Search Results

Search found 27946 results on 1118 pages for 'output buffer empty'.

Page 108/1118 | < Previous Page | 104 105 106 107 108 109 110 111 112 113 114 115  | Next Page >

  • Unexpected output on initializing array by using both `element-by-element` & `designated` technique

    - by haccks
    C99 provides a feature to initialize arrays by using both element-by-element & designated method together as: int a[] = {2,1,[3] = 5,[5] = 9,6,[8] = 4}; On running the code: #include <stdio.h> int main() { int a[] = {2,1,[3] = 5,[0] = 9,4,[6] = 25}; for(int i = 0; i < sizeof(a)/sizeof(a[0]); i++) printf("%d ",a[i]); return 0; } (Note that Element 0 is initialized to 2 and then again initialised by designator [0] to 9) I was expecting that element 0(which is 2) will be replaced by 9(as designator [0] = 9) and hence o/p will become 9 1 0 5 4 0 25 Unfortunately I was wrong as o/p came; 9 4 0 5 0 0 25 Any explanation for unexpected o/p?

    Read the article

  • Weird output as the numbers get bigger in Fibonacci sequence

    - by Jon
    I noticed in my fibonacci sequence that I'm getting negative numbers after a certain point. Does this have to do with the limited range of "int"? or is there something wrong with my code? Here is the code: using std::cout; int main() { int n = 50, f1 = 0, f2 = 1, fn = 0, i = 0; cout << "0 "; for (i = 0; i < n; i++) { fn = f1 + f2; f2 = f1; f1 = fn; cout << fn << " "; }

    Read the article

  • delay loop output in C++

    - by itachisxeyes
    I have a while loop that runs in a do while loop. I need the while loop to run exactly every second no faster no slower. but i'm not sure how i would do that. this is the loop, off in its own function. I have heard of the sleep() function but I also have heard that it is not very accurate. int min5() { int second = 00; int minute = 0; const int ZERO = 00; do{ while (second <= 59){ if(minute == 5) break; second += 1; if(second == 60) minute += 1; if(second == 60) second = ZERO; if(second < 60) cout << "Current Time> "<< minute <<" : "<< second <<" \n"; } } while (minute <= 5); }

    Read the article

  • Do these methods have same output?

    - by devrimbaris
    protected synchronized boolean isTimeoutOccured(Duration timeoutDuration) { DateTime now = new DateTime(); if (timeoutOccured == false) { if (new Duration(requestTime.getMillis(), now.getMillis()).compareTo(timeoutDuration) > 0) { timeoutOccured = true; } } return timeoutOccured; } protected boolean isTimeoutOccured2(Duration timeoutDuration) { return atomicTimeOut.compareAndSet(false, new Duration(requestTime.getMillis(), new DateTime().getMillis()).compareTo(timeoutDuration) > 0); }

    Read the article

  • How to get jquery to append output immediately after each ajax call in a loop

    - by david_nash
    I'd like to append to an element and have it update immediately. console.log() shows the data as expected but append() does nothing until the for loop has finished and then writes it all at once. index.html: ... <body> <p>Page loaded.</p> <p>Data:</p> <div id="Data"></div> </body> test.js: $(document).ready(function() { for( var i=0; i<5; i++ ) { $.ajax({ async: false, url: 'server.php', success: function(r) { console.log(r); //this works $('#Data').append(r); //this happens all at once } }); } }); server.php: <?php sleep(1); echo time()."<br />"; ?> The page doesn't even render until after the for loop is complete. Shouldn't it at least render the HTML first before running the javascript?

    Read the article

  • Essbase BSO Data Fragmentation

    - by Ann Donahue
    Essbase BSO Data Fragmentation Data fragmentation naturally occurs in Essbase Block Storage (BSO) databases where there are a lot of end user data updates, incremental data loads, many lock and send, and/or many calculations executed.  If an Essbase database starts to experience performance slow-downs, this is an indication that there may be too much fragmentation.  See Chapter 54 Improving Essbase Performance in the Essbase DBA Guide for more details on measuring and eliminating fragmentation: http://docs.oracle.com/cd/E17236_01/epm.1112/esb_dbag/daprcset.html Fragmentation is likely to occur in the following situations: Read/write databases that users are constantly updating data Databases that execute calculations around the clock Databases that frequently update and recalculate dense members Data loads that are poorly designed Databases that contain a significant number of Dynamic Calc and Store members Databases that use an isolation level of uncommitted access with commit block set to zero There are two types of data block fragmentation Free space tracking, which is measured using the Average Fragmentation Quotient statistic. Block order on disk, which is measured using the Average Cluster Ratio statistic. Average Fragmentation Quotient The Average Fragmentation Quotient ratio measures free space in a given database.  As you update and calculate data, empty spaces occur when a block can no longer fit in its original space and will either append at the end of the file or fit in another empty space that is large enough.  These empty spaces take up space in the .PAG files.  The higher the number the more empty spaces you have, therefore, the bigger the .PAG file and the longer it takes to traverse through the .PAG file to get to a particular record.  An Average Fragmentation Quotient value of 3.174765 means the database is 3% fragmented with free space. Average Cluster Ratio Average Cluster Ratio describes the order the blocks actually exist in the database. An Average Cluster Ratio number of 1 means all the blocks are ordered in the correct sequence in the order of the Outline.  As you load data and calculate data blocks, the sequence can start to be out of order.  This is because when you write to a block it may not be able to place back in the exact same spot in the database that it existed before.  The lower this number the more out of order it becomes and the more it affects performance.  An Average Cluster Ratio value of 1 means no fragmentation.  Any value lower than 1 i.e. 0.01032828 means the data blocks are getting further out of order from the outline order. Eliminating Data Block Fragmentation Both types of data block fragmentation can be removed by doing a dense restructure or export/clear/import of the data.  There are two types of dense restructure: 1. Implicit Restructures Implicit dense restructure happens when outline changes are done using EAS Outline Editor or Dimension Build. Essbase restructures create new .PAG files restructuring the data blocks in the .PAG files. When Essbase restructures the data blocks, it regenerates the index automatically so that index entries point to the new data blocks. Empty blocks are NOT removed with implicit restructures. 2. Explicit Restructures Explicit dense restructure happens when a manual initiation of the database restructure is executed. An explicit dense restructure is a full restructure which comprises of a dense restructure as outlined above plus the removal of empty blocks Empty Blocks vs. Fragmentation The existence of empty blocks is not considered fragmentation.  Empty blocks can be created through calc scripts or formulas.  An empty block will add to an existing database block count and will be included in the block counts of the database properties.  There are no statistics for empty blocks.  The only way to determine if empty blocks exist in an Essbase database is to record your current block count, export the entire database, clear the database then import the exported data.  If the block count decreased, the difference is the number of empty blocks that had existed in the database.

    Read the article

  • How can I get the output of a command terminated by a alarm() call in Perl?

    - by rockyurock
    Case 1 If I run below command i.e iperf in UL only, then i am able to capture the o/p in txt file @output = readpipe("iperf.exe -u -c 127.0.0.1 -p 5001 -b 3600k -t 10 -i 1"); open FILE, ">Misplay_DL.txt" or die $!; print FILE @output; close FILE; Case 2 When I run iperf in DL mode , as we know server will start listening in cont. mode like below even after getting data from client (Here i am using server and client on LAN) @output = system("iperf.exe -u -s -p 5001 -i 1"); on server side: D:\_IOT_SESSION_RELATED\SEEM_ELEMESNTS_AT_COMM_PORT_CONF\Tput_Related_Tools\AUTO MATION_APP_\AUTOMATION_UTILITYiperf.exe -u -s -p 5001 ------------------------------------------------------------ Server listening on UDP port 5001 Receiving 1470 byte datagrams UDP buffer size: 8.00 KByte (default) ------------------------------------------------------------ [1896] local 192.168.5.101 port 5001 connected with 192.168.5.101 port 4878 [ ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams [1896] 0.0- 2.0 sec 881 KBytes 3.58 Mbits/sec 0.000 ms 0/ 614 (0%) command prompt does not appear , process is contd... on client side: D:\_IOT_SESSION_RELATED\SEEM_ELEMESNTS_AT_COMM_PORT_CONF\Tput_Related_Tools\AUTO MATION_APP_\AUTOMATION_UTILITYiperf.exe -u -c 192.168.5.101 -p 5001 -b 3600k -t 2 -i 1 ------------------------------------------------------------ Client connecting to 192.168.5.101, UDP port 5001 Sending 1470 byte datagrams UDP buffer size: 8.00 KByte (default) ------------------------------------------------------------ [1880] local 192.168.5.101 port 4878 connected with 192.168.5.101 port 5001 [ ID] Interval Transfer Bandwidth [1880] 0.0- 1.0 sec 441 KBytes 3.61 Mbits/sec [1880] 1.0- 2.0 sec 439 KBytes 3.60 Mbits/sec [1880] 0.0- 2.0 sec 881 KBytes 3.58 Mbits/sec [1880] Server Report: [1880] 0.0- 2.0 sec 881 KBytes 3.58 Mbits/sec 0.000 ms 0/ 614 (0%) [1880] Sent 614 datagrams D:\_IOT_SESSION_RELATED\SEEM_ELEMESNTS_AT_COMM_PORT_CONF\Tput_Related_Tools\AUTO MATION_APP_\AUTOMATION_UTILITY so with this as server is cont. listening and never terminates so can't take output of server side to a txt file as it is going to the next command itself to create a txt file so i adopted the alarm() function to terminate the server side (iperf.exe -u -s -p 5001) commands after it received all data from the client. could anybody suggest me the way.. Here is my code: #! /usr/bin/perl -w my $command = "iperf.exe -u -s -p 5001"; my @output; eval { local $SIG{ALRM} = sub { die "Timeout\n" }; alarm 20; #@output = `$command`; #my @output = readpipe("iperf.exe -u -s -p 5001"); #my @output = exec("iperf.exe -u -s -p 5001"); my @output = system("iperf.exe -u -s -p 5001"); alarm 0; }; if ($@) { warn "$command timed out.\n"; } else { print "$command successful. Output was:\n", @output; } open FILE, ">display.txt" or die $!; print FILE @output_1; close FILE; i know that with system command i cannot capture the o/p to a txt file but i tried with readpipe() and exec() calls also but in vain... could some one please take a look and let me know why the iperf.exe -u -s -p 5001 is not terminating even after the alarm call and to take the out put to a txt file

    Read the article

  • How to Get The Output Of a command terminated by a alarm() call.

    - by rockyurock
    Case 1 If I run below command i.e iperf in UL only, then i am able to capture the o/p in txt file @output = readpipe("iperf.exe -u -c 127.0.0.1 -p 5001 -b 3600k -t 10 -i 1"); open FILE, ">Misplay_DL.txt" or die $!; print FILE @output; close FILE; Case 2 When I run iperf in DL mode , as we know server will start listening in cont. mode like below even after getting data from client (Here i am using server and client on LAN) @output = system("iperf.exe -u -s -p 5001 -i 1"); on server side: D:\_IOT_SESSION_RELATED\SEEM_ELEMESNTS_AT_COMM_PORT_CONF\Tput_Related_Tools\AUTO MATION_APP_\AUTOMATION_UTILITYiperf.exe -u -s -p 5001 ------------------------------------------------------------ Server listening on UDP port 5001 Receiving 1470 byte datagrams UDP buffer size: 8.00 KByte (default) ------------------------------------------------------------ [1896] local 192.168.5.101 port 5001 connected with 192.168.5.101 port 4878 [ ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams [1896] 0.0- 2.0 sec 881 KBytes 3.58 Mbits/sec 0.000 ms 0/ 614 (0%) command prompt does not appear , process is contd... on client side: D:\_IOT_SESSION_RELATED\SEEM_ELEMESNTS_AT_COMM_PORT_CONF\Tput_Related_Tools\AUTO MATION_APP_\AUTOMATION_UTILITYiperf.exe -u -c 192.168.5.101 -p 5001 -b 3600k -t 2 -i 1 ------------------------------------------------------------ Client connecting to 192.168.5.101, UDP port 5001 Sending 1470 byte datagrams UDP buffer size: 8.00 KByte (default) ------------------------------------------------------------ [1880] local 192.168.5.101 port 4878 connected with 192.168.5.101 port 5001 [ ID] Interval Transfer Bandwidth [1880] 0.0- 1.0 sec 441 KBytes 3.61 Mbits/sec [1880] 1.0- 2.0 sec 439 KBytes 3.60 Mbits/sec [1880] 0.0- 2.0 sec 881 KBytes 3.58 Mbits/sec [1880] Server Report: [1880] 0.0- 2.0 sec 881 KBytes 3.58 Mbits/sec 0.000 ms 0/ 614 (0%) [1880] Sent 614 datagrams D:\_IOT_SESSION_RELATED\SEEM_ELEMESNTS_AT_COMM_PORT_CONF\Tput_Related_Tools\AUTO MATION_APP_\AUTOMATION_UTILITY so with this as server is cont. listening and never terminates so can't take output of server side to a txt file as it is going to the next command itself to create a txt file so i adopted the alarm() function to terminate the server side (iperf.exe -u -s -p 5001) commands after it received all data from the client. could anybody suggest me the way.. Here is my code: #! /usr/bin/perl -w my $command = "iperf.exe -u -s -p 5001"; my @output; eval { local $SIG{ALRM} = sub { die "Timeout\n" }; alarm 20; #@output = `$command`; #my @output = readpipe("iperf.exe -u -s -p 5001"); #my @output = exec("iperf.exe -u -s -p 5001"); my @output = system("iperf.exe -u -s -p 5001"); alarm 0; }; if ($@) { warn "$command timed out.\n"; } else { print "$command successful. Output was:\n", @output; } open FILE, ">display.txt" or die $!; print FILE @output_1; close FILE; i know that with system command i cannot capture the o/p to a txt file but i tried with readpipe() and exec() calls also but in vain... could some one please take a look and let me know why the iperf.exe -u -s -p 5001 is not terminating even after the alarm call and to take the out put to a txt file

    Read the article

  • Stuck at being unable to print a substring no more than 4679 characters

    - by Newcoder
    I have a program that does string manipulation on very large strings (around 100K). The first step in my program is to cleanup the input string so that it only contains certain characters. Here is my method for this cleanup: public static String analyzeString (String input) { String output = null; output = input.replaceAll("[-+.^:,]",""); output = output.replaceAll("(\\r|\\n)", ""); output = output.toUpperCase(); output = output.replaceAll("[^XYZ]", ""); return output; } When i print my 'input' string of length 97498, it prints successfully. My output string after cleanup is of length 94788. I can print the size using output.length() but when I try to print this in Eclipse, output is empty and i can see in eclipse output console header. Since this is not my final program, so I ignored this and proceeded to next method that does pattern matching on this 'cleaned-up' string. Here is code for pattern matching: public static List<Integer> getIntervals(String input, String regex) { List<Integer> output = new ArrayList<Integer> (); // Do pattern matching Pattern p1 = Pattern.compile(regex); Matcher m1 = p1.matcher(input); // If match found while (m1.find()) { output.add(m1.start()); output.add(m1.end()); } return output; } Based on this program, i identify the start and end intervals of my pattern match as 12351 and 87314. I tried to print this match as output.substring(12351, 87314) and only get blank output. Numerous hit and trial runs resulted in the conclusion that biggest substring that i can print is of length 4679. If i try 4680, i again get blank input. My confusion is that if i was able to print original string (97498) length, why i couldnt print the cleaned-up string (length 94788) or the substring (length 4679). Is it due to regular expression implementation which may be causing some memory issues and my system is not able to handle that? I have 4GB installed memory.

    Read the article

  • Standard term for a thread I/O reorder buffer?

    - by Crashworks
    I have a case where many threads all concurrently generate data that is ultimately written to one long, serial file. I need to somehow serialize these writes so that the file gets written in the right order. ie, I have an input queue of 2048 jobs j0..jn, each of which produces a chunk of data oi. The jobs run in parallel on, say, eight threads, but the output blocks have to appear in the file in the same order as the corresponding input blocks — the output file has to be in the order o0o1o2... The solution to this is pretty self evident: I need some kind of buffer that accumulates and writes the output blocks in the correct order, similar to a CPU reorder buffer in Tomasulo's algorithm, or to the way that TCP reassembles out-of-order packets before passing them to the application layer. Before I go code it, I'd like to do a quick literature search to see if there are any papers that have solved this problem in a particularly clever or efficient way, since I have severe realtime and memory constraints. I can't seem to find any papers describing this though; a Scholar search on every permutation of [threads, concurrent, reorder buffer, reassembly, io, serialize] hasn't yielded anything useful. I feel like I must just not be searching the right terms. Is there a common academic name or keyword for this kind of pattern that I can search on?

    Read the article

  • Why don't I need to bind my vertex buffer object before calling glDrawArrays?

    - by valmo
    I'm a bit confused why this still renders. I thought you need to bind a vertex buffer object so that glDrawArrays knows which vertex buffer to use. Here is my initialisation code.. // Create and bind vertex array to store vertex attribute states. glGenVertexArraysOES(NUM_VERTEX_ARRAYS, &m_vertexArray); glBindVertexArrayOES(m_vertexArray); // Create and bind vertex buffer to store vertex data. glGenBuffers(NUM_VERTEX_BUFFERS, &m_vertexBuffer); glBindBuffer(GL_ARRAY_BUFFER, m_vertexBuffer); glBufferData(GL_ARRAY_BUFFER, sizeof(Vertex) * 36, &m_vertices[0], GL_STATIC_DRAW); glEnableVertexAttribArray(VertexAttribPosition); glVertexAttribPointer(VertexAttribPosition, 3, GL_FLOAT, GL_FALSE, 24, BUFFER_OFFSET(0)); glEnableVertexAttribArray(VertexAttribNormal); glVertexAttribPointer(VertexAttribNormal, 3, GL_FLOAT, GL_FALSE, 24, BUFFER_OFFSET(12)); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindVertexArrayOES(0); Here is my render code. I'm confused why glDrawArrays still works when I bind 0 to GL_ARRAY_BUFFER. glBindVertexArrayOES(m_vertexArray); glBindBuffer(GL_ARRAY_BUFFER, 0); glDrawArrays(GL_TRIANGLES, 0, 36); glBindVertexArrayOES(0);

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • How do I reconfigure my GLES frame buffer after a rotation?

    - by Panda Pajama
    I am implementing interface rotation for my GLES based game for iOS, written in Xamarin.iOS with OpenTK. I am detecting the rotation by overriding WillRotate, in my UIViewController, and I correctly re-setup all of my projection matrices. However, when drawing a sprite, the image looks a bit blurrier on the landscape version compared to the portrait version, as you can see in the following closeups magnified 10x. Portrait (before rotating) Landscape (after rotating) In both cases, I'm using the same texture with the same sampler, the same shader, and the same GL state. I just changed the order of the parameters in the projection matrix, so the resulting sizes should be exactly the same pixelwise. Since this could be thought of as a window resize, I suppose that the framebuffer has to be recreated to the new size. When working on desktop apps on Direct3D11 (SharpDX), I would have to call swapChain.ResizeBuffers() to do this. I have tried setting AutoResize = true in my iPhoneOSGameView, but then the framebuffer gets clipped as I rotate the interface, and then everything disappears when rotating the interface again. I'm not doing anything strange, my framebuffer initialization is pretty vanilla: int scaling = (int)UIScreen.MainScreen.Scale; DeviceWidth = (int)UIScreen.MainScreen.Bounds.Width * scaling; DeviceHeight = (int)UIScreen.MainScreen.Bounds.Height * scaling; Size = new System.Drawing.Size((int)(DeviceWidth), (int)(DeviceHeight)); Bounds = new System.Drawing.RectangleF(0, 0, DeviceWidth, DeviceHeight); Frame = new System.Drawing.RectangleF(0, 0, DeviceWidth, DeviceHeight); ContextRenderingApi = EAGLRenderingAPI.OpenGLES2; AutoResize = true; LayerRetainsBacking = true; LayerColorFormat = EAGLColorFormat.RGBA8; I get inconsistent results when changing Size, Bounds and Frame on my CreateFrameBuffer override, but since the documentation is so incomplete (it has nothing on Bounds and Frame), I have resorted to randomly changing stuff here and there without really knowing what is going on. There is a similar question which has no answers. However, I don't know if they're experiencing the same problem as I am. Is my supposition that recreating the framebuffer is necessary, correct? If so, does anybody know how to do it correctly in OpenTK for Xamarin.iOS?

    Read the article

  • Why is my shadowmap all white?

    - by Berend
    I was trying out a shadowmap. But all my shadow is white. I think there is some problem with my homogeneous component. Can anybody help me? The rest of my code is written in xna Here is the hlsl code I used float4x4 xWorld; float4x4 xView; float4x4 xProjection; struct VertexToPixel { float4 Position : POSITION; float4 ScreenPos : TEXCOORD1; float Depth : TEXCOORD2; }; struct PixelToFrame { float4 Color : COLOR0; }; //------- Technique: ShadowMap -------- VertexToPixel MyVertexShader(float4 inPos: POSITION0, float3 inNormal: NORMAL0) { VertexToPixel Output = (VertexToPixel)0; float4x4 preViewProjection = mul(xView, xProjection); float4x4 preWorldViewProjection = mul(xWorld, preViewProjection); Output.Position =mul(inPos, mul(xWorld, preViewProjection)); Output.Depth = Output.Position.z / Output.Position.w; Output.ScreenPos = Output.Position; return Output; } float4 MyPixelShader(VertexToPixel PSIn) : COLOR0 { PixelToFrame Output = (PixelToFrame)0; Output.Color = PSIn.ScreenPos.z/PSIn.ScreenPos.w; return Output.Color; } technique ShadowMap { pass Pass0 { VertexShader = compile vs_2_0 MyVertexShader(); PixelShader = compile ps_2_0 MyPixelShader(); } }

    Read the article

  • How do I fix the HDMI/DVI display output with Intel HD 4000 Graphics in 12.04?

    - by YumYumYum
    I have an Alienware Dell PC with Intel HD 4000 Graphics (Ivy Bridge) as verified by the output of lspci | grep VGA posted below. 00:02.0 VGA compatible controller: Intel Corporation Ivy Bridge Graphics Controller (rev 09) The PC only has HDMI and DVI display outputs and using the HDMI output I am only being offered abnormal resolutions. As you can see below it does not even list HDMI1 or DVI1 but just only a fallback. $ export DISPLAY=:0.0 && xrandr xrandr: Failed to get size of gamma for output default Screen 0: minimum 640 x 480, current 1360 x 768, maximum 1360 x 768 default connected 1360x768+0+0 0mm x 0mm 1360x768 0.0* 1024x768 0.0 800x600 0.0 640x480 0.0 How can I fix this? Does it just need to be configured differently or will I need to use a newer kernel (as Intel Graphics drivers are included in the kernel)? Follow up: kernel to latest Step 1: Go to: http://kernel.ubuntu.com/~kernel-ppa/mainline/ Go to last: http://kernel.ubuntu.com/~kernel-ppa/mainline/v3.6-rc3-quantal/ Download: http://kernel.ubuntu.com/~kernel-ppa/mainline/v3.6-rc3-quantal/linux-headers-3.6.0-030600rc3-generic_3.6.0-030600rc3.201208221735_amd64.deb http://kernel.ubuntu.com/~kernel-ppa/mainline/v3.6-rc3-quantal/linux-headers-3.6.0-030600rc3_3.6.0-030600rc3.201208221735_all.deb http://kernel.ubuntu.com/~kernel-ppa/mainline/v3.6-rc3-quantal/linux-image-3.6.0-030600rc3-generic_3.6.0-030600rc3.201208221735_amd64.deb http://kernel.ubuntu.com/~kernel-ppa/mainline/v3.6-rc3-quantal/linux-image-extra-3.6.0-030600rc3-generic_3.6.0-030600rc3.201208221735_amd64.deb Step 2: sudo dpkg -i linux*.deb Step 3: reboot which shows that i have Ubuntu 12.04 with latest $ uname -a Linux sun-Alienware-X51 3.6.0-030600rc3-generic #201208221735 SMP Wed Aug 22 21:36:32 UTC 2012 x86_64 x86_64 x86_64 GNU/Linux But still same problem remain.

    Read the article

  • PHP, when to use iterators, how to buffer results?

    - by Jon L.
    When is it best to use Iterators in PHP, and how can they be implemented to best avoid loading all objects into memory simultaneously? Do any constructs exist in PHP so that we can queue up results of an operation for use with an Iterator, while again avoiding loading all objects into memory simultaneously? An example would be a curl HTTP request against a REST server In the case of an HTTP request that returns all results at once (a la curl), would we be better off to go with streaming results, and if so, are there any limitations or pitfalls to be aware of? If using streaming, is it better to replace curl with a PHP native stream/socket? My intention is to implement Iterators for a REST client, and separately a document ORM that I'm maintaining, but only if I can do so while gaining benefits from reduced memory usage, increased performance, etc. Thanks in advance for any responses :-)

    Read the article

  • How I can recover files when the folder shows empty but the files are not deleted?

    - by Borror0
    Yesterday, my laptop caught a virus which caused massive damage. Since them, I have been trying to recover important files before reformatting my computer, a task the virus has not made easy. Restoration points predating the attack have been deleted. Most of my folders show empty. My Start menu is essentially empty, with the exception of Trillian and Mirror's Edge. The same goes for my Desktop, which only has programs which were installed after the attack. Searching for files though my computer is pretty much useless, as it only rarely brings up anything. I suspect most of my files have not been deleted. While my folders show empty, uTorrent still does display them and I can open them from here. Unfortunately, when I select Open Containing Folder, the folder still shows as completely empty even if I'm currently watching a video from that very folder. Further adding evidence to the not-deleted, just-missing theory, the data recovery software I'm using (Restoration) cannot find only find an handful of the missing files. If they were deleted, I could do a forensic recovery to get them back but since they're probably still somewhere on my computer, just out out of my reach, I can't find them. Under those circumstances, is there a way I can recover those files?

    Read the article

  • How can I have sound output before logging in?

    - by ??O?????
    I have a machine (Ubuntu 11.10) that I would like to have it play audio (typically through an amplifier), but the machine should be headless (where its final placement will be). I will control what is played through ssh. However, there is no sound output until I login to the graphical console. At first I thought it was an issue with pulseaudio, so I promptly removed it to use the default ALSA, but I have the same issues. I ssh to the machine, I run alsamixer and get the typical cannot open mixer: No such file or directory error (while /proc/asound/cards display correctly what I have). If I login on the graphical console, alsamixer works fine in the ssh session, and I have sound output. I logout, and then alsamixer stops working. So something runs (Xsession perhaps?) when I login that enables sound output, and gets disabled when I logout. I remember in older versions of Ubuntu, there was a drum roll when the machine showed the login screen; that is not the case anymore. Perhaps if I somehow can enable that drum roll, I'll have fixed my problem too. In any case, the question I ask is what the title says.

    Read the article

  • Should I create topics in a forum I'm about to launch so that new users won't feel it is "empty"?

    - by janoChen
    I'm about to launch a discussion forum about Taiwan. I'm really trying to figure out how to deal with the first visitors. I've thought about the following so far: Invite few friends to start some discussions and give some replies. Create discussions myself and reply them myself (with another account). I don't want the first visitors to feel like the site is empty. Maybe I'm missing something. Any suggestions?

    Read the article

  • What is the primary use of Vertex Buffer Objects?

    - by sensae
    From what I've read, it seems VBOs are purely for performance. I'm working on a very rudimentary learning project in lwjgl and I'm just trying to figure out what more advanced features of the library I should be delving into, and what their use is. My understanding is that VBOs allow a person to keep vertexes in VRAM while they aren't currently being drawn in a scene. In my case, I'm just drawing quads and performance probably isn't a concern at all, but I'm trying to piece together what's happening under the hood. If I'm drawing quads directly, I'm drawing from the CPU memory, correct? Also, if I'm not doing any checks for visibility, does that mean I'm rendering absolutely everything in the "scene", regardless of whether its in view? Are VBOs a way to store objects and only render what's needed?

    Read the article

  • Is "Turn Off Windows write-cache buffer flushing" safe on a laptop?

    - by Earlz
    my laptop's internal harddrive is a bit slow. I looked at the drive properties and there are two options: [X] Enable write caching on the device [ ] Turn off windows write-cache buffer flushing on the device As you can see, the first option is checked already, but the second option isn't. I've heard the second option can really speed things up, but it also sounds very risky. Is it safe to do on a laptop that rarely is off of AC power? (but still has battery as well)

    Read the article

< Previous Page | 104 105 106 107 108 109 110 111 112 113 114 115  | Next Page >