Search Results

Search found 5861 results on 235 pages for 'rich pixel vector'.

Page 105/235 | < Previous Page | 101 102 103 104 105 106 107 108 109 110 111 112  | Next Page >

  • Le 25 mars 2010 journée Lotusphere à Bois-Colombes, venez explorer avec des spécialistes les archite

    Le 25 mars 2010 journée Lotusphere à Bois-Colombes Réservez votre journée du 25 mars pour le prochain Lotusphere à Bois-Colombes. Profitez de ce grand rendez-vous annuel pour découvrir les annonces dévoilées lors de Lotusphere Orlando et explorez avec nos spécialistes les architectures de nos solutions technologiques. Lors de cette journée, partagez les témoignages de nos clients, rencontrez nos partenaires, participez à des ateliers et faites un point complet avec nos experts sur: - Les nouvelles architectures techniques, - les possibilités offertes par XPages, - les possibilités web 2.0 des solutions Lotus, - la mise en oeuvre des Rich Internet Application (RIA) dans l'enviro...

    Read the article

  • ASP.NET MVC in Action: The model in depth

    In this chapter, we’ll explore a model for a system that helps to manage a small conference, like a Code Camp. The model enables the application to provide an interesting service. Without the model, the application provides no value. We place great importance on creating a rich model with which our controllers can work. Presented By: NEC   Ads by Pheedo

    Read the article

  • SQLAuthority News Free Download Microsoft SQL Server 2008 R2 RTM Express with Management Tools S

    This blog post is in response to several inquiry about Free Download of SQL Server 2008 R2 RTM. Microsoft has announced SQL Server 2008 R2 as RTM (Release To Manufacture). Microsoft SQL Server 2008 R2 Express is a powerful and reliable data management system that delivers a rich set of features, data protection, and performance [...]...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Extending the ADF Controller exception handler

    - by frank.nimphius
    The Oracle ADF controller provides a declarative option for developers to define a view activity, method activity or router activity to handle exceptions in bounded or unbounded task flows. Exception handling however is for exceptions only and not handling all types of Throwable. Furthermore, exceptions that occur during the JSF RENDER RESPONSE phase are not looked at either as it is considered too late in the cycle. For developers to try themselves to handle unhandled exceptions in ADF Controller, it is possible to extend the default exception handling, while still leveraging the declarative configuration. To add your own exception handler: · Create a Java class that extends ExceptionHandler · Create a textfile with the name “oracle.adf.view.rich.context.Exceptionhandler” (without the quotes) and store it in .adf\META-INF\services (you need to create the “services” folder) · In the file, add the absolute name of your custom exception handler class (package name and class name without the “.class” extension) For any exception you don't handle in your custom exception handler, just re-throw it for the default handler to give it a try … import oracle.adf.view.rich.context.ExceptionHandler; public class MyCustomExceptionHandler extends ExceptionHandler { public MyCustomExceptionHandler() {      super(); } public void handleException(FacesContext facesContext,                              Throwable throwable, PhaseId phaseId)                              throws Throwable {    String error_message;    error_message = throwable.getMessage();    //check error message and handle it if you can    if( … ){          //handle exception        …    }    else{       //delegate to the default ADFc exception handler        throw throwable;}    } } Note however, that it is recommended to first try and handle exceptions with the ADF Controller default exception handling mechanism. In the past, I've seen attempts on OTN to handle regular application use cases with custom exception handlers for where there was no need to override the exception handler. So don't go for this solution to quickly and always think of alternative solutions. Sometimes a try-catch-final block does it better than sophisticated web exception handling.

    Read the article

  • Google I/O 2010 - Google Buzz, location, and social gaming

    Google I/O 2010 - Google Buzz, location, and social gaming Google I/O 2010 - Surf the stream: Google Buzz, location, and social gaming Social Web 201 Bob Aman, Timothy Jordan Google Buzz has a feature-rich API that allows you to do all kinds of interesting things with conversations and location. In this session we'll build a Buzz-tastic mobile game using App Engine, HTML5, and the Buzz API for social awesomeness. For all I/O 2010 sessions, please go to code.google.com From: GoogleDevelopers Views: 2 0 ratings Time: 31:18 More in Science & Technology

    Read the article

  • Oracle 'In Touch' PartnerCast - July 1, 2014

    - by Cinzia Mascanzoni
    27 May 2014 'In Touch' Webcast for Oracle EMEA Partners Invitation Stay Connected Oracle Media Network   OPN on PartnerCast   Oracle 'In Touch' PartnerCast (July 1, 2014)Be prepared for a year of growth Register Now! Dear partner, We would like to invite you to join David Callaghan, Senior Vice President Oracle EMEA Alliances and Channels, and his studio guests for the next broadcast of the Oracle ‘In Touch’ PartnerCast on Tuesday 1st July 2014 from 10:30am UK / 11:30am CET. In this cast, David’s studio guests and his regional reporters will be looking at your priorities as EMEA partners and how best to grow with Oracle. We also look forward to the broadcast covering topics on the following: Highlights of FY14 Strategic themes for FY15 HCM, CRM and ERP Oracle on Oracle Exclusive for ‘In Touch’ David Callaghan questions Rich Geraffo, Senior Vice President, Global Alliances & Channels, on how the FY15 partner Global kick off relates to EMEA. Plus David provides your chance to hear from some of the newly appointed Worldwide A&C Leadership team as he discusses with Bruce Chumley VP Oracle Channel Distribution Sales & Troy Richardson VP Oracle Strategic Alliances; their core focus and strategy of growth and what they intend on bringing to the table in their new role. Register Now! With lots of studio guests joining David, why not get in touch on Twitter using the hashtag #OracleInTouch or by emailing [email protected] to get your questions featured in the cast! To find out more information and to watch previous episodes on-demand, please visit our webpage here. Best regards, Oracle EMEA Alliances & Channels Oracle 'In Touch' PartnerCast: be prepared for a year of growth July 01, 2014 10:30am UK / 11:30am CET Duration: 45 mins. Host David Callaghan Senior VP Oracle EMEA Alliances & Channels Studio Guests Alistair Hopkins VP Sales & Strategy, Technology Solutions, Oracle EMEA Alliances & Channels More to be announced shortly Features Contributors Rich Geraffo Senior Vice President, Oracle Worldwide Alliances & Channels Bruce Chumley Vice President Channel Distribution Sales, Oracle WW Alliances & Channels Steve Biondi VP Channel Distribution Sales, Oracle WW Alliances & Channels Regional Reporters Silvia Kaske VP Oracle A&C WCE North Will O'Brien VP Oracle A&C UK/IE Eric Fontaine VP Oracle A&C WCE South Janusz Naklicki VP Oracle A&C ECEMEA

    Read the article

  • SOA Management in 3 minutes - Video explainer

    - by J Swaroop
    Today’s CIOs and IT executives face challenges that take valuable time away from more strategic business objectives. They have to keep their systems running 24/7, manage increasingly complex applications, and more as part of their SOA environment. Watch this quick 3 minute video explainer to learn how Oracle EM Management Pack Plus for SOA is engineered to deliver value right out of the box with a fully centralized management console - with a rich set of service and system level dashboards, administrators can view service levels for key business processes and SOA infrastructure components from a central location. Watch the 3 minute video explainer

    Read the article

  • Case Management Patterns with Oracle Unified Business Process Management Suite

    - by Ajay Khanna
    Contributed by Heidi Buelow, Oracle Product Management Case Management was a hot topic all week at Oracle OpenWorld so I was excited to share our current features and upcoming plans at the session Thursday morning on Case Management Patterns with Oracle Unified Business Process Management Suite.  My colleague, Ravi Rangaswamy, the Case Management Development Manager, and I, Heidi Buelow, the Case Management Product Manager, discussed case management use case patterns with an interested audience.  We also talked about the current BPM Suite offering for Case Managment and showed a demo of our upcoming release where Case Management becomes a first class component in a BPM composite application. Case Management use case patterns cover a wide range of horizontal applications such as Accounts Payable, Dispute Resolution, Call Center, Employee OnBoarding, and many vertical applications in domains and industries such as Public Sector services, Insurance claims, and Healthcare.  Really, it is any use case where the resolution of a request may require a knowledge worker making decisions using experienced judgement in the current situation.  This allows for expidited care and customer satisfaction, both being highly valued for consumer loyalty, regulatory compliance, and efficient resolution. Today, BPM Suite provides the tools for creating Case Management applications using BPMN 2.0, Business Rules, and rich BAM and Case Analytics.  The Process Composer provides the agility to change rules and processes by the business users.  The case manager and case workers have the flexibilty they need.  With integrated content management and the concept of a BPM Process Spaces instance (case) space, the current release enables case management use case applications. In the next release, Case Management becomes a first class component. By this, we mean, Case is a separate component in the composite.  We are adding case attributes such as milestones, case events, case stakeholders, and more, providing a rich toolset for the use cases that require a flexible Case Management approach.  Activites become available according to the conditions that you specify and information can be protected by permissions indicated.  In BPM Studio, you design a Case and associate all of the attributes and activities that are needed, yet, at runtime you have the flexibility to add and change these as needed. We enjoyed sharing Case Management and it was well received by the audience.  The presentation is available online and we have viewlets of the demo that will be available at release time.

    Read the article

  • tile_static, tile_barrier, and tiled matrix multiplication with C++ AMP

    - by Daniel Moth
    We ended the previous post with a mechanical transformation of the C++ AMP matrix multiplication example to the tiled model and in the process introduced tiled_index and tiled_grid. This is part 2. tile_static memory You all know that in regular CPU code, static variables have the same value regardless of which thread accesses the static variable. This is in contrast with non-static local variables, where each thread has its own copy. Back to C++ AMP, the same rules apply and each thread has its own value for local variables in your lambda, whereas all threads see the same global memory, which is the data they have access to via the array and array_view. In addition, on an accelerator like the GPU, there is a programmable cache, a third kind of memory type if you'd like to think of it that way (some call it shared memory, others call it scratchpad memory). Variables stored in that memory share the same value for every thread in the same tile. So, when you use the tiled model, you can have variables where each thread in the same tile sees the same value for that variable, that threads from other tiles do not. The new storage class for local variables introduced for this purpose is called tile_static. You can only use tile_static in restrict(direct3d) functions, and only when explicitly using the tiled model. What this looks like in code should be no surprise, but here is a snippet to confirm your mental image, using a good old regular C array // each tile of threads has its own copy of locA, // shared among the threads of the tile tile_static float locA[16][16]; Note that tile_static variables are scoped and have the lifetime of the tile, and they cannot have constructors or destructors. tile_barrier In amp.h one of the types introduced is tile_barrier. You cannot construct this object yourself (although if you had one, you could use a copy constructor to create another one). So how do you get one of these? You get it, from a tiled_index object. Beyond the 4 properties returning index objects, tiled_index has another property, barrier, that returns a tile_barrier object. The tile_barrier class exposes a single member, the method wait. 15: // Given a tiled_index object named t_idx 16: t_idx.barrier.wait(); 17: // more code …in the code above, all threads in the tile will reach line 16 before a single one progresses to line 17. Note that all threads must be able to reach the barrier, i.e. if you had branchy code in such a way which meant that there is a chance that not all threads could reach line 16, then the code above would be illegal. Tiled Matrix Multiplication Example – part 2 So now that we added to our understanding the concepts of tile_static and tile_barrier, let me obfuscate rewrite the matrix multiplication code so that it takes advantage of tiling. Before you start reading this, I suggest you get a cup of your favorite non-alcoholic beverage to enjoy while you try to fully understand the code. 01: void MatrixMultiplyTiled(vector<float>& vC, const vector<float>& vA, const vector<float>& vB, int M, int N, int W) 02: { 03: static const int TS = 16; 04: array_view<const float,2> a(M, W, vA); 05: array_view<const float,2> b(W, N, vB); 06: array_view<writeonly<float>,2> c(M,N,vC); 07: parallel_for_each(c.grid.tile< TS, TS >(), 08: [=] (tiled_index< TS, TS> t_idx) restrict(direct3d) 09: { 10: int row = t_idx.local[0]; int col = t_idx.local[1]; 11: float sum = 0.0f; 12: for (int i = 0; i < W; i += TS) { 13: tile_static float locA[TS][TS], locB[TS][TS]; 14: locA[row][col] = a(t_idx.global[0], col + i); 15: locB[row][col] = b(row + i, t_idx.global[1]); 16: t_idx.barrier.wait(); 17: for (int k = 0; k < TS; k++) 18: sum += locA[row][k] * locB[k][col]; 19: t_idx.barrier.wait(); 20: } 21: c[t_idx.global] = sum; 22: }); 23: } Notice that all the code up to line 9 is the same as per the changes we made in part 1 of tiling introduction. If you squint, the body of the lambda itself preserves the original algorithm on lines 10, 11, and 17, 18, and 21. The difference being that those lines use new indexing and the tile_static arrays; the tile_static arrays are declared and initialized on the brand new lines 13-15. On those lines we copy from the global memory represented by the array_view objects (a and b), to the tile_static vanilla arrays (locA and locB) – we are copying enough to fit a tile. Because in the code that follows on line 18 we expect the data for this tile to be in the tile_static storage, we need to synchronize the threads within each tile with a barrier, which we do on line 16 (to avoid accessing uninitialized memory on line 18). We also need to synchronize the threads within a tile on line 19, again to avoid the race between lines 14, 15 (retrieving the next set of data for each tile and overwriting the previous set) and line 18 (not being done processing the previous set of data). Luckily, as part of the awesome C++ AMP debugger in Visual Studio there is an option that helps you find such races, but that is a story for another blog post another time. May I suggest reading the next section, and then coming back to re-read and walk through this code with pen and paper to really grok what is going on, if you haven't already? Cool. Why would I introduce this tiling complexity into my code? Funny you should ask that, I was just about to tell you. There is only one reason we tiled our extent, had to deal with finding a good tile size, ensure the number of threads we schedule are correctly divisible with the tile size, had to use a tiled_index instead of a normal index, and had to understand tile_barrier and to figure out where we need to use it, and double the size of our lambda in terms of lines of code: the reason is to be able to use tile_static memory. Why do we want to use tile_static memory? Because accessing tile_static memory is around 10 times faster than accessing the global memory on an accelerator like the GPU, e.g. in the code above, if you can get 150GB/second accessing data from the array_view a, you can get 1500GB/second accessing the tile_static array locA. And since by definition you are dealing with really large data sets, the savings really pay off. We have seen tiled implementations being twice as fast as their non-tiled counterparts. Now, some algorithms will not have performance benefits from tiling (and in fact may deteriorate), e.g. algorithms that require you to go only once to global memory will not benefit from tiling, since with tiling you already have to fetch the data once from global memory! Other algorithms may benefit, but you may decide that you are happy with your code being 150 times faster than the serial-version you had, and you do not need to invest to make it 250 times faster. Also algorithms with more than 3 dimensions, which C++ AMP supports in the non-tiled model, cannot be tiled. Also note that in future releases, we may invest in making the non-tiled model, which already uses tiling under the covers, go the extra step and use tile_static memory on your behalf, but it is obviously way to early to commit to anything like that, and we certainly don't do any of that today. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Interview de Sebastian Nyström, vice-président Application & Service Frameworks chez Nokia, de notre reporter aux Qt Dev Days

    Lundi 6 Décembre 2010 L'interview de Sebastian Nyström, vice-président Application & Service Frameworks, est maintenant disponible; Interview de Sebastian Nyström En comparaison avec l'interview de Rich Green, Sebastian réponds à des questions concernant le framework Qt faisant suite à Qt Roadmap. Il réponds entre autre à nos interrogations sur le SDK de Qt, Qt Mobility et Qt creator. Citation:

    Read the article

  • Java DB talks at JavaOne 2012

    - by kah
    It's soon time for JavaOne again in San Francisco, and Java DB is represented this year too. Dag Wanvik will give an introductory talk on Java DB on Tuesday, October 2 at 10:00: CON5141 - Java DB in JDK 7: A Free, Feature-Rich, Embeddable SQL Database Rick Hillegas and Noel Poore will discuss how to use Java DB on embedded devices in their talk on Thursday, October 4 at 14:00: CON6684 - Data Storage for Embedded Middleware Mark your calendars! :)

    Read the article

  • Open Clip Art Library 2.0 Release!

    <b>Worldlabel:</b> "The Open Clip Art Library grew from a project between Jon Phillips (of Fabricatorz) and Bryce Harrington, in early 2004. From humble beginnings, it has evolved into a massive collection of over 24,000 scalable vector images, all created by 1200+ artists from around the world."

    Read the article

  • ArchBeat Link-o-Rama for 2012-06-22

    - by Bob Rhubart
    Guide to integration architecture | Stephanie Mann "The landscape of integration architecture is shifting as service-oriented and cloud-based architecture take the fore," says Stephanie Mann. "To ensure success, enterprise architects and developers are turning to lighter-weight infrastructure to support more complex integration projects." FY13 Oracle PartnerNetwork Kickoff - Tues June 26, 2012 Join us for a one-hour live online event hosted by the Oracle PartnerNetwork team as we kickoff FY13. Other dates/times for EMEA/LAD/JAPAN/APAC. Click the link for details. Why should you choose Oracle WebLogic 12c instead of JBoss EAP 6? | Ricardo Ferreira Okay, you would expect an Oracle guy to make this argument. But Ferreira takes a very deep, very detailed technical dive into the issue. So hear the man out, will ya? Hibernate4 and Coherence | Rene van Wijk According to Oracle ACE Rene van Wijk, "there are two ways to integrate Hibernate and Coherence." In this post he illustrates one of them. Simple Made Easy | Rich Hickey Rich Hickey discusses simplicity, why it is important, how to achieve it in design and how to recognize its absence in the tools, language constructs and libraries in this presentation from QCon London 2012. Starting a cluster | Mark Nelson Fusion Middleware A-Team blogger Mark Nelson looks at Oracle SOA Suite, Oracle BPM, and Oracle Coherence, three products that are " commonly clustered, and which have somewhat different requirements." Why building SaaS well means giving up your servers | GigaOM The biggest benefit to PaaS, reports GigaOM's Derrick Harris, "might be a better product because the company is able to focus on building the app rather than managing servers." Personas - what, why & how | Mascha van Oosterhout "To be able to create a successful, user-friendly website or application," says Mascha van Oosterhout, "every decision you take, whether you are part of the marketing team, the design team or the development team, should be based on what you know about the user." Thought for the Day "Machines take me by surprise with great frequency." — Alan Turing(June 23, 1912 - June 7, 1954) Source: Brainy Quote

    Read the article

  • Low coupling and tight cohesion

    - by hidayat
    Of course it depends on the situation. But when a lower lever object or system communicate with an higher level system, should callbacks or events be preferred to keeping a pointer to higher level object? For example, we have a world class that has a member variable vector<monster> monsters. When the monster class is going to communicate with the world class, should I prefer using a callback function then or should I have a pointer to the world class inside the monster class?

    Read the article

  • SQL Server 2008 R2 Express Edition - a treat for small scale businesses

    - by ssqa.net
    SQL Server Express edition is a light-weight software within SQL Server arena, it is classed as database platform that makes it easy to develop data-driven applications that are rich in capability, offer enhanced storage security, and are fast to deploy. Also the SQL Server 2008 Express with Advanced Services is an edition of same flock that includes a new graphical management tool, features for reporting, and advanced text-based search capabilities. You can add the GUI capabilities for management...(read more)

    Read the article

  • 3D Ball Physics Theory: collision response on ground and against walls?

    - by David
    I'm really struggling to get a strong grasp on how I should be handling collision response in a game engine I'm building around a 3D ball physics concept. Think Monkey Ball as an example of the type of gameplay. I am currently using sphere-to-sphere broad phase, then AABB to OBB testing (the final test I am using right now is one that checks if one of the 8 OBB points crosses the planes of the object it is testing against). This seems to work pretty well, and I am getting back: Plane that object is colliding against (with a point on the plane, the plane's normal, and the exact point of intersection. I've tried what feels like dozens of different high-level strategies for handling these collisions, without any real success. I think my biggest problem is understanding how to handle collisions against walls in the x-y axes (left/right, front/back), which I want to have elasticity, and the ground (z-axis) where I want an elastic reaction if the ball drops down, but then for it to eventually normalize and be kept "on the ground" (not go into the ground, but also not continue bouncing). Without kluging something together, I'm positive there is a good way to handle this, my theories just aren't getting me all the way there. For physics modeling and movement, I am trying to use a Euler based setup with each object maintaining a position (and destination position prior to collision detection), a velocity (which is added onto the position to determine the destination position), and an acceleration (which I use to store any player input being put on the ball, as well as gravity in the z coord). Starting from when I detect a collision, what is a good way to approach the response to get the expected behavior in all cases? Thanks in advance to anyone taking the time to assist... I am grateful for any pointers, and happy to post any additional info or code if it is useful. UPDATE Based on Steve H's and eBusiness' responses below, I have adapted my collision response to what makes a lot more sense now. It was close to right before, but I didn't have all the right pieces together at the right time! I have one problem left to solve, and that is what is causing the floor collision to hit every frame. Here's the collision response code I have now for the ball, then I'll describe the last bit I'm still struggling to understand. // if we are moving in the direction of the plane (against the normal)... if (m_velocity.dot(intersection.plane.normal) <= 0.0f) { float dampeningForce = 1.8f; // eventually create this value based on mass and acceleration // Calculate the projection velocity PVRTVec3 actingVelocity = m_velocity.project(intersection.plane.normal); m_velocity -= actingVelocity * dampeningForce; } // Clamp z-velocity to zero if we are within a certain threshold // -- NOTE: this was an experimental idea I had to solve the "jitter" bug I'll describe below float diff = 0.2f - abs(m_velocity.z); if (diff > 0.0f && diff <= 0.2f) { m_velocity.z = 0.0f; } // Take this object to its new destination position based on... // -- our pre-collision position + vector to the collision point + our new velocity after collision * time // -- remaining after the collision to finish the movement m_destPosition = m_position + intersection.diff + (m_velocity * intersection.tRemaining * GAMESTATE->dt); The above snippet is run after a collision is detected on the ball (collider) with a collidee (floor in this case). With a dampening force of 1.8f, the ball's reflected "upward" velocity will eventually be overcome by gravity, so the ball will essentially be stuck on the floor. THIS is the problem I have now... the collision code is running every frame (since the ball's z-velocity is constantly pushing it a collision with the floor below it). The ball is not technically stuck, I can move it around still, but the movement is really goofy because the velocity and position keep getting affected adversely by the above snippet. I was experimenting with an idea to clamp the z-velocity to zero if it was "close to zero", but this didn't do what I think... probably because the very next frame the ball gets a new gravity acceleration applied to its velocity regardless (which I think is good, right?). Collisions with walls are as they used to be and work very well. It's just this last bit of "stickiness" to deal with. The camera is constantly jittering up and down by extremely small fractions too when the ball is "at rest". I'll keep playing with it... I like puzzles like this, especially when I think I'm close. Any final ideas on what I could be doing wrong here? UPDATE 2 Good news - I discovered I should be subtracting the intersection.diff from the m_position (position prior to collision). The intersection.diff is my calculation of the difference in the vector of position to destPosition from the intersection point to the position. In this case, adding it was causing my ball to always go "up" just a little bit, causing the jitter. By subtracting it, and moving that clamper for the velocity.z when close to zero to being above the dot product (and changing the test from <= 0 to < 0), I now have the following: // Clamp z-velocity to zero if we are within a certain threshold float diff = 0.2f - abs(m_velocity.z); if (diff > 0.0f && diff <= 0.2f) { m_velocity.z = 0.0f; } // if we are moving in the direction of the plane (against the normal)... float dotprod = m_velocity.dot(intersection.plane.normal); if (dotprod < 0.0f) { float dampeningForce = 1.8f; // eventually create this value based on mass and acceleration? // Calculate the projection velocity PVRTVec3 actingVelocity = m_velocity.project(intersection.plane.normal); m_velocity -= actingVelocity * dampeningForce; } // Take this object to its new destination position based on... // -- our pre-collision position + vector to the collision point + our new velocity after collision * time // -- remaining after the collision to finish the movement m_destPosition = m_position - intersection.diff + (m_velocity * intersection.tRemaining * GAMESTATE->dt); UpdateWorldMatrix(m_destWorldMatrix, m_destOBB, m_destPosition, false); This is MUCH better. No jitter, and the ball now "rests" at the floor, while still bouncing off the floor and walls. The ONLY thing left is that the ball is now virtually "stuck". He can move but at a much slower rate, likely because the else of my dot product test is only letting the ball move at a rate multiplied against the tRemaining... I think this is a better solution than I had previously, but still somehow not the right idea. BTW, I'm trying to journal my progress through this problem for anyone else with a similar situation - hopefully it will serve as some help, as many similar posts have for me over the years.

    Read the article

  • GLM Velocity Vectors - Basic Maths to Simulate Steering

    - by Reanimation
    UPDATE - Code updated below but still need help adjusting my math. I have a cube rendered on the screen which represents a car (or similar). Using Projection/Model matrices and Glm I am able to move it back and fourth along the axes and rotate it left or right. I'm having trouble with the vector mathematics to make the cube move forwards no matter which direction it's current orientation is. (ie. if I would like, if it's rotated right 30degrees, when it's move forwards, it travels along the 30degree angle on a new axes). I hope I've explained that correctly. This is what I've managed to do so far in terms of using glm to move the cube: glm::vec3 vel; //velocity vector void renderMovingCube(){ glUseProgram(movingCubeShader.handle()); GLuint matrixLoc4MovingCube = glGetUniformLocation(movingCubeShader.handle(), "ProjectionMatrix"); glUniformMatrix4fv(matrixLoc4MovingCube, 1, GL_FALSE, &ProjectionMatrix[0][0]); glm::mat4 viewMatrixMovingCube; viewMatrixMovingCube = glm::lookAt(camOrigin, camLookingAt, camNormalXYZ); vel.x = cos(rotX); vel.y=sin(rotX); vel*=moveCube; //move cube ModelViewMatrix = glm::translate(viewMatrixMovingCube,globalPos*vel); //bring ground and cube to bottom of screen ModelViewMatrix = glm::translate(ModelViewMatrix, glm::vec3(0,-48,0)); ModelViewMatrix = glm::rotate(ModelViewMatrix, rotX, glm::vec3(0,1,0)); //manually turn glUniformMatrix4fv(glGetUniformLocation(movingCubeShader.handle(), "ModelViewMatrix"), 1, GL_FALSE, &ModelViewMatrix[0][0]); //pass matrix to shader movingCube.render(); //draw glUseProgram(0); } keyboard input: void keyboard() { char BACKWARD = keys['S']; char FORWARD = keys['W']; char ROT_LEFT = keys['A']; char ROT_RIGHT = keys['D']; if (FORWARD) //W - move forwards { globalPos += vel; //globalPos.z -= moveCube; BACKWARD = false; } if (BACKWARD)//S - move backwards { globalPos.z += moveCube; FORWARD = false; } if (ROT_LEFT)//A - turn left { rotX +=0.01f; ROT_LEFT = false; } if (ROT_RIGHT)//D - turn right { rotX -=0.01f; ROT_RIGHT = false; } Where am I going wrong with my vectors? I would like change the direction of the cube (which it does) but then move forwards in that direction.

    Read the article

  • Any reliable polygon normal calculation code?

    - by Jenko
    I'm currently calculating the normal vector of a polygon using this code, but for some faces here and there it calculates a wrong normal. I don't really know what's going on or where it fails but its not reliable. Do you have any polygon normal calculation that's tested and found to be reliable? // calculate normal of a polygon using all points var n:int = points.length; var x:Number = 0; var y:Number = 0; var z:Number = 0 // ensure all points above 0 var minx:Number = 0, miny:Number = 0, minz:Number = 0; for (var p:int = 0, pl:int = points.length; p < pl; p++) { var po:_Point3D = points[p] = points[p].clone(); if (po.x < minx) { minx = po.x; } if (po.y < miny) { miny = po.y; } if (po.z < minz) { minz = po.z; } } for (p = 0; p < pl; p++) { po = points[p]; po.x -= minx; po.y -= miny; po.z -= minz; } var cur:int = 1, prev:int = 0, next:int = 2; for (var i:int = 1; i <= n; i++) { // using Newell method x += points[cur].y * (points[next].z - points[prev].z); y += points[cur].z * (points[next].x - points[prev].x); z += points[cur].x * (points[next].y - points[prev].y); cur = (cur+1) % n; next = (next+1) % n; prev = (prev+1) % n; } // length of the normal var length:Number = Math.sqrt(x * x + y * y + z * z); // turn large values into a unit vector if (length != 0){ x = x / length; y = y / length; z = z / length; }else { throw new Error("Cannot calculate normal since triangle has an area of 0"); }

    Read the article

  • spinning a 2d Cube

    - by Rahul Verma
    I know that a cube is actually a 3d shape , but i have some other problem over here. I have been doing 2D Game dev using libgdx but have never touched 3D rendering. Now what I want in my 2D game is that instead of coins I make my player collect magical cubes. But those cubes need to be spinning on one Diagonal, same can be seen in popular game Vector. Here is a screenshot. Can someone explaing the mathematics of such an animation

    Read the article

  • Generating geometry when using VBO

    - by onedayitwillmake
    Currently I am working on a project in which I generate geometry based on the players movement. A glorified very long trail, composed of quads. I am doing this by storing a STD::Vector, and removing the oldest verticies once enough exist, and then calling glDrawArrays. I am interested in switching to a shader based model, usually examples I see the VBO is generated at start and then that's basically it. What is the best route to go about creating geometry in real time, using shader / VBO approach

    Read the article

< Previous Page | 101 102 103 104 105 106 107 108 109 110 111 112  | Next Page >