Search Results

Search found 15884 results on 636 pages for 'non photorealistic render'.

Page 11/636 | < Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >

  • Teminal non-responsive on load, can't enter anything until CTRL+C

    - by Silver Light
    Hello! I have an issue with terminal in Ubuntu 10.04. When I launch it, it hangs, like this: I cannot do anything until I press CTRL+C: I cannot remember when this started. What can be wrong? Looks like teminal is loading or processing something each time it loads. How can I diagnose and solve this problem? EDIT: Here are the conents of ~/.bashrc: # ~/.bashrc: executed by bash(1) for non-login shells. # see /usr/share/doc/bash/examples/startup-files (in the package bash-doc) # for examples # If not running interactively, don't do anything [ -z "$PS1" ] && return # don't put duplicate lines in the history. See bash(1) for more options # ... or force ignoredups and ignorespace HISTCONTROL=ignoredups:ignorespace # append to the history file, don't overwrite it shopt -s histappend # for setting history length see HISTSIZE and HISTFILESIZE in bash(1) HISTSIZE=1000 HISTFILESIZE=2000 # check the window size after each command and, if necessary, # update the values of LINES and COLUMNS. shopt -s checkwinsize # make less more friendly for non-text input files, see lesspipe(1) [ -x /usr/bin/lesspipe ] && eval "$(SHELL=/bin/sh lesspipe)" # set variable identifying the chroot you work in (used in the prompt below) if [ -z "$debian_chroot" ] && [ -r /etc/debian_chroot ]; then debian_chroot=$(cat /etc/debian_chroot) fi # set a fancy prompt (non-color, unless we know we "want" color) case "$TERM" in xterm-color) color_prompt=yes;; esac # uncomment for a colored prompt, if the terminal has the capability; turned # off by default to not distract the user: the focus in a terminal window # should be on the output of commands, not on the prompt #force_color_prompt=yes if [ -n "$force_color_prompt" ]; then if [ -x /usr/bin/tput ] && tput setaf 1 >&/dev/null; then # We have color support; assume it's compliant with Ecma-48 # (ISO/IEC-6429). (Lack of such support is extremely rare, and such # a case would tend to support setf rather than setaf.) color_prompt=yes else color_prompt= fi fi if [ "$color_prompt" = yes ]; then PS1='${debian_chroot:+($debian_chroot)}\[\033[01;32m\]\u@\h\[\033[00m\]:\[\033[01;34m\]\w\[\033[00m\]\$ ' else PS1='${debian_chroot:+($debian_chroot)}\u@\h:\w\$ ' fi unset color_prompt force_color_prompt # If this is an xterm set the title to user@host:dir case "$TERM" in xterm*|rxvt*) PS1="\[\e]0;${debian_chroot:+($debian_chroot)}\u@\h: \w\a\]$PS1" ;; *) ;; esac # enable color support of ls and also add handy aliases if [ -x /usr/bin/dircolors ]; then test -r ~/.dircolors && eval "$(dircolors -b ~/.dircolors)" || eval "$(dircolors -b)" alias ls='ls --color=auto' #alias dir='dir --color=auto' #alias vdir='vdir --color=auto' alias grep='grep --color=auto' alias fgrep='fgrep --color=auto' alias egrep='egrep --color=auto' fi # some more ls aliases alias ll='ls -alF' alias la='ls -A' alias l='ls -CF' # Add an "alert" alias for long running commands. Use like so: # sleep 10; alert alias alert='notify-send --urgency=low -i "$([ $? = 0 ] && echo terminal || echo error)" "$(history|tail -n1|sed -e '\''s/^\s*[0-9]\+\s*//;s/[;&|]\s*alert$//'\'')"' # Alias definitions. # You may want to put all your additions into a separate file like # ~/.bash_aliases, instead of adding them here directly. # See /usr/share/doc/bash-doc/examples in the bash-doc package. if [ -f ~/.bash_aliases ]; then . ~/.bash_aliases fi # enable programmable completion features (you don't need to enable # this, if it's already enabled in /etc/bash.bashrc and /etc/profile # sources /etc/bash.bashrc). if [ -f /etc/bash_completion ] && ! shopt -oq posix; then . /etc/bash_completion fi # Source .profile if [ -f ~/.profile ]; then . ~/.profile fi Setting -x at the beginning showed me that it tries to repeat this without stopping: +++++++++++++++++++ '[' 'complete -f -X '\''!*.@(pdf|PDF)'\'' acroread gpdf xpdf' '!=' 'complete -f -X '\''!*.@(pdf|PDF)'\'' acroread gpdf xpdf' ']' +++++++++++++++++++ line='complete -f -X '\''!*.@(pdf|PDF)'\'' acroread gpdf xpdf' +++++++++++++++++++ line='complete -f -X '\''!*.@(pdf|PDF)'\'' acroread gpdf xpdf' +++++++++++++++++++ line=' acroread gpdf xpdf' +++++++++++++++++++ list=("${list[@]}" $line) +++++++++++++++++++ read line

    Read the article

  • Non-blocking I/O using Servlet 3.1: Scalable applications using Java EE 7 (TOTD #188)

    - by arungupta
    Servlet 3.0 allowed asynchronous request processing but only traditional I/O was permitted. This can restrict scalability of your applications. In a typical application, ServletInputStream is read in a while loop. public class TestServlet extends HttpServlet {    protected void doGet(HttpServletRequest request, HttpServletResponse response)         throws IOException, ServletException {     ServletInputStream input = request.getInputStream();       byte[] b = new byte[1024];       int len = -1;       while ((len = input.read(b)) != -1) {          . . .        }   }} If the incoming data is blocking or streamed slower than the server can read then the server thread is waiting for that data. The same can happen if the data is written to ServletOutputStream. This is resolved in Servet 3.1 (JSR 340, to be released as part Java EE 7) by adding event listeners - ReadListener and WriteListener interfaces. These are then registered using ServletInputStream.setReadListener and ServletOutputStream.setWriteListener. The listeners have callback methods that are invoked when the content is available to be read or can be written without blocking. The updated doGet in our case will look like: AsyncContext context = request.startAsync();ServletInputStream input = request.getInputStream();input.setReadListener(new MyReadListener(input, context)); Invoking setXXXListener methods indicate that non-blocking I/O is used instead of the traditional I/O. At most one ReadListener can be registered on ServletIntputStream and similarly at most one WriteListener can be registered on ServletOutputStream. ServletInputStream.isReady and ServletInputStream.isFinished are new methods to check the status of non-blocking I/O read. ServletOutputStream.canWrite is a new method to check if data can be written without blocking.  MyReadListener implementation looks like: @Overridepublic void onDataAvailable() { try { StringBuilder sb = new StringBuilder(); int len = -1; byte b[] = new byte[1024]; while (input.isReady() && (len = input.read(b)) != -1) { String data = new String(b, 0, len); System.out.println("--> " + data); } } catch (IOException ex) { Logger.getLogger(MyReadListener.class.getName()).log(Level.SEVERE, null, ex); }}@Overridepublic void onAllDataRead() { System.out.println("onAllDataRead"); context.complete();}@Overridepublic void onError(Throwable t) { t.printStackTrace(); context.complete();} This implementation has three callbacks: onDataAvailable callback method is called whenever data can be read without blocking onAllDataRead callback method is invoked data for the current request is completely read. onError callback is invoked if there is an error processing the request. Notice, context.complete() is called in onAllDataRead and onError to signal the completion of data read. For now, the first chunk of available data need to be read in the doGet or service method of the Servlet. Rest of the data can be read in a non-blocking way using ReadListener after that. This is going to get cleaned up where all data read can happen in ReadListener only. The sample explained above can be downloaded from here and works with GlassFish 4.0 build 64 and onwards. The slides and a complete re-run of What's new in Servlet 3.1: An Overview session at JavaOne is available here. Here are some more references for you: Java EE 7 Specification Status Servlet Specification Project JSR Expert Group Discussion Archive Servlet 3.1 Javadocs

    Read the article

  • Certain web pages are suddenly not rendering properly in FireFox

    - by LeopardSkinPillBoxHat
    I am using FireFox 3.6.3. I noticed in the last couple of days that several webpages which I visit regularly are not rendering properly. A lot of the text is overlapping with other text and it basically looks like the style sheet is completely screwed up. I have tried disabling all of my Add-Ons and it doesn't make a difference. When I use Coral IE Tab to render the pages using IE they display without any problems. The websites which are not rending properly for me are: The Age Google Reader One interesting thing I noticed is that if I modify the Google Reader URL to not use SSL (i.e. change https to http) it renders without any issues. However, The Age website is not using SSL, and that still doesn't render properly. I have also disabled my Proxy Server (I normally use one at work) but this doesn't make a difference either.

    Read the article

  • Découvrir la solution d'exploration de données structuré et non structuré

    - by David lefranc
    Explorer et découvrir l’information… Nous vous proposons un atelier découverte pour vous permettre d’explorer toute type de données grâce à la solution Oracle Endeca . Quand : 7 Décembre 2012 De 9h30 à 12h30  Lieu : Oracle 15 Boulevard Charles de gaulle 92715 Colombes Pour s'inscrire : [email protected] Réalisé pour des utilisateurs métiers, cet atelier vous permettera en une demi journée , de découvrir Oracle Endeca Information Discovery afin de : Comprendre et explorer toute information venant de différents horizons ( Big Data, réseaux sociaux, forums, sondages, blogs..) Découvrir en quoi et comment OEID est un complément à des solutions de BI classiques Par une navigation simple et rapide, vous découvrirez combien il est facile de trouver des réponses à des questions imprévues en utilisant OEID sans formation préalable. Utilisez la recherche et la navigation guidée pour voir comment les informations structurées et non structurées peuvent être rapidement réunies pour dégager la valeur cachée. Explorer toutes vos données dans n'importe quel format et à partir de n'importe quelle source, y compris les médias sociaux, documents, fichiers,…. Pouvoir découvrir et explorer vos données sans référentiel pour permettre aux utilisateurs d’être autonome et d’analyser leurs propres données de manière rapide Élaborer une stratégie visant à accroître la valeur des données de l'entreprise tout en réduisant le coût total de possession Découvrez l'incroyable performance d’ Endeca sur Oracle Exalytics la machine In Memory AgendaAprès une introduction sur la solution Oracle information Endeca, suivi d’un atelier, vous verrez comment il est facile de: Utiliser la navigation guidée et le moteur de recherche pour explorer les données structurées et non structurées intégrer rapidement les nouvelles sources de données comme les médias sociaux Construire de nouvelles interfaces utilisateur tout en découvrant l’information répondre rapidement aux besoins changeants des entreprises et des environnements de données

    Read the article

  • Atelier gratuit : Découvrir la solution d'exploration de données structuré et non structuré

    - by David lefranc
    Explorer et découvrir l’information… Nous vous proposons un atelier découverte pour vous permettre d’explorer toute type de données grace à la solution Oracle Endeca Information Discovery. Quand : 7 Décembre 2012 De 9h30 à 12h30  Lieu : Oracle 15 Boulevard Charles de gaulle 92715 Colombes Pour s'inscrire : [email protected] Réalisé pour des utilisateurs métiers, cet atelier vous permettera en une demi journée , de découvrir Oracle Endeca Information Discovery afin de : Comprendre et explorer toute information venant de différents horizons ( Big Data, réseaux sociaux, forums, sondages, blogs..) Découvrir en quoi et comment OEID est un complément à des solutions de BI classiques Par une navigation simple et rapide, vous découvrirez combien il est facile de trouver des réponses à des questions imprévues en utilisant OEID sans formation préalable. Utilisez la recherche et la navigation guidée pour voir comment les informations structurées et non structurées peuvent être rapidement réunies pour dégager la valeur cachée. Explorer toutes vos données dans n'importe quel format et à partir de n'importe quelle source, y compris les médias sociaux, documents, fichiers,…. Pouvoir découvrir et explorer vos données sans référentiel pour permettre aux utilisateurs d’être autonome et d’analyser leurs propres données de manière rapide Élaborer une stratégie visant à accroître la valeur des données de l'entreprise tout en réduisant le coût total de possession Découvrez l'incroyable performance d’ Endeca sur Oracle Exalytics la machine In Memory Agenda Après une introduction sur la solution Oracle information Endeca, suivi d’un atelier, vous verrez comment il est facile de: Utiliser la navigation guidée et le moteur de recherche pour explorer les données structurées et non structurées intégrer rapidement les nouvelles sources de données comme les médias sociaux Construire de nouvelles interfaces utilisateur tout en découvrant l’information répondre rapidement aux besoins changeants des entreprises et des environnements de données Quand Lieu 7 Décembre 2012 De 9h30 à 12h30 Oracle 15 Boulevard Charles de gaulle 92715 Colombes

    Read the article

  • La Customer Satisfaction non basta più!

    - by Silvia Valgoi
    La partita per la conquista della fedeltà dei clienti si gioca sempre meno sul prodotto e sempre più sul servizio. Dal momento che il consumatore di oggi è molto più evoluto e autonomo nelle scelte, il servizio deve andare ben oltre la classica interazione da Customer Service: deve rappresentare una vera e propria esperienza d’acquisto positiva. Questo è il risultato, che poi è una conferma, di Oracle Customer Experience Index, una ricerca che Oracle ha commissionato alla società LoudHouse la quale ha raccolto le opinioni di 1400 consumatori europei, di cui 200 italiani. Addirittura, l'81% di chi fa acquisti sarebbe disposto a pagare di più per una migliore customer experience. Un risultato non banale che la dice lunga su quanto il consumatore oggi sia evoluto e pretenda molto dall’azienda con la quale sta interagendo. Il 70% di coloro che hanno risposto al questionario afferma che se l’esperienza d’acquisto fosse negativa smetterebbe di rivolgersi a una determinata azienda e il 92% di questi comprerebbe da un concorrente. Ecco perchè il Customer Service non è più sufficiente, l’esperienza d’acquisto deve essere a 360° a partire dall’approccio al sito web per acquisire informazioni, all’analisi delle interazioni sui social media, fino alla consistenza delle informazioni e delle risposte che vengono fornite attraverso tutti i canali sia fisici sia virtuali. Per far questo Oracle ha dato vita a un’insieme di soluzioni che ha chiamato proprio Customer Experience Suite e spaziano dalla creazione di siti web evoluti, alla possibilità di fare Intelligence sui Social Media, alla capacità di creare un proficuo dialogo con i clienti in fase di postvendita. Per leggere il comunicato stampa della ricerca clicca qui   Per approfondire i risultati della ricerca CX Index  clicca qui

    Read the article

  • Can non-IT people handle a wiki?

    - by Andrew Heath
    (I'm hoping that some of you will have encountered this issue before and can offer some insights...) My company is looking to improve their market research data management. Current data management style: "Hey Jimbo, where's that picture of our WhatZit 2.0? "yeah I remember that email about that company from that guy, gimme a few minutes to search my Outlook" "who has the newest copy of the Important Competitor's product catalogue? Mine is from '09." ... "Colleen does, and she's on maternity leave. You'll have to call her to get her workstation password..." Desired data management style: data organized neatly by topic (legal, economic, industrial, competitor) for each topic, multiple media types stored together (company product images, press releases, contact info) but still neatly sorted by type data editing histories communal access (no data silos) I was thinking about setting up a department wiki for all users to access. It seems to satisfy the four criteria above, but I'm a little concerned about how user-friendly (read: decipherable to non-technical people) it is for the more advanced features like image galleries, article formatting, and the like. Has anyone here setup a wiki for non-IT people and had it not catch on fire//become a ghost town//look like Geocities? Bonus question: can you see any obvious drawbacks to my choice of MediaWiki (or any other wiki) for solving this problem? Thank you.

    Read the article

  • Problem with recursive rar archiving non-ascii filenames

    - by AndreasT
    Say I want to create a backup of folder MainFolder's content using rar. The command rar a Backup.rar -r MainFolder does the job. BUT, if a subdirectory contains more than one file named with non-ASCII (?) characters, then only one of them is archived and the others get excluded. For example, consider the following directory hierarchy (MainFolder, A and B are folders; a, b, ? and ? are files) +MainFolder +A -a -b -? -? +B -a -b -a -b -? -? then the command rar a Backup.rar -r MainFolder skips MainFolder/A/? MainFolder/? while rar a Backup.rar -r MainFolder/* still skips MainFolder/A/? Why is it so? Any help is greatly appreciated, thanks! For the record, I already encountered some issues with non-ascii characters (see this question) that other Linux distributions seem not to have. Anyway, I use Lubuntu 12.04, terminal is lxterminal and echo $BASH_VERSION returns 4.2.25(1)-release. rar version is 4.00 beta 3. Another curiosity: right-clicking on the folder and selecting Compress... and then .rar still has the same problem. Other options (zip, tar...) behave correctly.

    Read the article

  • Collision detection with non-rectangular images

    - by Adam Smith
    I'm creating a game and I need to detect collisions between a character and some parts of the environment. Since my character's frames are taken from a sprite sheet with a transparent background, I'm wondering how I should go about detecting collisions between a wall and my character only if the colliding parts are non-transparent in both images. I thought about checking only if part of the rectangle the character is in touches the rectangle a tile is in and comparing the alpha channels, but then I have another choice to make... Either I test every single pixel against every single pixel in the other image and if one is true, I detect a collision. That would be terribly ineficient. The other option would be to keep a x,y position of the leftmost, rightmost, etc. non-transparent pixel of each image and compare those instead. The problem with this one might be that, for instance, the character's hand could be above a tile (so it would be in a transparent zone of the tile) but a pixel that is not the rightmost could touch part of the tile without being detected. Another problem would be that in different frames, the rightmost, leftmost, etc. pixels might not be at the same position. Should I not bother with that and just check the collisions on the rectangles? It would be simpler, but I'm afraid people.will feel that there are collisions sometimes that shouldn't happen.

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Help building maya render node spec

    - by Ak
    Hi there, I'm looking to build 4x Maya render slaves/nodes for a friend of mine when his project gets green lit. The project involves MentalRay and lots of glass. I'm unsure if the new i7's 9xx or 8xx with hyper threading will do any better than a core 2 quad of the same (or close enough) speed. Does hyper threading make a difference to Maya or is it more performance per core based? I'm sure he's prefer I'd build another render node than pay for a bleeding edge CPU that only adds fractionly more GHz. -- The rest of the spec so far: 4Gb - 8Gb ram 64 bit OS: Probably Windows 7 (I know Linux is free, but want to build something my friend can support himself as easily as he supports his own workstation) 1TB HDD to hold textures, Maya files and renders which will be copied to central storage later Mobo with on-board video, gigabit NIC 500 - 650 watt PSU Desktop case something like a: Cooler Master ATCS 840 The machines will sold afterwards if necessary. -- If anyone has had experience in Maya and has done any tests with the new CPUs vs. the older ones I'd really appreciate your input.

    Read the article

  • NPR GLSL Tutorials

    - by anon
    Anyone have a good list of tutorials on doing Non photo realistic rendering with GLSL ? I have seen books on GLSL, and books on NPR, but very few books/tutorials on doing NPR with GLSL. (I want to do it with GLSL as I want real time). Thanks!

    Read the article

  • How to get the first non-null value in Java?

    - by froadie
    Is there a Java equivalent of SQL's COALESCE function? That is, is there any way to return the first non-null value of several variables? e.g. Double a = null; Double b = 4.4; Double c = null; I want to somehow have a statement that will return the first non-null value of a, b, and c - in this case, it would return b, or 4.4. (Something like the sql method - return COALESCE(a,b,c)). I know that I can do it explicitly with something like: return a != null ? a : (b != null ? b : c) But I wondered if there was any built-in, accepted function to accomplish this.

    Read the article

  • How to run a command on a remote Windows system as a non-admin user with WMI?

    - by John
    I have a script written in Visual Basic that starts a process (given to the script as an argument) on a remote system (again, given as an argument) using WMI. This script works fine when using an Administrator account on the remote system, but when using a non-administrator account, I get the following error: ConnectServer Failed w/ (-2147024891) Access is denied. I'd like to be able to run processes on remote systems as a non-administrator user with this script, and I'm pretty sure the problem is due to security settings on the remote system, but I've not been able to reset the right ones.

    Read the article

  • Drawing multiple triangles at once isn't working

    - by Deukalion
    I'm trying to draw multiple triangles at once to make up a "shape". I have a class that has an array of VertexPositionColor, an array of Indexes (rendered by this Triangulation class): http://www.xnawiki.com/index.php/Polygon_Triangulation So, my "shape" has multiple points of VertexPositionColor but I can't render each triangle in the shape to "fill" the shape. It only draws the first triangle. struct ShapeColor { // Properties (not all properties) VertexPositionColor[] Points; int[] Indexes; } First method that I've tried, this should work since I iterate through the index array that always are of "3s", so they always contain at least one triangle. //render = ShapeColor for (int i = 0; i < render.Indexes.Length; i += 3) { device.DrawUserIndexedPrimitives<VertexPositionColor> ( PrimitiveType.TriangleList, new VertexPositionColor[] { render.Points[render.Indexes[i]], render.Points[render.Indexes[i+1]], render.Points[render.Indexes[i+2]] }, 0, 3, new int[] { 0, 1, 2 }, 0, 1 ); } or the method that should work: device.DrawUserIndexedPrimitives<VertexPositionColor> ( PrimitiveType.TriangleList, render.Points, 0, render.Points.Length, render.Indexes, 0, render.Indexes.Length / 3, VertexPositionColor.VertexDeclaration ); No matter what method I use this is the "typical" result from my Editor (in Windows Forms with XNA) It should show a filled shape, because the indexes are right (I've checked a dozen of times) I simply click the screen (gets the world coordinates, adds a point from a color, when there are 3 points or more it should start filling out the shape, it only draws the lines (different method) and only 1 triangle). The Grid isn't rendered with "this" shape. Any ideas?

    Read the article

  • Non-Blocking I/O Made Possible in Java

    Java SE7 "Dolphin" release is nearing and we're chomping at the bit. So let's dig in and review non-blocking IO, a feature of java.nio (New I/O) package that is a part of Java v1.4, v1.5 and v1.6 and we'll also take a peek at the java.nio.file (NIO.2) package.

    Read the article

  • Non-Blocking I/O Made Possible in Java

    Java SE7 "Dolphin" release is nearing and we're chomping at the bit. So let's dig in and review non-blocking IO, a feature of java.nio (New I/O) package that is a part of Java v1.4, v1.5 and v1.6 and we'll also take a peek at the java.nio.file (NIO.2) package.

    Read the article

  • Non-English Character Display in Oracle SQL Developer

    - by thatjeffsmith
    I get a variation on this question at least once a week, if not more frequently. I’m from Israel, and the language on the databases is Hebrew. When I use the old and deprecated SQL*Plus (windows rich client) I can see the hebrew clearly, when I use the latest SQL Developer, I get gibberish. This question appears on the forums about every week or so as well. So what’s the deal? Well, it starts with a basic misunderstanding of NLS Client parameters. These should accurately reflect the language and locality setup on your LOCAL machine. DO NOT COPY what’s set in the database. The these parameters work together with the database so that information can be transferred back and forth correctly. Having the wrong NLS parameters locally can be bad. [ORACLE DOCS]Setting the NLS_LANG parameter properly is essential to proper data conversion. The character set that is specified by the NLS_LANG parameter should reflect the setting for the client operating system. Setting NLS_LANG correctly enables proper conversion from the client operating system character encoding to the database character set. When these settings are the same, Oracle Database assumes that the data being sent or received is encoded in the same character set as the database character set, so character set validation or conversion may not be performed. This can lead to corrupt data if conversions are necessary. OK, so what are you supposed to do? Set the Font! 9 times out of 10, this preference fixes the problem with display issues. Make sure you set a Font that supports the characters you’re trying to display. It’s as simple as that. This preference defines the font used to display characters in the editors and the data grids. If you have it set to a font that doesn’t have Hebrew character support – you’re not going to see Hebrew in SQL Developer. A few years ago…wow, like 15 years ago, I learned that the Tohama Font is pretty Unicode-friendly. Bad Font Selection A Font that’s not non-English friendly Good Font Selection Exact same text, except rendered with the Tahoma font Summary Having problems seeing non-English text in SQL Developer? Check the font! And do not start messing with NLS parameters without talking to your DBA first.

    Read the article

  • What non-programming tools do programmers use?

    - by user828584
    I'm reading code complete with the intention of learning how to better structure my code, but I'm also learning a lot about how many aspects of programming something there are that aren't just writing the code. The book talks a lot about problem definition, determining the requirements, defining the structure, designing the code, etc. What tools are used for these non-writing steps of programming? Is there software that will help me design and plan out what I'm going to write before I do?

    Read the article

  • How to explain to a layperson the variance in programmer rates?

    - by Matt McCormick
    I recently talked to a guy that is looking for developers to build a product idea. He mentioned he has received interest from people but the rates have varied from $20-120/hr. This project he estimates should take 3-6 months and since he is non-technical, he is confused why there can be so much variance. I understand how I would choose someone but I am a developer and can gauge other people's work. How can I explain to him (in a non-biased way, if possible, as I will apply as well) about the variance in rates? Is there any good analogy that would help?

    Read the article

  • How do I mount Samba share as non-root user

    - by Android Eve
    Is there a step-by-step tutorial that instructs in detailed step-by-step how to smbmount a Samba share to be used by a non-root user on a Ubuntu 10.04 desktop? Note: there are numerous threads on Google search dealing with this seemingly new problem. Instructions that used to work on Ubuntu 8.04 (or an older version of smbfs) no longer work. I need something fresh, punctual and especially reproducible. Thanks.

    Read the article

  • What dangers await if I block non-standard, non-major-usa search engine bots from my USA only website?

    - by Ryan
    I noticed tons of bandwidth being used by non-USA search engine bots, so I began blocking them in an effort to save bandwidth and cpu cycles for actual users and the search engines they come from (Google, Bing, Yahoo, Ask, etc.). Other than potentially losing some international traffic (which isn't really important to us since all of our content is very USA-centric), what additional dangers should I be concerned about? I'm using a modified version of Jeff Starr's User Agent Blocklist

    Read the article

  • Insights From a Non-Geek Working With Technical Developers at a Software Startup

    Everyone is wired differently. Some people are artistic, some are leaders and some are highly technical. Most of the time, it is fairly difficult for these different types of people to communicate effectively and understand each others' limitations and strengths. This can be especially true if you find yourself working as a non-technical employee in a highly technical field such as software development.

    Read the article

< Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >