Search Results

Search found 4268 results on 171 pages for 'executable jar'.

Page 106/171 | < Previous Page | 102 103 104 105 106 107 108 109 110 111 112 113  | Next Page >

  • Adding folder to Eclipse classpath

    - by Paul
    Hello, When i develop a project i create a folder in my project called libs. And in this folder i place all the library jars that i use. Is there a way to add just the libs folder to the class path so that i do not have to add each individual jar? I was thinking something along the lines of a variable or creating a user library. Many thanks.

    Read the article

  • Why does eclipse give me errors when i try to run sample application?

    - by ylen
    I dont know why the sample application from the android website gives me 300+ errors when i try to run it in ecplise galileo. The application i am trying is Bluetoothchat it is straight from the sdk sample folder so it shouldn't contain any. I have added android.jar and I do have an emulator. I have tried HelloWorld and it worked..Could someone help me? Thanks

    Read the article

  • Embedding SQL Server into a .NET application

    - by Leszek Laszka
    Hey, I've just finished writing a VB.NET application. Now I want to package the executable and the database ofcourse into a single installer file. I tried using QSetup, InstallShield to make SQL Server embedded into the setup file, and finally after hours of try&fail I have no idea. Anyone?

    Read the article

  • Maven: Re-use a POM file in every project.

    - by Zombies
    My goal is pretty simple actually but since there are multiple (and seemingly complex ways to do this) I wonder what I need to do... So I have certain runtime libraries (ADF libraries in particular) that are needed to be added to every project. This parent pom file will just have JAR dependencies in it. How can I use this pom file from a child pom file?

    Read the article

  • Google Calendar doubt?

    - by Sumi
    I am new to android. I need to add events to Google calendar from my application. How to integrate with google calendar? What are the jar files are needed? Is it needed to enable any gmail setting? I need some help .Can anyone help me to solve this??

    Read the article

  • SQL running slow when i executes thru java

    - by user270885
    I am trying to execute a query in oracle db. When i try to run thru SQLTools the query is executing in 2 seconds and when i run the same query thru JAVA it is exectuting in more than a minute. I am using a hint /*+ordered use_nl (a, b)*/ I am using ojdbc6.jar Is it because of any JARS? Please help whats causing this?

    Read the article

  • [C#] Specifying startup window/form location on multiple displays

    - by JeffE
    I have two displays (two monitors) connected to my machine, and I noticed a strange thing happening today. I had an Explorer window open with my compiled exe on my primary display, and when I double-clicked it, it opened in the primary display (left monitor). However if I pressed enter to launch the executable, it started in the secondary display (right monitor). The window state of the initial form is maximized. Is there a way to tell C# to open the initial form in the primary display?

    Read the article

  • how to see the optimized code in c

    - by sganesh
    I can examine the optimization using profiler, size of the executable file and time to take for the execution. I can get the result of the optimization. But I have these questions, How to get the optimized C code. Which algorithm or method used by C to optimize a code. Thanks in advance.

    Read the article

  • A way of doing real-world test-driven development (and some thoughts about it)

    - by Thomas Weller
    Lately, I exchanged some arguments with Derick Bailey about some details of the red-green-refactor cycle of the Test-driven development process. In short, the issue revolved around the fact that it’s not enough to have a test red or green, but it’s also important to have it red or green for the right reasons. While for me, it’s sufficient to initially have a NotImplementedException in place, Derick argues that this is not totally correct (see these two posts: Red/Green/Refactor, For The Right Reasons and Red For The Right Reason: Fail By Assertion, Not By Anything Else). And he’s right. But on the other hand, I had no idea how his insights could have any practical consequence for my own individual interpretation of the red-green-refactor cycle (which is not really red-green-refactor, at least not in its pure sense, see the rest of this article). This made me think deeply for some days now. In the end I found out that the ‘right reason’ changes in my understanding depending on what development phase I’m in. To make this clear (at least I hope it becomes clear…) I started to describe my way of working in some detail, and then something strange happened: The scope of the article slightly shifted from focusing ‘only’ on the ‘right reason’ issue to something more general, which you might describe as something like  'Doing real-world TDD in .NET , with massive use of third-party add-ins’. This is because I feel that there is a more general statement about Test-driven development to make:  It’s high time to speak about the ‘How’ of TDD, not always only the ‘Why’. Much has been said about this, and me myself also contributed to that (see here: TDD is not about testing, it's about how we develop software). But always justifying what you do is very unsatisfying in the long run, it is inherently defensive, and it costs time and effort that could be used for better and more important things. And frankly: I’m somewhat sick and tired of repeating time and again that the test-driven way of software development is highly preferable for many reasons - I don’t want to spent my time exclusively on stating the obvious… So, again, let’s say it clearly: TDD is programming, and programming is TDD. Other ways of programming (code-first, sometimes called cowboy-coding) are exceptional and need justification. – I know that there are many people out there who will disagree with this radical statement, and I also know that it’s not a description of the real world but more of a mission statement or something. But nevertheless I’m absolutely sure that in some years this statement will be nothing but a platitude. Side note: Some parts of this post read as if I were paid by Jetbrains (the manufacturer of the ReSharper add-in – R#), but I swear I’m not. Rather I think that Visual Studio is just not production-complete without it, and I wouldn’t even consider to do professional work without having this add-in installed... The three parts of a software component Before I go into some details, I first should describe my understanding of what belongs to a software component (assembly, type, or method) during the production process (i.e. the coding phase). Roughly, I come up with the three parts shown below:   First, we need to have some initial sort of requirement. This can be a multi-page formal document, a vague idea in some programmer’s brain of what might be needed, or anything in between. In either way, there has to be some sort of requirement, be it explicit or not. – At the C# micro-level, the best way that I found to formulate that is to define interfaces for just about everything, even for internal classes, and to provide them with exhaustive xml comments. The next step then is to re-formulate these requirements in an executable form. This is specific to the respective programming language. - For C#/.NET, the Gallio framework (which includes MbUnit) in conjunction with the ReSharper add-in for Visual Studio is my toolset of choice. The third part then finally is the production code itself. It’s development is entirely driven by the requirements and their executable formulation. This is the delivery, the two other parts are ‘only’ there to make its production possible, to give it a decent quality and reliability, and to significantly reduce related costs down the maintenance timeline. So while the first two parts are not really relevant for the customer, they are very important for the developer. The customer (or in Scrum terms: the Product Owner) is not interested at all in how  the product is developed, he is only interested in the fact that it is developed as cost-effective as possible, and that it meets his functional and non-functional requirements. The rest is solely a matter of the developer’s craftsmanship, and this is what I want to talk about during the remainder of this article… An example To demonstrate my way of doing real-world TDD, I decided to show the development of a (very) simple Calculator component. The example is deliberately trivial and silly, as examples always are. I am totally aware of the fact that real life is never that simple, but I only want to show some development principles here… The requirement As already said above, I start with writing down some words on the initial requirement, and I normally use interfaces for that, even for internal classes - the typical question “intf or not” doesn’t even come to mind. I need them for my usual workflow and using them automatically produces high componentized and testable code anyway. To think about their usage in every single situation would slow down the production process unnecessarily. So this is what I begin with: namespace Calculator {     /// <summary>     /// Defines a very simple calculator component for demo purposes.     /// </summary>     public interface ICalculator     {         /// <summary>         /// Gets the result of the last successful operation.         /// </summary>         /// <value>The last result.</value>         /// <remarks>         /// Will be <see langword="null" /> before the first successful operation.         /// </remarks>         double? LastResult { get; }       } // interface ICalculator   } // namespace Calculator So, I’m not beginning with a test, but with a sort of code declaration - and still I insist on being 100% test-driven. There are three important things here: Starting this way gives me a method signature, which allows to use IntelliSense and AutoCompletion and thus eliminates the danger of typos - one of the most regular, annoying, time-consuming, and therefore expensive sources of error in the development process. In my understanding, the interface definition as a whole is more of a readable requirement document and technical documentation than anything else. So this is at least as much about documentation than about coding. The documentation must completely describe the behavior of the documented element. I normally use an IoC container or some sort of self-written provider-like model in my architecture. In either case, I need my components defined via service interfaces anyway. - I will use the LinFu IoC framework here, for no other reason as that is is very simple to use. The ‘Red’ (pt. 1)   First I create a folder for the project’s third-party libraries and put the LinFu.Core dll there. Then I set up a test project (via a Gallio project template), and add references to the Calculator project and the LinFu dll. Finally I’m ready to write the first test, which will look like the following: namespace Calculator.Test {     [TestFixture]     public class CalculatorTest     {         private readonly ServiceContainer container = new ServiceContainer();           [Test]         public void CalculatorLastResultIsInitiallyNull()         {             ICalculator calculator = container.GetService<ICalculator>();               Assert.IsNull(calculator.LastResult);         }       } // class CalculatorTest   } // namespace Calculator.Test       This is basically the executable formulation of what the interface definition states (part of). Side note: There’s one principle of TDD that is just plain wrong in my eyes: I’m talking about the Red is 'does not compile' thing. How could a compiler error ever be interpreted as a valid test outcome? I never understood that, it just makes no sense to me. (Or, in Derick’s terms: this reason is as wrong as a reason ever could be…) A compiler error tells me: Your code is incorrect, but nothing more.  Instead, the ‘Red’ part of the red-green-refactor cycle has a clearly defined meaning to me: It means that the test works as intended and fails only if its assumptions are not met for some reason. Back to our Calculator. When I execute the above test with R#, the Gallio plugin will give me this output: So this tells me that the test is red for the wrong reason: There’s no implementation that the IoC-container could load, of course. So let’s fix that. With R#, this is very easy: First, create an ICalculator - derived type:        Next, implement the interface members: And finally, move the new class to its own file: So far my ‘work’ was six mouse clicks long, the only thing that’s left to do manually here, is to add the Ioc-specific wiring-declaration and also to make the respective class non-public, which I regularly do to force my components to communicate exclusively via interfaces: This is what my Calculator class looks like as of now: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult         {             get             {                 throw new NotImplementedException();             }         }     } } Back to the test fixture, we have to put our IoC container to work: [TestFixture] public class CalculatorTest {     #region Fields       private readonly ServiceContainer container = new ServiceContainer();       #endregion // Fields       #region Setup/TearDown       [FixtureSetUp]     public void FixtureSetUp()     {        container.LoadFrom(AppDomain.CurrentDomain.BaseDirectory, "Calculator.dll");     }       ... Because I have a R# live template defined for the setup/teardown method skeleton as well, the only manual coding here again is the IoC-specific stuff: two lines, not more… The ‘Red’ (pt. 2) Now, the execution of the above test gives the following result: This time, the test outcome tells me that the method under test is called. And this is the point, where Derick and I seem to have somewhat different views on the subject: Of course, the test still is worthless regarding the red/green outcome (or: it’s still red for the wrong reasons, in that it gives a false negative). But as far as I am concerned, I’m not really interested in the test outcome at this point of the red-green-refactor cycle. Rather, I only want to assert that my test actually calls the right method. If that’s the case, I will happily go on to the ‘Green’ part… The ‘Green’ Making the test green is quite trivial. Just make LastResult an automatic property:     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult { get; private set; }     }         One more round… Now on to something slightly more demanding (cough…). Let’s state that our Calculator exposes an Add() method:         ...   /// <summary>         /// Adds the specified operands.         /// </summary>         /// <param name="operand1">The operand1.</param>         /// <param name="operand2">The operand2.</param>         /// <returns>The result of the additon.</returns>         /// <exception cref="ArgumentException">         /// Argument <paramref name="operand1"/> is &lt; 0.<br/>         /// -- or --<br/>         /// Argument <paramref name="operand2"/> is &lt; 0.         /// </exception>         double Add(double operand1, double operand2);       } // interface ICalculator A remark: I sometimes hear the complaint that xml comment stuff like the above is hard to read. That’s certainly true, but irrelevant to me, because I read xml code comments with the CR_Documentor tool window. And using that, it looks like this:   Apart from that, I’m heavily using xml code comments (see e.g. here for a detailed guide) because there is the possibility of automating help generation with nightly CI builds (using MS Sandcastle and the Sandcastle Help File Builder), and then publishing the results to some intranet location.  This way, a team always has first class, up-to-date technical documentation at hand about the current codebase. (And, also very important for speeding up things and avoiding typos: You have IntelliSense/AutoCompletion and R# support, and the comments are subject to compiler checking…).     Back to our Calculator again: Two more R# – clicks implement the Add() skeleton:         ...           public double Add(double operand1, double operand2)         {             throw new NotImplementedException();         }       } // class Calculator As we have stated in the interface definition (which actually serves as our requirement document!), the operands are not allowed to be negative. So let’s start implementing that. Here’s the test: [Test] [Row(-0.5, 2)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); } As you can see, I’m using a data-driven unit test method here, mainly for these two reasons: Because I know that I will have to do the same test for the second operand in a few seconds, I save myself from implementing another test method for this purpose. Rather, I only will have to add another Row attribute to the existing one. From the test report below, you can see that the argument values are explicitly printed out. This can be a valuable documentation feature even when everything is green: One can quickly review what values were tested exactly - the complete Gallio HTML-report (as it will be produced by the Continuous Integration runs) shows these values in a quite clear format (see below for an example). Back to our Calculator development again, this is what the test result tells us at the moment: So we’re red again, because there is not yet an implementation… Next we go on and implement the necessary parameter verification to become green again, and then we do the same thing for the second operand. To make a long story short, here’s the test and the method implementation at the end of the second cycle: // in CalculatorTest:   [Test] [Row(-0.5, 2)] [Row(295, -123)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); }   // in Calculator: public double Add(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }     if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }     throw new NotImplementedException(); } So far, we have sheltered our method from unwanted input, and now we can safely operate on the parameters without further caring about their validity (this is my interpretation of the Fail Fast principle, which is regarded here in more detail). Now we can think about the method’s successful outcomes. First let’s write another test for that: [Test] [Row(1, 1, 2)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } Again, I’m regularly using row based test methods for these kinds of unit tests. The above shown pattern proved to be extremely helpful for my development work, I call it the Defined-Input/Expected-Output test idiom: You define your input arguments together with the expected method result. There are two major benefits from that way of testing: In the course of refining a method, it’s very likely to come up with additional test cases. In our case, we might add tests for some edge cases like ‘one of the operands is zero’ or ‘the sum of the two operands causes an overflow’, or maybe there’s an external test protocol that has to be fulfilled (e.g. an ISO norm for medical software), and this results in the need of testing against additional values. In all these scenarios we only have to add another Row attribute to the test. Remember that the argument values are written to the test report, so as a side-effect this produces valuable documentation. (This can become especially important if the fulfillment of some sort of external requirements has to be proven). So your test method might look something like that in the end: [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 2)] [Row(0, 999999999, 999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, double.MaxValue)] [Row(4, double.MaxValue - 2.5, double.MaxValue)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } And this will produce the following HTML report (with Gallio):   Not bad for the amount of work we invested in it, huh? - There might be scenarios where reports like that can be useful for demonstration purposes during a Scrum sprint review… The last requirement to fulfill is that the LastResult property is expected to store the result of the last operation. I don’t show this here, it’s trivial enough and brings nothing new… And finally: Refactor (for the right reasons) To demonstrate my way of going through the refactoring portion of the red-green-refactor cycle, I added another method to our Calculator component, namely Subtract(). Here’s the code (tests and production): // CalculatorTest.cs:   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtract(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, result); }   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtractGivesExpectedLastResult(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, calculator.LastResult); }   ...   // ICalculator.cs: /// <summary> /// Subtracts the specified operands. /// </summary> /// <param name="operand1">The operand1.</param> /// <param name="operand2">The operand2.</param> /// <returns>The result of the subtraction.</returns> /// <exception cref="ArgumentException"> /// Argument <paramref name="operand1"/> is &lt; 0.<br/> /// -- or --<br/> /// Argument <paramref name="operand2"/> is &lt; 0. /// </exception> double Subtract(double operand1, double operand2);   ...   // Calculator.cs:   public double Subtract(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }       if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }       return (this.LastResult = operand1 - operand2).Value; }   Obviously, the argument validation stuff that was produced during the red-green part of our cycle duplicates the code from the previous Add() method. So, to avoid code duplication and minimize the number of code lines of the production code, we do an Extract Method refactoring. One more time, this is only a matter of a few mouse clicks (and giving the new method a name) with R#: Having done that, our production code finally looks like that: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         #region ICalculator           public double? LastResult { get; private set; }           public double Add(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 + operand2).Value;         }           public double Subtract(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 - operand2).Value;         }           #endregion // ICalculator           #region Implementation (Helper)           private static void ThrowIfOneOperandIsInvalid(double operand1, double operand2)         {             if (operand1 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand1");             }               if (operand2 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand2");             }         }           #endregion // Implementation (Helper)       } // class Calculator   } // namespace Calculator But is the above worth the effort at all? It’s obviously trivial and not very impressive. All our tests were green (for the right reasons), and refactoring the code did not change anything. It’s not immediately clear how this refactoring work adds value to the project. Derick puts it like this: STOP! Hold on a second… before you go any further and before you even think about refactoring what you just wrote to make your test pass, you need to understand something: if your done with your requirements after making the test green, you are not required to refactor the code. I know… I’m speaking heresy, here. Toss me to the wolves, I’ve gone over to the dark side! Seriously, though… if your test is passing for the right reasons, and you do not need to write any test or any more code for you class at this point, what value does refactoring add? Derick immediately answers his own question: So why should you follow the refactor portion of red/green/refactor? When you have added code that makes the system less readable, less understandable, less expressive of the domain or concern’s intentions, less architecturally sound, less DRY, etc, then you should refactor it. I couldn’t state it more precise. From my personal perspective, I’d add the following: You have to keep in mind that real-world software systems are usually quite large and there are dozens or even hundreds of occasions where micro-refactorings like the above can be applied. It’s the sum of them all that counts. And to have a good overall quality of the system (e.g. in terms of the Code Duplication Percentage metric) you have to be pedantic on the individual, seemingly trivial cases. My job regularly requires the reading and understanding of ‘foreign’ code. So code quality/readability really makes a HUGE difference for me – sometimes it can be even the difference between project success and failure… Conclusions The above described development process emerged over the years, and there were mainly two things that guided its evolution (you might call it eternal principles, personal beliefs, or anything in between): Test-driven development is the normal, natural way of writing software, code-first is exceptional. So ‘doing TDD or not’ is not a question. And good, stable code can only reliably be produced by doing TDD (yes, I know: many will strongly disagree here again, but I’ve never seen high-quality code – and high-quality code is code that stood the test of time and causes low maintenance costs – that was produced code-first…) It’s the production code that pays our bills in the end. (Though I have seen customers these days who demand an acceptance test battery as part of the final delivery. Things seem to go into the right direction…). The test code serves ‘only’ to make the production code work. But it’s the number of delivered features which solely counts at the end of the day - no matter how much test code you wrote or how good it is. With these two things in mind, I tried to optimize my coding process for coding speed – or, in business terms: productivity - without sacrificing the principles of TDD (more than I’d do either way…).  As a result, I consider a ratio of about 3-5/1 for test code vs. production code as normal and desirable. In other words: roughly 60-80% of my code is test code (This might sound heavy, but that is mainly due to the fact that software development standards only begin to evolve. The entire software development profession is very young, historically seen; only at the very beginning, and there are no viable standards yet. If you think about software development as a kind of casting process, where the test code is the mold and the resulting production code is the final product, then the above ratio sounds no longer extraordinary…) Although the above might look like very much unnecessary work at first sight, it’s not. With the aid of the mentioned add-ins, doing all the above is a matter of minutes, sometimes seconds (while writing this post took hours and days…). The most important thing is to have the right tools at hand. Slow developer machines or the lack of a tool or something like that - for ‘saving’ a few 100 bucks -  is just not acceptable and a very bad decision in business terms (though I quite some times have seen and heard that…). Production of high-quality products needs the usage of high-quality tools. This is a platitude that every craftsman knows… The here described round-trip will take me about five to ten minutes in my real-world development practice. I guess it’s about 30% more time compared to developing the ‘traditional’ (code-first) way. But the so manufactured ‘product’ is of much higher quality and massively reduces maintenance costs, which is by far the single biggest cost factor, as I showed in this previous post: It's the maintenance, stupid! (or: Something is rotten in developerland.). In the end, this is a highly cost-effective way of software development… But on the other hand, there clearly is a trade-off here: coding speed vs. code quality/later maintenance costs. The here described development method might be a perfect fit for the overwhelming majority of software projects, but there certainly are some scenarios where it’s not - e.g. if time-to-market is crucial for a software project. So this is a business decision in the end. It’s just that you have to know what you’re doing and what consequences this might have… Some last words First, I’d like to thank Derick Bailey again. His two aforementioned posts (which I strongly recommend for reading) inspired me to think deeply about my own personal way of doing TDD and to clarify my thoughts about it. I wouldn’t have done that without this inspiration. I really enjoy that kind of discussions… I agree with him in all respects. But I don’t know (yet?) how to bring his insights into the described production process without slowing things down. The above described method proved to be very “good enough” in my practical experience. But of course, I’m open to suggestions here… My rationale for now is: If the test is initially red during the red-green-refactor cycle, the ‘right reason’ is: it actually calls the right method, but this method is not yet operational. Later on, when the cycle is finished and the tests become part of the regular, automated Continuous Integration process, ‘red’ certainly must occur for the ‘right reason’: in this phase, ‘red’ MUST mean nothing but an unfulfilled assertion - Fail By Assertion, Not By Anything Else!

    Read the article

  • Configuring Jenkins for running with BitBucket

    - by Claus
    I'm trying to setup Jenkins on my mac mini in order to pull my iOS project source code from BitBucket and build it automatically. I've already gone through the major well know problems generating the ssh keys,uploading them in BitBucket,performing an ssh connection by console for adding the host to the well know list (you can find all my adventure here and here). Now,there are 3 user in my system: A,B and Shared. When I installed Jenkins it automatically placed itself in Shared, but I generated the ssh keys with the user A. So just to be clear In the A home directory there is an .ssh directory with public and private keys. When I try to run by Jenkins job I get this error message: Started by user anonymous Building in workspace /Users/Shared/Jenkins/Home/jobs/myprojectAdHocBuild/workspace Checkout:workspace / /Users/Shared/Jenkins/Home/jobs/myprojectAdHocBuild/workspace - hudson.remoting.LocalChannel@625cb0bb Using strategy: Default Cloning the remote Git repository Cloning repository [email protected]:myuser/myproject.git git --version git version 1.8.0 ERROR: Error cloning remote repo 'origin' : Could not clone [email protected]:myuser/myproject.git hudson.plugins.git.GitException: Could not clone [email protected]:myuser/myproject.git at hudson.plugins.git.GitAPI.clone(GitAPI.java:271) at hudson.plugins.git.GitSCM$2.invoke(GitSCM.java:1036) at hudson.plugins.git.GitSCM$2.invoke(GitSCM.java:978) at hudson.FilePath.act(FilePath.java:851) at hudson.FilePath.act(FilePath.java:824) at hudson.plugins.git.GitSCM.determineRevisionToBuild(GitSCM.java:978) at hudson.plugins.git.GitSCM.checkout(GitSCM.java:1134) at hudson.model.AbstractProject.checkout(AbstractProject.java:1325) at hudson.model.AbstractBuild$AbstractBuildExecution.defaultCheckout(AbstractBuild.java:676) at jenkins.scm.SCMCheckoutStrategy.checkout(SCMCheckoutStrategy.java:88) at hudson.model.AbstractBuild$AbstractBuildExecution.run(AbstractBuild.java:581) at hudson.model.Run.execute(Run.java:1516) at hudson.model.FreeStyleBuild.run(FreeStyleBuild.java:46) at hudson.model.ResourceController.execute(ResourceController.java:88) at hudson.model.Executor.run(Executor.java:236) Caused by: hudson.plugins.git.GitException: Command "/usr/local/git/bin/git clone --progress -o origin [email protected]:myuser/myproject.git /Users/Shared/Jenkins/Home/jobs/myprojectAdHocBuild/workspace" returned status code 128: stdout: Cloning into '/Users/Shared/Jenkins/Home/jobs/myprojectAdHocBuild/workspace'... stderr: Host key verification failed. fatal: Could not read from remote repository. Please make sure you have the correct access rights and the repository exists. at hudson.plugins.git.GitAPI.launchCommandIn(GitAPI.java:885) at hudson.plugins.git.GitAPI.access$000(GitAPI.java:40) at hudson.plugins.git.GitAPI$1.invoke(GitAPI.java:267) at hudson.plugins.git.GitAPI$1.invoke(GitAPI.java:246) at hudson.FilePath.act(FilePath.java:851) at hudson.FilePath.act(FilePath.java:824) at hudson.plugins.git.GitAPI.clone(GitAPI.java:246) ... 14 more Trying next repository ERROR: Could not clone repository FATAL: Could not clone hudson.plugins.git.GitException: Could not clone at hudson.plugins.git.GitSCM$2.invoke(GitSCM.java:1048) at hudson.plugins.git.GitSCM$2.invoke(GitSCM.java:978) at hudson.FilePath.act(FilePath.java:851) at hudson.FilePath.act(FilePath.java:824) at hudson.plugins.git.GitSCM.determineRevisionToBuild(GitSCM.java:978) at hudson.plugins.git.GitSCM.checkout(GitSCM.java:1134) at hudson.model.AbstractProject.checkout(AbstractProject.java:1325) at hudson.model.AbstractBuild$AbstractBuildExecution.defaultCheckout(AbstractBuild.java:676) at jenkins.scm.SCMCheckoutStrategy.checkout(SCMCheckoutStrategy.java:88) at hudson.model.AbstractBuild$AbstractBuildExecution.run(AbstractBuild.java:581) at hudson.model.Run.execute(Run.java:1516) at hudson.model.FreeStyleBuild.run(FreeStyleBuild.java:46) at hudson.model.ResourceController.execute(ResourceController.java:88) at hudson.model.Executor.run(Executor.java:236) As you can see it fails when Hudson try to run the GIT command. The odd things is that if I try to run /usr/local/git/bin/git clone --progress -o origin [email protected]:myuser/myproject.git /Users/Shared/Jenkins/Home/jobs/myprojectAdHocBuild/workspace In my console, it works fine (after fixing a small problem relative the folder write permission with chmod) I found a post reporting a similar error which names a number of possible options but I'm not sure how to perform correctly these operations on my console. It looks like Jenkins is trying to run a command with a user which doesn't have permission to retrieve the appropriate keys from my .ssh directory.Not really sure.Maybe this output can help: MacMini:~ myuser$ ps axu | grep "/jenkins" myuser 11660 0.0 4.6 2918124 97096 ?? S 6:59pm 1:05.63 /usr/bin/java -jar /Users/myuser/Library/Caches/org.jenkins-ci.jenkins/jenkins.war jenkins 9896 0.0 9.0 2939824 188552 ?? Ss 4:06pm 17:55.91 /usr/bin/java -jar /Applications/Jenkins/jenkins.war myuser 11930 0.0 0.0 2432768 588 s000 S+ 10:28am 0:00.00 grep /jenkins MacMini:~ myuser$ ps axu | grep tomcat myuser 11932 0.0 0.0 2432768 588 s000 S+ 10:28am 0:00.00 grep tomcat MacMini:~ myuser$ I really hope to fix this problem, because I would like to write a very detailed tutorial with all the information I found disseminated around the web.

    Read the article

  • Screen -X exec commands not working until manually attached

    - by James Watt
    I have a batch script that starts a java server application inside of a screen. The command looks like this: cd /dir/ && screen -A -m -d -S javascreen java -Xms640M -Xmx1024M -jar javaserverapp.jar nogui After I run the batch script, it starts the server and puts it inside the correct screen. If I list my screens after, I see something like this: user@gtwy /dir $ screen -list There is a screen on: 16180.javascreen (Detached) 1 Socket in /var/run/screen/S-user. However, I have a second batch script that sends automated commands to this server and runs on a different crontab interval. Because of the way the application works, I send commands to it like this (this command tells it to alert connected users "testing 123"): screen -X exec .\!\! echo say testing 123 I've also tried: screen -R -X exec .\!\! echo say testing 123 screen -S javascreen -X exec .\!\! echo say testing 123 Unfortunately, these commands DO NOT WORK. They don't even give me an error message, they just do nothing. HOWEVER - If I manually attach to the screen first (with the below command) and then detach, now I can run any of the above commands flawlessly. I can demonstrate this with a video, if I wasn't clear enough here. screen -r -d Thanks in advance. Update: here is the important parts of /etc/screenrc. It should be totally vanilla, I've never edited this file. # VARIABLES # =============================================================== # No annoying audible bell, using "visual bell" # vbell on # default: off # vbell_msg " -- Bell,Bell!! -- " # default: "Wuff,Wuff!!" # Automatically detach on hangup. autodetach on # default: on # Don't display the copyright page startup_message off # default: on # Uses nethack-style messages # nethack on # default: off # Affects the copying of text regions crlf off # default: off # Enable/disable multiuser mode. Standard screen operation is singleuser. # In multiuser mode the commands acladd, aclchg, aclgrp and acldel can be used # to enable (and disable) other user accessing this screen session. # Requires suid-root. multiuser off # Change default scrollback value for new windows defscrollback 1000 # default: 100 # Define the time that all windows monitored for silence should # wait before displaying a message. Default 30 seconds. silencewait 15 # default: 30 # bufferfile: The file to use for commands # "readbuf" ('<') and "writebuf" ('>'): bufferfile $HOME/.screen_exchange # # hardcopydir: The directory which contains all hardcopies. # hardcopydir ~/.hardcopy # hardcopydir ~/.screen # # shell: Default process started in screen's windows. # Makes it possible to use a different shell inside screen # than is set as the default login shell. # If begins with a '-' character, the shell will be started as a login shell. # shell zsh # shell bash # shell ksh shell -$SHELL # shellaka '> |tcsh' # shelltitle '$ |bash' # emulate .logout message pow_detach_msg "Screen session of \$LOGNAME \$:cr:\$:nl:ended." # caption always " %w --- %c:%s" # caption always "%3n %t%? @%u%?%? [%h]%?%=%c" # advertise hardstatus support to $TERMCAP # termcapinfo * '' 'hs:ts=\E_:fs=\E\\:ds=\E_\E\\' # set every new windows hardstatus line to somenthing descriptive # defhstatus "screen: ^En (^Et)" # don't kill window after the process died # zombie "^["

    Read the article

  • How to save POST&GET headers of a web page with "Wireshark"?

    - by brilliant
    Hello everybody, I've been trying to find a python code that would log in to my mail box on yahoo.com from "Google App Engine". I was given this code: import urllib, urllib2, cookielib url = "https://login.yahoo.com/config/login?" form_data = {'login' : 'my-login-here', 'passwd' : 'my-password-here'} jar = cookielib.CookieJar() opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(jar)) form_data = urllib.urlencode(form_data) # data returned from this pages contains redirection resp = opener.open(url, form_data) # yahoo redirects to http://my.yahoo.com, so lets go there instead resp = opener.open('http://mail.yahoo.com') print resp.read() The author of this script looked into HTML script of yahoo log-in form and came up with this script. That log-in form contains two fields, one for users' Yahoo! ID and another one is for users' password. However, when I tried this code out (substituting mu real Yahoo login for 'my-login-here' and my real password for 'my-password-here'), it just return the log-in form back to me, which means that something didn't work right. Another supporter suggested that I should send an MD5 hash of my password, rather than a plain password. He also noted that in that log-in form there are a lot other hidden fields besides login and password fields (he called them "CSRF protections") that I would also have to deal with: <input type="hidden" name=".tries" value="1"> <input type="hidden" name=".src" value="ym"> <input type="hidden" name=".md5" value=""> <input type="hidden" name=".hash" value=""> <input type="hidden" name=".js" value=""> <input type="hidden" name=".last" value=""> <input type="hidden" name="promo" value=""> <input type="hidden" name=".intl" value="us"> <input type="hidden" name=".bypass" value=""> <input type="hidden" name=".partner" value=""> <input type="hidden" name=".u" value="bd5tdpd5rf2pg"> <input type="hidden" name=".v" value="0"> <input type="hidden" name=".challenge" value="5qUiIPGVFzRZ2BHhvtdGXoehfiOj"> <input type="hidden" name=".yplus" value=""> <input type="hidden" name=".emailCode" value=""> <input type="hidden" name="pkg" value=""> <input type="hidden" name="stepid" value=""> <input type="hidden" name=".ev" value=""> <input type="hidden" name="hasMsgr" value="0"> <input type="hidden" name=".chkP" value="Y"> <input type="hidden" name=".done" value="http://mail.yahoo.com"> He said that I should do the following: Simulate normal login and save login page that I get; Save POST&GET headers with "Wireshark"; Compare login page with those headers and see what fields I need to include with my request; I really don't know how to carry out the first two of these three steps. I have just downloaded "Wireshark" and have tried capturing some packets there. However, I don't know how to "simulate normal login and save the login page". Also, I don't how to save POST$GET headers with "Wireshark". Can anyone, please, guide me through these two steps in "Wireshark"? Or at least tell me what I should start with. Thank You.

    Read the article

  • From Binary to Data Structures

    - by Cédric Menzi
    Table of Contents Introduction PE file format and COFF header COFF file header BaseCoffReader Byte4ByteCoffReader UnsafeCoffReader ManagedCoffReader Conclusion History This article is also available on CodeProject Introduction Sometimes, you want to parse well-formed binary data and bring it into your objects to do some dirty stuff with it. In the Windows world most data structures are stored in special binary format. Either we call a WinApi function or we want to read from special files like images, spool files, executables or may be the previously announced Outlook Personal Folders File. Most specifications for these files can be found on the MSDN Libarary: Open Specification In my example, we are going to get the COFF (Common Object File Format) file header from a PE (Portable Executable). The exact specification can be found here: PECOFF PE file format and COFF header Before we start we need to know how this file is formatted. The following figure shows an overview of the Microsoft PE executable format. Source: Microsoft Our goal is to get the PE header. As we can see, the image starts with a MS-DOS 2.0 header with is not important for us. From the documentation we can read "...After the MS DOS stub, at the file offset specified at offset 0x3c, is a 4-byte...". With this information we know our reader has to jump to location 0x3c and read the offset to the signature. The signature is always 4 bytes that ensures that the image is a PE file. The signature is: PE\0\0. To prove this we first seek to the offset 0x3c, read if the file consist the signature. So we need to declare some constants, because we do not want magic numbers.   private const int PeSignatureOffsetLocation = 0x3c; private const int PeSignatureSize = 4; private const string PeSignatureContent = "PE";   Then a method for moving the reader to the correct location to read the offset of signature. With this method we always move the underlining Stream of the BinaryReader to the start location of the PE signature.   private void SeekToPeSignature(BinaryReader br) { // seek to the offset for the PE signagure br.BaseStream.Seek(PeSignatureOffsetLocation, SeekOrigin.Begin); // read the offset int offsetToPeSig = br.ReadInt32(); // seek to the start of the PE signature br.BaseStream.Seek(offsetToPeSig, SeekOrigin.Begin); }   Now, we can check if it is a valid PE image by reading of the next 4 byte contains the content PE.   private bool IsValidPeSignature(BinaryReader br) { // read 4 bytes to get the PE signature byte[] peSigBytes = br.ReadBytes(PeSignatureSize); // convert it to a string and trim \0 at the end of the content string peContent = Encoding.Default.GetString(peSigBytes).TrimEnd('\0'); // check if PE is in the content return peContent.Equals(PeSignatureContent); }   With this basic functionality we have a good base reader class to try the different methods of parsing the COFF file header. COFF file header The COFF header has the following structure: Offset Size Field 0 2 Machine 2 2 NumberOfSections 4 4 TimeDateStamp 8 4 PointerToSymbolTable 12 4 NumberOfSymbols 16 2 SizeOfOptionalHeader 18 2 Characteristics If we translate this table to code, we get something like this:   [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)] public struct CoffHeader { public MachineType Machine; public ushort NumberOfSections; public uint TimeDateStamp; public uint PointerToSymbolTable; public uint NumberOfSymbols; public ushort SizeOfOptionalHeader; public Characteristic Characteristics; } BaseCoffReader All readers do the same thing, so we go to the patterns library in our head and see that Strategy pattern or Template method pattern is sticked out in the bookshelf. I have decided to take the template method pattern in this case, because the Parse() should handle the IO for all implementations and the concrete parsing should done in its derived classes.   public CoffHeader Parse() { using (var br = new BinaryReader(File.Open(_fileName, FileMode.Open, FileAccess.Read, FileShare.Read))) { SeekToPeSignature(br); if (!IsValidPeSignature(br)) { throw new BadImageFormatException(); } return ParseInternal(br); } } protected abstract CoffHeader ParseInternal(BinaryReader br);   First we open the BinaryReader, seek to the PE signature then we check if it contains a valid PE signature and rest is done by the derived implementations. Byte4ByteCoffReader The first solution is using the BinaryReader. It is the general way to get the data. We only need to know which order, which data-type and its size. If we read byte for byte we could comment out the first line in the CoffHeader structure, because we have control about the order of the member assignment.   protected override CoffHeader ParseInternal(BinaryReader br) { CoffHeader coff = new CoffHeader(); coff.Machine = (MachineType)br.ReadInt16(); coff.NumberOfSections = (ushort)br.ReadInt16(); coff.TimeDateStamp = br.ReadUInt32(); coff.PointerToSymbolTable = br.ReadUInt32(); coff.NumberOfSymbols = br.ReadUInt32(); coff.SizeOfOptionalHeader = (ushort)br.ReadInt16(); coff.Characteristics = (Characteristic)br.ReadInt16(); return coff; }   If the structure is as short as the COFF header here and the specification will never changed, there is probably no reason to change the strategy. But if a data-type will be changed, a new member will be added or ordering of member will be changed the maintenance costs of this method are very high. UnsafeCoffReader Another way to bring the data into this structure is using a "magically" unsafe trick. As above, we know the layout and order of the data structure. Now, we need the StructLayout attribute, because we have to ensure that the .NET Runtime allocates the structure in the same order as it is specified in the source code. We also need to enable "Allow unsafe code (/unsafe)" in the project's build properties. Then we need to add the following constructor to the CoffHeader structure.   [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)] public struct CoffHeader { public CoffHeader(byte[] data) { unsafe { fixed (byte* packet = &data[0]) { this = *(CoffHeader*)packet; } } } }   The "magic" trick is in the statement: this = *(CoffHeader*)packet;. What happens here? We have a fixed size of data somewhere in the memory and because a struct in C# is a value-type, the assignment operator = copies the whole data of the structure and not only the reference. To fill the structure with data, we need to pass the data as bytes into the CoffHeader structure. This can be achieved by reading the exact size of the structure from the PE file.   protected override CoffHeader ParseInternal(BinaryReader br) { return new CoffHeader(br.ReadBytes(Marshal.SizeOf(typeof(CoffHeader)))); }   This solution is the fastest way to parse the data and bring it into the structure, but it is unsafe and it could introduce some security and stability risks. ManagedCoffReader In this solution we are using the same approach of the structure assignment as above. But we need to replace the unsafe part in the constructor with the following managed part:   [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)] public struct CoffHeader { public CoffHeader(byte[] data) { IntPtr coffPtr = IntPtr.Zero; try { int size = Marshal.SizeOf(typeof(CoffHeader)); coffPtr = Marshal.AllocHGlobal(size); Marshal.Copy(data, 0, coffPtr, size); this = (CoffHeader)Marshal.PtrToStructure(coffPtr, typeof(CoffHeader)); } finally { Marshal.FreeHGlobal(coffPtr); } } }     Conclusion We saw that we can parse well-formed binary data to our data structures using different approaches. The first is probably the clearest way, because we know each member and its size and ordering and we have control about the reading the data for each member. But if add member or the structure is going change by some reason, we need to change the reader. The two other solutions use the approach of the structure assignment. In the unsafe implementation we need to compile the project with the /unsafe option. We increase the performance, but we get some security risks.

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

  • Setup and Use SpecFlow BDD with DevExpress XAF

    - by Patrick Liekhus
    Let’s get started with using the SpecFlow BDD syntax for writing tests with the DevExpress XAF EasyTest scripting syntax.  In order for this to work you will need to download and install the prerequisites listed below.  Once they are installed follow the steps outlined below and enjoy. Prerequisites Install the following items: DevExpress eXpress Application Framework (XAF) found here SpecFlow found here Liekhus BDD/XAF Testing library found here Assumptions I am going to assume at this point that you have created your XAF application and have your Module, Win.Module and Win ready for usage.  You should have also set any attributes and/or settings as you see fit. Setup So where to start. Create a new testing project within your solution. I typically call this with a similar naming convention as used by XAF, my project name .FunctionalTests (i.e. AlbumManager.FunctionalTests). Add the following references to your project.  It should look like the reference list below. DevExpress.Data.v11.x DevExpress.Persistent.Base.v11.x DevExpress.Persistent.BaseImpl.v11.x DevExpress.Xpo.v11.2 Liekhus.Testing.BDD.Core Liekhus.Testing.BDD.DevExpress TechTalk.SpecFlow TestExecutor.v11.x (found in %Program Files%\DevExpress 2011.x\eXpressApp Framework\Tools\EasyTest Right click the TestExecutor reference and set the “Copy Local” setting to True.  This forces the TestExecutor executable to be available in the bin directory which is where the EasyTest script will be executed further down in the process. Add an Application Configuration File (app.config) to your test application.  You will need to make a few modifications to have SpecFlow generate Microsoft style unit tests.  First add the section handler for SpecFlow and then set your choice of testing framework.  I prefer MS Tests for my projects. Add the EasyTest configuration file to your project.  Add a new XML file and call it Config.xml. Open the properties window for the Config.xml file and set the “Copy to Ouput Directory” to “Copy Always”. You will setup the Config file according to the specifications of the EasyTest library my mapping to your executable and other settings.  You can find the details for the configuration of EasyTest here.  My file looks like this Create a new folder in your test project called “StepDefinitions”.  Add a new SpecFlow Step Definition file item under the StepDefinitions folder.  I typically call this class StepDefinition.cs. Have your step definition inherit from the Liekhus.Testing.BDD.DevExpress.StepDefinition class.  This will give you the default behaviors for your test in the next section. OK.  Now that we have done this series of steps, we will work on simplifying this.  This is an early preview of this new project and is not fully ready for consumption.  If you would like to experiment with it, please feel free.  Our goals are to make this a installable project on it’s own with it’s own project templates and default settings.  This will be coming in later versions.  Currently this project is in Alpha release. Let’s write our first test Remove the basic test that is created for you. We will not use the default test but rather create our own SpecFlow “Feature” files. Add a new item to your project and select the SpecFlow Feature file under C#. Name your feature file as you do your class files after the test they are performing. Writing a feature file uses the Cucumber syntax of Given… When… Then.  Think of it in these terms.  Givens are the pre-conditions for the test.  The Whens are the actual steps for the test being performed.  The Thens are the verification steps that confirm your test either passed or failed.  All of these steps are generated into a an EasyTest format and executed against your XAF project.  You can find more on the Cucumber syntax by using the Secret Ninja Cucumber Scrolls.  This document has several good styles of tests, plus you can get your fill of Chuck Norris vs Ninjas.  Pretty humorous document but full of great content. My first test is going to test the entry of a new Album into the application and is outlined below. The Feature section at the top is more for your documentation purposes.  Try to be descriptive of the test so that it makes sense to the next person behind you.  The Scenario outline is described in the Ninja Scrolls, but think of it as test template.  You can write one test outline and have multiple datasets (Scenarios) executed against that test.  Here are the steps of my test and their descriptions Given I am starting a new test – tells our test to create a new EasyTest file And (Given) the application is open – tells EasyTest to open our application defined in the Config.xml When I am at the “Albums” screen – tells XAF to navigate to the Albums list view And (When) I click the “New:Album” button – tells XAF to click the New Album button on the ribbon And (When) I enter the following information – tells XAF to find the field on the screen and put the value in that field And (When) I click the “Save and Close” button – tells XAF to click the “Save and Close” button on the detail window Then I verify results as “user” – tells the testing framework to execute the EasyTest as your configured user Once you compile and prepare your tests you should see the following in your Test View.  For each of your CreateNewAlbum lines in your scenarios, you will see a new test ready to execute. From here you will use your testing framework of choice to execute the test.  This in turn will execute the EasyTest framework to call back into your XAF application and test your business application. Again, please remember that this is an early preview and we are still working out the details.  Please let us know if you have any comments/questions/concerns. Thanks and happy testing.

    Read the article

  • SQL – Migrate Database from SQL Server to NuoDB – A Quick Tutorial

    - by Pinal Dave
    Data is growing exponentially and every organization with growing data is thinking of next big innovation in the world of Big Data. Big data is a indeed a future for every organization at one point of the time. Just like every other next big thing, big data has its own challenges and issues. The biggest challenge associated with the big data is to find the ideal platform which supports the scalability and growth of the data. If you are a regular reader of this blog, you must be familiar with NuoDB. I have been working with NuoDB for a while and their recent release is the best thus far. NuoDB is an elastically scalable SQL database that can run on local host, datacenter and cloud-based resources. A key feature of the product is that it does not require sharding (read more here). Last week, I was able to install NuoDB in less than 90 seconds and have explored their Explorer and Admin sections. You can read about my experiences in these posts: SQL – Step by Step Guide to Download and Install NuoDB – Getting Started with NuoDB SQL – Quick Start with Admin Sections of NuoDB – Manage NuoDB Database SQL – Quick Start with Explorer Sections of NuoDB – Query NuoDB Database Many SQL Authority readers have been following me in my journey to evaluate NuoDB. One of the frequently asked questions I’ve received from you is if there is any way to migrate data from SQL Server to NuoDB. The fact is that there is indeed a way to do so and NuoDB provides a fantastic tool which can help users to do it. NuoDB Migrator is a command line utility that supports the migration of Microsoft SQL Server, MySQL, Oracle, and PostgreSQL schemas and data to NuoDB. The migration to NuoDB is a three-step process: NuoDB Migrator generates a schema for a target NuoDB database It loads data into the target NuoDB database It dumps data from the source database Let’s see how we can migrate our data from SQL Server to NuoDB using a simple three-step approach. But before we do that we will create a sample database in MSSQL and later we will migrate the same database to NuoDB: Setup Step 1: Build a sample data CREATE DATABASE [Test]; CREATE TABLE [Department]( [DepartmentID] [smallint] NOT NULL, [Name] VARCHAR(100) NOT NULL, [GroupName] VARCHAR(100) NOT NULL, [ModifiedDate] [datetime] NOT NULL, CONSTRAINT [PK_Department_DepartmentID] PRIMARY KEY CLUSTERED ( [DepartmentID] ASC ) ) ON [PRIMARY]; INSERT INTO Department SELECT * FROM AdventureWorks2012.HumanResources.Department; Note that I am using the SQL Server AdventureWorks database to build this sample table but you can build this sample table any way you prefer. Setup Step 2: Install Java 64 bit Before you can begin the migration process to NuoDB, make sure you have 64-bit Java installed on your computer. This is due to the fact that the NuoDB Migrator tool is built in Java. You can download 64-bit Java for Windows, Mac OSX, or Linux from the following link: http://java.com/en/download/manual.jsp. One more thing to remember is that you make sure that the path in your environment settings is set to your JAVA_HOME directory or else the tool will not work. Here is how you can do it: Go to My Computer >> Right Click >> Select Properties >> Click on Advanced System Settings >> Click on Environment Variables >> Click on New and enter the following values. Variable Name: JAVA_HOME Variable Value: C:\Program Files\Java\jre7 Make sure you enter your Java installation directory in the Variable Value field. Setup Step 3: Install JDBC driver for SQL Server. There are two JDBC drivers available for SQL Server.  Select the one you prefer to use by following one of the two links below: Microsoft JDBC Driver jTDS JDBC Driver In this example we will be using jTDS JDBC driver. Once you download the driver, move the driver to your NuoDB installation folder. In my case, I have moved the JAR file of the driver into the C:\Program Files\NuoDB\tools\migrator\jar folder as this is my NuoDB installation directory. Now we are all set to start the three-step migration process from SQL Server to NuoDB: Migration Step 1: NuoDB Schema Generation Here is the command I use to generate a schema of my SQL Server Database in NuoDB. First I go to the folder C:\Program Files\NuoDB\tools\migrator\bin and execute the nuodb-migrator.bat file. Note that my database name is ‘test’. Additionally my username and password is also ‘test’. You can see that my SQL Server database is running on my localhost on port 1433. Additionally, the schema of the table is ‘dbo’. nuodb-migrator schema –source.driver=net.sourceforge.jtds.jdbc.Driver –source.url=jdbc:jtds:sqlserver://localhost:1433/ –source.username=test –source.password=test –source.catalog=test –source.schema=dbo –output.path=/tmp/schema.sql The above script will generate a schema of all my SQL Server tables and will put it in the folder C:\tmp\schema.sql . You can open the schema.sql file and execute this file directly in your NuoDB instance. You can follow the link here to see how you can execute the SQL script in NuoDB. Please note that if you have not yet created the schema in the NuoDB database, you should create it before executing this step. Step 2: Generate the Dump File of the Data Once you have recreated your schema in NuoDB from SQL Server, the next step is very easy. Here we create a CSV format dump file, which will contain all the data from all the tables from the SQL Server database. The command to do so is very similar to the above command. Be aware that this step may take a bit of time based on your database size. nuodb-migrator dump –source.driver=net.sourceforge.jtds.jdbc.Driver –source.url=jdbc:jtds:sqlserver://localhost:1433/ –source.username=test –source.password=test –source.catalog=test –source.schema=dbo –output.type=csv –output.path=/tmp/dump.cat Once the above command is successfully executed you can find your CSV file in the C:\tmp\ folder. However, you do not have to do anything manually. The third and final step will take care of completing the migration process. Migration Step 3: Load the Data into NuoDB After building schema and taking a dump of the data, the very next step is essential and crucial. It will take the CSV file and load it into the NuoDB database. nuodb-migrator load –target.url=jdbc:com.nuodb://localhost:48004/mytest –target.schema=dbo –target.username=test –target.password=test –input.path=/tmp/dump.cat Please note that in the above script we are now targeting the NuoDB database, which we have already created with the name of “MyTest”. If the database does not exist, create it manually before executing the above script. I have kept the username and password as “test”, but please make sure that you create a more secure password for your database for security reasons. Voila!  You’re Done That’s it. You are done. It took 3 setup and 3 migration steps to migrate your SQL Server database to NuoDB.  You can now start exploring the database and build excellent, scale-out applications. In this blog post, I have done my best to come up with simple and easy process, which you can follow to migrate your app from SQL Server to NuoDB. Download NuoDB I strongly encourage you to download NuoDB and go through my 3-step migration tutorial from SQL Server to NuoDB. Additionally here are two very important blog post from NuoDB CTO Seth Proctor. He has written excellent blog posts on the concept of the Administrative Domains. NuoDB has this concept of an Administrative Domain, which is a collection of hosts that can run one or multiple databases.  Each database has its own TEs and SMs, but all are managed within the Admin Console for that particular domain. http://www.nuodb.com/techblog/2013/03/11/getting-started-provisioning-a-domain/ http://www.nuodb.com/techblog/2013/03/14/getting-started-running-a-database/ Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: NuoDB

    Read the article

  • Using Find/Replace with regular expressions inside a SSIS package

    - by jamiet
    Another one of those might-be-useful-again-one-day-so-I’ll-share-it-in-a-blog-post blog posts I am currently working on a SQL Server Integration Services (SSIS) 2012 implementation where each package contains a parameter called ETLIfcHist_ID: During normal execution this will get altered when the package is executed from the Execute Package Task however we want to make sure that at deployment-time they all have a default value of –1. Of course, they tend to get changed during development so I wanted a way of easily changing them all back to the default value. Opening up each package in turn and editing them was an option but given that we have over 40 packages and we might want to carry out this reset fairly frequently I needed a more automated method so I turned to Visual Studio’s Find/Replace… feature Of course, we don’t know what value will be in that parameter so I can’t simply search for a particular value; hence I opted to use a regular expression to identify the value to be change. In the rest of this blog post I’ll explain how to do that. For demonstration purposes I have taken the contents of a .dtsx file and stripped out everything except the element containing the parameters (<DTS:PackageParameters>), if you want to play along at home you can copy-paste the XML document below into a new XML file and open it up in Visual Studio: <?xml version="1.0"?> <DTS:Executable xmlns:DTS="www.microsoft.com/SqlServer/Dts">   <DTS:PackageParameters>     <DTS:PackageParameter       DTS:CreationName=""       DTS:DataType="3"       DTS:Description="InterfaceHistory_ID: used for Lineage"       DTS:DTSID="{635616DB-EEEE-45C8-89AA-713E25846C7E}"       DTS:ObjectName="ETLIfcHist_ID">       <DTS:Property         DTS:DataType="3"         DTS:Name="ParameterValue">VALUE_TO_BE_CHANGED</DTS:Property>     </DTS:PackageParameter>     <DTS:PackageParameter       DTS:CreationName=""       DTS:DataType="3"       DTS:Description="Some other description"       DTS:DTSID="{635616DB-EEEE-45C8-89AA-713E25845C7E}"       DTS:ObjectName="SomeOtherObjectName">       <DTS:Property         DTS:DataType="3"         DTS:Name="ParameterValue">SomeOtherValue</DTS:Property>     </DTS:PackageParameter>   </DTS:PackageParameters> </DTS:Executable> We are trying to identify the value of the parameter whose name is ETLIfcHist_ID – notice that in the XML document above that value is VALUE_TO_BE_CHANGED. The following regular expression will find the appropriate portion of the XML document: {\<DTS\:PackageParameter[\n ]*DTS\:CreationName="[A-Za-z0-9\:_\{\}- ]*"[\n ]*DTS\:DataType="[A-Za-z0-9\:_\{\}- ]*"[\n ]*DTS\:Description="[A-Za-z0-9\:_\{\}- ]*"[\n ]*DTS\:DTSID="[A-Za-z0-9\:_\{\}- ]*"[\n ]*DTS\:ObjectName="ETLIfcHist_ID"\>[\n ]*\<DTS\:Property[\n ]*DTS\:DataType="[A-Za-z0-9\:_\{\}- ]*"[\n ]*DTS\:Name="ParameterValue"\>}[A-Za-z0-9\:_\{\}- ]*{\<\/DTS\:Property\>} I have highlighted the name of the parameter that we’re looking for. I have also highlighted two portions identified by pairs of curly braces “{…}”; these are important because they pick out the two portions either side of the value I want to replace, in other words the portions highlighted here: <DTS:PackageParameters>     <DTS:PackageParameter       DTS:CreationName=""       DTS:DataType="3"       DTS:Description="InterfaceHistory_ID: used for Lineage"       DTS:DTSID="{635616DB-EEEE-45C8-89AA-713E25846C7E}"       DTS:ObjectName="ETLIfcHist_ID">       <DTS:Property         DTS:DataType="3"         DTS:Name="ParameterValue">VALUE_TO_BE_CHANGED</DTS:Property>     </DTS:PackageParameter> Those sections in the curly braces are termed tag expressions and can be identified in the replace expression using a backslash and a number identifying which tag expression you’re referring to according to its ordinal position. Hence, our replace expression is simply: \1-1\2 We’re saying the portion of our file identified by the regular expression should be replaced by the first curly brace section, then the literal –1, then the second curly brace section. Make sense? Give it a go yourself by plugging those two expressions into Visual Studio’s Find and Replace dialog. If you set it to look in “All Open Documents” then you can open up the code-behind of all your packages and change all of them at once. The Find and Replace dialog will look like this: That’s it! I realise that not everyone will be looking to change the value of a parameter but hopefully I have shown you a technique that you can modify to work for your own scenario. Given that this blog post is, y’know, on the web I have no doubt that someone is going to find a fault with my find regex expression and if that person is you….that’s OK. Let me know about it in the comments below and perhaps we can work together to come up with something better! Note that some parameters may have a different set of properties (for example some, but not all, of my parameters have a DTS:Required attribute) so your find regular expression may have to change accordingly. When researching this I found the following article to be invaluable: Visual Studio Find/Replace Regular Expression Usage @Jamiet

    Read the article

  • Database continuous integration step by step

    - by David Atkinson
    This post will describe how to set up basic database continuous integration using TeamCity to initiate the build process, SQL Source Control to put your database under source control, and the SQL Compare command line to keep a test database up to date. In my example I will be using Subversion as my source control repository. If you wish to follow my steps verbatim, please make sure you have TortoiseSVN, SQL Compare and SQL Source Control installed. Downloading and Installing TeamCity TeamCity (http://www.jetbrains.com/teamcity/index.html) is free for up to three agents, so it a great no-risk tool you can use to experiment with. 1. Download the latest version from the JetBrains website. For some reason the TeamCity executable didn't download properly for me, stalling frustratingly at 99%, so I tried again with the zip file download option (see screenshot below), which worked flawlessly. 2. Run the installer using the defaults. This results in a set-up with the server component and agent installed on the same machine, which is ideal for getting started with ease. 3. Check that the build agent is pointing to the server correctly. This has caught me out a few times before. This setting is in C:\TeamCity\buildAgent\conf\buildAgent.properties and for my installation is serverUrl=http\://localhost\:80 . If you need to change this value, if for example you've had to install the Server console to a different port number, the TeamCity Build Agent Service will need to be restarted for the change to take effect. 4. Open the TeamCity admin console on http://localhost , and specify your own designated username and password at first startup. Putting your database in source control using SQL Source Control 5. Assuming you've got SQL Source Control installed, select a development database in the SQL Server Management Studio Object Explorer and select Link Database to Source Control. 6. For the Link step you can either create your own empty folder in source control, or you can select Just Evaluating, which just creates a local subversion repository for you behind the scenes. 7. Once linked, note that your database turns green in the Object Explorer. Visit the Commit tab to do an initial commit of your database objects by typing in an appropriate comment and clicking Commit. 8. There is a hidden feature in SQL Source Control that opens up TortoiseSVN (provided it is installed) pointing to the linked repository. Keep Shift depressed and right click on the text to the right of 'Linked to', in the example below, it's the red Evaluation Repository text. Select Open TortoiseSVN Repo Browser. This screen should give you an idea of how SQL Source Control manages the object files behind the scenes. Back in the TeamCity admin console, we'll now create a new project to monitor the above repository location and to trigger a 'build' each time the repository changes. 9. In TeamCity Adminstration, select Create Project and give it a name, such as "My first database CI", and click Create. 10. Click on Create Build Configuration, and name it something like "Integration build". 11. Click VCS settings and then Create And Attach new VCS root. This is where you will tell TeamCity about the repository it should monitor. 12. In my case since I'm using the Just Evaluating option in SQL Source Control, I should select Subversion. 13. In the URL field paste your repository location. In my case this is file:///C:/Users/David.Atkinson/AppData/Local/Red Gate/SQL Source Control 3/EvaluationRepositories/WidgetDevelopment/WidgetDevelopment 14. Click on Test Connection to ensure that you can communicate with your source control system. Click Save. 15. Click Add Build Step, and Runner Type: Command Line. Should you be familiar with the other runner types, such as NAnt, MSBuild or Powershell, you can opt for these, but for the same of keeping it simple I will pick the simplest option. 16. If you have installed SQL Compare in the default location, set the Command Executable field to: C:\Program Files (x86)\Red Gate\SQL Compare 10\sqlcompare.exe 17. Flip back to SSMS briefly and add a new database to your server. This will be the database used for continuous integration testing. 18. Set the command parameters according to your server and the name of the database you have created. In my case I created database RedGateCI on server .\sql2008r2 /scripts1:. /server2:.\sql2008r2 /db2:RedGateCI /sync /verbose Note that if you pick a server instance that isn't on your local machine, you'll need the TCP/IP protocol enabled in SQL Server Configuration Manager otherwise the SQL Compare command line will not be able to connect. 19. Save and select Build Triggering / Add New Trigger / VCS Trigger. This is where you tell TeamCity when it should initiate a build. Click Save. 20. Now return to SQL Server Management Studio and make a schema change (eg add a new object) to your linked development database. A blue indicator will appear in the Object Explorer. Commit this change, typing in an appropriate check-in comment. All being good, within 60 seconds (a TeamCity default that can be changed) a build will be triggered. 21. Click on Projects in TeamCity to get back to the overview screen: The build log will show you the console output, which is useful for troubleshooting any issues: That's it! You now have continuous integration on your database. In future posts I'll cover how you can generate and test the database creation script, the database upgrade script, and run database unit tests as part of your continuous integration script. If you have any trouble getting this up and running please let me know, either by commenting on this post, or email me directly using the email address below. Technorati Tags: SQL Server

    Read the article

  • Solaris X86 AESNI OpenSSL Engine

    - by danx
    Solaris X86 AESNI OpenSSL Engine Cryptography is a major component of secure e-commerce. Since cryptography is compute intensive and adds a significant load to applications, such as SSL web servers (https), crypto performance is an important factor. Providing accelerated crypto hardware greatly helps these applications and will help lead to a wider adoption of cryptography, and lower cost, in e-commerce and other applications. The Intel Westmere microprocessor has six new instructions to acclerate AES encryption. They are called "AESNI" for "AES New Instructions". These are unprivileged instructions, so no "root", other elevated access, or context switch is required to execute these instructions. These instructions are used in a new built-in OpenSSL 1.0 engine available in Solaris 11, the aesni engine. Previous Work Previously, AESNI instructions were introduced into the Solaris x86 kernel and libraries. That is, the "aes" kernel module (used by IPsec and other kernel modules) and the Solaris pkcs11 library (for user applications). These are available in Solaris 10 10/09 (update 8) and above, and Solaris 11. The work here is to add the aesni engine to OpenSSL. X86 AESNI Instructions Intel's Xeon 5600 is one of the processors that support AESNI. This processor is used in the Sun Fire X4170 M2 As mentioned above, six new instructions acclerate AES encryption in processor silicon. The new instructions are: aesenc performs one round of AES encryption. One encryption round is composed of these steps: substitute bytes, shift rows, mix columns, and xor the round key. aesenclast performs the final encryption round, which is the same as above, except omitting the mix columns (which is only needed for the next encryption round). aesdec performs one round of AES decryption aesdeclast performs the final AES decryption round aeskeygenassist Helps expand the user-provided key into a "key schedule" of keys, one per round aesimc performs an "inverse mixed columns" operation to convert the encryption key schedule into a decryption key schedule pclmulqdq Not a AESNI instruction, but performs "carryless multiply" operations to acclerate AES GCM mode. Since the AESNI instructions are implemented in hardware, they take a constant number of cycles and are not vulnerable to side-channel timing attacks that attempt to discern some bits of data from the time taken to encrypt or decrypt the data. Solaris x86 and OpenSSL Software Optimizations Having X86 AESNI hardware crypto instructions is all well and good, but how do we access it? The software is available with Solaris 11 and is used automatically if you are running Solaris x86 on a AESNI-capable processor. AESNI is used internally in the kernel through kernel crypto modules and is available in user space through the PKCS#11 library. For OpenSSL on Solaris 11, AESNI crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "aesni engine." This is in lieu of the extra overhead of going through the Solaris OpenSSL pkcs11 engine, which accesses Solaris crypto and digest operations. Instead, AESNI assembly is included directly in the new aesni engine. Instead of including the aesni engine in a separate library in /lib/openssl/engines/, the aesni engine is "built-in", meaning it is included directly in OpenSSL's libcrypto.so.1.0.0 library. This reduces overhead and the need to manually specify the aesni engine. Since the engine is built-in (that is, in libcrypto.so.1.0.0), the openssl -engine command line flag or API call is not needed to access the engine—the aesni engine is used automatically on AESNI hardware. Ciphers and Digests supported by OpenSSL aesni engine The Openssl aesni engine auto-detects if it's running on AESNI hardware and uses AESNI encryption instructions for these ciphers: AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CFB128, AES-192-CFB128, AES-256-CFB128, AES-128-CTR, AES-192-CTR, AES-256-CTR, AES-128-ECB, AES-192-ECB, AES-256-ECB, AES-128-OFB, AES-192-OFB, and AES-256-OFB. Implementation of the OpenSSL aesni engine The AESNI assembly language routines are not a part of the regular Openssl 1.0.0 release. AESNI is a part of the "HEAD" ("development" or "unstable") branch of OpenSSL, for future release. But AESNI is also available as a separate patch provided by Intel to the OpenSSL project for OpenSSL 1.0.0. A minimal amount of "glue" code in the aesni engine works between the OpenSSL libcrypto.so.1.0.0 library and the assembly functions. The aesni engine code is separate from the base OpenSSL code and requires patching only a few source files to use it. That means OpenSSL can be more easily updated to future versions without losing the performance from the built-in aesni engine. OpenSSL aesni engine Performance Here's some graphs of aesni engine performance I measured by running openssl speed -evp $algorithm where $algorithm is aes-128-cbc, aes-192-cbc, and aes-256-cbc. These are using the 64-bit version of openssl on the same AESNI hardware, a Sun Fire X4170 M2 with a Intel Xeon E5620 @2.40GHz, running Solaris 11 FCS. "Before" is openssl without the aesni engine and "after" is openssl with the aesni engine. The numbers are MBytes/second. OpenSSL aesni engine performance on Sun Fire X4170 M2 (Xeon E5620 @2.40GHz) (Higher is better; "before"=OpenSSL on AESNI without AESNI engine software, "after"=OpenSSL AESNI engine) As you can see the speedup is dramatic for all 3 key lengths and for data sizes from 16 bytes to 8 Kbytes—AESNI is about 7.5-8x faster over hand-coded amd64 assembly (without aesni instructions). Verifying the OpenSSL aesni engine is present The easiest way to determine if you are running the aesni engine is to type "openssl engine" on the command line. No configuration, API, or command line options are needed to use the OpenSSL aesni engine. If you are running on Intel AESNI hardware with Solaris 11 FCS, you'll see this output indicating you are using the aesni engine: intel-westmere $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support If you are running on Intel without AESNI hardware you'll see this output indicating the hardware can't support the aesni engine: intel-nehalem $ openssl engine (aesni) Intel AES-NI engine (no-aesni) (dynamic) Dynamic engine loading support (pkcs11) PKCS #11 engine support For Solaris on SPARC or older Solaris OpenSSL software, you won't see any aesni engine line at all. Third-party OpenSSL software (built yourself or from outside Oracle) will not have the aesni engine either. Solaris 11 FCS comes with OpenSSL version 1.0.0e. The output of typing "openssl version" should be "OpenSSL 1.0.0e 6 Sep 2011". 64- and 32-bit OpenSSL OpenSSL comes in both 32- and 64-bit binaries. 64-bit executable is now the default, at /usr/bin/openssl, and OpenSSL 64-bit libraries at /lib/amd64/libcrypto.so.1.0.0 and libssl.so.1.0.0 The 32-bit executable is at /usr/bin/i86/openssl and the libraries are at /lib/libcrytpo.so.1.0.0 and libssl.so.1.0.0. Availability The OpenSSL AESNI engine is available in Solaris 11 x86 for both the 64- and 32-bit versions of OpenSSL. It is not available with Solaris 10. You must have a processor that supports AESNI instructions, otherwise OpenSSL will fallback to the older, slower AES implementation without AESNI. Processors that support AESNI include most Westmere and Sandy Bridge class processor architectures. Some low-end processors (such as for mobile/laptop platforms) do not support AESNI. The easiest way to determine if the processor supports AESNI is with the isainfo -v command—look for "amd64" and "aes" in the output: $ isainfo -v 64-bit amd64 applications pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu Conclusion The Solaris 11 OpenSSL aesni engine provides easy access to powerful Intel AESNI hardware cryptography, in addition to Solaris userland PKCS#11 libraries and Solaris crypto kernel modules.

    Read the article

< Previous Page | 102 103 104 105 106 107 108 109 110 111 112 113  | Next Page >