Search Results

Search found 3824 results on 153 pages for 'conditional statements'.

Page 107/153 | < Previous Page | 103 104 105 106 107 108 109 110 111 112 113 114  | Next Page >

  • Enum types, FlagsAttribute & Zero value – Part 2

    - by nmgomes
    In my previous post I wrote about why you should pay attention when using enum value Zero. After reading that post you are probably thinking like Benjamin Roux: Why don’t you start the enum values at 0x1? Well I could, but doing that I lose the ability to have Sync and Async mutually exclusive by design. Take a look at the following enum types: [Flags] public enum OperationMode1 { Async = 0x1, Sync = 0x2, Parent = 0x4 } [Flags] public enum OperationMode2 { Async = 0x0, Sync = 0x1, Parent = 0x2 } To achieve mutually exclusion between Sync and Async values using OperationMode1 you would have to operate both values: protected void CheckMainOperarionMode(OperationMode1 mode) { switch (mode) { case (OperationMode1.Async | OperationMode1.Sync | OperationMode1.Parent): case (OperationMode1.Async | OperationMode1.Sync): throw new InvalidOperationException("Cannot be Sync and Async simultaneous"); break; case (OperationMode1.Async | OperationMode1.Parent): case (OperationMode1.Async): break; case (OperationMode1.Sync | OperationMode1.Parent): case (OperationMode1.Sync): break; default: throw new InvalidOperationException("No default mode specified"); } } but this is a by design constraint in OperationMode2. Why? Simply because 0x0 is the neutral element for the bitwise OR operation. Knowing this singularity, replacing and simplifying the previous method, you get: protected void CheckMainOperarionMode(OperationMode2 mode) { switch (mode) { case (OperationMode2.Sync | OperationMode2.Parent): case (OperationMode2.Sync): break; case (OperationMode2.Parent): default: break; } This means that: if both Sync and Async values are specified Sync value always win (Zero is the neutral element for bitwise OR operation) if no Sync value specified, the Async method is used. Here is the final method implementation: protected void CheckMainOperarionMode(OperationMode2 mode) { if (mode & OperationMode2.Sync == OperationMode2.Sync) { } else { } } All content above prove that Async value (0x0) is useless from the arithmetic perspective, but, without it we lose readability. The following IF statements are logically equals but the first is definitely more readable: if (OperationMode2.Async | OperationMode2.Parent) { } if (OperationMode2.Parent) { } Here’s another example where you can see the benefits of 0x0 value, the default value can be used explicitly. <my:Control runat="server" Mode="Async,Parent"> <my:Control runat="server" Mode="Parent">

    Read the article

  • PASS: FY10 Actuals Posted

    - by Bill Graziano
    Earlier this year we published preliminary fiscal year 2010 financials to the Governance page on the PASS web site.  Please remember that FY10 runs from July 1st, 2009 through June 30th, 2010 and includes the November 2009 Summit.  We do our fiscal year this way so that the Summit falls earlier in the fiscal year.  The financials we had posted were P&L numbers at the portfolio level.  Prior to this we had posted our detailed budget but only posted the auditors report at the end of each year.  Today we updated our published financials to include: Pre-audit actuals from FY10 at the same level as our budget.  The document has both actuals and budget for FY10 side by side.  This is over 20 pages of detailed financial information covering hundreds of line-items. A letter describing key differences between our budget and actuals.  I walked through each line item where the difference was greater than $25,000 and explained what happened and why. We updated the financial graph going back to 2003 to include FY10. This update should “close the loop” on our financials.  You can now start with the published budget and compare it to the finished financials at the same level of detail.  We also plan to publish the auditor’s report when that is completed -- as we do every year. Overall I’m very happy with how FY10 turned out.  Keep in mind that this was the November 2009 Summit so we were still facing economic challenges.  With all that we were roughly break-even showing a $15,000 profit on $3.9 million of revenue.  I didn’t find anything shocking in reviewing our actual vs. budget but there were a few things that needed explanation.  You can see those in the letter on the governance page. Please keep in mind that these are the actuals from our operating financials.  The auditor may have us make adjustments for depreciation or other financial transactions.  We may also account for certain transactions differently for tax purposes than we do for financial reporting purposes.  I feel these financial statements give you the clearest picture of how our organization spends its money. We were late publishing these this year.  We were working through some tax issues and that delayed our ability to file our final tax forms which delayed this process.  In hindsight I should have published these documents as soon as we had them and not waited for the tax issues.  We’ll do this better in the future. And on a final note, you don’t need to login to view these documents.  If you have any questions you can post them here.  If we get more than a few questions we may see about creating some forums for financial issues on the PASS web site.

    Read the article

  • How do you make a bullet ricochet off a vertical wall?

    - by Bagofsheep
    First things first. I am using C# with XNA. My game is top-down and the player can shoot bullets. I've managed to get the bullets to ricochet correctly off horizontal walls. Yet, despite using similar methods (e.g. http://stackoverflow.com/questions/3203952/mirroring-an-angle) and reading other answered questions about this subject I have not been able to get the bullets to ricochet off a vertical wall correctly. Any method I've tried has failed and sometimes made ricocheting off a horizontal wall buggy. Here is the collision code that calls the ricochet method: //Loop through returned tile rectangles from quad tree to test for wall collision. If a collision occurs perform collision logic. for (int r = 0; r < returnObjects.Count; r++) if (Bullets[i].BoundingRectangle.Intersects(returnObjects[r])) Bullets[i].doCollision(returnObjects[r]); Now here is the code for the doCollision method. public void doCollision(Rectangle surface) { if (Ricochet) doRicochet(surface); else Trash = true; } Finally, here is the code for the doRicochet method. public void doRicochet(Rectangle surface) { if (Position.X > surface.Left && Position.X < surface.Right) { //Mirror the bullet's angle. Rotation = -1 * Rotation; //Moves the bullet in the direction of its rotation by given amount. moveFaceDirection(Sprite.Width * BulletScale.X); } else if (Position.Y > surface.Top && Position.Y < surface.Bottom) { } } Since I am only dealing with vertical and horizontal walls at the moment, the if statements simply determine if the object is colliding from the right or left, or from the top or bottom. If the object's X position is within the boundaries of the tile's X boundaries (left and right sides), it must be colliding from the top, and vice verse. As you can see, the else if statement is empty and is where the correct code needs to go.

    Read the article

  • SSMS Tools Pack 3.0 is out. Full SSMS 2014 support and improved features.

    - by Mladen Prajdic
    With version 3.0 the SSMS 2014 is fully supported. Since this is a new major version you'll eventually need a new license. Please check the EULA to see when. As a thank you for your patience with this release, everyone that bought the SSMS Tools Pack after April 1st, the release date of SQL Server 2014, will receive a free upgrade. You won't have to do anything for this to take effect. First thing you'll notice is that the UI has been completely changed. It's more in line with SSMS and looks less web-like. Also the core has been updated and rewritten in some places to be better suited for future features. Major improvements for this release are: Window Connection Coloring Something a lot of people have asked me over the last 2 years is if there's a way to color the tab of the window itself. I'm very glad to say that now it is. In SSMS 2012 and higher the actual query window tab is also colored at the top border with the same color as the already existing strip making it much easier to see to which server your query window is connected to even when a window is not focused. To make it even better, you can not also specify the desired color based on the database name and not just the server name. This makes is useful for production environments where you need to be careful in which database you run your queries in. Format SQL The format SQL core was rewritten so it'll be easier to improve it in future versions. New improvement is the ability to terminate SQL statements with semicolons. This is available only in SSMS 2012 and up. Execution Plan Analyzer A big request was to implement the Problems and Solutions tooltip as a window that you can copy the text from. This is now available. You can move the window around and copy text from it. It's a small improvement but better stuff will come. SQL History Current Window History has been improved with faster search and now also shows the color of the server/database it was ran against. This is very helpful if you change your connection in the same query window making it clear which server/database you ran query on. The option to Force Save the history has been added. This is a menu item that flushes the execution and tab content history save buffers to disk. SQL Snippets Added an option to generate snippet from selected SQL text on right click menu. Run script on multiple databases Configurable database groups that you can save and reuse were added. You can create groups of preselected databases to choose from for each server. This makes repetitive tasks much easier New small team licensing option A lot of requests came in for 1 computer, Unlimited VMs option so now it's here. Hope it serves you well.

    Read the article

  • I have a performance problem

    - by Alan
    (copied from my wordpress blog). So start 95% of the performance calls that I receive. They usually continue something like: I have gathered some *stat data for you (eg the guds tool from Document 1285485.1), can you please root cause our problem? So, do you think you could? Neither can I, based on this my answer inevitably has to be "No". Given this kind of problem statement, I have no idea about the expectations, the boundary conditions, or even the application. The answer may as well be "Performance problems? Consult your local Doctor for Viagra". It's really not a lot to go on. So, What kind of problem description is going to allow me to start work on the issue that is being seen? I don't doubt that there really is an issue, it just needs to be pinned down somewhat. What behavior exactly are you expecting to see? Be specific and use business metrics. For example "run-time", "response-time" and "throughput". This helps us define exit criterea. Now, let's look at the system that is having problems. How is what you are seeing different? Use the same type of metrics. The answers to these two questions take us a long way towards being able to work a call. Even more helpful are answers to questions like Has this system ever worked to expectation? If so, when did it start exhibiting this behavior? Is the problem always present, or does it sometimes work to expectation? If it sometimes works to expectation, when are you seeing the problem? Is there any discernible pattern? Is the impact of the problem getting better, worse, or remaining constant? What kind of differences are there between when the system was performing to expectation and when it is not? Are there other machines where we could expect to see the same issue (eg similar usage and load), but are not? Again, differences? Once we start to gather information like this we start to build up a much clearer picture of exactly what we need to investigate, and what we need to achieve so that both you and me agree that the problem has been solved. Please help get that figure of poorly defined problem statements down from it's current 95% value.

    Read the article

  • From 20,663 issues to 1 issue&ndash;style-copping C5.Tests

    - by TATWORTH
    Originally posted on: http://geekswithblogs.net/TATWORTH/archive/2014/05/28/from-20663-issues-to-1-issuendashstyle-copping-c5.tests.aspxI recently became interested in the potential of the C5 Collections solution from http://www.itu.dk/research/c5/, however I was dismayed at the state of the code in the unit test project, so I set about fixing the 20,663 issues detected by StyleCop. The tools I used were the latest versions of: My 64-bit development PC running Windows 8 Update with 8Gb RAM Visual Studio 2013 Ultimate with SP2 ReSharper GhostDoc Pro My first attempt had to be abandoned due to collision of class names which broke one of the unit tests. So being aware of this duplication of class names, I started again and planned to prepend the class names with the namespace name. In some cases I additionally prepended the item of the C5 collection that was being tested. So what was the condition of code at the start? Besides the sprawl of C# code not written to style cop standard, there was: 1) Placing of many classes within one physical file. 2) Namespace within name space that did not follow the project structure. 3) As already mentioned, duplication of class names across namespaces. 4) A copyright notice that spawled but had to be preserved. 5) Project sub-folders were all lower case instead of initial letter capitalised. The first step was to add a stylecop heading plus the original heading contained within a region, to every file. The next step was to run GhostDoc Pro using its “Document File” option on every file but not letting it replace the headers, I had added. This brought the number of issues down to 18,192. I then went through each file collapsing each class and prepending names as appropriate. At each step, I saved the changes to my local Git. The step was to move each class to its own file and to style-cop each file. ReSharper provides a very useful feature for doing this which also fixes missing “this.” and moves using statements inside the namespace. Some classes required minimal work whereas others required extensive work to reach the stylecop standard. The unit tests were run at each split and when each class was completed. When all was done, one issue remained which I will need to submit to stylecop team for their advice (and possibly a fix to stylecop). The updated solution has been made available at https://c5stylecopped.codeplex.com/releases/view/122785.

    Read the article

  • CreationName for SSIS 2008 and adding components programmatically

    If you are building SSIS 2008 packages programmatically and adding data flow components, you will probably need to know the creation name of the component to add. I can never find a handy reference when I need one, hence this rather mundane post. See also CreationName for SSS 2005. We start with a very simple snippet for adding a component: // Add the Data Flow Task package.Executables.Add("STOCK:PipelineTask"); // Get the task host wrapper, and the Data Flow task TaskHost taskHost = package.Executables[0] as TaskHost; MainPipe dataFlowTask = (MainPipe)taskHost.InnerObject; // Add OLE-DB source component - ** This is where we need the creation name ** IDTSComponentMetaData90 componentSource = dataFlowTask.ComponentMetaDataCollection.New(); componentSource.Name = "OLEDBSource"; componentSource.ComponentClassID = "DTSAdapter.OLEDBSource.2"; So as you can see the creation name for a OLE-DB Source is DTSAdapter.OLEDBSource.2. CreationName Reference  ADO NET Destination Microsoft.SqlServer.Dts.Pipeline.ADONETDestination, Microsoft.SqlServer.ADONETDest, Version=10.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91 ADO NET Source Microsoft.SqlServer.Dts.Pipeline.DataReaderSourceAdapter, Microsoft.SqlServer.ADONETSrc, Version=10.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91 Aggregate DTSTransform.Aggregate.2 Audit DTSTransform.Lineage.2 Cache Transform DTSTransform.Cache.1 Character Map DTSTransform.CharacterMap.2 Checksum Konesans.Dts.Pipeline.ChecksumTransform.ChecksumTransform, Konesans.Dts.Pipeline.ChecksumTransform, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b2ab4a111192992b Conditional Split DTSTransform.ConditionalSplit.2 Copy Column DTSTransform.CopyMap.2 Data Conversion DTSTransform.DataConvert.2 Data Mining Model Training MSMDPP.PXPipelineProcessDM.2 Data Mining Query MSMDPP.PXPipelineDMQuery.2 DataReader Destination Microsoft.SqlServer.Dts.Pipeline.DataReaderDestinationAdapter, Microsoft.SqlServer.DataReaderDest, Version=10.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91 Derived Column DTSTransform.DerivedColumn.2 Dimension Processing MSMDPP.PXPipelineProcessDimension.2 Excel Destination DTSAdapter.ExcelDestination.2 Excel Source DTSAdapter.ExcelSource.2 Export Column TxFileExtractor.Extractor.2 Flat File Destination DTSAdapter.FlatFileDestination.2 Flat File Source DTSAdapter.FlatFileSource.2 Fuzzy Grouping DTSTransform.GroupDups.2 Fuzzy Lookup DTSTransform.BestMatch.2 Import Column TxFileInserter.Inserter.2 Lookup DTSTransform.Lookup.2 Merge DTSTransform.Merge.2 Merge Join DTSTransform.MergeJoin.2 Multicast DTSTransform.Multicast.2 OLE DB Command DTSTransform.OLEDBCommand.2 OLE DB Destination DTSAdapter.OLEDBDestination.2 OLE DB Source DTSAdapter.OLEDBSource.2 Partition Processing MSMDPP.PXPipelineProcessPartition.2 Percentage Sampling DTSTransform.PctSampling.2 Performance Counters Source DataCollectorTransform.TxPerfCounters.1 Pivot DTSTransform.Pivot.2 Raw File Destination DTSAdapter.RawDestination.2 Raw File Source DTSAdapter.RawSource.2 Recordset Destination DTSAdapter.RecordsetDestination.2 RegexClean Konesans.Dts.Pipeline.RegexClean.RegexClean, Konesans.Dts.Pipeline.RegexClean, Version=2.0.0.0, Culture=neutral, PublicKeyToken=d1abe77e8a21353e Row Count DTSTransform.RowCount.2 Row Count Plus Konesans.Dts.Pipeline.RowCountPlusTransform.RowCountPlusTransform, Konesans.Dts.Pipeline.RowCountPlusTransform, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b2ab4a111192992b Row Number Konesans.Dts.Pipeline.RowNumberTransform.RowNumberTransform, Konesans.Dts.Pipeline.RowNumberTransform, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b2ab4a111192992b Row Sampling DTSTransform.RowSampling.2 Script Component Microsoft.SqlServer.Dts.Pipeline.ScriptComponentHost, Microsoft.SqlServer.TxScript, Version=10.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91 Slowly Changing Dimension DTSTransform.SCD.2 Sort DTSTransform.Sort.2 SQL Server Compact Destination Microsoft.SqlServer.Dts.Pipeline.SqlCEDestinationAdapter, Microsoft.SqlServer.SqlCEDest, Version=10.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91 SQL Server Destination DTSAdapter.SQLServerDestination.2 Term Extraction DTSTransform.TermExtraction.2 Term Lookup DTSTransform.TermLookup.2 Trash Destination Konesans.Dts.Pipeline.TrashDestination.Trash, Konesans.Dts.Pipeline.TrashDestination, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b8351fe7752642cc TxTopQueries DataCollectorTransform.TxTopQueries.1 Union All DTSTransform.UnionAll.2 Unpivot DTSTransform.UnPivot.2 XML Source Microsoft.SqlServer.Dts.Pipeline.XmlSourceAdapter, Microsoft.SqlServer.XmlSrc, Version=10.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91 Here is a simple console program that can be used to enumerate the pipeline components installed on your machine, and dumps out a list of all components like that above. You will need to add a reference to the Microsoft.SQLServer.ManagedDTS assembly. using System; using System.Diagnostics; using Microsoft.SqlServer.Dts.Runtime; public class Program { static void Main(string[] args) { Application application = new Application(); PipelineComponentInfos componentInfos = application.PipelineComponentInfos; foreach (PipelineComponentInfo componentInfo in componentInfos) { Debug.WriteLine(componentInfo.Name + "\t" + componentInfo.CreationName); } Console.Read(); } }

    Read the article

  • CA SiteMinder Configuration for Ubuntu

    - by Matt Franklin
    I receive the following error when attempting to start apache through the init.d script: *apache2: Syntax error on line 186 of /etc/apache2/apache2.conf: Syntax error on line 4 of /etc/apache2/mods-enabled/auth_sm.conf: Cannot load /apps/netegrity/webagent/bin/libmod_sm22.so into server: libsmerrlog.so: cannot open shared object file: No such file or directory* SiteMinder does not officially support Ubuntu, so I am having trouble finding any configuration documentation to help me troubleshoot this issue. I successfully installed the SiteMinder binaries and registered the trusted host with the server, but I am having trouble getting the apache mod to load correctly. I have added the following lines to a new auth_sm.conf file in /etc/apache2/mods-available and symlinked to it in /etc/apache2/mods-enabled: SetEnv LD_LIBRARY_PATH /apps/netegrity/webagent/bin SetEnv PATH ${PATH}:${LD_LIBRARY_PATH} LoadModule sm_module /apps/netegrity/webagent/bin/libmod_sm22.so SmInitFile "/etc/apache2/WebAgent.conf" Alias /siteminderagent/pwcgi/ "/apps/netegrity/webagent/pw/" <Directory "/apps/netegrity/webagent/pw/"> Options Indexes MultiViews ExecCGI AllowOverride None Order allow,deny Allow from all </Directory> UPDATE: Output of ldd libmod_sm22.so: ldd /apps/netegrity/webagent/bin/libmod_sm22.so linux-gate.so.1 = (0xb8075000) libsmerrlog.so = /apps/netegrity/webagent/bin/libsmerrlog.so (0xb7ec0000) libsmeventlog.so = /apps/netegrity/webagent/bin/libsmeventlog.so (0xb7ebb000) libpthread.so.0 = /lib/tls/i686/cmov/libpthread.so.0 (0xb7e9a000) libdl.so.2 = /lib/tls/i686/cmov/libdl.so.2 (0xb7e96000) librt.so.1 = /lib/tls/i686/cmov/librt.so.1 (0xb7e8d000) libstdc++.so.5 = /usr/lib/libstdc++.so.5 (0xb7dd3000) libm.so.6 = /lib/tls/i686/cmov/libm.so.6 (0xb7dad000) libgcc_s.so.1 = /lib/libgcc_s.so.1 (0xb7d9e000) libc.so.6 = /lib/tls/i686/cmov/libc.so.6 (0xb7c3a000) libsmcommonutil.so = /apps/netegrity/webagent/bin/libsmcommonutil.so (0xb7c37000) /lib/ld-linux.so.2 (0xb8076000) UPDATE: The easiest way to set environment variables for the Apache run user in Ubuntu is to edit the /etc/apache2/envvars file and add export statements for any library paths you may need

    Read the article

  • mount.nfs: access denied by server while mounting (null), can't find any log information

    - by Mark0978
    Two ubuntu servers: 10.0.8.2 is the client, 192.168.20.58 is the server. Between the 2 machines, Ping works, ssh works (in both directions). From 10.0.8.2 showmount -e 192.168.20.58 Export list for 192.168.20.58: /imr/nfsshares/foobar 10.0.8.2 mount.nfs 192.168.20.58:/imr/nfsshares/foobar /var/data/foobar -v mount.nfs: access denied by server while mounting (null) Found several things online, tried them all and still can't find any log information anywhere. On the server: [email protected]:/var/log# cat /etc/hosts.allow sendmail: all ALL: 10.0.8.2 /etc/hosts.deny is all comments How can I get a trail of log statements to figure this out? What does it take to get some logging so I have some idea of WHY it won't mount? On the server: [email protected]# nmap -sR RPC 192.168.20.58 Starting Nmap 5.21 ( http://nmap.org ) at 2012-07-04 21:16 CDT Failed to resolve given hostname/IP: RPC. Note that you can't use '/mask' AND '1-4,7,100-' style IP ranges Nmap scan report for 192.168.20.58 Host is up (0.0000060s latency). Not shown: 988 closed ports PORT STATE SERVICE VERSION 22/tcp open unknown 80/tcp open unknown 111/tcp open unknown 139/tcp open unknown 445/tcp open unknown 902/tcp open unknown 2049/tcp open unknown 3000/tcp open unknown 5666/tcp open unknown 8009/tcp open unknown 8222/tcp open unknown 8333/tcp open unknown Nmap done: 1 IP address (1 host up) scanned in 3.81 seconds From the client: [email protected]:~$ nmap -sR RPC 192.168.20.58 Starting Nmap 5.21 ( http://nmap.org ) at 2012-07-04 22:14 EDT Failed to resolve given hostname/IP: RPC. Note that you can't use '/mask' AND '1-4,7,100-' style IP ranges Nmap scan report for 192.168.20.58 Host is up (0.73s latency). Not shown: 988 closed ports PORT STATE SERVICE VERSION 22/tcp open unknown 80/tcp open unknown 111/tcp open rpcbind (rpcbind V2) 2 (rpc #100000) 139/tcp open unknown 445/tcp open unknown 902/tcp open unknown 2049/tcp open nfs (nfs V2-4) 2-4 (rpc #100003) 3000/tcp open unknown 5666/tcp open unknown 8009/tcp open unknown 8222/tcp open unknown 8333/tcp open unknown Nmap done: 1 IP address (1 host up) scanned in 191.56 seconds

    Read the article

  • Firebird 2.1: gfix -online returns "database shutdown"

    - by darvids0n
    Hey all. Googling this one hasn't made a bit of difference, unfortunately, as most results specify the syntax for onlining a database after using gfix -shut -force 30 (or any other number of seconds) as gfix -online dbname, and I have run gfix -online dbname with and without login credentials for the DB in question. The message that I get is: database dbname shutdown Which is fine, except that I want to bring it online now. It's out of the question to close fbserver.exe (running on a Windows box, afaik it's Classic Server 2.1.1 but it may be Super) since we have other databases running off of that which need almost 24/7 uptime. The message from doing another gfix -shut -force or -attach or -tran is invalid shutdown mode for dbname which appears to match with the documentation of what happens if the database is already fully shut down. Ideas and input greatly appreciated, especially since at the moment time is a factor for me. Thanks! EDIT: The whole reason I shut down the DB is to clear out "active" transactions which were linked to a specific IP address, and that computer is my dev terminal (actually a virtual machine where I develop frontends for the database software) but I had no processes connecting to the database at the time. They looked like orphaned transactions to me, and they weren't in limbo afaik. Running a manual sweep didn't clear them out, deleting the rows from MON$STATEMENTS didn't work even though Firebird 2.1 supposedly supports cancelling queries that way. My last resort was to "restart" the database, hence the above issue.

    Read the article

  • Inequality joins, Asynchronous transformations and Lookups : SSIS

    - by jamiet
    It is pretty much accepted by SQL Server Integration Services (SSIS) developers that synchronous transformations are generally quicker than asynchronous transformations (for a description of synchronous and asynchronous transformations go read Asynchronous and synchronous data flow components). Notice I said “generally” and not “always”; there are circumstances where using asynchronous transformations can be beneficial and in this blog post I’ll demonstrate such a scenario, one that is pretty common when building data warehouses. Imagine I have a [Customer] dimension table that manages information about all of my customers as a slowly-changing dimension. If that is a type 2 slowly changing dimension then you will likely have multiple rows per customer in that table. Furthermore you might also have datetime fields that indicate the effective time period of each member record. Here is such a table that contains data for four dimension members {Terry, Max, Henry, Horace}: Notice that we have multiple records per customer and that the [SCDStartDate] of a record is equivalent to the [SCDEndDate] of the record that preceded it (if there was one). (Note that I am on record as saying I am not a fan of this technique of storing an [SCDEndDate] but for the purposes of clarity I have included it here.) Anyway, the idea here is that we will have some incoming data containing [CustomerName] & [EffectiveDate] and we need to use those values to lookup [Customer].[CustomerId]. The logic will be: Lookup a [CustomerId] WHERE [CustomerName]=[CustomerName] AND [SCDStartDate] <= [EffectiveDate] AND [EffectiveDate] <= [SCDEndDate] The conventional approach to this would be to use a full cached lookup but that isn’t an option here because we are using inequality conditions. The obvious next step then is to use a non-cached lookup which enables us to change the SQL statement to use inequality operators: Let’s take a look at the dataflow: Notice these are all synchronous components. This approach works just fine however it does have the limitation that it has to issue a SQL statement against your lookup set for every row thus we can expect the execution time of our dataflow to increase linearly in line with the number of rows in our dataflow; that’s not good. OK, that’s the obvious method. Let’s now look at a different way of achieving this using an asynchronous Merge Join transform coupled with a Conditional Split. I’ve shown it post-execution so that I can include the row counts which help to illustrate what is going on here: Notice that there are more rows output from our Merge Join component than on the input. That is because we are joining on [CustomerName] and, as we know, we have multiple records per [CustomerName] in our lookup set. Notice also that there are two asynchronous components in here (the Sort and the Merge Join). I have embedded a video below that compares the execution times for each of these two methods. The video is just over 8minutes long. View on Vimeo  For those that can’t be bothered watching the video I’ll tell you the results here. The dataflow that used the Lookup transform took 36 seconds whereas the dataflow that used the Merge Join took less than two seconds. An illustration in case it is needed: Pretty conclusive proof that in some scenarios it may be quicker to use an asynchronous component than a synchronous one. Your mileage may of course vary. The scenario outlined here is analogous to performance tuning procedural SQL that uses cursors. It is common to eliminate cursors by converting them to set-based operations and that is effectively what we have done here. Our non-cached lookup is performing a discrete operation for every single row of data, exactly like a cursor does. By eliminating this cursor-in-disguise we have dramatically sped up our dataflow. I hope all of that proves useful. You can download the package that I demonstrated in the video from my SkyDrive at http://cid-550f681dad532637.skydrive.live.com/self.aspx/Public/BlogShare/20100514/20100514%20Lookups%20and%20Merge%20Joins.zip Comments are welcome as always. @Jamiet Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Understanding EDI 997.

    - by VishnuTiwariBlog
    Hi Guys, This is for the EDI starter. Below is the complete detail of EDI 997 segment and element details. 997 Functional Acknowledgment Transaction Layout: No. Seg ID Name Description Example M/O 010 ST Transaction Set Header To indicate the start of a transaction set and to assign a control number ST*997*382823~   M ST01   Code uniquely identifying a Transaction Set   M ST02   Identifying control number that must be unique within the transaction set functional group assigned by the originator for a transaction set   M 020 AK1 Functional Group Response Header To start acknowledgment of a functional group AK1*QM*2459823 M        AK101   Code identifying a group of application related transaction sets IN Invoice Information (810) SH Ship Notice/Manifest (856)     AK102   Assigned number originated and maintained by the sender     030 AK2 Transaction Set Response Header To start acknowledgment of a single transaction set AK2*856*001 M AK201   Code uniquely identifying a Transaction Set 810 Invoice 856 Ship Notice/Manifest   M AK202   Identifying control number that must be unique within the transaction set functional group assigned by the originator for a transaction set   M 040 AK3 Data Segment Note To report errors in a data segment and identify the location of the data segment AK3*TD3*9 O AK301 Segment ID Code Code defining the segment ID of the data segment in error (See Appendix A - Number 77)     AK302 Segment Position in Transaction Set The numerical count position of this data segment from the start of the transaction set: the transaction set header is count position 1     050 AK4 Data Element Note To report errors in a data element or composite data structure and identify the location of the data element AK4*2**2 O AK401 Position in Segment Code indicating the relative position of a simple data element, or the relative position of a composite data structure combined with the relative position of the component data element within the composite data structure, in error; the count starts with 1 for the simple data element or composite data structure immediately following the segment ID     AK402 Element Position in Segment This is used to indicate the relative position of a simple data element, or the relative position of a composite data structure with the relative position of the component within the composite data structure, in error; in the data segment the count starts with 1 for the simple data element or composite data structure immediately following the segment ID     AK403 Data Element Syntax Error Code Code indicating the error found after syntax edits of a data element 1 Mandatory Data Element Missing 2 Conditional Required Data Element Missing 3 Too Many Data Elements 4 Data Element Too Short 5 Data Element Too Long 6 Invalid Character in Data Element 7 Invalid Code Value 8 Invalid Date 9 Invalid Time 10 Exclusion Condition Violated     AK404 Copy of Bad Data Element This is a copy of the data element in error     060 AK5 AK5 Transaction Set Response Trailer To acknowledge acceptance or rejection and report errors in a transaction set AK5*A~ AK5*R*5~ M AK501 Transaction Set Acknowledgment Code Code indicating accept or reject condition based on the syntax editing of the transaction set A Accepted E Accepted But Errors Were Noted R Rejected     AK502 Transaction Set Syntax Error Code Code indicating error found based on the syntax editing of a transaction set 1 Transaction Set Not Supported 2 Transaction Set Trailer Missing 3 Transaction Set Control Number in Header and Trailer Do Not Match 4 Number of Included Segments Does Not Match Actual Count 5 One or More Segments in Error 6 Missing or Invalid Transaction Set Identifier 7 Missing or Invalid Transaction Set Control Number     070 AK9 Functional Group Response Trailer To acknowledge acceptance or rejection of a functional group and report the number of included transaction sets from the original trailer, the accepted sets, and the received sets in this functional group AK9*A*1*1*1~ AK9*R*1*1*0~ M AK901 Functional Group Acknowledge Code Code indicating accept or reject condition based on the syntax editing of the functional group A Accepted E Accepted, But Errors Were Noted. R Rejected     AK902 Number of Transaction Sets Included Total number of transaction sets included in the functional group or interchange (transmission) group terminated by the trailer containing this data element     AK903 Number of Received Transaction Sets Number of Transaction Sets received     AK904 Number of Accepted Transaction Sets Number of accepted Transaction Sets in a Functional Group     AK905 Functional Group Syntax Error Code Code indicating error found based on the syntax editing of the functional group header and/or trailer 1 Functional Group Not Supported 2 Functional Group Version Not Supported 3 Functional Group Trailer Missing 4 Group Control Number in the Functional Group Header and Trailer Do Not Agree 5 Number of Included Transaction Sets Does Not Match Actual Count 6 Group Control Number Violates Syntax     080 SE Transaction Set Trailer To indicate the end of the transaction set and provide the count of the transmitted segments (including the beginning (ST) and ending (SE) segments) SE*9*223~ M SE01 Number of Included Segments Total number of segments included in a transaction set including ST and SE segments     SE02 Transaction Set Control Number Identifying control number that must be unique within the transaction set functional group assigned by the originator for a transaction set

    Read the article

  • Understanding EDI 997

    - by VishnuTiwariBlog
    Hi Guys, This is for the EDI starter. Below is the complete detail of EDI 997 segment and element details. 997 Functional Acknowledgment Transaction Layout:   No. Seg ID Name Description Example M/O 010 ST Transaction Set Header To indicate the start of a transaction set and to assign a control number ST*997*382823~   M ST01   Code uniquely identifying a Transaction Set   M ST02   Identifying control number that must be unique within the transaction set functional group assigned by the originator for a transaction set   M 020 AK1 Functional Group Response Header To start acknowledgment of a functional group AK1*QM*2459823 M        AK101   Code identifying a group of application related transaction sets IN Invoice Information (810) SH Ship Notice/Manifest (856)     AK102   Assigned number originated and maintained by the sender     030 AK2 Transaction Set Response Header To start acknowledgment of a single transaction set AK2*856*001 M AK201   Code uniquely identifying a Transaction Set 810 Invoice 856 Ship Notice/Manifest   M AK202   Identifying control number that must be unique within the transaction set functional group assigned by the originator for a transaction set   M 040 AK3 Data Segment Note To report errors in a data segment and identify the location of the data segment AK3*TD3*9 O AK301 Segment ID Code Code defining the segment ID of the data segment in error (See Appendix A - Number 77)     AK302 Segment Position in Transaction Set The numerical count position of this data segment from the start of the transaction set: the transaction set header is count position 1     050 AK4 Data Element Note To report errors in a data element or composite data structure and identify the location of the data element AK4*2**2 O AK401 Position in Segment Code indicating the relative position of a simple data element, or the relative position of a composite data structure combined with the relative position of the component data element within the composite data structure, in error; the count starts with 1 for the simple data element or composite data structure immediately following the segment ID     AK402 Element Position in Segment This is used to indicate the relative position of a simple data element, or the relative position of a composite data structure with the relative position of the component within the composite data structure, in error; in the data segment the count starts with 1 for the simple data element or composite data structure immediately following the segment ID     AK403 Data Element Syntax Error Code Code indicating the error found after syntax edits of a data element 1 Mandatory Data Element Missing 2 Conditional Required Data Element Missing 3 Too Many Data Elements 4 Data Element Too Short 5 Data Element Too Long 6 Invalid Character in Data Element 7 Invalid Code Value 8 Invalid Date 9 Invalid Time 10 Exclusion Condition Violated     AK404 Copy of Bad Data Element This is a copy of the data element in error     060 AK5 AK5 Transaction Set Response Trailer To acknowledge acceptance or rejection and report errors in a transaction set AK5*A~ AK5*R*5~ M AK501 Transaction Set Acknowledgment Code Code indicating accept or reject condition based on the syntax editing of the transaction set A Accepted E Accepted But Errors Were Noted R Rejected     AK502 Transaction Set Syntax Error Code Code indicating error found based on the syntax editing of a transaction set 1 Transaction Set Not Supported 2 Transaction Set Trailer Missing 3 Transaction Set Control Number in Header and Trailer Do Not Match 4 Number of Included Segments Does Not Match Actual Count 5 One or More Segments in Error 6 Missing or Invalid Transaction Set Identifier 7 Missing or Invalid Transaction Set Control Number     070 AK9 Functional Group Response Trailer To acknowledge acceptance or rejection of a functional group and report the number of included transaction sets from the original trailer, the accepted sets, and the received sets in this functional group AK9*A*1*1*1~ AK9*R*1*1*0~ M AK901 Functional Group Acknowledge Code Code indicating accept or reject condition based on the syntax editing of the functional group A Accepted E Accepted, But Errors Were Noted. R Rejected     AK902 Number of Transaction Sets Included Total number of transaction sets included in the functional group or interchange (transmission) group terminated by the trailer containing this data element     AK903 Number of Received Transaction Sets Number of Transaction Sets received     AK904 Number of Accepted Transaction Sets Number of accepted Transaction Sets in a Functional Group     AK905 Functional Group Syntax Error Code Code indicating error found based on the syntax editing of the functional group header and/or trailer 1 Functional Group Not Supported 2 Functional Group Version Not Supported 3 Functional Group Trailer Missing 4 Group Control Number in the Functional Group Header and Trailer Do Not Agree 5 Number of Included Transaction Sets Does Not Match Actual Count 6 Group Control Number Violates Syntax     080 SE Transaction Set Trailer To indicate the end of the transaction set and provide the count of the transmitted segments (including the beginning (ST) and ending (SE) segments) SE*9*223~ M SE01 Number of Included Segments Total number of segments included in a transaction set including ST and SE segments     SE02 Transaction Set Control Number Identifying control number that must be unique within the transaction set functional group assigned by the originator for a transaction set

    Read the article

  • jQuery Context Menu Plugin and Capturing Right-Click

    - by Ben Griswold
    I was thrilled to find Cory LaViska’s jQuery Context Menu Plugin a few months ago. In very little time, I was able to integrate the context menu with the jQuery Treeview.  I quickly had a really pretty user interface which took full advantage of limited real estate.  And guess what.  As promised, the plugin worked in Chrome, Safari 3, IE 6/7/8, Firefox 2/3 and Opera 9.5.  Everything was perfect and I shipped to the Integration Environment. One thing kept bugging though – right clicks aren’t the standard in a web environment. Sure, when one hovers over the treeview node, the mouse changed from an arrow to a pointer, but without help text most users will certainly left-click rather than right. As I was already doubting the design decision, we did some Mac testing.  The context menu worked in Firefox but not Safari.  Damn.  That’s when I started digging into the Madness of Javascript Mouse Events.  Don’t tell, but it’s complicated.  About as close as one can get to capture the right-click mouse event on all major browsers on Windows and Mac is this: if (event.which == null) /* IE case */ button= (event.button < 2) ? "LEFT" : ((event.button == 4) ? "MIDDLE" : "RIGHT"); else /* All others */ button= (event.which < 2) ? "LEFT" : ((event.which == 2) ? "MIDDLE" : "RIGHT"); Yikes.  The content menu code was simply checking if event.button == 2.  No problem.  Cory offers a jQuery Right Click Plugin which I’m sure works for windows but probably not the Mac either.  (Please note I haven’t verified this.) Anyway, I decided to address my UI design concern and the Safari Mac issue in one swoop.  I decided to make the context menu respond to any mouse click event.  This didn’t take much – especially after seeing how Bill Beckelman updated the library to recognize the left click. First, I added an AnyClick option to the library defaults: // Any click may trigger the dropdown and that's okay // See Javascript Madness: Mouse Events – http: //unixpapa.com/js/mouse.html if (o.anyClick == undefined) o.anyClick = false; And then I trigger the context menu dropdown based on the following conditional: if (evt.button == 2 || o.anyClick) { Nothing tricky about that, right?  Finally, I updated my menu setup to include the AnyClick value, if true: $('.member').contextMenu({ menu: 'memberContextMenu', anyClick: true },             function (action, el, pos) {                 … Now the context menu works in “all” environments if you left, right or even middle click.  Download jQuery Context Menu Plugin for Any Click *Opera 9.5 has an option to allow scripts to detect right-clicks, but it is disabled by default. Furthermore, Opera still doesn’t allow JavaScript to disable the browser’s default context menu which causes a usability conflict.

    Read the article

  • Can a CNAME be a hostname

    - by pulegium
    This is bit of a theological question, but nonetheless... So, a server has a hostname, let's say the fqdn is hostname.example.com (to be really precise about what I mean, this is the name that is set in /etc/sysconfig/network). The very same server has multiple interfaces on different subnets. Let's say the IPs are 10.0.0.1 and 10.0.1.1. Now the question is, is it theoretically (mind you, this is important, I know that practically it works, but I'm interested in purely academic answer) allowed to have the following setup: interface1.example.com. IN A 10.0.0.1 interface2.example.com. IN A 10.0.1.1 hostname.example.com. IN CNAME interface1.example.com. OR should it rather be: hostname.example.com. IN A 10.0.0.1 interface2.example.com. IN A 10.0.1.1 interface1.example.com. IN CNAME hostname.example.com. I guess it's obvious which one is making more sense from the management/administration POV, but is it technically correct? The argument against the first setup is that a reverse lookup to 10.0.0.1 returns interface1.example.com and not what one might expect (ie the hostname: hostname.example.com), so the forward request and then sub sequential reverse lookups would return different results. Now, as I said, I want a theoretical answer. Links to RFC sections etc, that explicitly allows or disallows use of CNAME name as a hostname. If there's none, that's fine too, I just need to confirm. I failed to find any explicit statements so far, bar this book, where this situation is given as an example and implies that it can be done as one of the ways to avoid MX records pointing to a CNAME.

    Read the article

  • Alter charset and collation in all columns in all tables in MySQL

    - by The Disintegrator
    I need to execute these statements in all tables for all columns. alter table table_name charset=utf8; alter table table_name alter column column_name charset=utf8; Is it possible to automate this in any way inside MySQL? I would prefer to avoid mysqldump Update: Richard Bronosky showed me the way :-) The query I needed to execute in every table: alter table DBname.DBfield CONVERT TO CHARACTER SET utf8 COLLATE utf8_general_ci; Crazy query to generate all other queries: SELECT distinct CONCAT( 'alter table ', TABLE_SCHEMA, '.', TABLE_NAME, ' CONVERT TO CHARACTER SET utf8 COLLATE utf8_general_ci;' ) FROM information_schema.COLUMNS WHERE TABLE_SCHEMA = 'DBname'; I only wanted to execute it in one database. It was taking too long to execute all in one pass. It turned out that it was generating one query per field per table. And only one query per table was necessary (distinct to the rescue). Getting the output on a file was how I realized it. How to generate the output to a file: mysql -B -N --user=user --password=secret -e "SELECT distinct CONCAT( 'alter table ', TABLE_SCHEMA, '.', TABLE_NAME, ' CONVERT TO CHARACTER SET utf8 COLLATE utf8_general_ci;' ) FROM information_schema.COLUMNS WHERE TABLE_SCHEMA = 'DBname';" > alter.sql And finally to execute all the queries: mysql --user=user --password=secret < alter.sql Thanks Richard. You're the man!

    Read the article

  • OWB 11gR2 &ndash; OLAP and Simba

    - by David Allan
    Oracle Warehouse Builder was the first ETL product to provide a single integrated and complete environment for managing enterprise data warehouse solutions that also incorporate multi-dimensional schemas. The OWB 11gR2 release provides Oracle OLAP 11g deployment for multi-dimensional models (in addition to support for prior releases of OLAP). This means users can easily utilize Simba's MDX Provider for Oracle OLAP (see here for details and cost) which allows you to use the powerful and popular ad hoc query and analysis capabilities of Microsoft Excel PivotTables® and PivotCharts® with your Oracle OLAP business intelligence data. The extensions to the dimensional modeling capabilities have been built on established relational concepts, with the option to seamlessly move from a relational deployment model to a multi-dimensional model at the click of a button. This now means that ETL designers can logically model a complete data warehouse solution using one single tool and control the physical implementation of a logical model at deployment time. As a result data warehouse projects that need to provide a multi-dimensional model as part of the overall solution can be designed and implemented faster and more efficiently. Wizards for dimensions and cubes let you quickly build dimensional models and realize either relationally or as an Oracle database OLAP implementation, both 10g and 11g formats are supported based on a configuration option. The wizard provides a good first cut definition and the objects can be further refined in the editor. Both wizards let you choose the implementation, to deploy to OLAP in the database select MOLAP: multidimensional storage. You will then be asked what levels and attributes are to be defined, by default the wizard creates a level bases hierarchy, parent child hierarchies can be defined in the editor. Once the dimension or cube has been designed there are special mapping operators that make it easy to load data into the objects, below we load a constant value for the total level and the other levels from a source table.   Again when the cube is defined using the wizard we can edit the cube and define a number of analytic calculations by using the 'generate calculated measures' option on the measures panel. This lets you very easily add a lot of rich analytic measures to your cube. For example one of the measures is the percentage difference from a year ago which we can see in detail below. You can also add your own custom calculations to leverage the capabilities of the Oracle OLAP option, either by selecting existing template types such as moving averages to defining true custom expressions. The 11g OLAP option now supports percentage based summarization (the amount of data to precompute and store), this is available from the option 'cost based aggregation' in the cube's configuration. Ensure all measure-dimensions level based aggregation is switched off (on the cube-dimension panel) - previously level based aggregation was the only option. The 11g generated code now uses the new unified API as you see below, to generate the code, OWB needs a valid connection to a real schema, this was not needed before 11gR2 and is a new requirement since the OLAP API which OWB uses is not an offline one. Once all of the objects are deployed and the maps executed then we get to the fun stuff! How can we analyze the data? One option which is powerful and at many users' fingertips is using Microsoft Excel PivotTables® and PivotCharts®, which can be used with your Oracle OLAP business intelligence data by utilizing Simba's MDX Provider for Oracle OLAP (see Simba site for details of cost). I'll leave the exotic reporting illustrations to the experts (see Bud's demonstration here), but with Simba's MDX Provider for Oracle OLAP its very simple to easily access the analytics stored in the database (all built and loaded via the OWB 11gR2 release) and get the regular features of Excel at your fingertips such as using the conditional formatting features for example. That's a very quick run through of the OWB 11gR2 with respect to Oracle 11g OLAP integration and the reporting using Simba's MDX Provider for Oracle OLAP. Not a deep-dive in any way but a quick overview to illustrate the design capabilities and integrations possible.

    Read the article

  • Excel Template Teaser

    - by Tim Dexter
    In lieu of some official documentation I'm in the process of putting together some posts on the new 10.1.3.4.1 Excel templates. No more HTML, maskerading as Excel; far more flexibility than Excel Analyzer and no need to write complex XSL templates to create the same output. Multi sheet outputs with macros and embeddable XSL commands are here. Their capabilities are pretty extensive and I have not worked on them for a few years since I helped put them together for EBS FSG users, so Im back on the learning curve. Let me say up front, there is no template builder, its a completely manual process to build them but, the results can be fantastic and provide yet another 'superstar' opportunity for you. The templates can take hierarchical XML data and walk the structure much like an RTF template. They use named cells/ranges and a hidden sheet to provide the rendering engine the hooks to drop the data in. As a taster heres the data and output I worked with on my first effort: <EMPLOYEES> <LIST_G_DEPT> <G_DEPT> <DEPARTMENT_ID>10</DEPARTMENT_ID> <DEPARTMENT_NAME>Administration</DEPARTMENT_NAME> <LIST_G_EMP> <G_EMP> <EMPLOYEE_ID>200</EMPLOYEE_ID> <EMP_NAME>Jennifer Whalen</EMP_NAME> <EMAIL>JWHALEN</EMAIL> <PHONE_NUMBER>515.123.4444</PHONE_NUMBER> <HIRE_DATE>1987-09-17T00:00:00.000-06:00</HIRE_DATE> <SALARY>4400</SALARY> </G_EMP> </LIST_G_EMP> <TOTAL_EMPS>1</TOTAL_EMPS> <TOTAL_SALARY>4400</TOTAL_SALARY> <AVG_SALARY>4400</AVG_SALARY> <MAX_SALARY>4400</MAX_SALARY> <MIN_SALARY>4400</MIN_SALARY> </G_DEPT> ... </LIST_G_DEPT> </EMPLOYEES> Structured XML coming from a data template, check out the data template progression post. I can then generate the following binary XLS file. There are few cool things to notice in this output. DEPARTMENT-EMPLOYEE master detail output. Not easy to do in the Excel analyzer. Date formatting - this is using an Excel function. Remember BIP generates XML dates in the canonical format. I have formatted the other data in the template using native Excel functionality Salary Total - although in the data I have calculated this in the template Conditional formatting - this is handled by Excel based on the incoming data Bursting department data across sheets and using the department name for the sheet name. This alone is worth the wait! there's more, but this is surely enough to whet your appetite. These new templates are already tucked away in EBS R12 under controlled release by the GL team and have now come to the BIEE and standalone releases in the 10.1.3.4.1+ rollup patch. For the rest of you, its going to be a bit of a waiting game for the relevant teams to uptake the latest BIP release. Look out for more soon with some explanation of how they work and how to put them together!

    Read the article

  • How to find out where or if MYSQL5 logs are stored on a machine WHM/Cpanel

    - by moi
    I have a WHM/Cpanel re-seller hosting account on a virtual private server (Linux). I have root access to the machine via SSH I am trying to locate a file that contains information that will help me to determine which users have accessed what db and from which hosts. I would imagine this kind of data is stored in a log file somewhere. The MySQL page says: The general query log - Established client connections and statements received from clients See: http://dev.mysql.com/doc/refman/5.0/en/server-logs.html It also says: By default, all log files are created in the mysqld data directory. So, I am am NOT asking where are the general query log logs stored, (cos I expect I will get answers saying "it depends") Please help me work out: "How can go about finding out where MySQL general query log logs are stored on a linux machine" Couple of things i've already tried: I looked at /etc/my.cnf it was a tiny file that only contained the following info: [mysqld] skip-bdb skip-innodb set-variable = max_connections=500 safe-show-database ~ ~ I have looked in: /var/lib/mysql/ But I could not see any log-like file names in that directory. Any clues on this would be most welcome.

    Read the article

  • Puppet classes out of order despite explicit arrow operator use

    - by Alexandr Kurilin
    Absolute puppet beginner here. I'm experiencing an interesting behavior with my puppet manifests and would love to know what I'm doing wrong. Let's for example say I'm configuring the instance with the following ordered classes: class { 'update_system': } -> class { 'facter': } -> class { 'user_sshkey': user => 'ubuntu', type => 'rsa', } -> class { 'tmux': user => 'ubuntu', } -> class { 'vim': user => 'ubuntu', } -> class { 'bashrc': user => 'ubuntu' } -> notify {"Configuring DB role":} -> class { 'postgresql': } when I run the manifest with the --debug switch, by looking at notify statements I can see the classes be executed in the following order: 1. update_system starts 2. a cron type inside of postgresql class (the very **last** class in that ordered list above) is executed 3. postgres::install starts 5. facter starts installing 6. postgres::configure and postgres::service start 7. the vim class is executed 8. "Configuring DB role" notification is made. All the way at the end here. etc Basically the thing is all over the place, the order doesn't seem to follow the arrow operators in any way. I'm guessing I'm missing something here that would force the classes to execute one at a time. Could it be that I'm missing some kind of anchor pattern here? Invalid containment?

    Read the article

  • linked-server sql - access

    - by user22121
    Hi, I have a SQL server 2000 and an Access database mdb connected by Linked server on the other hand I have a program in c # that updates data in a SQL table (Users) based data base access. When running my program returns the following error message: OLE DB provider 'Microsoft.Jet.OLEDB.4.0' reported an error. Authentication failed. [OLE / DB provider returned message: Can not start the application. Missing information file of the working group or is opened exclusively by another user.] OLE DB error trace [OLE / DB Provider 'Microsoft.Jet.OLEDB.4.0' IDBInitialize:: Initialize returned 0x80040E4D: Authentication failed.] . Both the program, the sql server and database access are on a remote server. On the local server the problem was solved by running the following: "sp_addlinkedsrvlogin 'ActSC', 'false', NULL, 'admin', NULL". Try on the remote server the next, without result: "sp_addlinkedsrvlogin 'ActSC', true, null, 'user', 'pass'". On the remote server and from the "Query Analyzer" sql update statements are working correctly. Can you think of what may be the problem? Thanks!

    Read the article

  • mysql startup, shtudown and logging on osx

    - by Joelio
    Hi, I am trying to troubleshoot some mysql problems (I have a table I cant seem to delete or drop, it hangs forever) I have 10.5.8 osx, I dont remember how/if I installed mysql, here is what I know: it automatically starts on boot the process looks like this: /usr/local/mysql/libexec/mysqld --basedir=/usr/local/mysql --datadir=/usr/local/mysql/var --pid-file=/usr/local/mysql/var/Joels-New-Pro.local.pid _mysql 96 0.0 0.0 75884 684 ?? Ss Sat06PM 0:00.02 /bin/sh /usr/local/mysql/bin/mysqld_safe when I run: /usr/local/mysql/libexec/mysqld --verbose --help it says: /usr/local/mysql/libexec/mysqld Ver 5.0.45 for apple-darwin9.1.0 on i686 (Source distribution) it seems to use my.cnf from /etc/my.cnf Now here are my questions: I dont see anything in the startupitems that remotely looks like mysql ls /Library/StartupItems/ BRESINKx86Monitoring ChmodBPF HP IO HP Trap Monitor Parallels ParallelsTransporter 1.) So how does it startup automatically? 2.) How do I start & stop this type of installation? Also, looking at the config, the logs have no values: /usr/local/mysql/libexec/mysqld --verbose --help|grep '^log' log (No default value) log-bin (No default value) log-bin-index (No default value) log-bin-trust-function-creators FALSE log-bin-trust-routine-creators FALSE log-error log-isam myisam.log log-queries-not-using-indexes FALSE log-short-format FALSE log-slave-updates FALSE log-slow-admin-statements FALSE log-slow-queries (No default value) log-tc tc.log log-tc-size 24576 log-update (No default value) log-warnings 1 3.) Does that mean there is no logging enabled in mysetup? thanks in advance! Joel

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • what port should I open for mysql master-master replication?

    - by Vanddel
    I have two servers running php5-fpm and a load balancer running nginx, the three servers share /var/www/drupal using nfs. nfs is working correctly. I replicated the two servers' database using mysql master master replication. everything was working fine till I added my iptables rules. In my iptables script, I first drop all chains then I accept the ones I want, other than that there are no other drop statements. I opened port 3306 for mysql replication like this : (the rule is on both servers ) iptables -A INPUT -p tcp -s $ip_Of_Other_Server --dport 3306 -j ACCEPT iptables -A OUTPUT -p tcp -d $ip_Of_Other_Server --sport 3306 -j ACCEPT The problem is, when I run both servers and I try to log in using my account on drupal it doesn't log in although I find a successful log in attempt in drupal logs. When I run only one server of them I can log in normally. when I allow everything in my iptables rules it works normally. I believe there's some port I need to open using iptables for the replication to work correctly but I can't find which one to open.

    Read the article

  • How do I fix a corrupt calendar cache?

    - by Blacklight Shining
    I was tailing /var/log/system.log and noticed a sudden wall of text. Looking closer, I saw it was an error CalendarAgent got while trying to save something: Nov 18 11:42:45 rainbow-dash.local CalendarAgent[12321]: CoreData: error: (11) Fatal error. The database at /Users/blackl/Library/Calendars/Calendar Cache is corrupted. SQLite error code:11, 'database disk image is malformed' Nov 18 11:42:45 rainbow-dash.local CalendarAgent[12321]: Core Data: annotation: -executeRequest: encountered exception = Fatal error. The database at /Users/blackl/Library/Calendars/Calendar Cache is corrupted. SQLite error code:11, 'database disk image is malformed' with userInfo = { NSFilePath = "/Users/blackl/Library/Calendars/Calendar Cache"; NSSQLiteErrorDomain = 11; } 2 messages repeated several times Nov 18 11:42:49 rainbow-dash.local CalendarAgent[12321]: [com.apple.calendar.store.log.subscription] [WARNING: CalSubscriptionSession :: persistError :: save failed] This entire sequence is repeated many times throughout the log. file said the file in question was a SQLite 3.x database, so I did a bit of searching and came up with a way to check those. blackl% cp -i ~/Library/Calendars/Calendar\ Cache /tmp blackl% sqlite3 /tmp/Calendar\ Cache SQLite version 3.7.12 2012-04-03 19:43:07 Enter ".help" for instructions Enter SQL statements terminated with a ";" sqlite> pragma integrity_check ; *** in database main *** Main freelist: Bad ptr map entry key=863 expected=(2,0) got=(5,21) On page 21 at right child: 2nd reference to page 863 This is followed by a few dozen lines like these: rowid <number> missing from index <name> and then: wrong # of entries in index <name> I'm at a bit of a loss as to what to do now—I couldn't find anything on how to fix the errors that I found. Also, it would probably be a good idea to disable Calendar Agent so it doesn't try to use the database while it's being fixed (that's why I copied it to /tmp before running sqlite3 on it.) How do I disable CalendarAgent and fix its cache?

    Read the article

< Previous Page | 103 104 105 106 107 108 109 110 111 112 113 114  | Next Page >