Search Results

Search found 7490 results on 300 pages for 'algorithm analysis'.

Page 107/300 | < Previous Page | 103 104 105 106 107 108 109 110 111 112 113 114  | Next Page >

  • generic binary Search in c#

    - by Pro_Zeck
    Below is my Generic Binary Search it works ok with the intgers type array it finds all the elements in it . But the Problem Arises when i use a string array to find any string data. It runs ok for the first index and last index elements but i cant find the middle elements. Stringarray = new string[] { "b", "a", "ab", "abc", "c" }; public static void BinarySearch<T>(T[] array, T searchFor, Comparer<T> comparer) { int high, low, mid; high = array.Length - 1; low = 0; if (array[0].Equals(searchFor)) Console.WriteLine("Value {0} Found At Index {1}",array[0],0); else if (array[high].Equals(searchFor)) Console.WriteLine("Value {0} Found At Index {1}", array[high], high); else { while (low <= high) { mid = (high + low) / 2; if (comparer.Compare(array[mid], searchFor) == 0) { Console.WriteLine("Value {0} Found At Index {1}", array[mid], mid); break; } else { if (comparer.Compare(searchFor, array[mid]) > 0) high = mid + 1; else low = mid + 1; } } if (low > high) { Console.WriteLine("Value Not Found In the Collection"); } } }

    Read the article

  • Big-O for Eight Year Olds?

    - by Jason Baker
    I'm asking more about what this means to my code. I understand the concepts mathematically, I just have a hard time wrapping my head around what they mean conceptually. For example, if one were to perform an O(1) operation on a data structure, I understand that the amount of operations it has to perform won't grow because there are more items. And an O(n) operation would mean that you would perform a set of operations on each element. Could somebody fill in the blanks here? Like what exactly would an O(n^2) operation do? And what the heck does it mean if an operation is O(n log(n))? And does somebody have to smoke crack to write an O(x!)?

    Read the article

  • How to detect if a certain range resides (partly) within an other range?

    - by Tom
    Lets say I've got two squares and I know their positions, a red and blue square: redTopX; redTopY; redBotX; redBotY; blueTopX; blueTopY; blueBotX; blueBotY; Now, I want to check if square blue resides (partly) within (or around) square red. This can happen in a lot of situations, as you can see in this image I created to illustrate my situation better: Note that there's always only one blue and one red square, I just added multiple so I didn't have to redraw 18 times. My original logic was simple, I'd check all corners of square blue and see if any of them are inside square red: if ( ((redTopX >= blueTopX) && (redTopY >= blueTopY) && (redTopX <= blueBotX) && (redTopY <= blueBotY)) || //top left ((redBotX >= blueTopX) && (redTopY >= blueTopY) && (redBotX <= blueBotX) && (redTopY <= blueBotY)) || //top right ((redTopX >= blueTopX) && (redBotY >= blueTopY) && (redTopX <= blueBotX) && (redBotY <= blueBotY)) || //bottom left ((redBotX >= blueTopX) && (redBotY >= blueTopY) && (redBotX <= blueBotX) && (redBotY <= blueBotY)) //bottom right ) { //blue resides in red } Unfortunately, there are a couple of flaws in this logic. For example, what if red surrounds blue (like in situation 1)? I thought this would be pretty easy but am having trouble coming up with a good way of covering all these situations.. can anyone help me out here? Regards, Tom

    Read the article

  • Sorting 1 million 8-digit numbers in 1MB of RAM

    - by Favourite Chigozie Onwuemene
    I have a computer with 1M of RAM and no other local storage. I must use it to accept 1 million 8-digit decimal numbers over a TCP connection, sort them, and then send the sorted list out over another TCP connection. The list of numbers may contain duplicates, which I must not discard. The code will be placed in ROM, so I need not subtract the size of my code from the 1M. I already have code to drive the ethernet port and handle TCP/IP connections, and it requires 2k for its state data, including a 1k buffer via which the code will read and write data. Is there a solution to this problem?

    Read the article

  • DFS Backtracking with java

    - by Cláudio Ribeiro
    I'm having problems with DFS backtracking in an adjacency matrix. Here's my code: (i added the test to the main in case someone wants to test it) public class Graph { private int numVertex; private int numEdges; private boolean[][] adj; public Graph(int numVertex, int numEdges) { this.numVertex = numVertex; this.numEdges = numEdges; this.adj = new boolean[numVertex][numVertex]; } public void addEdge(int start, int end){ adj[start-1][end-1] = true; adj[end-1][start-1] = true; } List<Integer> visited = new ArrayList<Integer>(); public Integer DFS(Graph G, int startVertex){ int i=0; if(pilha.isEmpty()) pilha.push(startVertex); for(i=1; i<G.numVertex; i++){ pilha.push(i); if(G.adj[i-1][startVertex-1] != false){ G.adj[i-1][startVertex-1] = false; G.adj[startVertex-1][i-1] = false; DFS(G,i); break; }else{ visited.add(pilha.pop()); } System.out.println("Stack: " + pilha); } return -1; } Stack<Integer> pilha = new Stack(); public static void main(String[] args) { Graph g = new Graph(6, 9); g.addEdge(1, 2); g.addEdge(1, 5); g.addEdge(2, 4); g.addEdge(2, 5); g.addEdge(2, 6); g.addEdge(3, 4); g.addEdge(3, 5); g.addEdge(4, 5); g.addEdge(6, 4); g.DFS(g, 1); } } I'm trying to solve the euler path problem. the program solves basic graphs but when it needs to backtrack, it just does not do it. I think the problem might be in the stack manipulations or in the recursive dfs call. I've tried a lot of things, but still can't seem to figure out why it does not backtrack. Can somebody help me ?

    Read the article

  • Enumerating combinations in a distributed manner

    - by Reyzooti
    I have a problem where I must analyse 500C5 combinations (255244687600) of something. Distributing it over a 10 node cluster where each cluster processes roughly 10^6 combinations per second means the job will be complete in about 7hours. The problem I have is distributing the 255244687600 combinations over the 10 nodes. I'd like to present each node with 25524468760, however the algorithms I'm using can only produce the combinations sequentially, I'd like to be able to pass the set of elements and a range of combination indicies eg: [0-10^7) or [10^7,2.0 10^7) etc and have the nodes themselves figure out the combinations. The algorithms I'm using at the moment are from the following: http://home.roadrunner.com/~hinnant/combinations.html A logical question I've considered using a master node, that enumerates each of the combinations and sends work to each of the nodes, however the overhead incurred in iterating the combinations from a single node and communicating back and forth work is enormous, and will subsequently lead to the master node becoming the bottleneck. Are there any good combination iterating algorithms geared up for efficient/optimal distributed enumeration?

    Read the article

  • Sort string based upon the count of characters Options

    - by prp
    Sample Data : input : "abcdacdc" Output : "cadb" here we have to sort strings in order of count of characters. If the count is same for characters. maintain the original order of the characters from input string. my approach: i have used array of 26 for maintaining occurrence of all characters and sort it then print it.But while doing so i am not able to maintain order in case if two characters have same count. please suggest any improvement or any other algo.

    Read the article

  • Optimizing a Parking Lot Problem. What algorithims should I use to fit the most amount of cars in th

    - by Adam Gent
    What algorithms (brute force or not) would I use to put in as many cars (assume all cars are the same size) in a parking lot so that there is at least one exit (from the container) and a car cannot be blocked. Or can someone show me an example of this problem solved programmatically. The parking lot varies in shape would be nice but if you want to assume its some invariant shape that is fine. Another Edit: Assume that driving distance in the parking lot is not a factor (although it would be totally awesome if it was weighted factor to number of cars in lot). Another Edit: Assume 2 Dimensional (no cranes or driving over cars). Another Edit: You cannot move cars around once they are parked (its not a valet parking lot). I hope the question is specific enough now.

    Read the article

  • What is the best way to find the digit at n position in a decimal number?

    - by Elijah
    Background I'm working on a symmetric rounding class and I find that I'm stuck with regards to how to best find the number at position x that I will be rounding. I'm sure there is an efficient mathematical way to find the single digit and return it without having to resort to string parsing. Problem Suppose, I have the following (C#) psuedo-code: var position = 3; var value = 102.43587m; // I want this no ? (that is 5) protected static int FindNDigit(decimal value, int position) { // This snippet is what I am searching for } Also, it is worth noting that if my value is a whole number, I will need to return a zero for the result of FindNDigit. Does anyone have any hints on how I should approach this problem? Is this something that is blaringly obvious that I'm missing?

    Read the article

  • How do I recursively define a Hash in Ruby from supplied arguments?

    - by Sarah Beckham
    This snippet of code populates an @options hash. values is an Array which contains zero or more heterogeneous items. If you invoke populate with arguments that are Hash entries, it uses the value you specify for each entry to assume a default value. def populate(*args) args.each do |a| values = nil if (a.kind_of? Hash) # Converts {:k => "v"} to `a = :k, values = "v"` a, values = a.to_a.first end @options[:"#{a}"] ||= values ||= {} end end What I'd like to do is change populate such that it recursively populates @options. There is a special case: if the values it's about to populate a key with are an Array consisting entirely of (1) Symbols or (2) Hashes whose keys are Symbols (or some combination of the two), then they should be treated as subkeys rather than the values associated with that key, and the same logic used to evaluate the original populate arguments should be recursively re-applied. That was a little hard to put into words, so I've written some test cases. Here are some test cases and the expected value of @options afterwards: populate :a => @options is {:a => {}} populate :a => 42 => @options is {:a => 42} populate :a, :b, :c => @options is {:a => {}, :b => {}, :c => {}} populate :a, :b => "apples", :c => @options is {:a => {}, :b => "apples", :c => {}} populate :a => :b => @options is {:a => :b} # Because [:b] is an Array consisting entirely of Symbols or # Hashes whose keys are Symbols, we assume that :b is a subkey # of @options[:a], rather than the value for @options[:a]. populate :a => [:b] => @options is {:a => {:b => {}}} populate :a => [:b, :c => :d] => @options is {:a => {:b => {}, :c => :d}} populate :a => [:a, :b, :c] => @options is {:a => {:a => {}, :b => {}, :c => {}}} populate :a => [:a, :b, "c"] => @options is {:a => [:a, :b, "c"]} populate :a => [:one], :b => [:two, :three => "four"] => @options is {:a => :one, :b => {:two => {}, :three => "four"}} populate :a => [:one], :b => [:two => {:four => :five}, :three => "four"] => @options is {:a => :one, :b => { :two => { :four => :five } }, :three => "four" } } It is acceptable if the signature of populate needs to change to accommodate some kind of recursive version. There is no limit to the amount of nesting that could theoretically happen. Any thoughts on how I might pull this off?

    Read the article

  • Given a number N, find the number of ways to write it as a sum of two or more consecutive integers

    - by hilal
    Here is the problem (Given a number N, find the number of ways to write it as a sum of two or more consecutive integers) and example 15 = 7+8, 1+2+3+4+5, 4+5+6 I solved with math like that : a + (a + 1) + (a + 2) + (a + 3) + ... + (a + k) = N (k + 1)*a + (1 + 2 + 3 + ... + k) = N (k + 1)a + k(k+1)/2 = N (k + 1)*(2*a + k)/2 = N Then check that if N divisible by (k+1) and (2*a+k) then I can find answer in O(N) time Here is my question how can you solve this by dynamic-programming ? and what is the complexity (O) ? P.S : excuse me, if it is a duplicate question. I searched but I can find

    Read the article

  • How can I represent a line of music notes in a way that allows fast insertion at any index?

    - by chairbender
    For "fun", and to learn functional programming, I'm developing a program in Clojure that does algorithmic composition using ideas from this theory of music called "Westergaardian Theory". It generates lines of music (where a line is just a single staff consisting of a sequence of notes, each with pitches and durations). It basically works like this: Start with a line consisting of three notes (the specifics of how these are chosen are not important). Randomly perform one of several "operations" on this line. The operation picks randomly from all pairs of adjacent notes that meet a certain criteria (for each pair, the criteria only depends on the pair and is independent of the other notes in the line). It inserts 1 or several notes (depending on the operation) between the chosen pair. Each operation has its own unique criteria. Continue randomly performing these operations on the line until the line is the desired length. The issue I've run into is that my implementation of this is quite slow, and I suspect it could be made faster. I'm new to Clojure and functional programming in general (though I'm experienced with OO), so I'm hoping someone with more experience can point out if I'm not thinking in a functional paradigm or missing out on some FP technique. My current implementation is that each line is a vector containing maps. Each map has a :note and a :dur. :note's value is a keyword representing a musical note like :A4 or :C#3. :dur's value is a fraction, representing the duration of the note (1 is a whole note, 1/4 is a quarter note, etc...). So, for example, a line representing the C major scale starting on C3 would look like this: [ {:note :C3 :dur 1} {:note :D3 :dur 1} {:note :E3 :dur 1} {:note :F3 :dur 1} {:note :G3 :dur 1} {:note :A4 :dur 1} {:note :B4 :dur 1} ] This is a problematic representation because there's not really a quick way to insert into an arbitrary index of a vector. But insertion is the most frequently performed operation on these lines. My current terrible function for inserting notes into a line basically splits the vector using subvec at the point of insertion, uses conj to join the first part + notes + last part, then uses flatten and vec to make them all be in a one-dimensional vector. For example if I want to insert C3 and D3 into the the C major scale at index 3 (where the F3 is), it would do this (I'll use the note name in place of the :note and :dur maps): (conj [C3 D3 E3] [C3 D3] [F3 G3 A4 B4]), which creates [C3 D3 E3 [C3 D3] [F3 G3 A4 B4]] (vec (flatten previous-vector)) which gives [C3 D3 E3 C3 D3 F3 G3 A4 B4] The run time of that is O(n), AFAIK. I'm looking for a way to make this insertion faster. I've searched for information on Clojure data structures that have fast insertion but haven't found anything that would work. I found "finger trees" but they only allow fast insertion at the start or end of the list. Edit: I split this into two questions. The other part is here.

    Read the article

  • Is this linear search implementation actually useful?

    - by Helper Method
    In Matters Computational I found this interesting linear search implementation (it's actually my Java implementation ;-)): public static int linearSearch(int[] a, int key) { int high = a.length - 1; int tmp = a[high]; // put a sentinel at the end of the array a[high] = key; int i = 0; while (a[i] != key) { i++; } // restore original value a[high] = tmp; if (i == high && key != tmp) { return NOT_CONTAINED; } return i; } It basically uses a sentinel, which is the searched for value, so that you always find the value and don't have to check for array boundaries. The last element is stored in a temp variable, and then the sentinel is placed at the last position. When the value is found (remember, it is always found due to the sentinel), the original element is restored and the index is checked if it represents the last index and is unequal to the searched for value. If that's the case, -1 (NOT_CONTAINED) is returned, otherwise the index. While I found this implementation really clever, I wonder if it is actually useful. For small arrays, it seems to be always slower, and for large arrays it only seems to be faster when the value is not found. Any ideas?

    Read the article

  • What Software Engineering Areas should be stressed upon while Interviewing Candidate for Fulltime So

    - by Rachel
    Hi, This question is somewhat related to other posts which I found on Stackoverflow but not exactly and so am prompted to ask about it. I know we must ask for Data-Structures and Algorithms but what specific data-structures or Algorithms or other CS Concepts should be asked while interviewing Sr. Software Engineering Fulltime Position as compared with Software Engineering Position. Thanks.

    Read the article

  • Find a node in a Graph that minimizes the distance between two other nodes

    - by Andrés
    Here is the thing. I have a directed weighted graph G, with V vertices and E edges. Given two nodes in the graph, let's say A, and B, and given the weight of an edge A-B denoted as w(A, B), I need to find a node C so that max(w(A, C), w(B, C)) is minimal among all possibilities. By possibilities I mean all the values C can take. I don't know if it is completely clear, if it's not, I'll try to be more precise. Thanks in advance.

    Read the article

  • What's the best way to implement one-dimensional collision detection?

    - by cyclotis04
    I'm writing a piece of simulation software, and need an efficient way to test for collisions along a line. The simulation is of a train crossing several switches on a track. When a wheel comes within N inches of the switch, the switch turns on, then turns off when the wheel leaves. Since all wheels are the same size, and all switches are the same size, I can represent them as a single coordinate X along the track. Switch distances and wheel distances don't change in relation to each other, once set. This is a fairly trivial problem when done through brute force by placing the X coordinates in lists, and traversing them, but I need a way to do so efficiently, because it needs to be extremely accurate, even when the train is moving at high speeds. There's a ton of tutorials on 2D collision detection, but I'm not sure the best way to go about this unique 1D scenario.

    Read the article

  • Find recipes that can be cooked from provided ingridients

    - by skaurus
    Sorry for bad English :( Suppose i can preliminary organize recipes and ingredients data in any way. How can i effectively conduct search of recipes by user-provided ingredients, preferably sorted by max match - so, first going recipes that use maximum of provided ingridients and do not contain any other ingrs, after them recipes that uses less of provided set and still not any other ingrs, after them recipes with minimum additional requirements and so on? All i can think about is represent recipe ingridients like bitmasks, and compare required bitmask with all recipes, but it is obviously a bad way to go. And related things like Levenstein distance i don't see how to use here. I believe it should be quite common task...

    Read the article

  • Looking for ideas on automatically arranging a set of objects (furniture) in a virtual room in AS3

    - by raf
    First of all, I don't want to visually arrange 3D models dragging them with the mouse, all I want is: Given a room of certain dimensions (L,W,H) and given a set of elements like beds, chairs, etc (with L,W,H dimensions, of course) I want to automatically arrange those elements to take advantage of the space as much as I can. So I want to be able to put as much furniture as I can in a given room. At the end I need to represent the arranged items visually, inside the room. My first thought was to use an array of items and sorting it with array.sortOn(["l","w","h"] Array.NUMERIC) and then define a gap between the objects and make the maths to put the objects one next to another, etc. but that isn't a good approach because some items may be placed on top of another ones (boxes of the same size, boxes on top of tables, etc). I really don't have experience on 3D programming, that's why I'm asking for help. Thanks in advance.

    Read the article

  • How to perform a Depth First Search iteratively using async/parallel processing?

    - by Prabhu
    Here is a method that does a DFS search and returns a list of all items given a top level item id. How could I modify this to take advantage of parallel processing? Currently, the call to get the sub items is made one by one for each item in the stack. It would be nice if I could get the sub items for multiple items in the stack at the same time, and populate my return list faster. How could I do this (either using async/await or TPL, or anything else) in a thread safe manner? private async Task<IList<Item>> GetItemsAsync(string topItemId) { var items = new List<Item>(); var topItem = await GetItemAsync(topItemId); Stack<Item> stack = new Stack<Item>(); stack.Push(topItem); while (stack.Count > 0) { var item = stack.Pop(); items.Add(item); var subItems = await GetSubItemsAsync(item.SubId); foreach (var subItem in subItems) { stack.Push(subItem); } } return items; } EDIT: I was thinking of something along these lines, but it's not coming together: var tasks = stack.Select(async item => { items.Add(item); var subItems = await GetSubItemsAsync(item.SubId); foreach (var subItem in subItems) { stack.Push(subItem); } }).ToList(); if (tasks.Any()) await Task.WhenAll(tasks); UPDATE: If I wanted to chunk the tasks, would something like this work? foreach (var batch in items.BatchesOf(100)) { var tasks = batch.Select(async item => { await DoSomething(item); }).ToList(); if (tasks.Any()) { await Task.WhenAll(tasks); } } The language I'm using is C#.

    Read the article

  • LinkedList.contains execution speed

    - by Le_Coeur
    Why Methode LinkedList.contains() runs quickly than such implementation: for (String s : list) if (s.equals(element)) return true; return false; I don't see great difference between this to implementations(i consider that search objects aren't nulls), same iterator and equals operation

    Read the article

  • Finding if a string is an iterative substring?

    - by EsotericMe
    I have a string S. How can I find if the string follows S = nT. Examples: Function should return true if 1) S = "abab" 2) S = "abcdabcd" 3) S = "abcabcabc" 4) S = "zzxzzxzzx" But if S="abcb" returns false. I though maybe we can repeatedly call KMP on substrings of S and then decide. eg: for "abab": call on KMP on "a". it returns 2(two instances). now 2*len("a")!=len(s) call on KMP on "ab". it returns 2. now 2*len("ab")==len(s) so return true Can you suggest any better algorithms?

    Read the article

  • Number distribution

    - by Carra
    Problem: We have x checkboxes and we want to check y of them evenly. Example 1: select 50 checkboxes of 100 total. [-] [x] [-] [x] ... Example 2: select 33 checkboxes of 100 total. [-] [-] [x] [-] [-] [x] ... Example 3: select 66 checkboxes of 100 total: [-] [x] [x] [-] [x] [x] ... But we're having trouble to come up with a formula to check them in code, especially once you go 11/111 or something similar. Anyone has an idea?

    Read the article

< Previous Page | 103 104 105 106 107 108 109 110 111 112 113 114  | Next Page >