evaluates the integrand at equally spaced points The integrand must have continuous derivatives Each R(n,m) extrapolation uses a higher order integrand polynomial replacement rule (zeroth starts with trapezoidal) à a lower triangular matrix set of equation coefficients where the bottom right term has the most accurate approximation. The process continues until the difference between 2 successive diagonal terms becomes sufficiently small. Gaussian Quadrature http://en.wikipedia.org/wiki/Gaussian_quadrature C++: http://www.alglib.net/integration/gaussianquadratures.php Data points are chosen to yield best possible accuracy – requires fewer evaluations Ability to handle singularities, functions that are difficult to evaluate The integrand can include a weighting function determined by a set of orthogonal polynomials. Points & weights are selected so that the integrand yields the exact integral if f(x) is a polynomial of degree <= 2n+1 Techniques (basically different weighting functions): · Gauss-Legendre Integration w(x)=1 · Gauss-Laguerre Integration w(x)=e^-x · Gauss-Hermite Integration w(x)=e^-x^2 · Gauss-Chebyshev Integration w(x)= 1 / Sqrt(1-x^2) Solving ODEs Use when high order differential equations cannot be solved analytically Evaluated under boundary conditions RK for systems – a high order differential equation can always be transformed into a coupled first order system of equations Euler method http://en.wikipedia.org/wiki/Euler_method C++: http://rosettacode.org/wiki/Euler_method First order Runge–Kutta method. Simple recursive method – given an initial value, calculate derivative deltas. Unstable & not very accurate (O(h) error) – not used in practice A first-order method - the local error (truncation error per step) is proportional to the square of the step size, and the global error (error at a given time) is proportional to the step size In evolving solution between data points xn & xn+1, only evaluates derivatives at beginning of interval xn à asymmetric at boundaries Higher order Runge Kutta http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods C++: http://www.dreamincode.net/code/snippet1441.htm 2nd & 4th order RK - Introduces parameterized midpoints for more symmetric solutions à accuracy at higher computational cost Adaptive RK – RK-Fehlberg – estimate the truncation at each integration step & automatically adjust the step size to keep error within prescribed limits. At each step 2 approximations are compared – if in disagreement to a specific accuracy, the step size is reduced Boundary Value Problems Where solution of differential equations are located at 2 different values of the independent variable x à more difficult, because cannot just start at point of initial value – there may not be enough starting conditions available at the end points to produce a unique solution An n-order equation will require n boundary conditions – need to determine the missing n-1 conditions which cause the given conditions at the other boundary to be satisfied Shooting Method http://en.wikipedia.org/wiki/Shooting_method C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-shooting-method-for-solving.html Iteratively guess the missing values for one end & integrate, then inspect the discrepancy with the boundary values of the other end to adjust the estimate Given the starting boundary values u1 & u2 which contain the root u, solve u given the false position method (solving the differential equation as an initial value problem via 4th order RK), then use u to solve the differential equations. Finite Difference Method For linear & non-linear systems Higher order derivatives require more computational steps – some combinations for boundary conditions may not work though Improve the accuracy by increasing the number of mesh points Solving EigenValue Problems An eigenvalue can substitute a matrix when doing matrix multiplication à convert matrix multiplication into a polynomial EigenValue For a given set of equations in matrix form, determine what are the solution eigenvalue & eigenvectors Similar Matrices - have same eigenvalues. Use orthogonal similarity transforms to reduce a matrix to diagonal form from which eigenvalue(s) & eigenvectors can be computed iteratively Jacobi method http://en.wikipedia.org/wiki/Jacobi_method C++: http://people.sc.fsu.edu/~jburkardt/classes/acs2_2008/openmp/jacobi/jacobi.html Robust but Computationally intense – use for small matrices < 10x10 Power Iteration http://en.wikipedia.org/wiki/Power_iteration For any given real symmetric matrix, generate the largest single eigenvalue & its eigenvectors Simplest method – does not compute matrix decomposition à suitable for large, sparse matrices Inverse Iteration Variation of power iteration method – generates the smallest eigenvalue from the inverse matrix Rayleigh Method http://en.wikipedia.org/wiki/Rayleigh's_method_of_dimensional_analysis Variation of power iteration method Rayleigh Quotient Method Variation of inverse iteration method Matrix Tri-diagonalization Method Use householder algorithm to reduce an NxN symmetric matrix to a tridiagonal real symmetric matrix vua N-2 orthogonal transforms     Whats Next Outside of Numerical Methods there are lots of different types of algorithms that I’ve learned over the decades: Data Mining – (I covered this briefly in a previous post: http://geekswithblogs.net/JoshReuben/archive/2007/12/31/ssas-dm-algorithms.aspx ) Search & Sort Routing Problem Solving Logical Theorem Proving Planning Probabilistic Reasoning Machine Learning Solvers (eg MIP) Bioinformatics (Sequence Alignment, Protein Folding) Quant Finance (I read Wilmott’s books – interesting) Sooner or later, I’ll cover the above topics as well.

    Read the article

  • Developer Training – Various Options for Maximum Benefit – Part 4

    - by pinaldave
    Developer Training - Importance and Significance - Part 1 Developer Training – Employee Morals and Ethics – Part 2 Developer Training – Difficult Questions and Alternative Perspective - Part 3 Developer Training – Various Options for Developer Training – Part 4 Developer Training – A Conclusive Summary- Part 5 If you have been reading this series, by now you are aware of all the pros and cons that can come along with training.  We’ve asked and answered hard questions, and investigated them “whys” and “hows” of training.  Now it is time to talk about all the different kinds of training that are out there! On Job Training The most common type of training is on the job training.  Everyone receives this kind of education – even experts who come in to consult have to be taught where the printer, pens, and copy machines are.  If you are thinking about more concrete topics, though, on the job training can be some of the easiest to come across.  Picture this: someone in the company whom you really admire is hard at work on a project.  You come up to them and ask to help them out – if they are a busy developer, the odds are that they will say “yes, please!”   If you phrase your question as an offer of help, you can receive training without ever putting someone in the awkward position of acting as a mentor.  However, some people may want the task of being a mentor.  It can never hurt to ask.  Most people will be more than willing to pass their knowledge along. Extreme Programming If your company and coworkers are willing, you can even investigate Extreme Programming.  This is a type of programming that allows small teams to quickly develop code and products that are released with almost immediate user feedback.  You can find more information at http://www.extremeprogramming.org/.  If this is something your company could use, suggest it to your supervisor.  Even if they say no, it will make it clear that you are a go-getter who is interested in new and exciting projects.  If the answer is yes, then you have the opportunity to get some of the best on the job training around. In Person Training Click on Image to Enlarge When you say the word “training,” most people’s minds go back to the classroom, an image they are familiar with.  While training doesn’t always have to be in a traditional setting, because it is so familiar it can also be the most valuable type of training.  There are many ways to get training through a live instructor.  Some companies may be willing to send a representative to you, where employees will get training, sometimes food and coffee, and a live instructor who can answer questions immediately.  Sometimes these trainers are also able to do consultations at the same time, which can invaluable to a company.  If you are the one to asks your supervisor for a training session that can also be turned into a consultation, you may stick in their minds as an incredibly dedicated employee.  If you can’t find a representative, local colleges can also be a good resource for free or cheap classes – or they may have representatives coming who are willing to take on a few more students. Benefits of On Demand Developer Training Of course, you can often get the best of all these types of training with online or On Demand training.  You can get the benefit of a live instructor who is willing to answer questions (although in this case, usually through e-mail or other online venues), there are often real-world examples to follow along – like on the job training – and best of all you can learn whenever you have the time or need.  Did a problem with your server come up at midnight when all your supervisors are safe at home and probably in bed?  No problem!  On Demand training is especially useful if you need to slow down, pause, or rewind a training session.  Not even a real-life instructor can do that! When I was writing this blog post, I felt that each of the subject, which I have covered can be blog posts of itself. However, I wanted to keep the the blog post concise and so touch based on three major training aspects 1) On Job Training 2) In Person Training and 3) Online training. Here is the question for you – is there any other kind of training methods available, which are effective and one should consider it? If yes, what are those, I may write a follow up blog post on the same subject next week. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Developer Training, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Is there a website like this?

    - by Slawek
    Hi guys, because so much questions are closed here i was wondering if there is some website that's really about programmers< you know real programmers, that have a life not codemonkeys. For example i'd like to see what programmers around the world wear, maybe pictures. It's of course related to programming but i think community here is to strict to allow anything that has no "PHP" or "Java" in title. You know, some place where you can ask questions not only related to lines of code but to ... programmers :) For now this subsite feels more than .coding, not .programmers to be honest :) BTW: I saw there's life-style tag... maybe not all hope is lost...

    Read the article

  • New Rules of Retail

    - by David Dorf
    I've been on vacation and preparing for Crosstalk, so its been a while since I've posted. I've seen the agenda, and I can assure you Crosstalk will be lots of fun. In addition to hearing from lots of retailers, we'll also be doing a little bowling and racing on the track. I'll be around for the sessions, the ORUG meetings, and our Customer Advisory Board so please be sure to say hello. I also just completed a white paper based on a previous blog posting which in turn was based on learnings from reading What Would Google Do? For each of Jarvis' ten rules, I discuss the concept in the context of retail and provide real-world examples. No mention of products or sales pitches at all. You can download the paper here. It will put you in the right frame of mind for hearing Jeff Jarvis speak at Crosstalk. For those that can't make it, I'll post some highlights afterwards.

    Read the article

  • Form, function and complexity in rule processing

    - by Charles Young
    Tim Bass posted on ‘Orwellian Event Processing’. I was involved in a heated exchange in the comments, and he has more recently published a post entitled ‘Disadvantages of Rule-Based Systems (Part 1)’. Whatever the rights and wrongs of our exchange, it clearly failed to generate any agreement or understanding of our different positions. I don't particularly want to promote further argument of that kind, but I do want to take the opportunity of offering a different perspective on rule-processing and an explanation of my comments. For me, the ‘red rag’ lay in Tim’s claim that “...rules alone are highly inefficient for most classes of (not simple) problems” and a later paragraph that appears to equate the simplicity of form (‘IF-THEN-ELSE’) with simplicity of function.   It is not the first time Tim has expressed these views and not the first time I have responded to his assertions.   Indeed, Tim has a long history of commenting on the subject of complex event processing (CEP) and, less often, rule processing in ‘robust’ terms, often asserting that very many other people’s opinions on this subject are mistaken.   In turn, I am of the opinion that, certainly in terms of rule processing, which is an area in which I have a specific interest and knowledge, he is often mistaken. There is no simple answer to the fundamental question ‘what is a rule?’ We use the word in a very fluid fashion in English. Likewise, the term ‘rule processing’, as used widely in IT, is equally difficult to define simplistically. The best way to envisage the term is as a ‘centre of gravity’ within a wider domain. That domain contains many other ‘centres of gravity’, including CEP, statistical analytics, neural networks, natural language processing and so much more. Whole communities tend to gravitate towards and build themselves around some of these centres. The term 'rule processing' is associated with many different technology types, various software products, different architectural patterns, the functional capability of many applications and services, etc. There is considerable variation amongst these different technologies, techniques and products. Very broadly, a common theme is their ability to manage certain types of processing and problem solving through declarative, or semi-declarative, statements of propositional logic bound to action-based consequences. It is generally important to be able to decouple these statements from other parts of an overall system or architecture so that they can be managed and deployed independently.  As a centre of gravity, ‘rule processing’ is no island. It exists in the context of a domain of discourse that is, itself, highly interconnected and continuous.   Rule processing does not, for example, exist in splendid isolation to natural language processing.   On the contrary, an on-going theme of rule processing is to find better ways to express rules in natural language and map these to executable forms.   Rule processing does not exist in splendid isolation to CEP.   On the contrary, an event processing agent can reasonably be considered as a rule engine (a theme in ‘Power of Events’ by David Luckham).   Rule processing does not live in splendid isolation to statistical approaches such as Bayesian analytics. On the contrary, rule processing and statistical analytics are highly synergistic.   Rule processing does not even live in splendid isolation to neural networks. For example, significant research has centred on finding ways to translate trained nets into explicit rule sets in order to support forms of validation and facilitate insight into the knowledge stored in those nets. What about simplicity of form?   Many rule processing technologies do indeed use a very simple form (‘If...Then’, ‘When...Do’, etc.)   However, it is a fundamental mistake to equate simplicity of form with simplicity of function.   It is absolutely mistaken to suggest that simplicity of form is a barrier to the efficient handling of complexity.   There are countless real-world examples which serve to disprove that notion.   Indeed, simplicity of form is often the key to handling complexity. Does rule processing offer a ‘one size fits all’. No, of course not.   No serious commentator suggests it does.   Does the design and management of large knowledge bases, expressed as rules, become difficult?   Yes, it can do, but that is true of any large knowledge base, regardless of the form in which knowledge is expressed.   The measure of complexity is not a function of rule set size or rule form.  It tends to be correlated more strongly with the size of the ‘problem space’ (‘search space’) which is something quite different.   Analysis of the problem space and the algorithms we use to search through that space are, of course, the very things we use to derive objective measures of the complexity of a given problem. This is basic computer science and common practice. Sailing a Dreadnaught through the sea of information technology and lobbing shells at some of the islands we encounter along the way does no one any good.   Building bridges and causeways between islands so that the inhabitants can collaborate in open discourse offers hope of real progress.

    Read the article

  • Non-Dom Element Event Binding with jQuery

    Yesterday I had a short discussion with Dave Reed on Twitter regarding setting up fake events on objects that are hookable. jQuery makes it real easy to bind events on DOM elements and with a little bit of extra work (that I didnt know about) you can also set up binding to non-DOM element event bindings. Assume for a second that you have a simple JavaScript object like this: var item = { sku: "wwhelp" , foo: function() { alert('orginal foo function'); } }; and...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Ask How-To Geek: How Can I Monitor My Bandwidth Usage?

    - by Jason Fitzpatrick
    If you’re lucky you enjoy wide open internet access with out restriction (or restrictions so high you would have to work all month to meet them). If you’re not so lucky, you’ve got an ISP with heavy caps. Today we help out a reader working under such a cap. Latest Features How-To Geek ETC Internet Explorer 9 RC Now Available: Here’s the Most Interesting New Stuff Here’s a Super Simple Trick to Defeating Fake Anti-Virus Malware How to Change the Default Application for Android Tasks Stop Believing TV’s Lies: The Real Truth About "Enhancing" Images The How-To Geek Valentine’s Day Gift Guide Inspire Geek Love with These Hilarious Geek Valentines Can the Birds and Pigs Really Be Friends in the End? [Angry Birds Video] Add the 2D Version of the New Unity Interface to Ubuntu 10.10 and 11.04 MightyMintyBoost Is a 3-in-1 Gadget Charger Watson Ties Against Human Jeopardy Opponents Peaceful Tropical Cavern Wallpaper SnapBird Supercharges Your Twitter Searches

    Read the article

  • WebLogic Server Performance and Tuning: Part I - Tuning JVM

    - by Gokhan Gungor
    Each WebLogic Server instance runs in its own dedicated Java Virtual Machine (JVM) which is their runtime environment. Every Admin Server in any domain executes within a JVM. The same also applies for Managed Servers. WebLogic Server can be used for a wide variety of applications and services which uses the same runtime environment and resources. Oracle WebLogic ships with 2 different JVM, HotSpot and JRocket but you can choose which JVM you want to use. JVM is designed to optimize itself however it also provides some startup options to make small changes. There are default values for its memory and garbage collection. In real world, you will not want to stick with the default values provided by the JVM rather want to customize these values based on your applications which can produce large gains in performance by making small changes with the JVM parameters. We can tell the garbage collector how to delete garbage and we can also tell JVM how much space to allocate for each generation (of java Objects) or for heap. Remember during the garbage collection no other process is executed within the JVM or runtime, which is called STOP THE WORLD which can affect the overall throughput. Each JVM has its own memory segment called Heap Memory which is the storage for java Objects. These objects can be grouped based on their age like young generation (recently created objects) or old generation (surviving objects that have lived to some extent), etc. A java object is considered garbage when it can no longer be reached from anywhere in the running program. Each generation has its own memory segment within the heap. When this segment gets full, garbage collector deletes all the objects that are marked as garbage to create space. When the old generation space gets full, the JVM performs a major collection to remove the unused objects and reclaim their space. A major garbage collect takes a significant amount of time and can affect system performance. When we create a managed server either on the same machine or on remote machine it gets its initial startup parameters from $DOMAIN_HOME/bin/setDomainEnv.sh/cmd file. By default two parameters are set:     Xms: The initial heapsize     Xmx: The max heapsize Try to set equal initial and max heapsize. The startup time can be a little longer but for long running applications it will provide a better performance. When we set -Xms512m -Xmx1024m, the physical heap size will be 512m. This means that there are pages of memory (in the state of the 512m) that the JVM does not explicitly control. It will be controlled by OS which could be reserve for the other tasks. In this case, it is an advantage if the JVM claims the entire memory at once and try not to spend time to extend when more memory is needed. Also you can use -XX:MaxPermSize (Maximum size of the permanent generation) option for Sun JVM. You should adjust the size accordingly if your application dynamically load and unload a lot of classes in order to optimize the performance. You can set the JVM options/heap size from the following places:     Through the Admin console, in the Server start tab     In the startManagedWeblogic script for the managed servers     $DOMAIN_HOME/bin/startManagedWebLogic.sh/cmd     JAVA_OPTIONS="-Xms1024m -Xmx1024m" ${JAVA_OPTIONS}     In the setDomainEnv script for the managed servers and admin server (domain wide)     USER_MEM_ARGS="-Xms1024m -Xmx1024m" When there is free memory available in the heap but it is too fragmented and not contiguously located to store the object or when there is actually insufficient memory we can get java.lang.OutOfMemoryError. We should create Thread Dump and analyze if that is possible in case of such error. The second option we can use to produce higher throughput is to garbage collection. We can roughly divide GC algorithms into 2 categories: parallel and concurrent. Parallel GC stops the execution of all the application and performs the full GC, this generally provides better throughput but also high latency using all the CPU resources during GC. Concurrent GC on the other hand, produces low latency but also low throughput since it performs GC while application executes. The JRockit JVM provides some useful command-line parameters that to control of its GC scheme like -XgcPrio command-line parameter which takes the following options; XgcPrio:pausetime (To minimize latency, parallel GC) XgcPrio:throughput (To minimize throughput, concurrent GC ) XgcPrio:deterministic (To guarantee maximum pause time, for real time systems) Sun JVM has similar parameters (like  -XX:UseParallelGC or -XX:+UseConcMarkSweepGC) to control its GC scheme. We can add -verbosegc -XX:+PrintGCDetails to monitor indications of a problem with garbage collection. Try configuring JVM’s of all managed servers to execute in -server mode to ensure that it is optimized for a server-side production environment.

    Read the article

  • The Breakpoint with Paul Irish and Addy Osmani—Episode 2

    The Breakpoint with Paul Irish and Addy Osmani—Episode 2 Ask and vote for questions at: goo.gl Addy Osmani and the (real) Paul Irish return for the second live episode of the Breakpoint - a new show focusing on developer tooling and workflow. This week they'll be showing us brand new SASS, feature inspection and console features in the Chrome Developer Tools. If you want your to stay on the bleeding edge of tooling, you won't want to miss it. From: GoogleDevelopers Views: 0 0 ratings Time: 00:00 More in Science & Technology

    Read the article

  • O&rsquo;Reilly Half-price Deal to 05:00 PT 14/August/2014 - Malware Forensics Field Guide for Windows Systems

    - by TATWORTH
    Originally posted on: http://geekswithblogs.net/TATWORTH/archive/2014/08/09/orsquoreilly-half-price-deal-to-0500-pt-14august2014---malware-forensics.aspxUntil 05:00 PT 14/August/2014, at http://shop.oreilly.com/product/9781597494724.do?code=WKFRNS, O’Reilly are offering half-price on the E-book Malware Forensics Field Guide for Windows Systems. “Dissecting the dark side of the Internet with its infectious worms, botnets, rootkits, and Trojan horse programs (known as malware) is a treacherous condition for any forensic investigator or analyst. Written by information security experts with real-world investigative experience, Malware Forensics Field Guide for Windows Systems is a "tool" with checklists for specific tasks, case studies of difficult situations, and expert analyst tips.”

    Read the article

  • SQL Server - MVP 2010

    - by JustinL
    I was very happy to receive an email last week to confirm I would receive the MVP Award for SQL Server for 2010 - very exciting news ! I missed the first FedEx delivery, however this weekend they were able to successfully deliver the package from Microsoft and it began to feel very real as I opened the box to find the MVP glass-ware! Since leaving Microsoft, the past couple of years have been incredibly challenging, exciting and satisfying.  The MVP Award is really special, the SQL community has a fantastic, international base with many successful events, leaders and contributors providing an impressive network both online and in-person. I'm really excited about the year ahead - starting this week with SQL Bits in London, followed by PASS EMEA in Germany next week and at the London PASS user group meeting on Monday 26th April. Regards,   Justin Langford - Coeo Ltd

    Read the article

  • Ask How-To Geek: Speeding Up the Start Menu Search, Halting Auto-Rotating Android Screens, and Dropbox-powered Torrenting

    - by Jason Fitzpatrick
    This week we take a look at tweaking the Window’s start menu search for fast and focused searching, locking down a hyperactive Android screen, and fueling your torrenting habit through Dropbox. Once a week we dip into our reader mailbag to help readers solve their problems, sharing the useful solutions with you in the process. Read on to see our fixes for this week’s reader dilemmas. Latest Features How-To Geek ETC Inspire Geek Love with These Hilarious Geek Valentines How to Integrate Dropbox with Pages, Keynote, and Numbers on iPad RGB? CMYK? Alpha? What Are Image Channels and What Do They Mean? How to Recover that Photo, Picture or File You Deleted Accidentally How To Colorize Black and White Vintage Photographs in Photoshop How To Get SSH Command-Line Access to Windows 7 Using Cygwin Amazon Finally Adds Real Page Numbers to the Kindle Now You Can Print Google Docs and Gmail through Google Cloud Print AppBrain Enables Direct-to-Phone Installation Again Build a DIY Clapper to Hone Your Electronics Chops How to Kid Proof Your Computer’s Power and Reset Buttons Microsoft’s Windows Media Player Extension Adds H.264 Support Back to Google Chrome

    Read the article

  • Facebook and Twitter Shoes [Geek Fun]

    - by Gopinath
    For all the Facebook and Twitter enthusiasts, here are cool designs of Facebook and Twitter Shoes.   There are not real shoes and you can’t buy them anywhere. They are just dream visuals created by Mckay and he says in a blog post Facebook as a brand is increasingly on the rise and I thought it would be interesting to see what it would look like if Adidas also released a limited edition Facebook Superstar, so I worked on my own design of the shoe and this is what I came up with Would not it be cool if the social giants bring these shoe designs to reality? This article titled,Facebook and Twitter Shoes [Geek Fun], was originally published at Tech Dreams. Grab our rss feed or fan us on Facebook to get updates from us.

    Read the article

  • How to find and fix performance problems in ORM powered applications

    - by FransBouma
    Once in a while we get requests about how to fix performance problems with our framework. As it comes down to following the same steps and looking into the same things every single time, I decided to write a blogpost about it instead, so more people can learn from this and solve performance problems in their O/R mapper powered applications. In some parts it's focused on LLBLGen Pro but it's also usable for other O/R mapping frameworks, as the vast majority of performance problems in O/R mapper powered applications are not specific for a certain O/R mapper framework. Too often, the developer looks at the wrong part of the application, trying to fix what isn't a problem in that part, and getting frustrated that 'things are so slow with <insert your favorite framework X here>'. I'm in the O/R mapper business for a long time now (almost 10 years, full time) and as it's a small world, we O/R mapper developers know almost all tricks to pull off by now: we all know what to do to make task ABC faster and what compromises (because there are almost always compromises) to deal with if we decide to make ABC faster that way. Some O/R mapper frameworks are faster in X, others in Y, but you can be sure the difference is mainly a result of a compromise some developers are willing to deal with and others aren't. That's why the O/R mapper frameworks on the market today are different in many ways, even though they all fetch and save entities from and to a database. I'm not suggesting there's no room for improvement in today's O/R mapper frameworks, there always is, but it's not a matter of 'the slowness of the application is caused by the O/R mapper' anymore. Perhaps query generation can be optimized a bit here, row materialization can be optimized a bit there, but it's mainly coming down to milliseconds. Still worth it if you're a framework developer, but it's not much compared to the time spend inside databases and in user code: if a complete fetch takes 40ms or 50ms (from call to entity object collection), it won't make a difference for your application as that 10ms difference won't be noticed. That's why it's very important to find the real locations of the problems so developers can fix them properly and don't get frustrated because their quest to get a fast, performing application failed. Performance tuning basics and rules Finding and fixing performance problems in any application is a strict procedure with four prescribed steps: isolate, analyze, interpret and fix, in that order. It's key that you don't skip a step nor make assumptions: these steps help you find the reason of a problem which seems to be there, and how to fix it or leave it as-is. Skipping a step, or when you assume things will be bad/slow without doing analysis will lead to the path of premature optimization and won't actually solve your problems, only create new ones. The most important rule of finding and fixing performance problems in software is that you have to understand what 'performance problem' actually means. Most developers will say "when a piece of software / code is slow, you have a performance problem". But is that actually the case? If I write a Linq query which will aggregate, group and sort 5 million rows from several tables to produce a resultset of 10 rows, it might take more than a couple of milliseconds before that resultset is ready to be consumed by other logic. If I solely look at the Linq query, the code consuming the resultset of the 10 rows and then look at the time it takes to complete the whole procedure, it will appear to me to be slow: all that time taken to produce and consume 10 rows? But if you look closer, if you analyze and interpret the situation, you'll see it does a tremendous amount of work, and in that light it might even be extremely fast. With every performance problem you encounter, always do realize that what you're trying to solve is perhaps not a technical problem at all, but a perception problem. The second most important rule you have to understand is based on the old saying "Penny wise, Pound Foolish": the part which takes e.g. 5% of the total time T for a given task isn't worth optimizing if you have another part which takes a much larger part of the total time T for that same given task. Optimizing parts which are relatively insignificant for the total time taken is not going to bring you better results overall, even if you totally optimize that part away. This is the core reason why analysis of the complete set of application parts which participate in a given task is key to being successful in solving performance problems: No analysis -> no problem -> no solution. One warning up front: hunting for performance will always include making compromises. Fast software can be made maintainable, but if you want to squeeze as much performance out of your software, you will inevitably be faced with the dilemma of compromising one or more from the group {readability, maintainability, features} for the extra performance you think you'll gain. It's then up to you to decide whether it's worth it. In almost all cases it's not. The reason for this is simple: the vast majority of performance problems can be solved by implementing the proper algorithms, the ones with proven Big O-characteristics so you know the performance you'll get plus you know the algorithm will work. The time taken by the algorithm implementing code is inevitable: you already implemented the best algorithm. You might find some optimizations on the technical level but in general these are minor. Let's look at the four steps to see how they guide us through the quest to find and fix performance problems. Isolate The first thing you need to do is to isolate the areas in your application which are assumed to be slow. For example, if your application is a web application and a given page is taking several seconds or even minutes to load, it's a good candidate to check out. It's important to start with the isolate step because it allows you to focus on a single code path per area with a clear begin and end and ignore the rest. The rest of the steps are taken per identified problematic area. Keep in mind that isolation focuses on tasks in an application, not code snippets. A task is something that's started in your application by either another task or the user, or another program, and has a beginning and an end. You can see a task as a piece of functionality offered by your application.  Analyze Once you've determined the problem areas, you have to perform analysis on the code paths of each area, to see where the performance problems occur and which areas are not the problem. This is a multi-layered effort: an application which uses an O/R mapper typically consists of multiple parts: there's likely some kind of interface (web, webservice, windows etc.), a part which controls the interface and business logic, the O/R mapper part and the RDBMS, all connected with either a network or inter-process connections provided by the OS or other means. Each of these parts, including the connectivity plumbing, eat up a part of the total time it takes to complete a task, e.g. load a webpage with all orders of a given customer X. To understand which parts participate in the task / area we're investigating and how much they contribute to the total time taken to complete the task, analysis of each participating task is essential. Start with the code you wrote which starts the task, analyze the code and track the path it follows through your application. What does the code do along the way, verify whether it's correct or not. Analyze whether you have implemented the right algorithms in your code for this particular area. Remember we're looking at one area at a time, which means we're ignoring all other code paths, just the code path of the current problematic area, from begin to end and back. Don't dig in and start optimizing at the code level just yet. We're just analyzing. If your analysis reveals big architectural stupidity, it's perhaps a good idea to rethink the architecture at this point. For the rest, we're analyzing which means we collect data about what could be wrong, for each participating part of the complete application. Reviewing the code you wrote is a good tool to get deeper understanding of what is going on for a given task but ultimately it lacks precision and overview what really happens: humans aren't good code interpreters, computers are. We therefore need to utilize tools to get deeper understanding about which parts contribute how much time to the total task, triggered by which other parts and for example how many times are they called. There are two different kind of tools which are necessary: .NET profilers and O/R mapper / RDBMS profilers. .NET profiling .NET profilers (e.g. dotTrace by JetBrains or Ants by Red Gate software) show exactly which pieces of code are called, how many times they're called, and the time it took to run that piece of code, at the method level and sometimes even at the line level. The .NET profilers are essential tools for understanding whether the time taken to complete a given task / area in your application is consumed by .NET code, where exactly in your code, the path to that code, how many times that code was called by other code and thus reveals where hotspots are located: the areas where a solution can be found. Importantly, they also reveal which areas can be left alone: remember our penny wise pound foolish saying: if a profiler reveals that a group of methods are fast, or don't contribute much to the total time taken for a given task, ignore them. Even if the code in them is perhaps complex and looks like a candidate for optimization: you can work all day on that, it won't matter.  As we're focusing on a single area of the application, it's best to start profiling right before you actually activate the task/area. Most .NET profilers support this by starting the application without starting the profiling procedure just yet. You navigate to the particular part which is slow, start profiling in the profiler, in your application you perform the actions which are considered slow, and afterwards you get a snapshot in the profiler. The snapshot contains the data collected by the profiler during the slow action, so most data is produced by code in the area to investigate. This is important, because it allows you to stay focused on a single area. O/R mapper and RDBMS profiling .NET profilers give you a good insight in the .NET side of things, but not in the RDBMS side of the application. As this article is about O/R mapper powered applications, we're also looking at databases, and the software making it possible to consume the database in your application: the O/R mapper. To understand which parts of the O/R mapper and database participate how much to the total time taken for task T, we need different tools. There are two kind of tools focusing on O/R mappers and database performance profiling: O/R mapper profilers and RDBMS profilers. For O/R mapper profilers, you can look at LLBLGen Prof by hibernating rhinos or the Linq to Sql/LLBLGen Pro profiler by Huagati. Hibernating rhinos also have profilers for other O/R mappers like NHibernate (NHProf) and Entity Framework (EFProf) and work the same as LLBLGen Prof. For RDBMS profilers, you have to look whether the RDBMS vendor has a profiler. For example for SQL Server, the profiler is shipped with SQL Server, for Oracle it's build into the RDBMS, however there are also 3rd party tools. Which tool you're using isn't really important, what's important is that you get insight in which queries are executed during the task / area we're currently focused on and how long they took. Here, the O/R mapper profilers have an advantage as they collect the time it took to execute the query from the application's perspective so they also collect the time it took to transport data across the network. This is important because a query which returns a massive resultset or a resultset with large blob/clob/ntext/image fields takes more time to get transported across the network than a small resultset and a database profiler doesn't take this into account most of the time. Another tool to use in this case, which is more low level and not all O/R mappers support it (though LLBLGen Pro and NHibernate as well do) is tracing: most O/R mappers offer some form of tracing or logging system which you can use to collect the SQL generated and executed and often also other activity behind the scenes. While tracing can produce a tremendous amount of data in some cases, it also gives insight in what's going on. Interpret After we've completed the analysis step it's time to look at the data we've collected. We've done code reviews to see whether we've done anything stupid and which parts actually take place and if the proper algorithms have been implemented. We've done .NET profiling to see which parts are choke points and how much time they contribute to the total time taken to complete the task we're investigating. We've performed O/R mapper profiling and RDBMS profiling to see which queries were executed during the task, how many queries were generated and executed and how long they took to complete, including network transportation. All this data reveals two things: which parts are big contributors to the total time taken and which parts are irrelevant. Both aspects are very important. The parts which are irrelevant (i.e. don't contribute significantly to the total time taken) can be ignored from now on, we won't look at them. The parts which contribute a lot to the total time taken are important to look at. We now have to first look at the .NET profiler results, to see whether the time taken is consumed in our own code, in .NET framework code, in the O/R mapper itself or somewhere else. For example if most of the time is consumed by DbCommand.ExecuteReader, the time it took to complete the task is depending on the time the data is fetched from the database. If there was just 1 query executed, according to tracing or O/R mapper profilers / RDBMS profilers, check whether that query is optimal, uses indexes or has to deal with a lot of data. Interpret means that you follow the path from begin to end through the data collected and determine where, along the path, the most time is contributed. It also means that you have to check whether this was expected or is totally unexpected. My previous example of the 10 row resultset of a query which groups millions of rows will likely reveal that a long time is spend inside the database and almost no time is spend in the .NET code, meaning the RDBMS part contributes the most to the total time taken, the rest is compared to that time, irrelevant. Considering the vastness of the source data set, it's expected this will take some time. However, does it need tweaking? Perhaps all possible tweaks are already in place. In the interpret step you then have to decide that further action in this area is necessary or not, based on what the analysis results show: if the analysis results were unexpected and in the area where the most time is contributed to the total time taken is room for improvement, action should be taken. If not, you can only accept the situation and move on. In all cases, document your decision together with the analysis you've done. If you decide that the perceived performance problem is actually expected due to the nature of the task performed, it's essential that in the future when someone else looks at the application and starts asking questions you can answer them properly and new analysis is only necessary if situations changed. Fix After interpreting the analysis results you've concluded that some areas need adjustment. This is the fix step: you're actively correcting the performance problem with proper action targeted at the real cause. In many cases related to O/R mapper powered applications it means you'll use different features of the O/R mapper to achieve the same goal, or apply optimizations at the RDBMS level. It could also mean you apply caching inside your application (compromise memory consumption over performance) to avoid unnecessary re-querying data and re-consuming the results. After applying a change, it's key you re-do the analysis and interpretation steps: compare the results and expectations with what you had before, to see whether your actions had any effect or whether it moved the problem to a different part of the application. Don't fall into the trap to do partly analysis: do the full analysis again: .NET profiling and O/R mapper / RDBMS profiling. It might very well be that the changes you've made make one part faster but another part significantly slower, in such a way that the overall problem hasn't changed at all. Performance tuning is dealing with compromises and making choices: to use one feature over the other, to accept a higher memory footprint, to go away from the strict-OO path and execute queries directly onto the RDBMS, these are choices and compromises which will cross your path if you want to fix performance problems with respect to O/R mappers or data-access and databases in general. In most cases it's not a big issue: alternatives are often good choices too and the compromises aren't that hard to deal with. What is important is that you document why you made a choice, a compromise: which analysis data, which interpretation led you to the choice made. This is key for good maintainability in the years to come. Most common performance problems with O/R mappers Below is an incomplete list of common performance problems related to data-access / O/R mappers / RDBMS code. It will help you with fixing the hotspots you found in the interpretation step. SELECT N+1: (Lazy-loading specific). Lazy loading triggered performance bottlenecks. Consider a list of Orders bound to a grid. You have a Field mapped onto a related field in Order, Customer.CompanyName. Showing this column in the grid will make the grid fetch (indirectly) for each row the Customer row. This means you'll get for the single list not 1 query (for the orders) but 1+(the number of orders shown) queries. To solve this: use eager loading using a prefetch path to fetch the customers with the orders. SELECT N+1 is easy to spot with an O/R mapper profiler or RDBMS profiler: if you see a lot of identical queries executed at once, you have this problem. Prefetch paths using many path nodes or sorting, or limiting. Eager loading problem. Prefetch paths can help with performance, but as 1 query is fetched per node, it can be the number of data fetched in a child node is bigger than you think. Also consider that data in every node is merged on the client within the parent. This is fast, but it also can take some time if you fetch massive amounts of entities. If you keep fetches small, you can use tuning parameters like the ParameterizedPrefetchPathThreshold setting to get more optimal queries. Deep inheritance hierarchies of type Target Per Entity/Type. If you use inheritance of type Target per Entity / Type (each type in the inheritance hierarchy is mapped onto its own table/view), fetches will join subtype- and supertype tables in many cases, which can lead to a lot of performance problems if the hierarchy has many types. With this problem, keep inheritance to a minimum if possible, or switch to a hierarchy of type Target Per Hierarchy, which means all entities in the inheritance hierarchy are mapped onto the same table/view. Of course this has its own set of drawbacks, but it's a compromise you might want to take. Fetching massive amounts of data by fetching large lists of entities. LLBLGen Pro supports paging (and limiting the # of rows returned), which is often key to process through large sets of data. Use paging on the RDBMS if possible (so a query is executed which returns only the rows in the page requested). When using paging in a web application, be sure that you switch server-side paging on on the datasourcecontrol used. In this case, paging on the grid alone is not enough: this can lead to fetching a lot of data which is then loaded into the grid and paged there. Keep note that analyzing queries for paging could lead to the false assumption that paging doesn't occur, e.g. when the query contains a field of type ntext/image/clob/blob and DISTINCT can't be applied while it should have (e.g. due to a join): the datareader will do DISTINCT filtering on the client. this is a little slower but it does perform paging functionality on the data-reader so it won't fetch all rows even if the query suggests it does. Fetch massive amounts of data because blob/clob/ntext/image fields aren't excluded. LLBLGen Pro supports field exclusion for queries. You can exclude fields (also in prefetch paths) per query to avoid fetching all fields of an entity, e.g. when you don't need them for the logic consuming the resultset. Excluding fields can greatly reduce the amount of time spend on data-transport across the network. Use this optimization if you see that there's a big difference between query execution time on the RDBMS and the time reported by the .NET profiler for the ExecuteReader method call. Doing client-side aggregates/scalar calculations by consuming a lot of data. If possible, try to formulate a scalar query or group by query using the projection system or GetScalar functionality of LLBLGen Pro to do data consumption on the RDBMS server. It's far more efficient to process data on the RDBMS server than to first load it all in memory, then traverse the data in-memory to calculate a value. Using .ToList() constructs inside linq queries. It might be you use .ToList() somewhere in a Linq query which makes the query be run partially in-memory. Example: var q = from c in metaData.Customers.ToList() where c.Country=="Norway" select c; This will actually fetch all customers in-memory and do an in-memory filtering, as the linq query is defined on an IEnumerable<T>, and not on the IQueryable<T>. Linq is nice, but it can often be a bit unclear where some parts of a Linq query might run. Fetching all entities to delete into memory first. To delete a set of entities it's rather inefficient to first fetch them all into memory and then delete them one by one. It's more efficient to execute a DELETE FROM ... WHERE query on the database directly to delete the entities in one go. LLBLGen Pro supports this feature, and so do some other O/R mappers. It's not always possible to do this operation in the context of an O/R mapper however: if an O/R mapper relies on a cache, these kind of operations are likely not supported because they make it impossible to track whether an entity is actually removed from the DB and thus can be removed from the cache. Fetching all entities to update with an expression into memory first. Similar to the previous point: it is more efficient to update a set of entities directly with a single UPDATE query using an expression instead of fetching the entities into memory first and then updating the entities in a loop, and afterwards saving them. It might however be a compromise you don't want to take as it is working around the idea of having an object graph in memory which is manipulated and instead makes the code fully aware there's a RDBMS somewhere. Conclusion Performance tuning is almost always about compromises and making choices. It's also about knowing where to look and how the systems in play behave and should behave. The four steps I provided should help you stay focused on the real problem and lead you towards the solution. Knowing how to optimally use the systems participating in your own code (.NET framework, O/R mapper, RDBMS, network/services) is key for success as well as knowing what's going on inside the application you built. I hope you'll find this guide useful in tracking down performance problems and dealing with them in a useful way.  

    Read the article

  • Practical Performance Monitoring and Tuning Event

    - by Andrew Kelly
      For any of you who may be interested or know of someone in the market for a performance Monitoring and Tuning class I have just the ticket for you. It’s a 3 day event that will be held in Atlanta Ga. on January 25th to the 27th 2011. For those of you that know me or have been to my sessions you realize I like to provide more than just classroom theory and like to teach real world and above all practical methodology when it comes to performance in SQL Server. This class covers all the essentials...(read more)

    Read the article

  • 3D Huge mesh rendering

    - by Keyhan Asghari
    I am writing a program, that as input, I have a huge 3d mesh (with mostly structured and cubic shaped elements), and I want to realtime render it, but not as real-time as a game. But speed of rendering is somehow important. The most important point is, I don't need any special lighting nor any shadows. Also, the objects to render are static, and they do not move. I've read about ray tracing methods, but I don't know if there is any good libraries for this purpose, or I have to implement everything by myself. Thanks a lot.

    Read the article

< Previous Page | 101 102 103 104 105 106 107 108 109 110 111 112  | Next Page >