Search Results

Search found 2093 results on 84 pages for 'logical'.

Page 11/84 | < Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >

  • How can I recover XFS partitions from a formatted HD?

    - by giuprivite
    I deleted the partition table of my HD. I wanted to format another one, but by mistake, I formatted the wrong one. Then I also created some new partition on it. Now I would like, if possible, to recover my old data. The old configuration was this: A primary NTFS partition with Windows, and a secondary partition with four logical partitions: a swap and three XFS partitions (two for Ubuntu and OpenSuSE, and one with the home for both systems). This is the output I get when I run gpart in a terminal: ubuntu@ubuntu:~$ sudo gpart /dev/sdb Begin scan... Possible partition(Windows NT/W2K FS), size(39997mb), offset(0mb) Possible extended partition at offset(39997mb) Possible partition(Linux swap), size(8189mb), offset(39997mb) Possible partition(SGI XFS filesystem), size(40942mb), offset(48187mb) Possible partition(SGI XFS filesystem), size(40942mb), offset(89149mb) Possible partition(SGI XFS filesystem), size(175044mb), offset(130112mb) End scan. Checking partitions... Partition(OS/2 HPFS, NTFS, QNX or Advanced UNIX): primary Partition(Linux swap or Solaris/x86): logical Partition(Linux ext2 filesystem): logical Partition(Linux ext2 filesystem): orphaned logical Partition(Linux ext2 filesystem): orphaned logical Ok. Guessed primary partition table: Primary partition(1) type: 007(0x07)(OS/2 HPFS, NTFS, QNX or Advanced UNIX) size: 39997mb #s(81915360) s(63-81915422) chs: (0/1/1)-(1023/254/63)d (0/1/1)-(5098/254/51)r Primary partition(2) type: 015(0x0F)(Extended DOS, LBA) size: 265245mb #s(543221849) s(81915435-625137283) chs: (1023/254/63)-(1023/254/63)d (5099/0/1)-(38912/254/2)r Primary partition(3) type: 000(0x00)(unused) size: 0mb #s(0) s(0-0) chs: (0/0/0)-(0/0/0)d (0/0/0)-(0/0/0)r Primary partition(4) type: 000(0x00)(unused) size: 0mb #s(0) s(0-0) chs: (0/0/0)-(0/0/0)d (0/0/0)-(0/0/0)r Looking the first eight lines, it seems the data are still there... but I don't know how to recover them. I have a free second HD of about 500 GB (the formatted one is 320 GB) that I can use for the recovery process.

    Read the article

  • solaris + EMC + power-path

    - by yael
    please advice - when I run powercf command on my Solaris machine , which changes this command do on the EMC storage , or on Solaris file system ? from maanual page: DESCRIPTION During system boot on Solaris hosts, the powercf utility configures PowerPath devices by scanning the HBAs for both single-ported and multiported storage system logical dev- ices. (A multiported logical device shows up on two or more HBAs with the same storage system subsystem/device identity. The identity comes from the serial number for the logical device.) For each storage system logical device found in the scan of the HBAs, powercf creates a corresponding emcpower device entry in the emcp.conf file, and it saves a primary path and an alternate primary path to that device.

    Read the article

  • Automatically creating volume partitions on boot

    - by Justin Meltzer
    I followed this guide: http://www.mongodb.org/display/DOCS/Amazon+EC2+Quickstart to set up Mongodb. It had me create a RAID 10 array out of the four devices on EBS. Then it had me create a physical volume, a volume group, and three logical volumes out of that RAID 10 array. Lastly it had me create ext4 filesystems out of the logical volumes and mount them. Now the quickstart guide had me put two things in place so that these steps would be replicated on reboot of the system. It had me add some instructions to the mdadm.conf file to automatically create the RAID 10 array, and it also had me add instructions to the fstab file to automatically mount the filesystem for each logical volume. However, the quickstart guide does not have anything for automatically creating the logical volumes from the RAID 10 array. I checked my system and see that each of the four devices are part of a RAID array: $ sudo mdadm -Q /dev/sdh1 /dev/sdh1: is not an md array /dev/sdh1: device 0 in 4 device unknown raid10 array. Use mdadm --examine for more detail. However, the filesystem is never created or mounted from fstab because it's trying to mount it from logical volumes that were never created (or so it seems). My question is, how can I automatically accomplish all the steps from the quickstart guide on a reboot of the system, and what config file do I need to add data to so that I can automatically create these volume partions after the RAID 10 is created but before the filesystem is mounted. Also I'm unsure whether fstab actually creates and mounts the filesystem or just mounts the filesystem.

    Read the article

  • SQL SERVER – Find Max Worker Count using DMV – 32 Bit and 64 Bit

    - by pinaldave
    During several recent training courses, I found it very interesting that Worker Thread is not quite known to everyone despite the fact that it is a very important feature. At some point in the discussion, one of the attendees mentioned that we can double the Worker Thread if we double the CPU (add the same number of CPU that we have on current system). The same discussion has triggered this quick article. Here is the DMV which can be used to find out Max Worker Count SELECT max_workers_count FROM sys.dm_os_sys_info Let us run the above query on my system and find the results. As my system is 32 bit and I have two CPU, the Max Worker Count is displayed as 512. To address the previous discussion, adding more CPU does not necessarily double the Worker Count. In fact, the logic behind this simple principle is as follows: For x86 (32-bit) upto 4 logical processors  max worker threads = 256 For x86 (32-bit) more than 4 logical processors  max worker threads = 256 + ((# Procs – 4) * 8) For x64 (64-bit) upto 4 logical processors  max worker threads = 512 For x64 (64-bit) more than 4 logical processors  max worker threads = 512+ ((# Procs – 4) * 8) In addition to this, you can configure the Max Worker Thread by using SSMS. Go to Server Node >> Right Click and Select Property >> Select Process and modify setting under Worker Threads. According to Book On Line, the default Worker Thread settings are appropriate for most of the systems. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL System Table, SQL Tips and Tricks, T SQL, Technology Tagged: SQL DMV

    Read the article

  • swapon --all --verbose : 'read swap header failed: Invalid argument'

    - by user66088
    Recently ran through EnableHibernateWithEncryptedSwap and ran the following command: swapon --all --verbose and received: 'read swap header failed: Invalid argument' How do I fix this? Here's some more pertinent output... Output of sudo fdisk -l: Disk /dev/sda: 80.0 GB, 80026361856 bytes 255 heads, 63 sectors/track, 9729 cylinders, total 156301488 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00006d20 Device Boot Start End Blocks Id System /dev/sda1 * 2048 499711 248832 83 Linux /dev/sda2 501758 156301311 77899777 5 Extended /dev/sda5 501760 156301311 77899776 8e Linux LVM Disk /dev/mapper/ubuntu--t10194-root: 75.5 GB, 75539415040 bytes 255 heads, 63 sectors/track, 9183 cylinders, total 147537920 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00000000 Disk /dev/mapper/ubuntu--t10194-root doesn't contain a valid partition table Disk /dev/mapper/ubuntu--t10194-swap_1: 4227 MB, 4227858432 bytes 255 heads, 63 sectors/track, 514 cylinders, total 8257536 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x08040000 Disk /dev/mapper/ubuntu--t10194-swap_1 doesn't contain a valid partition table Disk /dev/mapper/cryptswap1: 4225 MB, 4225761280 bytes 255 heads, 63 sectors/track, 513 cylinders, total 8253440 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0xd2236983 Disk /dev/mapper/cryptswap1 doesn't contain a valid partition table Thanks for any and ALL help!

    Read the article

  • NEC uPD720200 USB 3.0 not working on Ubuntu 12.04

    - by Jagged
    I've recently installed Ubuntu 12.04 64-bit on a HP Envy 15 1104tx. Most stuff appears to be working fine with the exception of the two USB3 ports (USB2 port works fine). I've read a lot of articles but so far have not been able to find a solution. I've tried adding 'pci=nomsi' to '/etc/default/grub' but this made no difference. Some articles suggest booting into Windows and upgrading the firmware on the uPD720200. Any body had any experience of this? Is there a way I can checked the firmware version of the NEC uPD720200 in Linux to see if there is an update available? Any help appreciated. uname -a: Linux HP-ENVY-15-1104tx 3.2.0-26-generic #41-Ubuntu SMP Thu Jun 14 17:49:24 UTC 2012 x86_64 x86_64 x86_64 GNU/Linux lshw: hp-envy-15-1104tx description: Notebook product: HP ENVY 15 Notebook PC (WF591PA#ABG) vendor: Hewlett-Packard version: 0492110000241910001420000 serial: CNF0301C79 width: 64 bits capabilities: smbios-2.6 dmi-2.6 vsyscall32 configuration: boot=normal chassis=notebook family=103C_5335KV sku=WF591PA#ABG uuid=434E4630-3330-3143-3739-60EB6906688F *-core description: Motherboard product: 1522 vendor: Hewlett-Packard physical id: 0 version: 36.35 serial: CNF0301C79 slot: Base Board Chassis Location *-firmware description: BIOS vendor: Hewlett-Packard physical id: 0 version: F.2B date: 10/12/2010 size: 1MiB capacity: 1472KiB capabilities: pci upgrade shadowing cdboot bootselect edd int13floppynec int13floppytoshiba int13floppy360 int13floppy1200 int13floppy720 int13floppy2880 int9keyboard int10video acpi usb biosbootspecification *-memory description: System Memory physical id: 13 slot: System board or motherboard size: 16GiB *-bank:0 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: 9905428-043.A00LF physical id: 0 serial: E13C4316 slot: Bottom size: 4GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:1 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: 9905428-043.A00LF physical id: 1 serial: E03C3E16 slot: Bottom size: 4GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:2 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: 9905428-043.A00LF physical id: 2 serial: 672279CC slot: On Board size: 4GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:3 description: SODIMM DDR3 Synchronous 1333 MHz (0.8 ns) product: 9905428-043.A00LF physical id: 3 serial: 652286CC slot: On Board size: 4GiB width: 64 bits clock: 1333MHz (0.8ns) *-cpu description: CPU product: Intel(R) Core(TM) i7 CPU Q 820 @ 1.73GHz vendor: Intel Corp. physical id: 1d bus info: cpu@0 version: Intel(R) Core(TM) i7 CPU Q 820 @ 1.73GHz slot: CPU size: 1199MHz capacity: 1199MHz width: 64 bits clock: 1066MHz capabilities: x86-64 fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf pni dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm sse4_1 sse4_2 popcnt lahf_lm ida tpr_shadow vnmi flexpriority ept vpid cpufreq configuration: cores=4 enabledcores=4 threads=8 *-cache:0 description: L3 cache physical id: 1e slot: L3 Cache size: 8MiB capacity: 8MiB capabilities: synchronous internal write-through unified *-cache:1 description: L2 cache physical id: 20 slot: L2 Cache size: 256KiB capacity: 256KiB capabilities: synchronous internal write-through unified *-cache:2 description: L1 cache physical id: 21 slot: L1 Cache size: 32KiB capacity: 32KiB capabilities: synchronous internal write-through instruction *-cache description: L1 cache physical id: 1f slot: L1 Cache size: 32KiB capacity: 32KiB capabilities: synchronous internal write-through data *-pci:0 description: Host bridge product: Core Processor DMI vendor: Intel Corporation physical id: 100 bus info: pci@0000:00:00.0 version: 11 width: 32 bits clock: 33MHz *-pci:0 description: PCI bridge product: Core Processor PCI Express Root Port 1 vendor: Intel Corporation physical id: 3 bus info: pci@0000:00:03.0 version: 11 width: 32 bits clock: 33MHz capabilities: pci msi pciexpress pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:16 ioport:4000(size=4096) memory:d4100000-d41fffff ioport:c0000000(size=268435456) *-display description: VGA compatible controller product: Broadway PRO [Mobility Radeon HD 5800 Series] vendor: Hynix Semiconductor (Hyundai Electronics) physical id: 0 bus info: pci@0000:01:00.0 version: 00 width: 64 bits clock: 33MHz capabilities: pm pciexpress msi vga_controller bus_master cap_list rom configuration: driver=fglrx_pci latency=0 resources: irq:58 memory:c0000000-cfffffff memory:d4100000-d411ffff ioport:4000(size=256) memory:d4140000-d415ffff *-multimedia description: Audio device product: Juniper HDMI Audio [Radeon HD 5700 Series] vendor: Hynix Semiconductor (Hyundai Electronics) physical id: 0.1 bus info: pci@0000:01:00.1 version: 00 width: 64 bits clock: 33MHz capabilities: pm pciexpress msi bus_master cap_list configuration: driver=snd_hda_intel latency=0 resources: irq:56 memory:d4120000-d4123fff *-pci:1 description: PCI bridge product: Core Processor PCI Express Root Port 3 vendor: Intel Corporation physical id: 5 bus info: pci@0000:00:05.0 version: 11 width: 32 bits clock: 33MHz capabilities: pci msi pciexpress pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:16 memory:d4000000-d40fffff *-usb description: USB controller product: uPD720200 USB 3.0 Host Controller vendor: NEC Corporation physical id: 0 bus info: pci@0000:02:00.0 version: 03 width: 64 bits clock: 33MHz capabilities: pm msi msix pciexpress xhci bus_master cap_list configuration: driver=xhci_hcd latency=0 resources: irq:16 memory:d4000000-d4001fff *-generic:0 UNCLAIMED description: System peripheral product: Core Processor System Management Registers vendor: Intel Corporation physical id: 8 bus info: pci@0000:00:08.0 version: 11 width: 32 bits clock: 33MHz capabilities: pciexpress cap_list configuration: latency=0 *-generic:1 UNCLAIMED description: System peripheral product: Core Processor Semaphore and Scratchpad Registers vendor: Intel Corporation physical id: 8.1 bus info: pci@0000:00:08.1 version: 11 width: 32 bits clock: 33MHz capabilities: pciexpress cap_list configuration: latency=0 *-generic:2 UNCLAIMED description: System peripheral product: Core Processor System Control and Status Registers vendor: Intel Corporation physical id: 8.2 bus info: pci@0000:00:08.2 version: 11 width: 32 bits clock: 33MHz capabilities: pciexpress cap_list configuration: latency=0 *-generic:3 UNCLAIMED description: System peripheral product: Core Processor Miscellaneous Registers vendor: Intel Corporation physical id: 8.3 bus info: pci@0000:00:08.3 version: 11 width: 32 bits clock: 33MHz configuration: latency=0 *-generic:4 UNCLAIMED description: System peripheral product: Core Processor QPI Link vendor: Intel Corporation physical id: 10 bus info: pci@0000:00:10.0 version: 11 width: 32 bits clock: 33MHz configuration: latency=0 *-generic:5 UNCLAIMED description: System peripheral product: Core Processor QPI Routing and Protocol Registers vendor: Intel Corporation physical id: 10.1 bus info: pci@0000:00:10.1 version: 11 width: 32 bits clock: 33MHz configuration: latency=0 *-multimedia description: Audio device product: 5 Series/3400 Series Chipset High Definition Audio vendor: Intel Corporation physical id: 1b bus info: pci@0000:00:1b.0 version: 05 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list configuration: driver=snd_hda_intel latency=0 resources: irq:55 memory:d4200000-d4203fff *-pci:2 description: PCI bridge product: 5 Series/3400 Series Chipset PCI Express Root Port 1 vendor: Intel Corporation physical id: 1c bus info: pci@0000:00:1c.0 version: 05 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:17 ioport:3000(size=4096) memory:d3000000-d3ffffff ioport:d0000000(size=16777216) *-network description: Wireless interface product: Centrino Advanced-N 6200 vendor: Intel Corporation physical id: 0 bus info: pci@0000:03:00.0 logical name: wlan0 version: 35 serial: 00:27:10:40:e4:68 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=iwlwifi driverversion=3.2.0-26-generic firmware=9.221.4.1 build 25532 latency=0 link=no multicast=yes wireless=IEEE 802.11abgn resources: irq:54 memory:d3000000-d3001fff *-pci:3 description: PCI bridge product: 5 Series/3400 Series Chipset PCI Express Root Port 2 vendor: Intel Corporation physical id: 1c.1 bus info: pci@0000:00:1c.1 version: 05 width: 32 bits clock: 33MHz capabilities: pci pciexpress msi pm normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:16 ioport:2000(size=4096) memory:d2000000-d2ffffff ioport:d1000000(size=16777216) *-network description: Ethernet interface product: AR8131 Gigabit Ethernet vendor: Atheros Communications Inc. physical id: 0 bus info: pci@0000:04:00.0 logical name: eth0 version: c0 serial: 60:eb:69:06:68:8f size: 1Gbit/s capacity: 1Gbit/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress vpd bus_master cap_list ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=atl1c driverversion=1.0.1.0-NAPI duplex=full firmware=N/A ip=10.161.0.147 latency=0 link=yes multicast=yes port=twisted pair speed=1Gbit/s resources: irq:57 memory:d2000000-d203ffff ioport:2000(size=128) *-usb description: USB controller product: 5 Series/3400 Series Chipset USB2 Enhanced Host Controller vendor: Intel Corporation physical id: 1d bus info: pci@0000:00:1d.0 version: 05 width: 32 bits clock: 33MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci_hcd latency=0 resources: irq:20 memory:d4205800-d4205bff *-pci:4 description: PCI bridge product: 82801 Mobile PCI Bridge vendor: Intel Corporation physical id: 1e bus info: pci@0000:00:1e.0 version: a5 width: 32 bits clock: 33MHz capabilities: pci subtractive_decode bus_master cap_list *-isa description: ISA bridge product: Mobile 5 Series Chipset LPC Interface Controller vendor: Intel Corporation physical id: 1f bus info: pci@0000:00:1f.0 version: 05 width: 32 bits clock: 33MHz capabilities: isa bus_master cap_list configuration: latency=0 *-storage description: RAID bus controller product: 82801 Mobile SATA Controller [RAID mode] vendor: Intel Corporation physical id: 1f.2 bus info: pci@0000:00:1f.2 logical name: scsi0 version: 05 width: 32 bits clock: 66MHz capabilities: storage msi pm bus_master cap_list emulated configuration: driver=ahci latency=0 resources: irq:45 ioport:5048(size=8) ioport:5054(size=4) ioport:5040(size=8) ioport:5050(size=4) ioport:5020(size=32) memory:d4205000-d42057ff *-disk description: ATA Disk product: OCZ-VERTEX3 physical id: 0.0.0 bus info: scsi@0:0.0.0 logical name: /dev/sda version: 2.15 serial: OCZ-0350P6H316X5KUQE size: 223GiB (240GB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 signature=000592dd *-volume:0 description: EXT4 volume vendor: Linux physical id: 1 bus info: scsi@0:0.0.0,1 logical name: /dev/sda1 logical name: / version: 1.0 serial: e741f18c-cfc5-4bce-b1e7-f80e517a3a22 size: 207GiB capacity: 207GiB capabilities: primary bootable journaled extended_attributes large_files huge_files dir_nlink recover extents ext4 ext2 initialized configuration: created=2012-06-15 06:49:27 filesystem=ext4 lastmountpoint=/ modified=2012-06-14 21:23:42 mount.fstype=ext4 mount.options=rw,relatime,errors=remount-ro,user_xattr,barrier=1,data=ordered mounted=2012-07-10 16:18:20 state=mounted *-volume:1 description: Extended partition physical id: 2 bus info: scsi@0:0.0.0,2 logical name: /dev/sda2 size: 15GiB capacity: 15GiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume description: Linux swap / Solaris partition physical id: 5 logical name: /dev/sda5 capacity: 15GiB capabilities: nofs *-serial UNCLAIMED description: SMBus product: 5 Series/3400 Series Chipset SMBus Controller vendor: Intel Corporation physical id: 1f.3 bus info: pci@0000:00:1f.3 version: 05 width: 64 bits clock: 33MHz configuration: latency=0 resources: memory:d4205c00-d4205cff ioport:5000(size=32) *-pci:1 description: Host bridge product: Core Processor QuickPath Architecture Generic Non-Core Registers vendor: Intel Corporation physical id: 101 bus info: pci@0000:ff:00.0 version: 04 width: 32 bits clock: 33MHz *-pci:2 description: Host bridge product: Core Processor QuickPath Architecture System Address Decoder vendor: Intel Corporation physical id: 102 bus info: pci@0000:ff:00.1 version: 04 width: 32 bits clock: 33MHz *-pci:3 description: Host bridge product: Core Processor QPI Link 0 vendor: Intel Corporation physical id: 103 bus info: pci@0000:ff:02.0 version: 04 width: 32 bits clock: 33MHz *-pci:4 description: Host bridge product: Core Processor QPI Physical 0 vendor: Intel Corporation physical id: 104 bus info: pci@0000:ff:02.1 version: 04 width: 32 bits clock: 33MHz *-pci:5 description: Host bridge product: Core Processor Integrated Memory Controller vendor: Intel Corporation physical id: 105 bus info: pci@0000:ff:03.0 version: 04 width: 32 bits clock: 33MHz *-pci:6 description: Host bridge product: Core Processor Integrated Memory Controller Target Address Decoder vendor: Intel Corporation physical id: 106 bus info: pci@0000:ff:03.1 version: 04 width: 32 bits clock: 33MHz *-pci:7 description: Host bridge product: Core Processor Integrated Memory Controller Test Registers vendor: Intel Corporation physical id: 107 bus info: pci@0000:ff:03.4 version: 04 width: 32 bits clock: 33MHz *-pci:8 description: Host bridge product: Core Processor Integrated Memory Controller Channel 0 Control Registers vendor: Intel Corporation physical id: 108 bus info: pci@0000:ff:04.0 version: 04 width: 32 bits clock: 33MHz *-pci:9 description: Host bridge product: Core Processor Integrated Memory Controller Channel 0 Address Registers vendor: Intel Corporation physical id: 109 bus info: pci@0000:ff:04.1 version: 04 width: 32 bits clock: 33MHz *-pci:10 description: Host bridge product: Core Processor Integrated Memory Controller Channel 0 Rank Registers vendor: Intel Corporation physical id: 10a bus info: pci@0000:ff:04.2 version: 04 width: 32 bits clock: 33MHz *-pci:11 description: Host bridge product: Core Processor Integrated Memory Controller Channel 0 Thermal Control Registers vendor: Intel Corporation physical id: 10b bus info: pci@0000:ff:04.3 version: 04 width: 32 bits clock: 33MHz *-pci:12 description: Host bridge product: Core Processor Integrated Memory Controller Channel 1 Control Registers vendor: Intel Corporation physical id: 10c bus info: pci@0000:ff:05.0 version: 04 width: 32 bits clock: 33MHz *-pci:13 description: Host bridge product: Core Processor Integrated Memory Controller Channel 1 Address Registers vendor: Intel Corporation physical id: 10d bus info: pci@0000:ff:05.1 version: 04 width: 32 bits clock: 33MHz *-pci:14 description: Host bridge product: Core Processor Integrated Memory Controller Channel 1 Rank Registers vendor: Intel Corporation physical id: 10e bus info: pci@0000:ff:05.2 version: 04 width: 32 bits clock: 33MHz *-pci:15 description: Host bridge product: Core Processor Integrated Memory Controller Channel 1 Thermal Control Registers vendor: Intel Corporation physical id: 10f bus info: pci@0000:ff:05.3 version: 04 width: 32 bits clock: 33MHz *-battery description: Lithium Ion Battery product: NK06053 vendor: SMP-ATL24 physical id: 1 slot: Primary capacity: 4800mWh configuration: voltage=11.1V lspci: 02:00.0 USB controller: NEC Corporation uPD720200 USB 3.0 Host Controller (rev 03) (prog-if 30 [XHCI]) Subsystem: Hewlett-Packard Company Device 1522 Flags: bus master, fast devsel, latency 0, IRQ 16 Memory at d4000000 (64-bit, non-prefetchable) [size=8K] Capabilities: [50] Power Management version 3 Capabilities: [70] MSI: Enable- Count=1/8 Maskable- 64bit+ Capabilities: [90] MSI-X: Enable+ Count=8 Masked- Capabilities: [a0] Express Endpoint, MSI 00 Capabilities: [100] Advanced Error Reporting Capabilities: [140] Device Serial Number ff-ff-ff-ff-ff-ff-ff-ff Capabilities: [150] Latency Tolerance Reporting Kernel driver in use: xhci_hcd lsusb (with thumb drive plugged into USB3 port): Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 003 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Bus 001 Device 002: ID 8087:0020 Intel Corp. Integrated Rate Matching Hub Bus 001 Device 003: ID 5986:01d0 Acer, Inc Bus 001 Device 004: ID 03f0:231d Hewlett-Packard

    Read the article

  • ODI 11g – Expert Accelerator for Model Creation

    - by David Allan
    Following on from my post earlier this morning on scripting model and topology creation tonight I thought I’d add a little UI to make those groovy functions a little more palatable. In OWB we have experts for capturing user input, with the groovy console we open up opportunities to build UI around the scripts in a very easy way – even I can do it;-) After a little googling around I found some useful posts on SwingBuilder, the most useful one that I used for the dialog below was this one here. This dialog captures user input for the technology and context for the model and logical schema etc to be created. You can see there are a variety of interesting controls, and its really easy to do. The dialog captures the users input, then when OK is pressed I call the functions from the earlier post to create the logical schema (plus all the other objects) and model. The image below shows what was created, you can see the model (with typo in name), the model is Oracle technology and references the logical schema ORACLE_SCOTT (that I named in dialog above), the logical schema is mapped via the GLOBAL context to the data server ORACLE_SCOTT_DEV (that I named in dialog above), and the physical schema used was just the user name that I connected with – so if you wanted a different user the schema name could be added to the dialog. In a nutshell, one dialog that encapsulates a simpler mechanism for creating a model. You can create your own scripts that use dialogs like this, capture input and process. You can find the groovy script for this is here odi_create_model.groovy, again I wrapped the user capture code in a groovy function and return the result in a variable and then simply call the createLogicalSchema and createModel functions from the previous posting. The script I supplied above has everything you will need. To execute use Tools->Groovy->Open Script and then execute the green play button on the toolbar. Have fun.

    Read the article

  • Mapping between 4+1 architectural view model & UML

    - by Sadeq Dousti
    I'm a bit confused about how the 4+1 architectural view model maps to UML. Wikipedia gives the following mapping: Logical view: Class diagram, Communication diagram, Sequence diagram. Development view: Component diagram, Package diagram Process view: Activity diagram Physical view: Deployment diagram Scenarios: Use-case diagram The paper Role of UML Sequence Diagram Constructs in Object Lifecycle Concept gives the following mapping: Logical view (class diagram (CD), object diagram (OD), sequence diagram (SD), collaboration diagram (COD), state chart diagram (SCD), activity diagram (AD)) Development view (package diagram, component diagram), Process view (use case diagram, CD, OD, SD, COD, SCD, AD), Physical view (deployment diagram), and Use case view (use case diagram, OD, SD, COD, SCD, AD) which combines the four mentioned above. The web page UML 4+1 View Materials presents the following mapping: Finally, the white paper Applying 4+1 View Architecture with UML 2 gives yet another mapping: Logical view class diagrams, object diagrams, state charts, and composite structures Process view sequence diagrams, communication diagrams, activity diagrams, timing diagrams, interaction overview diagrams Development view component diagrams Physical view deployment diagram Use case view use case diagram, activity diagrams I'm sure further search will reveal other mappings as well. While various people usually have different perspectives, I don't see why this is the case here. Specially, each UML diagram describes the system from a particular aspect. So, for instance, why the "sequence diagram" is considered as describing the "logical view" of the system by one author, while another author considers it as describing the "process view"? Could you please help me clarify the confusion?

    Read the article

  • A tale from a Stalker

    - by Peter Larsson
    Today I thought I should write something about a stalker I've got. Don't get me wrong, I have way more fans than stalkers, but this stalker is particular persistent towards me. It all started when I wrote about Relational Division with Sets late last year(http://weblogs.sqlteam.com/peterl/archive/2010/07/02/Proper-Relational-Division-With-Sets.aspx) and no matter what he tried, he didn't get a better performing query than me. But this I didn't click until later into this conversation. He must have saved himself for 9 months before posting to me again. Well... Some days ago I get an email from someone I thought i didn't know. Here is his first email Hi, I want a proper solution for achievement the result. The solution must be standard query, means no using as any native code like TOP clause, also the query should run in SQL Server 2000 (no CTE use). We have a table with consecutive keys (nbr) that is not exact sequence. We need bringing all values related with nearest key in the current key row. See the DDL: CREATE TABLE Nums(nbr INTEGER NOT NULL PRIMARY KEY, val INTEGER NOT NULL); INSERT INTO Nums(nbr, val) VALUES (1, 0),(5, 7),(9, 4); See the Result: pre_nbr     pre_val     nbr         val         nxt_nbr     nxt_val ----------- ----------- ----------- ----------- ----------- ----------- NULL        NULL        1           0           5           7 1           0           5           7           9           4 5           7           9           4           NULL        NULL The goal is suggesting most elegant solution. I would like see your best solution first, after that I will send my best (if not same with yours)   Notice there is no name, no please or nothing polite asking for my help. So, on the top of my head I sent him two solutions, following the rule "Work on SQL Server 2000 and only standard non-native code".     -- Peso 1 SELECT               pre_nbr,                              (                                                           SELECT               x.val                                                           FROM                dbo.Nums AS x                                                           WHERE              x.nbr = d.pre_nbr                              ) AS pre_val,                              d.nbr,                              d.val,                              d.nxt_nbr,                              (                                                           SELECT               x.val                                                           FROM                dbo.Nums AS x                                                           WHERE              x.nbr = d.nxt_nbr                              ) AS nxt_val FROM                (                                                           SELECT               (                                                                                                                     SELECT               MAX(x.nbr) AS nbr                                                                                                                     FROM                dbo.Nums AS x                                                                                                                     WHERE              x.nbr < n.nbr                                                                                        ) AS pre_nbr,                                                                                        n.nbr,                                                                                        n.val,                                                                                        (                                                                                                                     SELECT               MIN(x.nbr) AS nbr                                                                                                                     FROM                dbo.Nums AS x                                                                                                                     WHERE              x.nbr > n.nbr                                                                                        ) AS nxt_nbr                                                           FROM                dbo.Nums AS n                              ) AS d -- Peso 2 CREATE TABLE #Temp                                                         (                                                                                        ID INT IDENTITY(1, 1) PRIMARY KEY,                                                                                        nbr INT,                                                                                        val INT                                                           )   INSERT                                            #Temp                                                           (                                                                                        nbr,                                                                                        val                                                           ) SELECT                                            nbr,                                                           val FROM                                             dbo.Nums ORDER BY         nbr   SELECT                                            pre.nbr AS pre_nbr,                                                           pre.val AS pre_val,                                                           t.nbr,                                                           t.val,                                                           nxt.nbr AS nxt_nbr,                                                           nxt.val AS nxt_val FROM                                             #Temp AS pre RIGHT JOIN      #Temp AS t ON t.ID = pre.ID + 1 LEFT JOIN         #Temp AS nxt ON nxt.ID = t.ID + 1   DROP TABLE    #Temp Notice there are no indexes on #Temp table yet. And here is where the conversation derailed. First I got this response back Now my solutions: --My 1st Slt SELECT T2.*, T1.*, T3.*   FROM Nums AS T1        LEFT JOIN Nums AS T2          ON T2.nbr = (SELECT MAX(nbr)                         FROM Nums                        WHERE nbr < T1.nbr)        LEFT JOIN Nums AS T3          ON T3.nbr = (SELECT MIN(nbr)                         FROM Nums                        WHERE nbr > T1.nbr); --My 2nd Slt SELECT MAX(CASE WHEN N1.nbr > N2.nbr THEN N2.nbr ELSE NULL END) AS pre_nbr,        (SELECT val FROM Nums WHERE nbr = MAX(CASE WHEN N1.nbr > N2.nbr THEN N2.nbr ELSE NULL END)) AS pre_val,        N1.nbr AS cur_nbr, N1.val AS cur_val,        MIN(CASE WHEN N1.nbr < N2.nbr THEN N2.nbr ELSE NULL END) AS nxt_nbr,        (SELECT val FROM Nums WHERE nbr = MIN(CASE WHEN N1.nbr < N2.nbr THEN N2.nbr ELSE NULL END)) AS nxt_val   FROM Nums AS N1,        Nums AS N2  GROUP BY N1.nbr, N1.val;   /* My 1st Slt Table 'Nums'. Scan count 7, logical reads 14 My 2nd Slt Table 'Nums'. Scan count 4, logical reads 23 Peso 1 Table 'Nums'. Scan count 9, logical reads 28 Peso 2 Table '#Temp'. Scan count 0, logical reads 7 Table 'Nums'. Scan count 1, logical reads 2 Table '#Temp'. Scan count 3, logical reads 16 */  To this, I emailed him back asking for a scalability test What if you try with a Nums table with 100,000 rows? His response to that started to get nasty.  I have to say Peso 2 is not acceptable. As I said before the solution must be standard, ORDER BY is not part of standard SELECT. Try this without ORDER BY:  Truncate Table Nums INSERT INTO Nums (nbr, val) VALUES (1, 0),(9,4), (5, 7)  So now we have new rules. No ORDER BY because it's not standard SQL! Of course I asked him  Why do you have that idea? ORDER BY is not standard? To this, his replies went stranger and stranger Standard Select = Set-based (no any cursor) It’s free to know, just refer to Advanced SQL Programming by Celko or mail to him if you accept comments from him. What the stalker probably doesn't know, is that I and Mr Celko occasionally are involved in some conversation and thus we exchange emails. I don't know if this reference to Mr Celko was made to intimidate me either. So I answered him, still polite, this What do you mean? The SELECT itself has a ”cursor under the hood”. Now the stalker gets rude  But however I mean the solution must no containing any order by, top... No problem, I do not like Peso 2, it’s very non-intelligent and elementary. Yes, Peso 2 is elementary but most performing queries are... And now is the time where I started to feel the stalker really wanted to achieve something else, so I wrote to him So what is your goal? Have a query that performs well, or a query that is super-portable? My Peso 2 outperforms any of your code with a factor of 100 when using more than 100,000 rows. While I awaited his answer, I posted him this query Ok, here is another one -- Peso 3 SELECT             MAX(CASE WHEN d = 1 THEN nbr ELSE NULL END) AS pre_nbr,                    MAX(CASE WHEN d = 1 THEN val ELSE NULL END) AS pre_val,                    MAX(CASE WHEN d = 0 THEN nbr ELSE NULL END) AS nbr,                    MAX(CASE WHEN d = 0 THEN val ELSE NULL END) AS val,                    MAX(CASE WHEN d = -1 THEN nbr ELSE NULL END) AS nxt_nbr,                    MAX(CASE WHEN d = -1 THEN val ELSE NULL END) AS nxt_val FROM               (                              SELECT    nbr,                                        val,                                        ROW_NUMBER() OVER (ORDER BY nbr) AS SeqID                              FROM      dbo.Nums                    ) AS s CROSS JOIN         (                              VALUES    (-1),                                        (0),                                        (1)                    ) AS x(d) GROUP BY           SeqID + x.d HAVING             COUNT(*) > 1 And here is the stats Table 'Nums'. Scan count 1, logical reads 2, physical reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0. It beats the hell out of your queries…. Now I finally got a response from my stalker and now I also clicked who he was. This is his reponse Why you post my original method with a bit change under you name? I do not like it. See: http://www.sqlservercentral.com/Forums/Topic468501-362-14.aspx ;WITH C AS ( SELECT seq_nbr, k,        DENSE_RANK() OVER(ORDER BY seq_nbr ASC) + k AS grp_fct   FROM [Sample]         CROSS JOIN         (VALUES (-1), (0), (1)         ) AS D(k) ) SELECT MIN(seq_nbr) AS pre_value,        MAX(CASE WHEN k = 0 THEN seq_nbr END) AS current_value,        MAX(seq_nbr) AS next_value   FROM C GROUP BY grp_fct HAVING min(seq_nbr) < max(seq_nbr); These posts: Posted Tuesday, April 12, 2011 10:04 AM Posted Tuesday, April 12, 2011 1:22 PM Why post a solution where will not work in SQL Server 2000? Wait a minute! His own solution is using both a CTE and a ranking function so his query will not work on SQL Server 2000! Bummer... The reference to "Me not like" are my exact words in a previous topic on SQLTeam.com and when I remembered the phrasing, I also knew who he was. See this topic http://www.sqlteam.com/forums/topic.asp?TOPIC_ID=159262 where he writes a query and posts it under my name, as if I wrote it. So I answered him this (less polite). Like I keep track of all topics in the whole world… J So you think you are the only one coming up with this idea? Besides, “M S solution” doesn’t work.   This is the result I get pre_value        current_value                             next_value 1                           1                           5 1                           5                           9 5                           9                           9   And I did nothing like you did here, where you posted a solution which you “thought” I should write http://www.sqlteam.com/forums/topic.asp?TOPIC_ID=159262 So why are you yourself using ranking function when this was not allowed per your original email, and no cte? You use CTE in your link above, which do not work in SQL Server 2000. All this makes no sense to me, other than you are trying your best to once in a lifetime create a better performing query than me? After a few hours I get this email back. I don't fully understand it, but it's probably a language barrier. >>Like I keep track of all topics in the whole world… J So you think you are the only one coming up with this idea?<< You right, but do not think you are the first creator of this.   >>Besides, “M S Solution” doesn’t work. This is the result I get <<   Why you get so unimportant mistake? See this post to correct it: Posted 4/12/2011 8:22:23 PM >> So why are you yourself using ranking function when this was not allowed per your original email, and no cte? You use CTE in your link above, which do not work in SQL Server 2000. <<  Again, why you get some unimportant incompatibility? You offer that solution for current goals not me  >> All this makes no sense to me, other than you are trying your best to once in a lifetime create a better performing query than me? <<  No, I only wanted to know who you will solve it. Now I know you do not have a special solution. No problem. No problem for me either. So I just answered him I am not the first, and you are not the first to come up with this idea. So what is your problem? I am pretty sure other people have come up with the same idea before us. I used this technique all the way back to 2007, see http://www.sqlteam.com/forums/topic.asp?TOPIC_ID=93911 Let's see if he returns...  He did! >> So what is your problem? << Nothing Thanks for all replies; maybe we have some competitions in future, maybe. Also I like you but you do not attend it. Your behavior with me is not friendly. Not any meeting… Regards //Peso

    Read the article

  • I can't install Ubuntu on my Dell Inspiron 15R at all

    - by Kieran Rimmer
    I'm attempting to install Ubuntu 12.04LTS, 64 bit onto a Dell Inspiron 15R laptop. I've shrunk down one of the windows partitions and even used gparted to format the vacant space as ext4. However, the install disk simply does not present any options when it comes to the partitioning step. What I get is a non-responsive blank table As well as the above, I've changed the BIOS settings so that USB emulation is disabled (as per Can't install on Dell Inspiron 15R), and changed the SATA Operation setting to all three possible options. Anyway, the install CD will bring up the trial version of ubuntu, and if I open terminal and type sudo fdisk -l, I get this: Disk /dev/sda: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders, total 1953525168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 4096 bytes I/O size (minimum/optimal): 4096 bytes / 4096 bytes Disk identifier: 0xb4fd9215 Device Boot Start End Blocks Id System /dev/sda1 63 80324 40131 de Dell Utility Partition 1 does not start on physical sector boundary. /dev/sda2 * 81920 29044735 14481408 7 HPFS/NTFS/exFAT /dev/sda3 29044736 1005142015 488048640 7 HPFS/NTFS/exFAT /dev/sda4 1005154920 1953520064 474182572+ 83 Linux Disk /dev/sdb: 32.0 GB, 32017047552 bytes 255 heads, 63 sectors/track, 3892 cylinders, total 62533296 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0xb4fd923d Device Boot Start End Blocks Id System /dev/sdb1 2048 16775167 8386560 84 OS/2 hidden C: drive If I type 'sudo parted -l', I get: Model: ATA WDC WD10JPVT-75A (scsi) Disk /dev/sda: 1000GB Sector size (logical/physical): 512B/4096B Partition Table: msdos Number Start End Size Type File system Flags 1 32.3kB 41.1MB 41.1MB primary fat16 diag 2 41.9MB 14.9GB 14.8GB primary ntfs boot 3 14.9GB 515GB 500GB primary ntfs 4 515GB 1000GB 486GB primary ext4 Model: ATA SAMSUNG SSD PM83 (scsi) Disk /dev/sdb: 32.0GB Sector size (logical/physical): 512B/512B Partition Table: msdos Number Start End Size Type File system Flags 1 1049kB 8589MB 8588MB primary Warning: Unable to open /dev/sr0 read-write (Read-only file system). /dev/sr0 has been opened read-only. Error: Can't have a partition outside the disk! I've also tried a Kubuntu 12.04 and Linuxmint install disks, wityh the same problem. I'm completely lost here. Cheers, Kieran

    Read the article

  • Unable to mount an LVM Hard-drive after upgrade

    - by Bruce Staples
    I imagine this is a basic gotcha ... but I can't see it. I have a system with 2(physical) harddrives. The boot system (/dev/sda) was running 10.04 & the second drive (/dev/sdb) was just a mounted filesystem. I did a clean load of Ubuntu 12.04 overwriting /dev/sda (not an upgrade) & now cannot mount the second drive. so I do not know what to enter it into the fstab ... I had expected to use: /dev/sdb /tera ext4 defaults 0 2 But even manual mounting fails (I also have tried various "-t" options on the off chance!) sudo mount -t ext4 /dev/sdb1 /tera mount: wrong fs type, bad option, bad superblock on /dev/sdb1, missing codepage or helper program, or other error In some cases useful info is found in syslog - try dmesg | tail or so Output from disk queries indicate that it is a Linux LVM & a healthy disk still. sudo lshw -C disk *-disk:0 description: ATA Disk product: WDC WD5000AACS-0 vendor: Western Digital physical id: 0 bus info: scsi@2:0.0.0 logical name: /dev/sda version: 01.0 serial: WD-WCASU1401098 size: 465GiB (500GB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 signature=00015a55 *-disk:1 description: ATA Disk product: WDC WD10EADS-00L vendor: Western Digital physical id: 1 bus info: scsi@3:0.0.0 logical name: /dev/sdb version: 01.0 serial: WD-WCAU47836304 size: 931GiB (1TB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 sudo fdisk -l Disk /dev/sda: 500.1 GB, 500106780160 bytes 255 heads, 63 sectors/track, 60801 cylinders, total 976771055 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00015a55 Device Boot Start End Blocks Id System /dev/sda1 * 2048 972580863 486289408 83 Linux /dev/sda2 972582910 976769023 2093057 5 Extended /dev/sda5 972582912 976769023 2093056 82 Linux swap / Solaris Disk /dev/sdb: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders, total 1953525168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00000000 Device Boot Start End Blocks Id System /dev/sdb1 1 1953525167 976762583+ 8e Linux LVM LVM doesn't appear to be an option for mount or fstab. ... and here's a Smart data Screenshot from Disk Utility.

    Read the article

  • How to install Ubuntu 12.04.1 in EFI mode with Encrypted LVM?

    - by g0lem
    I'm trying to properly install Ubuntu 12.04.1 LTS 64-bit PC (AMD64) with the alternate install CD ".iso" on a lenovo Thinkpad X220. Default Hard Disk (with a pre-installed version of Windows 7) has been replaced with a brand new SSD. The UEFI BIOS of the lenovo Thinkpad X220 is set to "UEFI Boot only" & "USB UEFI BIOS Support" is enabled (I'm using an external USB DVD reader to perform Ubuntu installation). The BIOS is a Phoenix SecureCore Tiano, BIOS version is 8DET56WW (1.26). The attempts below are made with the UEFI BIOS settings described above. Here's what I've tried so far: Boot on a live GParted CD Create a GPT partition table Create a FAT32 partition for UEFI System, set the partition to "EF00" type ("boot" flag) Leave remaining space unformated Boot on Ubuntu 12.04.1 LTS 64-bit PC (AMD64) with alternate CD: Perform the install with network updates enabled Use manual partitioning FAT32 partition created with GParted is used as "EFI System partition" Remaining space is set to be used as "Physical volume for LVM" Then "Configure encrypted volumes" using the previous "Physical volume for LVM" as the encrypted container, passphrase is setup. "Configure the Logical Volume Manager" creating a volume Group using the encrypted container /dev/mapper/sda2_crypt Creation of the Logical Volumes "Create logical volume", choosing the previously created volume Group Assign a mount point and file system to the Logical volumes : LV-root for / LV-var for /var LV-usr for /usr LV-usr-local for /usr/local LV-swap for swap LV-home for /home NOTE: /tmp would be in RAM only using TMPFS Bootloader step: neither my ESP partition (/dev/sda1, /dev/sda or MBR) seems to be the right place for GRUB, I get the following message (X suffix is for demonstration only): unable to install grub in /dev/sdaX Executing 'grub-install /dev/sdaX' failed This is a fatal error. Finish installation without the Bootloader & Reboot The system doesn't start, there's no EFI/GRUB menu at startup. What are the steps to perform a clean and working installation of Ubuntu 12.04.1 Precise Pangolin, 64bit version in U(EFI) mode using the encrypted LUKS + LVM scheme described above?

    Read the article

  • I see no LOBs!

    - by Paul White
    Is it possible to see LOB (large object) logical reads from STATISTICS IO output on a table with no LOB columns? I was asked this question today by someone who had spent a good fraction of their afternoon trying to work out why this was occurring – even going so far as to re-run DBCC CHECKDB to see if any corruption had taken place.  The table in question wasn’t particularly pretty – it had grown somewhat organically over time, with new columns being added every so often as the need arose.  Nevertheless, it remained a simple structure with no LOB columns – no TEXT or IMAGE, no XML, no MAX types – nothing aside from ordinary INT, MONEY, VARCHAR, and DATETIME types.  To add to the air of mystery, not every query that ran against the table would report LOB logical reads – just sometimes – but when it did, the query often took much longer to execute. Ok, enough of the pre-amble.  I can’t reproduce the exact structure here, but the following script creates a table that will serve to demonstrate the effect: IF OBJECT_ID(N'dbo.Test', N'U') IS NOT NULL DROP TABLE dbo.Test GO CREATE TABLE dbo.Test ( row_id NUMERIC IDENTITY NOT NULL,   col01 NVARCHAR(450) NOT NULL, col02 NVARCHAR(450) NOT NULL, col03 NVARCHAR(450) NOT NULL, col04 NVARCHAR(450) NOT NULL, col05 NVARCHAR(450) NOT NULL, col06 NVARCHAR(450) NOT NULL, col07 NVARCHAR(450) NOT NULL, col08 NVARCHAR(450) NOT NULL, col09 NVARCHAR(450) NOT NULL, col10 NVARCHAR(450) NOT NULL, CONSTRAINT [PK dbo.Test row_id] PRIMARY KEY CLUSTERED (row_id) ) ; The next script loads the ten variable-length character columns with one-character strings in the first row, two-character strings in the second row, and so on down to the 450th row: WITH Numbers AS ( -- Generates numbers 1 - 450 inclusive SELECT TOP (450) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) INSERT dbo.Test WITH (TABLOCKX) SELECT REPLICATE(N'A', N.n), REPLICATE(N'B', N.n), REPLICATE(N'C', N.n), REPLICATE(N'D', N.n), REPLICATE(N'E', N.n), REPLICATE(N'F', N.n), REPLICATE(N'G', N.n), REPLICATE(N'H', N.n), REPLICATE(N'I', N.n), REPLICATE(N'J', N.n) FROM Numbers AS N ORDER BY N.n ASC ; Once those two scripts have run, the table contains 450 rows and 10 columns of data like this: Most of the time, when we query data from this table, we don’t see any LOB logical reads, for example: -- Find the maximum length of the data in -- column 5 for a range of rows SELECT result = MAX(DATALENGTH(T.col05)) FROM dbo.Test AS T WHERE row_id BETWEEN 50 AND 100 ; But with a different query… -- Read all the data in column 1 SELECT result = MAX(DATALENGTH(T.col01)) FROM dbo.Test AS T ; …suddenly we have 49 LOB logical reads, as well as the ‘normal’ logical reads we would expect. The Explanation If we had tried to create this table in SQL Server 2000, we would have received a warning message to say that future INSERT or UPDATE operations on the table might fail if the resulting row exceeded the in-row storage limit of 8060 bytes.  If we needed to store more data than would fit in an 8060 byte row (including internal overhead) we had to use a LOB column – TEXT, NTEXT, or IMAGE.  These special data types store the large data values in a separate structure, with just a small pointer left in the original row. Row Overflow SQL Server 2005 introduced a feature called row overflow, which allows one or more variable-length columns in a row to move to off-row storage if the data in a particular row would otherwise exceed 8060 bytes.  You no longer receive a warning when creating (or altering) a table that might need more than 8060 bytes of in-row storage; if SQL Server finds that it can no longer fit a variable-length column in a particular row, it will silently move one or more of these columns off the row into a separate allocation unit. Only variable-length columns can be moved in this way (for example the (N)VARCHAR, VARBINARY, and SQL_VARIANT types).  Fixed-length columns (like INTEGER and DATETIME for example) never move into ‘row overflow’ storage.  The decision to move a column off-row is done on a row-by-row basis – so data in a particular column might be stored in-row for some table records, and off-row for others. In general, if SQL Server finds that it needs to move a column into row-overflow storage, it moves the largest variable-length column record for that row.  Note that in the case of an UPDATE statement that results in the 8060 byte limit being exceeded, it might not be the column that grew that is moved! Sneaky LOBs Anyway, that’s all very interesting but I don’t want to get too carried away with the intricacies of row-overflow storage internals.  The point is that it is now possible to define a table with non-LOB columns that will silently exceed the old row-size limit and result in ordinary variable-length columns being moved to off-row storage.  Adding new columns to a table, expanding an existing column definition, or simply storing more data in a column than you used to – all these things can result in one or more variable-length columns being moved off the row. Note that row-overflow storage is logically quite different from old-style LOB and new-style MAX data type storage – individual variable-length columns are still limited to 8000 bytes each – you can just have more of them now.  Having said that, the physical mechanisms involved are very similar to full LOB storage – a column moved to row-overflow leaves a 24-byte pointer record in the row, and the ‘separate storage’ I have been talking about is structured very similarly to both old-style LOBs and new-style MAX types.  The disadvantages are also the same: when SQL Server needs a row-overflow column value it needs to follow the in-row pointer a navigate another chain of pages, just like retrieving a traditional LOB. And Finally… In the example script presented above, the rows with row_id values from 402 to 450 inclusive all exceed the total in-row storage limit of 8060 bytes.  A SELECT that references a column in one of those rows that has moved to off-row storage will incur one or more lob logical reads as the storage engine locates the data.  The results on your system might vary slightly depending on your settings, of course; but in my tests only column 1 in rows 402-450 moved off-row.  You might like to play around with the script – updating columns, changing data type lengths, and so on – to see the effect on lob logical reads and which columns get moved when.  You might even see row-overflow columns moving back in-row if they are updated to be smaller (hint: reduce the size of a column entry by at least 1000 bytes if you hope to see this). Be aware that SQL Server will not warn you when it moves ‘ordinary’ variable-length columns into overflow storage, and it can have dramatic effects on performance.  It makes more sense than ever to choose column data types sensibly.  If you make every column a VARCHAR(8000) or NVARCHAR(4000), and someone stores data that results in a row needing more than 8060 bytes, SQL Server might turn some of your column data into pseudo-LOBs – all without saying a word. Finally, some people make a distinction between ordinary LOBs (those that can hold up to 2GB of data) and the LOB-like structures created by row-overflow (where columns are still limited to 8000 bytes) by referring to row-overflow LOBs as SLOBs.  I find that quite appealing, but the ‘S’ stands for ‘small’, which makes expanding the whole acronym a little daft-sounding…small large objects anyone? © Paul White 2011 email: [email protected] twitter: @SQL_Kiwi

    Read the article

  • Database operations through SQL: Database Restore ...

    - by zc0000
    If using sql to perform a database restoring , care the sql-codes very well. Any trivial mistake may prevent a successful execution. Cases are listed here based on simple experiments. with operation: MOVE 'logical_file_name_in_backup' TO 'operating_system_file_name' If logical file name not correctly set , following error is obtained: Logical file 'FILE_NAME' is not part of database 'DATABASE_NAME'. Use RESTORE FILELISTONLY to list the logical file names. RESTORE DATABASE is terminating abnormally. To be continue...

    Read the article

  • SQL SERVER – SSMS: Top Object and Batch Execution Statistics Reports

    - by Pinal Dave
    The month of June till mid of July has been the fever of sports. First, it was Wimbledon Tennis and then the Soccer fever was all over. There is a huge number of fan followers and it is great to see the level at which people sometimes worship these sports. Being an Indian, I cannot forget to mention the India tour of England later part of July. Following these sports and as the events unfold to the finals, there are a number of ways the statisticians can slice and dice the numbers. Cue from soccer I can surely say there is a team performance against another team and then there is individual member fairs against a particular opponent. Such statistics give us a fair idea to how a team in the past or in the recent past has fared against each other, head-to-head stats during World cup and during other neutral venue games. All these statistics are just pointers. In reality, they don’t reflect the calibre of the current team because the individuals who performed in each of these games are totally different (Typical example being the Brazil Vs Germany semi-final match in FIFA 2014). So at times these numbers are misleading. It is worth investigating and get the next level information. Similar to these statistics, SQL Server Management studio is also equipped with a number of reports like a) Object Execution Statistics report and b) Batch Execution Statistics reports. As discussed in the example, the team scorecard is like the Batch Execution statistics and individual stats is like Object Level statistics. The analogy can be taken only this far, trust me there is no correlation between SQL Server functioning and playing sports – It is like I think about diet all the time except while I am eating. Performance – Batch Execution Statistics Let us view the first report which can be invoked from Server Node -> Reports -> Standard Reports -> Performance – Batch Execution Statistics. Most of the values that are displayed in this report come from the DMVs sys.dm_exec_query_stats and sys.dm_exec_sql_text(sql_handle). This report contains 3 distinctive sections as outline below.   Section 1: This is a graphical bar graph representation of Average CPU Time, Average Logical reads and Average Logical Writes for individual batches. The Batch numbers are indicative and the details of individual batch is available in section 3 (detailed below). Section 2: This represents a Pie chart of all the batches by Total CPU Time (%) and Total Logical IO (%) by batches. This graphical representation tells us which batch consumed the highest CPU and IO since the server started, provided plan is available in the cache. Section 3: This is the section where we can find the SQL statements associated with each of the batch Numbers. This also gives us the details of Average CPU / Average Logical Reads and Average Logical Writes in the system for the given batch with object details. Expanding the rows, I will also get the # Executions and # Plans Generated for each of the queries. Performance – Object Execution Statistics The second report worth a look is Object Execution statistics. This is a similar report as the previous but turned on its head by SQL Server Objects. The report has 3 areas to look as above. Section 1 gives the Average CPU, Average IO bar charts for specific objects. The section 2 is a graphical representation of Total CPU by objects and Total Logical IO by objects. The final section details the various objects in detail with the Avg. CPU, IO and other details which are self-explanatory. At a high-level both the reports are based on queries on two DMVs (sys.dm_exec_query_stats and sys.dm_exec_sql_text) and it builds values based on calculations using columns in them: SELECT * FROM    sys.dm_exec_query_stats s1 CROSS APPLY sys.dm_exec_sql_text(sql_handle) AS s2 WHERE   s2.objectid IS NOT NULL AND DB_NAME(s2.dbid) IS NOT NULL ORDER BY  s1.sql_handle; This is one of the simplest form of reports and in future blogs we will look at more complex reports. I truly hope that these reports can give DBAs and developers a hint about what is the possible performance tuning area. As a closing point I must emphasize that all above reports pick up data from the plan cache. If a particular query has consumed a lot of resources earlier, but plan is not available in the cache, none of the above reports would show that bad query. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: SQL, SQL Authority, SQL Query, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL Tagged: SQL Reports

    Read the article

  • No root file system - Alternate CD + LVM

    - by Carlos
    I am trying to install 11.10 as dual boot with Windows 7. I have all partitioned well as you can see here: http://www.flickr.com/photos/42897978@N00/7111180385/ I burned the Alternate CD ISO to a CD. Boot from it and followed instructions to Partitioning. There, I configured the LVM partitions as follows: Volume Group ubuntu-vg - Uses Physical Volume /dev/sda7 380GB - Provides Logical Volume home-lv 60GB - Provides Logical Volume root-lv 60GB - Provides Logical Volume swap-lv 6GB That is all I want (note that my /boot is outside of LVM) Then when I say that all is Ok and to write it to disk and continue with the installation, I get the following error. !! Partition Disks No root file system No root file system is defined Please correct this from the partitioning menu. What should I fix and how? I tried issuing the "Revert changes to partitions", but nothing happens. It seems that the LVM configuration has already been written to the CD. HELP!!

    Read the article

  • ????????SPARC????? ?OVM???????!

    - by Yusuke.Yamamoto
    ????? ??:2010/10/26 ??:?????? SPARC ???????????????????????·??????????????!????????SPARC CMT ????? Solaris ?????????????????? Oracle VM Server for SPARC(?? Logical Domains:LDoms)????????????????????????? Oracle ??????/ Oracle Virtualization Strategy?Only From Oracle?Oracle ?????????????Oracle VM for SPARC ????/ Oracle VM for SPARC?Release History?Key Components?SPARC Enterprise T / SPARC T3?????System Firmware?Oracle Solaris?Logical Domains Manager??????????Oracle VM for SPARC???????!/ ???????(????)?????????ldm?????Configuration Assistant?Logical Domains P2V?????????? ????????? ????????????????? http://www.oracle.com/technology/global/jp/ondemand/otn-seminar/pdf/1026_OVMforSPARC_Rev02.pdf

    Read the article

  • Oracle BI Server Modeling, Part 1- Designing a Query Factory

    - by bob.ertl(at)oracle.com
      Welcome to Oracle BI Development's BI Foundation blog, focused on helping you get the most value from your Oracle Business Intelligence Enterprise Edition (BI EE) platform deployments.  In my first series of posts, I plan to show developers the concepts and best practices for modeling in the Common Enterprise Information Model (CEIM), the semantic layer of Oracle BI EE.  In this segment, I will lay the groundwork for the modeling concepts.  First, I will cover the big picture of how the BI Server fits into the system, and how the CEIM controls the query processing. Oracle BI EE Query Cycle The purpose of the Oracle BI Server is to bridge the gap between the presentation services and the data sources.  There are typically a variety of data sources in a variety of technologies: relational, normalized transaction systems; relational star-schema data warehouses and marts; multidimensional analytic cubes and financial applications; flat files, Excel files, XML files, and so on. Business datasets can reside in a single type of source, or, most of the time, are spread across various types of sources. Presentation services users are generally business people who need to be able to query that set of sources without any knowledge of technologies, schemas, or how sources are organized in their company. They think of business analysis in terms of measures with specific calculations, hierarchical dimensions for breaking those measures down, and detailed reports of the business transactions themselves.  Most of them create queries without knowing it, by picking a dashboard page and some filters.  Others create their own analysis by selecting metrics and dimensional attributes, and possibly creating additional calculations. The BI Server bridges that gap from simple business terms to technical physical queries by exposing just the business focused measures and dimensional attributes that business people can use in their analyses and dashboards.   After they make their selections and start the analysis, the BI Server plans the best way to query the data sources, writes the optimized sequence of physical queries to those sources, post-processes the results, and presents them to the client as a single result set suitable for tables, pivots and charts. The CEIM is a model that controls the processing of the BI Server.  It provides the subject areas that presentation services exposes for business users to select simplified metrics and dimensional attributes for their analysis.  It models the mappings to the physical data access, the calculations and logical transformations, and the data access security rules.  The CEIM consists of metadata stored in the repository, authored by developers using the Administration Tool client.     Presentation services and other query clients create their queries in BI EE's SQL-92 language, called Logical SQL or LSQL.  The API simply uses ODBC or JDBC to pass the query to the BI Server.  Presentation services writes the LSQL query in terms of the simplified objects presented to the users.  The BI Server creates a query plan, and rewrites the LSQL into fully-detailed SQL or other languages suitable for querying the physical sources.  For example, the LSQL on the left below was rewritten into the physical SQL for an Oracle 11g database on the right. Logical SQL   Physical SQL SELECT "D0 Time"."T02 Per Name Month" saw_0, "D4 Product"."P01  Product" saw_1, "F2 Units"."2-01  Billed Qty  (Sum All)" saw_2 FROM "Sample Sales" ORDER BY saw_0, saw_1       WITH SAWITH0 AS ( select T986.Per_Name_Month as c1, T879.Prod_Dsc as c2,      sum(T835.Units) as c3, T879.Prod_Key as c4 from      Product T879 /* A05 Product */ ,      Time_Mth T986 /* A08 Time Mth */ ,      FactsRev T835 /* A11 Revenue (Billed Time Join) */ where ( T835.Prod_Key = T879.Prod_Key and T835.Bill_Mth = T986.Row_Wid) group by T879.Prod_Dsc, T879.Prod_Key, T986.Per_Name_Month ) select SAWITH0.c1 as c1, SAWITH0.c2 as c2, SAWITH0.c3 as c3 from SAWITH0 order by c1, c2   Probably everybody reading this blog can write SQL or MDX.  However, the trick in designing the CEIM is that you are modeling a query-generation factory.  Rather than hand-crafting individual queries, you model behavior and relationships, thus configuring the BI Server machinery to manufacture millions of different queries in response to random user requests.  This mass production requires a different mindset and approach than when you are designing individual SQL statements in tools such as Oracle SQL Developer, Oracle Hyperion Interactive Reporting (formerly Brio), or Oracle BI Publisher.   The Structure of the Common Enterprise Information Model (CEIM) The CEIM has a unique structure specifically for modeling the relationships and behaviors that fill the gap from logical user requests to physical data source queries and back to the result.  The model divides the functionality into three specialized layers, called Presentation, Business Model and Mapping, and Physical, as shown below. Presentation services clients can generally only see the presentation layer, and the objects in the presentation layer are normally the only ones used in the LSQL request.  When a request comes into the BI Server from presentation services or another client, the relationships and objects in the model allow the BI Server to select the appropriate data sources, create a query plan, and generate the physical queries.  That's the left to right flow in the diagram below.  When the results come back from the data source queries, the right to left relationships in the model show how to transform the results and perform any final calculations and functions that could not be pushed down to the databases.   Business Model Think of the business model as the heart of the CEIM you are designing.  This is where you define the analytic behavior seen by the users, and the superset library of metric and dimension objects available to the user community as a whole.  It also provides the baseline business-friendly names and user-readable dictionary.  For these reasons, it is often called the "logical" model--it is a virtual database schema that persists no data, but can be queried as if it is a database. The business model always has a dimensional shape (more on this in future posts), and its simple shape and terminology hides the complexity of the source data models. Besides hiding complexity and normalizing terminology, this layer adds most of the analytic value, as well.  This is where you define the rich, dimensional behavior of the metrics and complex business calculations, as well as the conformed dimensions and hierarchies.  It contributes to the ease of use for business users, since the dimensional metric definitions apply in any context of filters and drill-downs, and the conformed dimensions enable dashboard-wide filters and guided analysis links that bring context along from one page to the next.  The conformed dimensions also provide a key to hiding the complexity of many sources, including federation of different databases, behind the simple business model. Note that the expression language in this layer is LSQL, so that any expression can be rewritten into any data source's query language at run time.  This is important for federation, where a given logical object can map to several different physical objects in different databases.  It is also important to portability of the CEIM to different database brands, which is a key requirement for Oracle's BI Applications products. Your requirements process with your user community will mostly affect the business model.  This is where you will define most of the things they specifically ask for, such as metric definitions.  For this reason, many of the best-practice methodologies of our consulting partners start with the high-level definition of this layer. Physical Model The physical model connects the business model that meets your users' requirements to the reality of the data sources you have available. In the query factory analogy, think of the physical layer as the bill of materials for generating physical queries.  Every schema, table, column, join, cube, hierarchy, etc., that will appear in any physical query manufactured at run time must be modeled here at design time. Each physical data source will have its own physical model, or "database" object in the CEIM.  The shape of each physical model matches the shape of its physical source.  In other words, if the source is normalized relational, the physical model will mimic that normalized shape.  If it is a hypercube, the physical model will have a hypercube shape.  If it is a flat file, it will have a denormalized tabular shape. To aid in query optimization, the physical layer also tracks the specifics of the database brand and release.  This allows the BI Server to make the most of each physical source's distinct capabilities, writing queries in its syntax, and using its specific functions. This allows the BI Server to push processing work as deep as possible into the physical source, which minimizes data movement and takes full advantage of the database's own optimizer.  For most data sources, native APIs are used to further optimize performance and functionality. The value of having a distinct separation between the logical (business) and physical models is encapsulation of the physical characteristics.  This encapsulation is another enabler of packaged BI applications and federation.  It is also key to hiding the complex shapes and relationships in the physical sources from the end users.  Consider a routine drill-down in the business model: physically, it can require a drill-through where the first query is MDX to a multidimensional cube, followed by the drill-down query in SQL to a normalized relational database.  The only difference from the user's point of view is that the 2nd query added a more detailed dimension level column - everything else was the same. Mappings Within the Business Model and Mapping Layer, the mappings provide the binding from each logical column and join in the dimensional business model, to each of the objects that can provide its data in the physical layer.  When there is more than one option for a physical source, rules in the mappings are applied to the query context to determine which of the data sources should be hit, and how to combine their results if more than one is used.  These rules specify aggregate navigation, vertical partitioning (fragmentation), and horizontal partitioning, any of which can be federated across multiple, heterogeneous sources.  These mappings are usually the most sophisticated part of the CEIM. Presentation You might think of the presentation layer as a set of very simple relational-like views into the business model.  Over ODBC/JDBC, they present a relational catalog consisting of databases, tables and columns.  For business users, presentation services interprets these as subject areas, folders and columns, respectively.  (Note that in 10g, subject areas were called presentation catalogs in the CEIM.  In this blog, I will stick to 11g terminology.)  Generally speaking, presentation services and other clients can query only these objects (there are exceptions for certain clients such as BI Publisher and Essbase Studio). The purpose of the presentation layer is to specialize the business model for different categories of users.  Based on a user's role, they will be restricted to specific subject areas, tables and columns for security.  The breakdown of the model into multiple subject areas organizes the content for users, and subjects superfluous to a particular business role can be hidden from that set of users.  Customized names and descriptions can be used to override the business model names for a specific audience.  Variables in the object names can be used for localization. For these reasons, you are better off thinking of the tables in the presentation layer as folders than as strict relational tables.  The real semantics of tables and how they function is in the business model, and any grouping of columns can be included in any table in the presentation layer.  In 11g, an LSQL query can also span multiple presentation subject areas, as long as they map to the same business model. Other Model Objects There are some objects that apply to multiple layers.  These include security-related objects, such as application roles, users, data filters, and query limits (governors).  There are also variables you can use in parameters and expressions, and initialization blocks for loading their initial values on a static or user session basis.  Finally, there are Multi-User Development (MUD) projects for developers to check out units of work, and objects for the marketing feature used by our packaged customer relationship management (CRM) software.   The Query Factory At this point, you should have a grasp on the query factory concept.  When developing the CEIM model, you are configuring the BI Server to automatically manufacture millions of queries in response to random user requests. You do this by defining the analytic behavior in the business model, mapping that to the physical data sources, and exposing it through the presentation layer's role-based subject areas. While configuring mass production requires a different mindset than when you hand-craft individual SQL or MDX statements, it builds on the modeling and query concepts you already understand. The following posts in this series will walk through the CEIM modeling concepts and best practices in detail.  We will initially review dimensional concepts so you can understand the business model, and then present a pattern-based approach to learning the mappings from a variety of physical schema shapes and deployments to the dimensional model.  Along the way, we will also present the dimensional calculation template, and learn how to configure the many additivity patterns.

    Read the article

  • LSI 9285-8e and Supermicro SC837E26-RJBOD1 duplicate enclosure ID and slot numbers

    - by Andy Shinn
    I am working with 2 x Supermicro SC837E26-RJBOD1 chassis connected to a single LSI 9285-8e card in a Supermicro 1U host. There are 28 drives in each chassis for a total of 56 drives in 28 RAID1 mirrors. The problem I am running in to is that there are duplicate slots for the 2 chassis (the slots list twice and only go from 0 to 27). All the drives also show the same enclosure ID (ID 36). However, MegaCLI -encinfo lists the 2 enclosures correctly (ID 36 and ID 65). My question is, why would this happen? Is there an option I am missing to use 2 enclosures effectively? This is blocking me rebuilding a drive that failed in slot 11 since I can only specify enclosure and slot as parameters to replace a drive. When I do this, it picks the wrong slot 11 (device ID 46 instead of device ID 19). Adapter #1 is the LSI 9285-8e, adapter #0 (which I removed due to space limitations) is the onboard LSI. Adapter information: Adapter #1 ============================================================================== Versions ================ Product Name : LSI MegaRAID SAS 9285-8e Serial No : SV12704804 FW Package Build: 23.1.1-0004 Mfg. Data ================ Mfg. Date : 06/30/11 Rework Date : 00/00/00 Revision No : 00A Battery FRU : N/A Image Versions in Flash: ================ BIOS Version : 5.25.00_4.11.05.00_0x05040000 WebBIOS Version : 6.1-20-e_20-Rel Preboot CLI Version: 05.01-04:#%00001 FW Version : 3.140.15-1320 NVDATA Version : 2.1106.03-0051 Boot Block Version : 2.04.00.00-0001 BOOT Version : 06.253.57.219 Pending Images in Flash ================ None PCI Info ================ Vendor Id : 1000 Device Id : 005b SubVendorId : 1000 SubDeviceId : 9285 Host Interface : PCIE ChipRevision : B0 Number of Frontend Port: 0 Device Interface : PCIE Number of Backend Port: 8 Port : Address 0 5003048000ee8e7f 1 5003048000ee8a7f 2 0000000000000000 3 0000000000000000 4 0000000000000000 5 0000000000000000 6 0000000000000000 7 0000000000000000 HW Configuration ================ SAS Address : 500605b0038f9210 BBU : Present Alarm : Present NVRAM : Present Serial Debugger : Present Memory : Present Flash : Present Memory Size : 1024MB TPM : Absent On board Expander: Absent Upgrade Key : Absent Temperature sensor for ROC : Present Temperature sensor for controller : Absent ROC temperature : 70 degree Celcius Settings ================ Current Time : 18:24:36 3/13, 2012 Predictive Fail Poll Interval : 300sec Interrupt Throttle Active Count : 16 Interrupt Throttle Completion : 50us Rebuild Rate : 30% PR Rate : 30% BGI Rate : 30% Check Consistency Rate : 30% Reconstruction Rate : 30% Cache Flush Interval : 4s Max Drives to Spinup at One Time : 2 Delay Among Spinup Groups : 12s Physical Drive Coercion Mode : Disabled Cluster Mode : Disabled Alarm : Enabled Auto Rebuild : Enabled Battery Warning : Enabled Ecc Bucket Size : 15 Ecc Bucket Leak Rate : 1440 Minutes Restore HotSpare on Insertion : Disabled Expose Enclosure Devices : Enabled Maintain PD Fail History : Enabled Host Request Reordering : Enabled Auto Detect BackPlane Enabled : SGPIO/i2c SEP Load Balance Mode : Auto Use FDE Only : No Security Key Assigned : No Security Key Failed : No Security Key Not Backedup : No Default LD PowerSave Policy : Controller Defined Maximum number of direct attached drives to spin up in 1 min : 10 Any Offline VD Cache Preserved : No Allow Boot with Preserved Cache : No Disable Online Controller Reset : No PFK in NVRAM : No Use disk activity for locate : No Capabilities ================ RAID Level Supported : RAID0, RAID1, RAID5, RAID6, RAID00, RAID10, RAID50, RAID60, PRL 11, PRL 11 with spanning, SRL 3 supported, PRL11-RLQ0 DDF layout with no span, PRL11-RLQ0 DDF layout with span Supported Drives : SAS, SATA Allowed Mixing: Mix in Enclosure Allowed Mix of SAS/SATA of HDD type in VD Allowed Status ================ ECC Bucket Count : 0 Limitations ================ Max Arms Per VD : 32 Max Spans Per VD : 8 Max Arrays : 128 Max Number of VDs : 64 Max Parallel Commands : 1008 Max SGE Count : 60 Max Data Transfer Size : 8192 sectors Max Strips PerIO : 42 Max LD per array : 16 Min Strip Size : 8 KB Max Strip Size : 1.0 MB Max Configurable CacheCade Size: 0 GB Current Size of CacheCade : 0 GB Current Size of FW Cache : 887 MB Device Present ================ Virtual Drives : 28 Degraded : 0 Offline : 0 Physical Devices : 59 Disks : 56 Critical Disks : 0 Failed Disks : 0 Supported Adapter Operations ================ Rebuild Rate : Yes CC Rate : Yes BGI Rate : Yes Reconstruct Rate : Yes Patrol Read Rate : Yes Alarm Control : Yes Cluster Support : No BBU : No Spanning : Yes Dedicated Hot Spare : Yes Revertible Hot Spares : Yes Foreign Config Import : Yes Self Diagnostic : Yes Allow Mixed Redundancy on Array : No Global Hot Spares : Yes Deny SCSI Passthrough : No Deny SMP Passthrough : No Deny STP Passthrough : No Support Security : No Snapshot Enabled : No Support the OCE without adding drives : Yes Support PFK : Yes Support PI : No Support Boot Time PFK Change : Yes Disable Online PFK Change : No PFK TrailTime Remaining : 0 days 0 hours Support Shield State : Yes Block SSD Write Disk Cache Change: Yes Supported VD Operations ================ Read Policy : Yes Write Policy : Yes IO Policy : Yes Access Policy : Yes Disk Cache Policy : Yes Reconstruction : Yes Deny Locate : No Deny CC : No Allow Ctrl Encryption: No Enable LDBBM : No Support Breakmirror : No Power Savings : Yes Supported PD Operations ================ Force Online : Yes Force Offline : Yes Force Rebuild : Yes Deny Force Failed : No Deny Force Good/Bad : No Deny Missing Replace : No Deny Clear : No Deny Locate : No Support Temperature : Yes Disable Copyback : No Enable JBOD : No Enable Copyback on SMART : No Enable Copyback to SSD on SMART Error : Yes Enable SSD Patrol Read : No PR Correct Unconfigured Areas : Yes Enable Spin Down of UnConfigured Drives : Yes Disable Spin Down of hot spares : No Spin Down time : 30 T10 Power State : Yes Error Counters ================ Memory Correctable Errors : 0 Memory Uncorrectable Errors : 0 Cluster Information ================ Cluster Permitted : No Cluster Active : No Default Settings ================ Phy Polarity : 0 Phy PolaritySplit : 0 Background Rate : 30 Strip Size : 64kB Flush Time : 4 seconds Write Policy : WB Read Policy : Adaptive Cache When BBU Bad : Disabled Cached IO : No SMART Mode : Mode 6 Alarm Disable : Yes Coercion Mode : None ZCR Config : Unknown Dirty LED Shows Drive Activity : No BIOS Continue on Error : No Spin Down Mode : None Allowed Device Type : SAS/SATA Mix Allow Mix in Enclosure : Yes Allow HDD SAS/SATA Mix in VD : Yes Allow SSD SAS/SATA Mix in VD : No Allow HDD/SSD Mix in VD : No Allow SATA in Cluster : No Max Chained Enclosures : 16 Disable Ctrl-R : Yes Enable Web BIOS : Yes Direct PD Mapping : No BIOS Enumerate VDs : Yes Restore Hot Spare on Insertion : No Expose Enclosure Devices : Yes Maintain PD Fail History : Yes Disable Puncturing : No Zero Based Enclosure Enumeration : No PreBoot CLI Enabled : Yes LED Show Drive Activity : Yes Cluster Disable : Yes SAS Disable : No Auto Detect BackPlane Enable : SGPIO/i2c SEP Use FDE Only : No Enable Led Header : No Delay during POST : 0 EnableCrashDump : No Disable Online Controller Reset : No EnableLDBBM : No Un-Certified Hard Disk Drives : Allow Treat Single span R1E as R10 : No Max LD per array : 16 Power Saving option : Don't Auto spin down Configured Drives Max power savings option is not allowed for LDs. Only T10 power conditions are to be used. Default spin down time in minutes: 30 Enable JBOD : No TTY Log In Flash : No Auto Enhanced Import : No BreakMirror RAID Support : No Disable Join Mirror : No Enable Shield State : Yes Time taken to detect CME : 60s Exit Code: 0x00 Enclosure information: # /opt/MegaRAID/MegaCli/MegaCli64 -encinfo -a1 Number of enclosures on adapter 1 -- 3 Enclosure 0: Device ID : 36 Number of Slots : 28 Number of Power Supplies : 2 Number of Fans : 3 Number of Temperature Sensors : 1 Number of Alarms : 1 Number of SIM Modules : 0 Number of Physical Drives : 28 Status : Normal Position : 1 Connector Name : Port B Enclosure type : SES VendorId is LSI CORP and Product Id is SAS2X36 VendorID and Product ID didnt match FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : 65 Inquiry data : Vendor Identification : LSI CORP Product Identification : SAS2X36 Product Revision Level : 0718 Vendor Specific : x36-55.7.24.1 Number of Voltage Sensors :2 Voltage Sensor :0 Voltage Sensor Status :OK Voltage Value :5020 milli volts Voltage Sensor :1 Voltage Sensor Status :OK Voltage Value :11820 milli volts Number of Power Supplies : 2 Power Supply : 0 Power Supply Status : OK Power Supply : 1 Power Supply Status : OK Number of Fans : 3 Fan : 0 Fan Speed :Low Speed Fan Status : OK Fan : 1 Fan Speed :Low Speed Fan Status : OK Fan : 2 Fan Speed :Low Speed Fan Status : OK Number of Temperature Sensors : 1 Temp Sensor : 0 Temperature : 48 Temperature Sensor Status : OK Number of Chassis : 1 Chassis : 0 Chassis Status : OK Enclosure 1: Device ID : 65 Number of Slots : 28 Number of Power Supplies : 2 Number of Fans : 3 Number of Temperature Sensors : 1 Number of Alarms : 1 Number of SIM Modules : 0 Number of Physical Drives : 28 Status : Normal Position : 1 Connector Name : Port A Enclosure type : SES VendorId is LSI CORP and Product Id is SAS2X36 VendorID and Product ID didnt match FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : 36 Inquiry data : Vendor Identification : LSI CORP Product Identification : SAS2X36 Product Revision Level : 0718 Vendor Specific : x36-55.7.24.1 Number of Voltage Sensors :2 Voltage Sensor :0 Voltage Sensor Status :OK Voltage Value :5020 milli volts Voltage Sensor :1 Voltage Sensor Status :OK Voltage Value :11760 milli volts Number of Power Supplies : 2 Power Supply : 0 Power Supply Status : OK Power Supply : 1 Power Supply Status : OK Number of Fans : 3 Fan : 0 Fan Speed :Low Speed Fan Status : OK Fan : 1 Fan Speed :Low Speed Fan Status : OK Fan : 2 Fan Speed :Low Speed Fan Status : OK Number of Temperature Sensors : 1 Temp Sensor : 0 Temperature : 47 Temperature Sensor Status : OK Number of Chassis : 1 Chassis : 0 Chassis Status : OK Enclosure 2: Device ID : 252 Number of Slots : 8 Number of Power Supplies : 0 Number of Fans : 0 Number of Temperature Sensors : 0 Number of Alarms : 0 Number of SIM Modules : 1 Number of Physical Drives : 0 Status : Normal Position : 1 Connector Name : Unavailable Enclosure type : SGPIO Failed in first Inquiry commnad FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : Unavailable Inquiry data : Vendor Identification : LSI Product Identification : SGPIO Product Revision Level : N/A Vendor Specific : Exit Code: 0x00 Now, notice that each slot 11 device shows an enclosure ID of 36, I think this is where the discrepancy happens. One should be 36. But the other should be on enclosure 65. Drives in slot 11: Enclosure Device ID: 36 Slot Number: 11 Drive's postion: DiskGroup: 5, Span: 0, Arm: 1 Enclosure position: 0 Device Id: 48 WWN: Sequence Number: 11 Media Error Count: 0 Other Error Count: 0 Predictive Failure Count: 0 Last Predictive Failure Event Seq Number: 0 PD Type: SATA Raw Size: 2.728 TB [0x15d50a3b0 Sectors] Non Coerced Size: 2.728 TB [0x15d40a3b0 Sectors] Coerced Size: 2.728 TB [0x15d400000 Sectors] Firmware state: Online, Spun Up Is Commissioned Spare : YES Device Firmware Level: A5C0 Shield Counter: 0 Successful diagnostics completion on : N/A SAS Address(0): 0x5003048000ee8a53 Connected Port Number: 1(path0) Inquiry Data: MJ1311YNG6YYXAHitachi HDS5C3030ALA630 MEAOA5C0 FDE Enable: Disable Secured: Unsecured Locked: Unlocked Needs EKM Attention: No Foreign State: None Device Speed: 6.0Gb/s Link Speed: 6.0Gb/s Media Type: Hard Disk Device Drive Temperature :30C (86.00 F) PI Eligibility: No Drive is formatted for PI information: No PI: No PI Drive's write cache : Disabled Drive's NCQ setting : Enabled Port-0 : Port status: Active Port's Linkspeed: 6.0Gb/s Drive has flagged a S.M.A.R.T alert : No Enclosure Device ID: 36 Slot Number: 11 Drive's postion: DiskGroup: 19, Span: 0, Arm: 1 Enclosure position: 0 Device Id: 19 WWN: Sequence Number: 4 Media Error Count: 0 Other Error Count: 0 Predictive Failure Count: 0 Last Predictive Failure Event Seq Number: 0 PD Type: SATA Raw Size: 2.728 TB [0x15d50a3b0 Sectors] Non Coerced Size: 2.728 TB [0x15d40a3b0 Sectors] Coerced Size: 2.728 TB [0x15d400000 Sectors] Firmware state: Online, Spun Up Is Commissioned Spare : NO Device Firmware Level: A580 Shield Counter: 0 Successful diagnostics completion on : N/A SAS Address(0): 0x5003048000ee8e53 Connected Port Number: 0(path0) Inquiry Data: MJ1313YNG1VA5CHitachi HDS5C3030ALA630 MEAOA580 FDE Enable: Disable Secured: Unsecured Locked: Unlocked Needs EKM Attention: No Foreign State: None Device Speed: 6.0Gb/s Link Speed: 6.0Gb/s Media Type: Hard Disk Device Drive Temperature :30C (86.00 F) PI Eligibility: No Drive is formatted for PI information: No PI: No PI Drive's write cache : Disabled Drive's NCQ setting : Enabled Port-0 : Port status: Active Port's Linkspeed: 6.0Gb/s Drive has flagged a S.M.A.R.T alert : No Update 06/28/12: I finally have some new information about (what we think) the root cause of this problem so I thought I would share. After getting in contact with a very knowledgeable Supermicro tech, they provided us with a tool called Xflash (doesn't appear to be readily available on their FTP). When we gathered some information using this utility, my colleague found something very strange: root@mogile2 test]# ./xflash.dat -i get avail Initializing Interface. Expander: SAS2X36 (SAS2x36) 1) SAS2X36 (SAS2x36) (50030480:00EE917F) (0.0.0.0) 2) SAS2X36 (SAS2x36) (50030480:00E9D67F) (0.0.0.0) 3) SAS2X36 (SAS2x36) (50030480:0112D97F) (0.0.0.0) This lists the connected enclosures. You see the 3 connected (we have since added a 3rd and a 4th which is not yet showing up) with their respective SAS address / WWN (50030480:00EE917F). Now we can use this address to get information on the individual enclosures: [root@mogile2 test]# ./xflash.dat -i 5003048000EE917F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:00EE917F Enclosure Logical Id: 50030480:0000007F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 [root@mogile2 test]# ./xflash.dat -i 5003048000E9D67F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:00E9D67F Enclosure Logical Id: 50030480:0000007F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 [root@mogile2 test]# ./xflash.dat -i 500304800112D97F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:0112D97F Enclosure Logical Id: 50030480:0112D97F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 Did you catch it? The first 2 enclosures logical ID is partially masked out where the 3rd one (which has a correct unique enclosure ID) is not. We pointed this out to Supermicro and were able to confirm that this address is supposed to be set during manufacturing and there was a problem with a certain batch of these enclosures where the logical ID was not set. We believe that the RAID controller is determining the ID based on the logical ID and since our first 2 enclosures have the same logical ID, they get the same enclosure ID. We also confirmed that 0000007F is the default which comes from LSI as an ID. The next pointer that helps confirm this could be a manufacturing problem with a run of JBODs is the fact that all 6 of the enclosures that have this problem begin with 00E. I believe that between 00E8 and 00EE Supermicro forgot to program the logical IDs correctly and neglected to recall or fix the problem post production. Fortunately for us, there is a tool to manage the WWN and logical ID of the devices from Supermicro: ftp://ftp.supermicro.com/utility/ExpanderXtools_Lite/. Our next step is to schedule a shutdown of these JBODs (after data migration) and reprogram the logical ID and see if it solves the problem. Update 06/28/12 #2: I just discovered this FAQ at Supermicro while Google searching for "lsi 0000007f": http://www.supermicro.com/support/faqs/faq.cfm?faq=11805. I still don't understand why, in the last several times we contacted Supermicro, they would have never directed us to this article :\

    Read the article

  • RHEL - blocked FC remote port time out: saving binding

    - by Dev G
    My Server went into a faulty state since the database could not write on the partition. I found out that the partition went into Read Only mode. Finally to fix it, I had to do a hard reboot. Linux 2.6.18-164.el5PAE #1 SMP Tue Aug 18 15:59:11 EDT 2009 i686 i686 i386 GNU/Linux /var/log/messages Oct 31 00:56:45 ota3g1 Had[17275]: VCS ERROR V-16-1-10214 Concurrency Violation:CurrentCount increased above 1 for failover group sg_network Oct 31 00:57:05 ota3g1 Had[17275]: VCS CRITICAL V-16-1-50086 CPU usage on ota3g1.mtsallstream.com is 100% Oct 31 01:01:47 ota3g1 Had[17275]: VCS ERROR V-16-1-10214 Concurrency Violation:CurrentCount increased above 1 for failover group sg_network Oct 31 01:06:50 ota3g1 Had[17275]: VCS ERROR V-16-1-10214 Concurrency Violation:CurrentCount increased above 1 for failover group sg_network Oct 31 01:11:52 ota3g1 Had[17275]: VCS ERROR V-16-1-10214 Concurrency Violation:CurrentCount increased above 1 for failover group sg_network Oct 31 01:12:10 ota3g1 kernel: lpfc 0000:29:00.1: 1:1305 Link Down Event x2 received Data: x2 x20 x80000 x0 x0 Oct 31 01:12:10 ota3g1 kernel: lpfc 0000:29:00.1: 1:1303 Link Up Event x3 received Data: x3 x1 x10 x1 x0 x0 0 Oct 31 01:12:12 ota3g1 kernel: lpfc 0000:29:00.1: 1:1305 Link Down Event x4 received Data: x4 x20 x80000 x0 x0 Oct 31 01:12:40 ota3g1 kernel: rport-8:0-0: blocked FC remote port time out: saving binding Oct 31 01:12:40 ota3g1 kernel: lpfc 0000:29:00.1: 1:(0):0203 Devloss timeout on WWPN 20:25:00:a0:b8:74:f5:65 NPort x0000e4 Data: x0 x7 x0 Oct 31 01:12:40 ota3g1 kernel: sd 8:0:0:4: SCSI error: return code = 0x00010000 Oct 31 01:12:40 ota3g1 kernel: end_request: I/O error, dev sdi, sector 38617577 Oct 31 01:12:40 ota3g1 kernel: sd 8:0:0:4: SCSI error: return code = 0x00010000 Oct 31 01:12:40 ota3g1 kernel: end_request: I/O error, dev sdi, sector 283532153 Oct 31 01:12:40 ota3g1 kernel: sd 8:0:0:4: SCSI error: return code = 0x00010000 Oct 31 01:12:40 ota3g1 kernel: end_request: I/O error, dev sdi, sector 90825 Oct 31 01:12:40 ota3g1 kernel: Aborting journal on device dm-16. Oct 31 01:12:40 ota3g1 kernel: sd 8:0:0:4: SCSI error: return code = 0x00010000 Oct 31 01:12:40 ota3g1 kernel: end_request: I/O error, dev sdi, sector 868841 Oct 31 01:12:40 ota3g1 kernel: sd 8:0:0:4: SCSI error: return code = 0x00010000 Oct 31 01:12:40 ota3g1 kernel: Aborting journal on device dm-10. Oct 31 01:12:40 ota3g1 kernel: end_request: I/O error, dev sdi, sector 37759889 Oct 31 01:12:40 ota3g1 kernel: sd 8:0:0:4: SCSI error: return code = 0x00010000 Oct 31 01:12:40 ota3g1 kernel: end_request: I/O error, dev sdi, sector 283349449 Oct 31 01:12:40 ota3g1 kernel: printk: 6 messages suppressed. Oct 31 01:12:40 ota3g1 kernel: Aborting journal on device dm-12. Oct 31 01:12:40 ota3g1 kernel: EXT3-fs error (device dm-12) in ext3_reserve_inode_write: Journal has aborted Oct 31 01:12:40 ota3g1 kernel: Buffer I/O error on device dm-16, logical block 1545 Oct 31 01:12:40 ota3g1 kernel: lost page write due to I/O error on dm-16 Oct 31 01:12:40 ota3g1 kernel: sd 8:0:0:4: SCSI error: return code = 0x00010000 Oct 31 01:12:40 ota3g1 kernel: end_request: I/O error, dev sdi, sector 12745 Oct 31 01:12:40 ota3g1 kernel: Buffer I/O error on device dm-10, logical block 1545 Oct 31 01:12:40 ota3g1 kernel: EXT3-fs error (device dm-16) in ext3_reserve_inode_write: Journal has aborted Oct 31 01:12:40 ota3g1 kernel: lost page write due to I/O error on dm-10 Oct 31 01:12:40 ota3g1 kernel: sd 8:0:0:4: SCSI error: return code = 0x00010000 Oct 31 01:12:40 ota3g1 kernel: end_request: I/O error, dev sdi, sector 37749121 Oct 31 01:12:40 ota3g1 kernel: Buffer I/O error on device dm-12, logical block 0 Oct 31 01:12:40 ota3g1 kernel: lost page write due to I/O error on dm-12 Oct 31 01:12:40 ota3g1 kernel: sd 8:0:0:4: SCSI error: return code = 0x00010000 Oct 31 01:12:40 ota3g1 kernel: EXT3-fs error (device dm-12) in ext3_dirty_inode: Journal has aborted Oct 31 01:12:40 ota3g1 kernel: end_request: I/O error, dev sdi, sector 37757897 Oct 31 01:12:40 ota3g1 kernel: Buffer I/O error on device dm-12, logical block 1097 Oct 31 01:12:40 ota3g1 kernel: lost page write due to I/O error on dm-12 Oct 31 01:12:40 ota3g1 kernel: sd 8:0:0:4: SCSI error: return code = 0x00010000 Oct 31 01:12:40 ota3g1 kernel: end_request: I/O error, dev sdi, sector 283337089 Oct 31 01:12:40 ota3g1 kernel: Buffer I/O error on device dm-16, logical block 0 Oct 31 01:12:40 ota3g1 kernel: lost page write due to I/O error on dm-16 Oct 31 01:12:40 ota3g1 kernel: sd 8:0:0:4: SCSI error: return code = 0x00010000 Oct 31 01:12:40 ota3g1 kernel: EXT3-fs error (device dm-16) in ext3_dirty_inode: Journal has aborted Oct 31 01:12:40 ota3g1 kernel: end_request: I/O error, dev sdi, sector 37749121 Oct 31 01:12:40 ota3g1 kernel: Buffer I/O error on device dm-12, logical block 0 Oct 31 01:12:41 ota3g1 kernel: lost page write due to I/O error on dm-12 Oct 31 01:12:41 ota3g1 kernel: sd 8:0:0:4: SCSI error: return code = 0x00010000 Oct 31 01:12:41 ota3g1 kernel: end_request: I/O error, dev sdi, sector 283337089 Oct 31 01:12:41 ota3g1 kernel: Buffer I/O error on device dm-16, logical block 0 Oct 31 01:12:41 ota3g1 kernel: lost page write due to I/O error on dm-16 Oct 31 01:12:41 ota3g1 kernel: sd 8:0:0:4: SCSI error: return code = 0x00010000 df -h Filesystem Size Used Avail Use% Mounted on /dev/mapper/cciss-root 4.9G 730M 3.9G 16% / /dev/mapper/cciss-home 9.7G 1.2G 8.1G 13% /home /dev/mapper/cciss-var 9.7G 494M 8.8G 6% /var /dev/mapper/cciss-usr 15G 2.6G 12G 19% /usr /dev/mapper/cciss-tmp 3.9G 153M 3.6G 5% /tmp /dev/sda1 996M 43M 902M 5% /boot tmpfs 5.9G 0 5.9G 0% /dev/shm /dev/mapper/cciss-product 25G 16G 7.4G 68% /product /dev/mapper/cciss-opt 20G 4.5G 14G 25% /opt /dev/mapper/dg_db1-vol_db1_system 18G 2.2G 15G 14% /database/OTADB/sys /dev/mapper/dg_db1-vol_db1_undo 18G 5.8G 12G 35% /database/OTADB/undo /dev/mapper/dg_db1-vol_db1_redo 8.9G 4.3G 4.2G 51% /database/OTADB/redo /dev/mapper/dg_db1-vol_db1_sgbd 8.9G 654M 7.8G 8% /database/OTADB/admin /dev/mapper/dg_db1-vol_db1_arch 98G 24G 69G 26% /database/OTADB/arch /dev/mapper/dg_db1-vol_db1_indexes 240G 14G 214G 6% /database/OTADB/index /dev/mapper/dg_db1-vol_db1_data 275G 47G 215G 18% /database/OTADB/data /dev/mapper/dg_dbrman-vol_db_rman 8.9G 351M 8.1G 5% /database/RMAN /dev/mapper/dg_app1-vol_app1 151G 113G 31G 79% /files/ota /etc/fstab /dev/cciss/root / ext3 defaults 1 1 /dev/cciss/home /home ext3 defaults 1 2 /dev/cciss/var /var ext3 defaults 1 2 /dev/cciss/usr /usr ext3 defaults 1 2 /dev/cciss/tmp /tmp ext3 defaults 1 2 LABEL=/boot /boot ext3 defaults 1 2 tmpfs /dev/shm tmpfs defaults 0 0 devpts /dev/pts devpts gid=5,mode=620 0 0 sysfs /sys sysfs defaults 0 0 proc /proc proc defaults 0 0 /dev/cciss/swap swap swap defaults 0 0 /dev/cciss/product /product ext3 defaults 1 2 /dev/cciss/opt /opt ext3 defaults 1 2 /dev/dg_db1/vol_db1_system /database/OTADB/sys ext3 defaults 1 2 /dev/dg_db1/vol_db1_undo /database/OTADB/undo ext3 defaults 1 2 /dev/dg_db1/vol_db1_redo /database/OTADB/redo ext3 defaults 1 2 /dev/dg_db1/vol_db1_sgbd /database/OTADB/admin ext3 defaults 1 2 /dev/dg_db1/vol_db1_arch /database/OTADB/arch ext3 defaults 1 2 /dev/dg_db1/vol_db1_indexes /database/OTADB/index ext3 defaults 1 2 /dev/dg_db1/vol_db1_data /database/OTADB/data ext3 defaults 1 2 /dev/dg_dbrman/vol_db_rman /database/RMAN ext3 defaults 1 2 /dev/dg_app1/vol_app1 /files/ota ext3 defaults 1 2 Thanks for all the help.

    Read the article

  • All Xen domU LVM volumes corrupt after reboot

    - by zcs
    I'm running a Debian Squeeze dom0, and after rebooting it all 7 of my domUs have data corruption. Each is setup as ext3 partition directly on a separate lvm2 volume. None of the lvm volumes will mount; all have bad superblocks. I've tried e2fsck with each superblock to no avail. What else can I try? Each domU has two LVM volumes connected to it, one for the disk and one for swap. The disk is mounted at root, formatted as a normal ext3 partition as a xen-blk device. The volumes are never mounted outside of the guest OS. I'm running Ubuntu 11.04 using the instructions here. I'm not sure that they didn't shutdown properly, all I know is they were corrupt after I issues a clean 'reboot' on the dom0. Here's a sample Xen config file; the rest are the same except for name, vcpus, memory, vif and disk. name = 'load1' vcpus = 2 memory = 512 vif = ['bridge=prbr0', 'bridge=eth0'] disk = ['phy:/dev/VolGroup00/load1-disk,xvda,w','phy:/dev/VolGroup00/load1-swap,xvdb,w'] #============================================================================ # Debian Installer specific variables def check_bool(name, value): value = str(value).lower() if value in ('t', 'tr', 'tru', 'true'): return True return False global var_check_with_default def var_check_with_default(default, var, val): if val: return val return default xm_vars.var('install', use='Install Debian, default: false', check=check_bool) xm_vars.var("install-method", use='Installation method to use "cdrom" or "network" (default: network)', check=lambda var, val: var_check_with_default('network', var, val)) # install-method == "network" xm_vars.var("install-mirror", use='Debian mirror to install from (default: http://archive.ubuntu.com/ubuntu)', check=lambda var, val: var_check_with_default('http://archive.ubuntu.com/ubuntu', var, val)) xm_vars.var("install-suite", use='Debian suite to install (default: natty)', check=lambda var, val: var_check_with_default('natty', var, val)) # install-method == "cdrom" xm_vars.var("install-media", use='Installation media to use (default: None)', check=lambda var, val: var_check_with_default(None, var, val)) xm_vars.var("install-cdrom-device", use='Installation media to use (default: xvdd)', check=lambda var, val: var_check_with_default('xvdd', var, val)) # Common options xm_vars.var("install-arch", use='Debian mirror to install from (default: amd64)', check=lambda var, val: var_check_with_default('amd64', var, val)) xm_vars.var("install-extra", use='Extra command line options (default: None)', check=lambda var, val: var_check_with_default(None, var, val)) xm_vars.var("install-installer", use='Debian installer to use (default: network uses install-mirror; cdrom uses /install.ARCH)', check=lambda var, val: var_check_with_default(None, var, val)) xm_vars.var("install-kernel", use='Debian installer kernel to use (default: uses install-installer)', check=lambda var, val: var_check_with_default(None, var, val)) xm_vars.var("install-ramdisk", use='Debian installer ramdisk to use (default: uses install-installer)', check=lambda var, val: var_check_with_default(None, var, val)) xm_vars.check() if not xm_vars.env.get('install'): bootloader="/usr/sbin/pygrub" elif xm_vars.env['install-method'] == "network": import os.path print "Install Mirror: %s" % xm_vars.env['install-mirror'] print "Install Suite: %s" % xm_vars.env['install-suite'] if xm_vars.env['install-installer']: installer = xm_vars.env['install-installer'] else: installer = xm_vars.env['install-mirror']+"/dists/"+xm_vars.env['install-suite'] + \ "/main/installer-"+xm_vars.env['install-arch']+"/current/images" print "Installer: %s" % installer print print "WARNING: Installer kernel and ramdisk are not authenticated." print if xm_vars.env.get('install-kernel'): kernelurl = xm_vars.env['install-kernel'] else: kernelurl = installer + "/netboot/xen/vmlinuz" if xm_vars.env.get('install-ramdisk'): ramdiskurl = xm_vars.env['install-ramdisk'] else: ramdiskurl = installer + "/netboot/xen/initrd.gz" import urllib class MyUrlOpener(urllib.FancyURLopener): def http_error_default(self, req, fp, code, msg, hdrs): raise IOError("%s %s" % (code, msg)) urlopener = MyUrlOpener() try: print "Fetching %s" % kernelurl kernel, _ = urlopener.retrieve(kernelurl) print "Fetching %s" % ramdiskurl ramdisk, _ = urlopener.retrieve(ramdiskurl) except IOError, _: raise elif xm_vars.env['install-method'] == "cdrom": arch_path = { 'i386': "/install.386", 'amd64': "/install.amd" } if xm_vars.env['install-media']: print "Install Media: %s" % xm_vars.env['install-media'] else: raise OptionError("No installation media given.") if xm_vars.env['install-installer']: installer = xm_vars.env['install-installer'] else: installer = arch_path[xm_vars.env['install-arch']] print "Installer: %s" % installer if xm_vars.env.get('install-kernel'): kernelpath = xm_vars.env['install-kernel'] else: kernelpath = installer + "/xen/vmlinuz" if xm_vars.env.get('install-ramdisk'): ramdiskpath = xm_vars.env['install-ramdisk'] else: ramdiskpath = installer + "/xen/initrd.gz" disk.insert(0, 'file:%s,%s:cdrom,r' % (xm_vars.env['install-media'], xm_vars.env['install-cdrom-device'])) bootloader="/usr/sbin/pygrub" bootargs="--kernel=%s --ramdisk=%s" % (kernelpath, ramdiskpath) print "From CD" else: print "WARNING: Unknown install-method: %s." % xm_vars.env['install-method'] if xm_vars.env.get('install'): # Figure out command line if xm_vars.env['install-extra']: extras=[xm_vars.env['install-extra']] else: extras=[] # Reboot will just restart the installer since this file is not # reparsed, so halt and restart that way. extras.append("debian-installer/exit/always_halt=true") extras.append("--") extras.append("quiet") console="hvc0" try: if len(vfb) >= 1: console="tty0" except NameError, e: pass extras.append("console="+ console) extra = str.join(" ", extras) print "command line is \"%s\"" % extra root There are two LVM logical volumes connected to each VM. Here's the fdisk -l output for the disk volume: Disk /dev/VolGroup00/VMNAME-disk: 8589 MB, 8589934592 bytes 255 heads, 63 sectors/track, 1044 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00029c01 Device Boot Start End Blocks Id System /dev/VolGroup00/VMNAME-disk1 1 1045 8386560 83 Linux And the swap volume: Disk /dev/VolGroup00/VMNAME-swap: 536 MB, 536870912 bytes 37 heads, 35 sectors/track, 809 cylinders Units = cylinders of 1295 * 512 = 663040 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x0004faae Device Boot Start End Blocks Id System /dev/VolGroup00/VMNAME-swap1 2 809 522240 82 Linux swap / Solaris Partition 1 has different physical/logical beginnings (non-Linux?): phys=(0, 32, 33) logical=(1, 21, 19) Partition 1 has different physical/logical endings: phys=(65, 36, 35) logical=(808, 4, 28)

    Read the article

  • C/C++/Assembly Programatically detect if hyper-threading is active on Windows, Mac and Linux

    - by HTASSCPP
    I can already correctly detect the number of logical processors correctly on all three of these platforms. To be able to detect the number of physical processors/cores correctly I'll have to detect if hyperthreading is supported AND active (or enabled if you prefer) and if so divide the number of logical processors by 2 to determine the number of physical processors. Perphaps I should provide an example: A quad core Intel CPU's with hyperthreading enabled has 4 physical cores, yet 8 logical processors (hyperthreading creates 4 more logical processors). So my current function would detect 8 instead of the desired 4. My question therefore is if there is a way to detect whether hyperthreading is supported AND ENABLED?

    Read the article

  • Reverse Engineer a web page

    - by Phil
    Hi, I wish to reverse engineer any web-page into a logical representation of the page. For example, if a web page has a menu, then I want a logical menu structure perhaps in XML. If the webpage has an article, I want a article XML node, if it has a title for the article I want a title XML node. Basically, I want the logical form of the web-page without any of the user interface. This logical model could either be objects in code or XML it doesn't matter, the important part is that it has identified what everything on the page means.

    Read the article

  • moving raid 10 to another identical server both on Smart Array 6i controllers

    - by SalimQrdl
    I have dead HP DL 380G4 with RAID 1+0 with 1 logical volume from 4x72GB drives on built-in Smart Array 6i 128Mb BBWC. It was shut down properly. It seems it was usual death for Proliant with ILO led 2,3,8 lighting. I want to move array to another identical server with same raid firmware level. What is the best strategy?: I have RAID 1+0 on bay 0 bay 1 bay 2 bay 3 As I understand bay0+bay1 are in RAID 1 , bay2+bay3 are in RAID 1, and both RAID 1 pairs are in RAID 0. So should I : Clear RAID config on new server, insert bay 0, bay 2 and power-on or Create RAID 1+0 with 1 logical volume from clear HDDs , and then poweroff ,remove HDDs and insert 2 HDDs(bay 0, bay 2) from old RAID 1+0. then power-on. (each hdd has its raid position info stored but may be could work on same config) According to documentation for Smart Array 6i it could be possible to migrate. however one requirement point is unclear for me Before you move drives, the following conditions must be met: • The array is in its original configuration. " What is orginal and non-original config for RAID 1+0? Another point "If you want to move an array to another controller, you must also consider the following additional limitations: • All drives in the array must be moved at the same time." I want to move one hdd from each RAID 1 pair. to have mirrors untouched just in case. Do they mean to move all 4 simultaniously? Smart Array 6i User Guide: Moving Drives and Arrays You can move drives to other ID positionson the same array controller. You can also move a complete arrayfrom one controller to another, even if the controllers are on different servers. Before you move drives, the following conditions must be met: • If moving thedrives to a different server, the new server must have enough empty bays to accommodate all the drives simultaneously. • The move will not result in more than 14 physical drives per controller channel. • No controller will be configured with more than 32 logical volumes. • The array has no failed or missing drives. • The array is in its original configuration. • The controller is not reading from or writing to any of the spare drives in the array. • The controller is not running capacity expansion, capacity extension, or RAID or stripe size migration. • The controller is using the latestfirmware version (recommended). If you want to move an array to another controller, you must also consider the following additional limitations: • All drives in the array must be moved at the same time. • In most cases, a moved array (and the logical drives that it contains) can still undergo arraycapacity expansion, logical drive capacity extension, or migration of RAID level orstripe size. When all the conditions have been met: Back up all data before removing any drives or changing configuration. This step is requiredif you are moving data-containing drives from a controller that does not have a battery-backed cache. Power down the system. If you are moving an array from a controller that contains a RAID ADG logical volume to a controller that does not support RAID ADG: Move the drives. Power up the system. If a 1724 POST message is displayed, drive positions were changed successfully and the configuration was updated. If a 1785 (NotConfigured)POST message is displayed: a. Power down the system immediately to prevent data loss. b. Return the drives to their original locations. c. Restore the data from backup, if necessary. Check the new drive configuration byrunning ORCA or ACU ("Configuring an Array" on page 9).

    Read the article

  • Adding Extra Hard Drives Debian Fdisk

    - by Belgin Fish
    well I just got a new server and it's a little different than what I'm use to, when I run cfdisk I get WARNING: GPT (GUID Partition Table) detected on '/dev/sda'! The util fdisk doesn't support GPT. Use GNU Parted. Disk /dev/sda: 3000.6 GB, 3000592982016 bytes 255 heads, 63 sectors/track, 364801 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 4096 bytes I/O size (minimum/optimal): 4096 bytes / 4096 bytes Disk identifier: 0x00000000 Device Boot Start End Blocks Id System /dev/sda1 1 267350 2147483647+ ee GPT Partition 1 does not start on physical sector boundary. WARNING: GPT (GUID Partition Table) detected on '/dev/sdb'! The util fdisk doesn't support GPT. Use GNU Parted. Disk /dev/sdb: 3000.6 GB, 3000592982016 bytes 255 heads, 63 sectors/track, 364801 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 4096 bytes I/O size (minimum/optimal): 4096 bytes / 4096 bytes Disk identifier: 0x00000000 Device Boot Start End Blocks Id System /dev/sdb1 1 267350 2147483647+ ee GPT Partition 1 does not start on physical sector boundary. WARNING: GPT (GUID Partition Table) detected on '/dev/sdc'! The util fdisk doesn't support GPT. Use GNU Parted. Disk /dev/sdc: 3000.6 GB, 3000592982016 bytes 255 heads, 63 sectors/track, 364801 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 4096 bytes I/O size (minimum/optimal): 4096 bytes / 4096 bytes Disk identifier: 0x00000000 Device Boot Start End Blocks Id System /dev/sdc1 1 267350 2147483647+ ee GPT Partition 1 does not start on physical sector boundary. WARNING: GPT (GUID Partition Table) detected on '/dev/sdd'! The util fdisk doesn't support GPT. Use GNU Parted. Disk /dev/sdd: 3000.6 GB, 3000592982016 bytes 255 heads, 63 sectors/track, 364801 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 4096 bytes I/O size (minimum/optimal): 4096 bytes / 4096 bytes Disk identifier: 0x00000000 Device Boot Start End Blocks Id System /dev/sdd1 1 267350 2147483647+ ee GPT Partition 1 does not start on physical sector boundary. WARNING: GPT (GUID Partition Table) detected on '/dev/sdf'! The util fdisk doesn't support GPT. Use GNU Parted. Disk /dev/sdf: 3000.6 GB, 3000592982016 bytes 255 heads, 63 sectors/track, 364801 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 4096 bytes I/O size (minimum/optimal): 4096 bytes / 4096 bytes Disk identifier: 0x00000000 Device Boot Start End Blocks Id System /dev/sdf1 1 267350 2147483647+ ee GPT Partition 1 does not start on physical sector boundary. WARNING: GPT (GUID Partition Table) detected on '/dev/sde'! The util fdisk doesn't support GPT. Use GNU Parted. Disk /dev/sde: 3000.6 GB, 3000592982016 bytes 255 heads, 63 sectors/track, 364801 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 4096 bytes I/O size (minimum/optimal): 4096 bytes / 4096 bytes Disk identifier: 0x00000000 Device Boot Start End Blocks Id System /dev/sde1 1 267350 2147483647+ ee GPT Partition 1 does not start on physical sector boundary. Usually it tells me which ones arn't partitioned and stuff, and I only have 6 drives in my server and there's 6 showing up here so I'm only assuming the first ones already mounted and formatted correctly? I'm not really sure if anyone would help me out here. Basically I just want to format and mount these drives :)

    Read the article

< Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >