Search Results

Search found 975 results on 39 pages for 'physics'.

Page 11/39 | < Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >

  • CERN Announces the Discovery of a Higgs-Boson-like Particle

    - by Jason Fitzpatrick
    CERN scientists dropped a press release today indicating they’ve found a particle consistent with the long sought after Higgs Boson particle–the “God” particle, that could help radically refine our understanding of Standard Model of Particle Physics. For years scientists at CERN have been harnessing the power of the Large Hadron Collider to answer fundamental questions about the nature of particles and the universe around us. In the above video John Ellis, a theoretical physicist, answers the question “What is the Higgs Boson?” The video pairs nicely with the CERN press release: “We observe in our data clear signs of a new particle, at the level of 5 sigma, in the mass region around 126 GeV. The outstanding performance of the LHC and ATLAS and the huge efforts of many people have brought us to this exciting stage,” said ATLAS experiment spokesperson Fabiola Gianotti, “but a little more time is needed to prepare these results for publication.” “The results are preliminary but the 5 sigma signal at around 125 GeV we’re seeing is dramatic. This is indeed a new particle. We know it must be a boson and it’s the heaviest boson ever found,” said CMS experiment spokesperson Joe Incandela. “The implications are very significant and it is precisely for this reason that we must be extremely diligent in all of our studies and cross-checks.” “It’s hard not to get excited by these results,” said CERN Research Director Sergio Bertolucci. “ We stated last year that in 2012 we would either find a new Higgs-like particle or exclude the existence of the Standard Model Higgs. With all the necessary caution, it looks to me that we are at a branching point: the observation of this new particle indicates the path for the future towards a more detailed understanding of what we’re seeing in the data.” How to Use an Xbox 360 Controller On Your Windows PC Download the Official How-To Geek Trivia App for Windows 8 How to Banish Duplicate Photos with VisiPic

    Read the article

  • Why does Farseer 2.x store temporaries as members and not on the stack? (.NET)

    - by Andrew Russell
    UPDATE: This question refers to Farseer 2.x. The newer 3.x doesn't seem to do this. I'm using Farseer Physics Engine quite extensively at the moment, and I've noticed that it seems to store a lot of temporary value types as members of the class, and not on the stack as one might expect. Here is an example from the Body class: private Vector2 _worldPositionTemp = Vector2.Zero; private Matrix _bodyMatrixTemp = Matrix.Identity; private Matrix _rotationMatrixTemp = Matrix.Identity; private Matrix _translationMatrixTemp = Matrix.Identity; public void GetBodyMatrix(out Matrix bodyMatrix) { Matrix.CreateTranslation(position.X, position.Y, 0, out _translationMatrixTemp); Matrix.CreateRotationZ(rotation, out _rotationMatrixTemp); Matrix.Multiply(ref _rotationMatrixTemp, ref _translationMatrixTemp, out bodyMatrix); } public Vector2 GetWorldPosition(Vector2 localPosition) { GetBodyMatrix(out _bodyMatrixTemp); Vector2.Transform(ref localPosition, ref _bodyMatrixTemp, out _worldPositionTemp); return _worldPositionTemp; } It looks like its a by-hand performance optimisation. But I don't see how this could possibly help performance? (If anything I think it would hurt by making objects much larger).

    Read the article

  • Getting into game/game engine programming

    - by Darkslash
    So I am interested in learning game programming, but I really have an interest in the lower level engineering in games. I have openGL experience, and I am really interested in learning more about implementing AI, Physics, etc. I have a computer science degree, so I really like getting into technical stuff. Many times when I ask about this sort of thing, I get a lot of "Use an engine", "Use Unity3d", "Why waste your time writing code that already exists", etc etc. My idea was to use simpler libraries such as SFML or XNA so that I could learn how to implement the more complex systems. The thing is, although I do want to write games, I want to learn things that using something like Unity simply doesnt teach you. My goal is not to make a current generation quality 3D game to sell, I just want to make some cool smaller games and learn all I can about the programming side of game development. Is this something that people just do not do anymore? It seems like everywhere I turn people are using Unity or UDK or GameMaker. I fully understand why you would use a tool like these, but I cant see how they would suit my purposes. So where does someone like myself turn? Am I trying to learn something that people just do not bother doing anymore? Is the innovation in this area gone and just all about gameplay now? Im sorry if this question seems silly, but I am genuinely interested in knowing more about this and meeting more people who are interested in this sort of thing.

    Read the article

  • Semi Fixed-timestep ported to javascript

    - by abernier
    In Gaffer's "Fix Your Timestep!" article, the author explains how to free your physics' loop from the paint one. Here is the final code, written in C: double t = 0.0; const double dt = 0.01; double currentTime = hires_time_in_seconds(); double accumulator = 0.0; State previous; State current; while ( !quit ) { double newTime = time(); double frameTime = newTime - currentTime; if ( frameTime > 0.25 ) frameTime = 0.25; // note: max frame time to avoid spiral of death currentTime = newTime; accumulator += frameTime; while ( accumulator >= dt ) { previousState = currentState; integrate( currentState, t, dt ); t += dt; accumulator -= dt; } const double alpha = accumulator / dt; State state = currentState*alpha + previousState * ( 1.0 - alpha ); render( state ); } I'm trying to implement this in JavaScript but I'm quite confused about the second while loop... Here is what I have for now (simplified): ... (function animLoop(){ ... while (accumulator >= dt) { // While? In a requestAnimation loop? Maybe if? ... } ... // render requestAnimationFrame(animLoop); // stand for the 1st while loop [OK] }()) As you can see, I'm not sure about the while loop inside the requestAnimation one... I thought replacing it with a if but I'm not sure it will be equivalent... Maybe some can help me.

    Read the article

  • What is a simple deformer in which vertices deform linearly with control points?

    - by sebf
    In my project I want to deform a complex mesh, using a simpler 'proxy' mesh. In effect, each vertex of the proxy/collision mesh will be a control point/bone, which should deform the vertices of the main mesh attached to it depending on weight, but where the weight is not dependant on the absolute distance from the control point but rather distance relative to the other affecting control points. The point of this is to preserve complex three dimensional features of the main mesh while using physics implementations which expect something far simpler, low resolution, single surface, etc. Therefore, the vertices must deform linearly with their respective weighted control points (i.e. no falloff fields or all the mesh features will end up collapsed) - as if each vertex was linked to a point on the plane created by the attached control points and deformed with it. I have tried implementing the weight computation algorithm in this paper (page 4) but it is not working as expected and I am wondering if it is really the best way to do what I want. What is the simplest way to 'skin'* an arbitrary mesh, to another arbitrary mesh? *By skin I mean I need an algorithm to determine the best control points for a vertex, and their weights.

    Read the article

  • Coarse Collision Detection in highly dynamic environment

    - by Millianz
    I'm currently working a 3D space game with A LOT of dynamic objects that are all moving (there is pretty much no static environment). I have the collision detection and resolution working just fine, but I am now trying to optimize the collision detection (which is currently O(N^2) -- linear search). I thought about multiple options, a bounding volume hierarchy, a Binary Spatial Partitioning tree, an Octree or a Grid. I however need some help with deciding what's best for my situation. A grid seems unfeasible simply due to the space requirements and cache coherence problems. Since everything is so dynamic however, it seems to be that trees aren't ideal either, since they would have to be completely rebuilt every frame. I must admit I never implemented a physics engine that required spatial partitioning, do I indeed need to rebuild the tree every frame (assuming that everything is constantly moving) or can I update the trees after integrating? Advice is much appreciated - to give some more background: You're flying a space ship in an asteroid field, and there are lots and lots of asteroids and some enemy ships, all of which shoot bullets. EDIT: I came across the "Sweep an Prune" algorithm, which seems like the right thing for my purposes. It appears like the right mixture of fast building of the data structures involved and detailed enough partitioning. This is the best resource I can find: http://www.codercorner.com/SAP.pdf If anyone has any suggestions whether or not I'm going in the right direction, please let me know.

    Read the article

  • Should I use procedural animation?

    - by user712092
    I have started to make a fantasy 3d fps swordplay game and I want to add animations. I don't want to animate everything by hand because it would take a lot of time, so I decided to use procedural animation. I would certainly use IK (starting with simple reaching an object with hand ...). I also assume procedural generation of animations will make less animations to do by hand (I can blend animations ...). I want also to have a planner for animation which would simplify complex animations; those which can be split to a sequence - run and then jump, jump and then roll - or which are separable - legs running and torso swinging with sword -. I want for example a character to chop a head of a big troll. If troll crouches character would just chop his head off, if it is standing he would climb on a troll. I know that I would have to describe the state ("troll is low", "troll is high", "chop troll head" ..) which would imply what regions animation will be in (if there is a gap between them character would jump), which would imply what places character can have some of legs and hands or would choose an predefined animation. My main goal is simplicity of coding, but I want my game to be looking cool also. Is it worthy to use procedural animation or does it make more troubles that it solves? (there can be lot of twiddling ...) I am using Blender Game Engine (therefore Python for scripting, and Bullet Physics).

    Read the article

  • In a 2D platform game, how to ensure the player moves smoothly over sloping ground?

    - by Kovsa
    See image: http://i41.tinypic.com/huis13.jpg I'm developing a physics engine for a 2D platform game. I'm using the separating axis theorem for collision detection. The ground surface is constructed from oriented bounding boxes, with the player as an axis aligned bounding box. (Specifically, I'm using the algorithm from the book "Realtime Collision Detection" which performs swept collision detection for OBBs using SAT). I'm using a fairly small (close to zero) restitution coefficient in the collision response, to ensure that the dynamic objects don't penetrate the environment. The engine mostly works fine, it's just that I'm concerned about some edge cases that could possibly occur. For example, in the diagram, A, B and C are the ground surface. The player is heading left along B towards A. It seems to me that due to inaccuracy, the player box could be slightly below the box B as it continues up and left. When it reaches A, therefore, the bottom left corner of the player might then collide with the right side of A, which would be undesirable (as the intention is for the player to move smoothly over the top of A). It seems like a similar problem could happen when the player is on top of box C, moving left towards B - the most extreme point of B could collide with the left side of the player, instead of the player's bottom left corner sliding up and left above B. Box2D seems to handle this problem by storing connectivity information for its edge shapes, but I'm not really sure how it uses this information to solve the problem, and after looking at the code I don't really grasp what it's doing. Any suggestions would be greatly appreciated.

    Read the article

  • Need Guidance Making HTML5 Canvas Game Engine

    - by Scriptonaut
    So I have some free time this winter break and want to build a simple 2d HTML5 canvas game engine. Mostly a physics engine that will dictate the way objects move and interact(collisions, etc). I made a basic game here: http://caidenhome.com/HTML%205/pong.html and would like to make more, and thought that this would be a good reason to make a simple framework for this stuff. Here are some questions: Does the scripting language have to be Javascript? What about Ruby? I will probably write it with jQuery because of the selecting powers, but I'm curious either way. Are there any great guides you guys know of? I want a fast guide that will help me bust out this engine sometime in the next 2 weeks, hopefully sooner. What are some good conventions I should be aware of? What's the best way to get sound? At the moment I'm using something like this: var audioElement = document.createElement('audio'); audioElement.setAttribute('src', 'paddle_col.wav'); audioElement.load(); I'm interested in making this engine lightweight and extremely efficient, I will do whatever it takes to get great speeds and processing power. I know this question is fairly vague, but I just need a push in the right direction. Thanks :)

    Read the article

  • Find meeting point of 2 objects in 2D, knowing (constant) speed and slope

    - by Axonn
    I have a gun which fires a projectile which has to hit an enemy. The problem is that the gun has to be automatic, i.e. - choose the angle in which it has to shoot so that the projectile hits the enemy dead in the center. It's been a looooong time since school, and my physics skills are a bit rusty, but they're there. I've been thinking to somehow apply the v = d/t formula to find the time needed for the projectile or enemy to reach a certain point. But the problem is that I can't find the common point for both the projectile and enemy. Yes, I can find a certain point for the projectile, and another for the enemy, but I would need lots of tries to find where the point coincides, which is stupid. There has to be a way to link them together but I can't figure it out. I prepared some drawings and samples: A simple version of my Flash game, dumbed down to the basics, just some shapes: http://axonnsd.org/W/P001/MathSandBox.swf - click the mouse anywhere to fire a projectile. Or, here is an image which describes my problem: So... who has any ideas about how to find x3/y3 - thus leading me to find the angle in which the weapon has to tilt in order to fire a projectile to meet the enemy? EDIT I think it would be clearer if I also mention that I know: the speed of both Enemy and Projectile and the Enemy travels on a straight vertical line.

    Read the article

  • Hydraulics in game

    - by Mungoid
    I'm not completely sure if this would be better in the Physics site or not as this question is more about how hydraulics should work in game as opposed to how they really work (although that is taken into account) - So I apologize if this is in the wrong place. A project we are on, we have a machine with hydraulics that are powered (They don't just look like they move something, they are the only thing moving/turning/lifting something) - However, the hydraulic extends the same speed no matter what it is pushing. So, say there is a 10 ton object attached to one end of the hydraulic and the other end is attached to a plate on the ground. In real life it takes a few seconds to build up pressure depending on how heavy the object is, but in our project the hydraulics don't care about that. It will lift a 100 ton object the same speed as a 10 ton object. We have a way to fake the hydraulic pressurizing by reducing the 'drive amount' (how fast or slow the hydraulic extends) when we sense that it is touching the ground and that does a relatively decent job but we would like to be able to take other things into account like engine speed, ratios, loads, etc. but we aren't too sure what we need to think about. I'm kinda wondering if anyone here has any experience with this and could offer some suggestions on what to take into account?

    Read the article

  • Strange behavior of RigidBody with gravity and impulse applied

    - by Heisenbug
    I'm doing some experiments trying to figure out how physics works in Unity. I created a cube mesh with a BoxCollider and a RigidBody. The cuve is laying on a mesh plane with a BoxCollider. I'm trying to update the object position applying a force on its RigidBody. Inside script FixedUpdate function I'm doing the following: public void FixedUpdate() { if (leftButtonPressed()) this.rigidbody.AddForce( this.transform.forward * this.forceStrength, ForceMode.Impulse); } Despite the object is aligned with the world axis and the force is applied along Z axis, it performs a quite big rotation movement around its y axis. Since I didn't modify the center of mass and the BoxCollider position and dimension, all values should be fine. Removing gravity and letting the object flying without touching the plane, the problem doesn't show. So I suppose it's related to the friction between objects, but I can't understand exactly which is the problem. Why this? What's my mistake? How can I fix this, or what's the right way to do such a moving an object on a plane through a force impulse?

    Read the article

  • Offset Forward vector of object based on Rotation

    - by Taylor
    I'm using the Bullet 3D physics engine in a iOS application running openGL ES 1.1 Currently I'm accepting info from the gyroscope to allow the user to "look around" a 3d world that follows a bouncing ball (note: it only takes in the yaw to look around 360 degrees). Im also accepting information from the accelerometer based on the tilt to push the ball. As of right now, to move forward, the user tilts the devise forward (using the accelerometer); to move to the right, the user tilts the devise to the right and so on. The forward vector is currently along it's local Z-axis. The problem is that I want to change the ball bounce based on where the user has changed the view. If I change the view, the ball bounces in the fixed direction. I want to change the forward facing direction so that when a user changes the view (say to the look at the right of the world, the user rotates the device), tilting the devise forward will result in a forward force in that direction. Basically, I want the forward vector to take the rotation into consideration. Sorry if I didn't explain the issue well enough, its kind of confusing to write down.

    Read the article

  • Making particle bounce off a line with friction

    - by Dlaor
    So I'm making a game and I need a particle to bounce off a line. I've got this so far: public static Vector2f Reflect(this Vector2f vec, Vector2f axis) //vec is velocity { Vector2f result = vec - 2f * axis * axis.Dot(vec); return result; } Which works fine, but then I decided I wanted to be able to change the bounciness and friction of the bounce. I got bounciness down... public static Vector2f Reflect(this Vector2f vec, Vector2f axis, float bounciness) //Bounciness goes from 0 to 1, 0 being not bouncy and 1 being perfectly bouncy { var reflect = (1 + bounciness); //2f Vector2f result = vec - reflect * axis * axis.Dot(vec); return result; } But when I tried to add friction, everything went to hell and back... public static Vector2f Reflect(this Vector2f vec, Vector2f axis, float bounciness, float friction) //Does not work at all! { var reflect = (1 + bounciness); //2f Vector2f subtract = reflect * axis * axis.Dot(vec); Vector2f subtract2 = axis * axis.Dot(vec); Vector2f result = vec - subtract; result -= axis.PerpendicularLeft() * subtract2.Length() * friction; return result; } Any physics guys willing to help me out with this? (if you're not sure what I mean with the friction of a bounce see this: http://www.metanetsoftware.com/technique/diagrams/A-1_particle_collision.swf)

    Read the article

  • Dynamic Jump spot

    - by Pasquale Sada
    I have an initial velocity V(Vx,Vy,VZ) and a spot where he stands still at S(Sx,Sy,Sz). What I'm trying to achieve is a jump on a spot E(Ex,Ey,Ez) where you have clicked on(only lower or higher spot, because I've in place a simple steering behavior for even terrains). There are no obstacle around. I've implemented a formula that can make him jump in a precise way on a spot but you need to declare an angle: the problem arise when the selected spot is straight above your head. It' pretty lame that the char hang there and can reach a thing that is 1cm above is head. I'll share the code I'm using: Vector3 dir = target - transform.position; // get target direction float h = dir.y; // get height difference dir.y = 0; // retain only the horizontal direction float dist = dir.magnitude ; // get horizontal distance float a = angle * Mathf.Deg2Rad; // convert angle to radians dir.y = dist * Mathf.Tan(a); // set dir to the elevation angle dist += h / Mathf.Tan(a); // correct for small height differences // calculate the velocity magnitude float vel = Mathf.Sqrt(dist * Physics.gravity.magnitude / Mathf.Sin(2 *a)); return vel * dir.normalized;

    Read the article

  • Determining whether two fast moving objects should be submitted for a collision check

    - by dreta
    I have a basic 2D physics engine running. It's pretty much a particle engine, just uses basic shapes like AABBs and circles, so no rotation is possible. I have CCD implemented that can give accurate TOI for two fast moving objects and everything is working smoothly. My issue now is that i can't figure out how to determine whether two fast moving objects should even be checked against each other in the first place. I'm using a quad tree for spacial partitioning and for each fast moving object, i check it against objects in each cell that it passes. This works fine for determining collision with static geometry, but it means that any other fast moving object that could collide with it, but isn't in any of the cells that are checked, is never considered. The only solution to this i can think of is to either have the cells large enough and cross fingers that this is enough, or to implement some sort of a brute force algorithm. Is there a proper way of dealing with this, maybe somebody solved this issue in an efficient manner. Or maybe there's a better way of partitioning space that accounts for this?

    Read the article

  • Transforms in Box2D

    - by user1264811
    I'm attempting to implement a camera in my game. I had it working for regular objects, but I began using Box2D and obviously things changed a bit. I have a Body object that I want to draw at the center of the screen. Basically what I'm doing is subtracting the viewportX and viewportY to the Body. I use this code that currently is not working as it should: public void paint(Graphics2D g, int viewportX, int viewportY) { Transform xf = new Transform(); // m_body is the Body object xf.set(m_body.getTransform()); // Here what I attemp to do is take the transform and alter it // by the viewportX and Y, which is something like **-240, -150**. // Why is it negative? Because an object has coordinates 500, 300 would be displayed // at 160, 150 when the subtraction is done. // With the DrawUtils.toScale(), it's just how I convert the units from JBox2D units // to my units. Vec2 v = Transform.mulTrans(xf, new Vec2(DrawUtils.toScale(-viewportX), DrawUtils.toScale(-viewportY))); // Set the new transform to the new vector. Keep the old angle. xf.set(v, xf.q.getAngle()); g.setColor(Color.white); // I know for a fact that the following method works 100%. It correctly displays // my object, just that it doesn't follow it. for (Fixture f = m_body.getFixtureList(); f != null; f = f.getNext()) DrawUtils.drawShape(f, xf); } Hopefully I didn't over comment this and you understand my problem. I don't want to alter the actual physics position of the object, I just want to display it in the center.

    Read the article

  • Help with Collision Resolution?

    - by Milo
    I'm trying to learn about physics by trying to make a simplified GTA 2 clone. My only problem is collision resolution. Everything else works great. I have a rigid body class and from there cars and a wheel class: class RigidBody extends Entity { //linear private Vector2D velocity = new Vector2D(); private Vector2D forces = new Vector2D(); private OBB2D predictionRect = new OBB2D(new Vector2D(), 1.0f, 1.0f, 0.0f); private float mass; private Vector2D deltaVec = new Vector2D(); private Vector2D v = new Vector2D(); //angular private float angularVelocity; private float torque; private float inertia; //graphical private Vector2D halfSize = new Vector2D(); private Bitmap image; private Matrix mat = new Matrix(); private float[] Vector2Ds = new float[2]; private Vector2D tangent = new Vector2D(); private static Vector2D worldRelVec = new Vector2D(); private static Vector2D relWorldVec = new Vector2D(); private static Vector2D pointVelVec = new Vector2D(); public RigidBody() { //set these defaults so we don't get divide by zeros mass = 1.0f; inertia = 1.0f; setLayer(LAYER_OBJECTS); } protected void rectChanged() { if(getWorld() != null) { getWorld().updateDynamic(this); } } //intialize out parameters public void initialize(Vector2D halfSize, float mass, Bitmap bitmap) { //store physical parameters this.halfSize = halfSize; this.mass = mass; image = bitmap; inertia = (1.0f / 20.0f) * (halfSize.x * halfSize.x) * (halfSize.y * halfSize.y) * mass; RectF rect = new RectF(); float scalar = 10.0f; rect.left = (int)-halfSize.x * scalar; rect.top = (int)-halfSize.y * scalar; rect.right = rect.left + (int)(halfSize.x * 2.0f * scalar); rect.bottom = rect.top + (int)(halfSize.y * 2.0f * scalar); setRect(rect); predictionRect.set(rect); } public void setLocation(Vector2D position, float angle) { getRect().set(position, getWidth(), getHeight(), angle); rectChanged(); } public void setPredictionLocation(Vector2D position, float angle) { getPredictionRect().set(position, getWidth(), getHeight(), angle); } public void setPredictionCenter(Vector2D center) { getPredictionRect().moveTo(center); } public void setPredictionAngle(float angle) { predictionRect.setAngle(angle); } public Vector2D getPosition() { return getRect().getCenter(); } public OBB2D getPredictionRect() { return predictionRect; } @Override public void update(float timeStep) { doUpdate(false,timeStep); } public void doUpdate(boolean prediction, float timeStep) { //integrate physics //linear Vector2D acceleration = Vector2D.scalarDivide(forces, mass); if(prediction) { Vector2D velocity = Vector2D.add(this.velocity, Vector2D.scalarMultiply(acceleration, timeStep)); Vector2D c = getRect().getCenter(); c = Vector2D.add(getRect().getCenter(), Vector2D.scalarMultiply(velocity , timeStep)); setPredictionCenter(c); //forces = new Vector2D(0,0); //clear forces } else { velocity.x += (acceleration.x * timeStep); velocity.y += (acceleration.y * timeStep); //velocity = Vector2D.add(velocity, Vector2D.scalarMultiply(acceleration, timeStep)); Vector2D c = getRect().getCenter(); v.x = getRect().getCenter().getX() + (velocity.x * timeStep); v.y = getRect().getCenter().getY() + (velocity.y * timeStep); deltaVec.x = v.x - c.x; deltaVec.y = v.y - c.y; deltaVec.normalize(); setCenter(v.x, v.y); forces.x = 0; //clear forces forces.y = 0; } //angular float angAcc = torque / inertia; if(prediction) { float angularVelocity = this.angularVelocity + angAcc * timeStep; setPredictionAngle(getAngle() + angularVelocity * timeStep); //torque = 0; //clear torque } else { angularVelocity += angAcc * timeStep; setAngle(getAngle() + angularVelocity * timeStep); torque = 0; //clear torque } } public void updatePrediction(float timeStep) { doUpdate(true, timeStep); } //take a relative Vector2D and make it a world Vector2D public Vector2D relativeToWorld(Vector2D relative) { mat.reset(); Vector2Ds[0] = relative.x; Vector2Ds[1] = relative.y; mat.postRotate(JMath.radToDeg(getAngle())); mat.mapVectors(Vector2Ds); relWorldVec.x = Vector2Ds[0]; relWorldVec.y = Vector2Ds[1]; return new Vector2D(Vector2Ds[0], Vector2Ds[1]); } //take a world Vector2D and make it a relative Vector2D public Vector2D worldToRelative(Vector2D world) { mat.reset(); Vector2Ds[0] = world.x; Vector2Ds[1] = world.y; mat.postRotate(JMath.radToDeg(-getAngle())); mat.mapVectors(Vector2Ds); return new Vector2D(Vector2Ds[0], Vector2Ds[1]); } //velocity of a point on body public Vector2D pointVelocity(Vector2D worldOffset) { tangent.x = -worldOffset.y; tangent.y = worldOffset.x; return Vector2D.add( Vector2D.scalarMultiply(tangent, angularVelocity) , velocity); } public void applyForce(Vector2D worldForce, Vector2D worldOffset) { //add linear force forces.x += worldForce.x; forces.y += worldForce.y; //add associated torque torque += Vector2D.cross(worldOffset, worldForce); } @Override public void draw( GraphicsContext c) { c.drawRotatedScaledBitmap(image, getPosition().x, getPosition().y, getWidth(), getHeight(), getAngle()); } public Vector2D getVelocity() { return velocity; } public void setVelocity(Vector2D velocity) { this.velocity = velocity; } public Vector2D getDeltaVec() { return deltaVec; } } Vehicle public class Wheel { private Vector2D forwardVec; private Vector2D sideVec; private float wheelTorque; private float wheelSpeed; private float wheelInertia; private float wheelRadius; private Vector2D position = new Vector2D(); public Wheel(Vector2D position, float radius) { this.position = position; setSteeringAngle(0); wheelSpeed = 0; wheelRadius = radius; wheelInertia = (radius * radius) * 1.1f; } public void setSteeringAngle(float newAngle) { Matrix mat = new Matrix(); float []vecArray = new float[4]; //forward Vector vecArray[0] = 0; vecArray[1] = 1; //side Vector vecArray[2] = -1; vecArray[3] = 0; mat.postRotate(newAngle / (float)Math.PI * 180.0f); mat.mapVectors(vecArray); forwardVec = new Vector2D(vecArray[0], vecArray[1]); sideVec = new Vector2D(vecArray[2], vecArray[3]); } public void addTransmissionTorque(float newValue) { wheelTorque += newValue; } public float getWheelSpeed() { return wheelSpeed; } public Vector2D getAnchorPoint() { return position; } public Vector2D calculateForce(Vector2D relativeGroundSpeed, float timeStep, boolean prediction) { //calculate speed of tire patch at ground Vector2D patchSpeed = Vector2D.scalarMultiply(Vector2D.scalarMultiply( Vector2D.negative(forwardVec), wheelSpeed), wheelRadius); //get velocity difference between ground and patch Vector2D velDifference = Vector2D.add(relativeGroundSpeed , patchSpeed); //project ground speed onto side axis Float forwardMag = new Float(0.0f); Vector2D sideVel = velDifference.project(sideVec); Vector2D forwardVel = velDifference.project(forwardVec, forwardMag); //calculate super fake friction forces //calculate response force Vector2D responseForce = Vector2D.scalarMultiply(Vector2D.negative(sideVel), 2.0f); responseForce = Vector2D.subtract(responseForce, forwardVel); float topSpeed = 500.0f; //calculate torque on wheel wheelTorque += forwardMag * wheelRadius; //integrate total torque into wheel wheelSpeed += wheelTorque / wheelInertia * timeStep; //top speed limit (kind of a hack) if(wheelSpeed > topSpeed) { wheelSpeed = topSpeed; } //clear our transmission torque accumulator wheelTorque = 0; //return force acting on body return responseForce; } public void setTransmissionTorque(float newValue) { wheelTorque = newValue; } public float getTransmissionTourque() { return wheelTorque; } public void setWheelSpeed(float speed) { wheelSpeed = speed; } } //our vehicle object public class Vehicle extends RigidBody { private Wheel [] wheels = new Wheel[4]; private boolean throttled = false; public void initialize(Vector2D halfSize, float mass, Bitmap bitmap) { //front wheels wheels[0] = new Wheel(new Vector2D(halfSize.x, halfSize.y), 0.45f); wheels[1] = new Wheel(new Vector2D(-halfSize.x, halfSize.y), 0.45f); //rear wheels wheels[2] = new Wheel(new Vector2D(halfSize.x, -halfSize.y), 0.75f); wheels[3] = new Wheel(new Vector2D(-halfSize.x, -halfSize.y), 0.75f); super.initialize(halfSize, mass, bitmap); } public void setSteering(float steering) { float steeringLock = 0.13f; //apply steering angle to front wheels wheels[0].setSteeringAngle(steering * steeringLock); wheels[1].setSteeringAngle(steering * steeringLock); } public void setThrottle(float throttle, boolean allWheel) { float torque = 85.0f; throttled = true; //apply transmission torque to back wheels if (allWheel) { wheels[0].addTransmissionTorque(throttle * torque); wheels[1].addTransmissionTorque(throttle * torque); } wheels[2].addTransmissionTorque(throttle * torque); wheels[3].addTransmissionTorque(throttle * torque); } public void setBrakes(float brakes) { float brakeTorque = 15.0f; //apply brake torque opposing wheel vel for (Wheel wheel : wheels) { float wheelVel = wheel.getWheelSpeed(); wheel.addTransmissionTorque(-wheelVel * brakeTorque * brakes); } } public void doUpdate(float timeStep, boolean prediction) { for (Wheel wheel : wheels) { float wheelVel = wheel.getWheelSpeed(); //apply negative force to naturally slow down car if(!throttled && !prediction) wheel.addTransmissionTorque(-wheelVel * 0.11f); Vector2D worldWheelOffset = relativeToWorld(wheel.getAnchorPoint()); Vector2D worldGroundVel = pointVelocity(worldWheelOffset); Vector2D relativeGroundSpeed = worldToRelative(worldGroundVel); Vector2D relativeResponseForce = wheel.calculateForce(relativeGroundSpeed, timeStep,prediction); Vector2D worldResponseForce = relativeToWorld(relativeResponseForce); applyForce(worldResponseForce, worldWheelOffset); } //no throttling yet this frame throttled = false; if(prediction) { super.updatePrediction(timeStep); } else { super.update(timeStep); } } @Override public void update(float timeStep) { doUpdate(timeStep,false); } public void updatePrediction(float timeStep) { doUpdate(timeStep,true); } public void inverseThrottle() { float scalar = 0.2f; for(Wheel wheel : wheels) { wheel.setTransmissionTorque(-wheel.getTransmissionTourque() * scalar); wheel.setWheelSpeed(-wheel.getWheelSpeed() * 0.1f); } } } And my big hack collision resolution: private void update() { camera.setPosition((vehicle.getPosition().x * camera.getScale()) - ((getWidth() ) / 2.0f), (vehicle.getPosition().y * camera.getScale()) - ((getHeight() ) / 2.0f)); //camera.move(input.getAnalogStick().getStickValueX() * 15.0f, input.getAnalogStick().getStickValueY() * 15.0f); if(input.isPressed(ControlButton.BUTTON_GAS)) { vehicle.setThrottle(1.0f, false); } if(input.isPressed(ControlButton.BUTTON_STEAL_CAR)) { vehicle.setThrottle(-1.0f, false); } if(input.isPressed(ControlButton.BUTTON_BRAKE)) { vehicle.setBrakes(1.0f); } vehicle.setSteering(input.getAnalogStick().getStickValueX()); //vehicle.update(16.6666666f / 1000.0f); boolean colided = false; vehicle.updatePrediction(16.66666f / 1000.0f); List<Entity> buildings = world.queryStaticSolid(vehicle,vehicle.getPredictionRect()); if(buildings.size() > 0) { colided = true; } if(!colided) { vehicle.update(16.66f / 1000.0f); } else { Vector2D delta = vehicle.getDeltaVec(); vehicle.setVelocity(Vector2D.negative(vehicle.getVelocity().multiply(0.2f)). add(delta.multiply(-1.0f))); vehicle.inverseThrottle(); } } Here is OBB public class OBB2D { // Corners of the box, where 0 is the lower left. private Vector2D corner[] = new Vector2D[4]; private Vector2D center = new Vector2D(); private Vector2D extents = new Vector2D(); private RectF boundingRect = new RectF(); private float angle; //Two edges of the box extended away from corner[0]. private Vector2D axis[] = new Vector2D[2]; private double origin[] = new double[2]; public OBB2D(Vector2D center, float w, float h, float angle) { set(center,w,h,angle); } public OBB2D(float left, float top, float width, float height) { set(new Vector2D(left + (width / 2), top + (height / 2)),width,height,0.0f); } public void set(Vector2D center,float w, float h,float angle) { Vector2D X = new Vector2D( (float)Math.cos(angle), (float)Math.sin(angle)); Vector2D Y = new Vector2D((float)-Math.sin(angle), (float)Math.cos(angle)); X = X.multiply( w / 2); Y = Y.multiply( h / 2); corner[0] = center.subtract(X).subtract(Y); corner[1] = center.add(X).subtract(Y); corner[2] = center.add(X).add(Y); corner[3] = center.subtract(X).add(Y); computeAxes(); extents.x = w / 2; extents.y = h / 2; computeDimensions(center,angle); } private void computeDimensions(Vector2D center,float angle) { this.center.x = center.x; this.center.y = center.y; this.angle = angle; boundingRect.left = Math.min(Math.min(corner[0].x, corner[3].x), Math.min(corner[1].x, corner[2].x)); boundingRect.top = Math.min(Math.min(corner[0].y, corner[1].y),Math.min(corner[2].y, corner[3].y)); boundingRect.right = Math.max(Math.max(corner[1].x, corner[2].x), Math.max(corner[0].x, corner[3].x)); boundingRect.bottom = Math.max(Math.max(corner[2].y, corner[3].y),Math.max(corner[0].y, corner[1].y)); } public void set(RectF rect) { set(new Vector2D(rect.centerX(),rect.centerY()),rect.width(),rect.height(),0.0f); } // Returns true if other overlaps one dimension of this. private boolean overlaps1Way(OBB2D other) { for (int a = 0; a < axis.length; ++a) { double t = other.corner[0].dot(axis[a]); // Find the extent of box 2 on axis a double tMin = t; double tMax = t; for (int c = 1; c < corner.length; ++c) { t = other.corner[c].dot(axis[a]); if (t < tMin) { tMin = t; } else if (t > tMax) { tMax = t; } } // We have to subtract off the origin // See if [tMin, tMax] intersects [0, 1] if ((tMin > 1 + origin[a]) || (tMax < origin[a])) { // There was no intersection along this dimension; // the boxes cannot possibly overlap. return false; } } // There was no dimension along which there is no intersection. // Therefore the boxes overlap. return true; } //Updates the axes after the corners move. Assumes the //corners actually form a rectangle. private void computeAxes() { axis[0] = corner[1].subtract(corner[0]); axis[1] = corner[3].subtract(corner[0]); // Make the length of each axis 1/edge length so we know any // dot product must be less than 1 to fall within the edge. for (int a = 0; a < axis.length; ++a) { axis[a] = axis[a].divide((axis[a].length() * axis[a].length())); origin[a] = corner[0].dot(axis[a]); } } public void moveTo(Vector2D center) { Vector2D centroid = (corner[0].add(corner[1]).add(corner[2]).add(corner[3])).divide(4.0f); Vector2D translation = center.subtract(centroid); for (int c = 0; c < 4; ++c) { corner[c] = corner[c].add(translation); } computeAxes(); computeDimensions(center,angle); } // Returns true if the intersection of the boxes is non-empty. public boolean overlaps(OBB2D other) { if(right() < other.left()) { return false; } if(bottom() < other.top()) { return false; } if(left() > other.right()) { return false; } if(top() > other.bottom()) { return false; } if(other.getAngle() == 0.0f && getAngle() == 0.0f) { return true; } return overlaps1Way(other) && other.overlaps1Way(this); } public Vector2D getCenter() { return center; } public float getWidth() { return extents.x * 2; } public float getHeight() { return extents.y * 2; } public void setAngle(float angle) { set(center,getWidth(),getHeight(),angle); } public float getAngle() { return angle; } public void setSize(float w,float h) { set(center,w,h,angle); } public float left() { return boundingRect.left; } public float right() { return boundingRect.right; } public float bottom() { return boundingRect.bottom; } public float top() { return boundingRect.top; } public RectF getBoundingRect() { return boundingRect; } public boolean overlaps(float left, float top, float right, float bottom) { if(right() < left) { return false; } if(bottom() < top) { return false; } if(left() > right) { return false; } if(top() > bottom) { return false; } return true; } }; What I do is when I predict a hit on the car, I force it back. It does not work that well and seems like a bad idea. What could I do to have more proper collision resolution. Such that if I hit a wall I will never get stuck in it and if I hit the side of a wall I can steer my way out of it. Thanks I found this nice ppt. It talks about pulling objects apart and calculating new velocities. How could I calc new velocities in my case? http://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CC8QFjAB&url=http%3A%2F%2Fcoitweb.uncc.edu%2F~tbarnes2%2FGameDesignFall05%2FSlides%2FCh4.2-CollDet.ppt&ei=x4ucULy5M6-N0QGRy4D4Cg&usg=AFQjCNG7FVDXWRdLv8_-T5qnFyYld53cTQ&cad=rja

    Read the article

  • Which techniques to study?

    - by Djentleman
    Just to give you some background info, I'm studying a programming major at a tertiary level and am in my third year, so I'm not a newbie off the street. However, I am still quite new to game programming as a subset of programming. One of my personal projects for next semester is to design and create a 2D platformer game with emphasis on procedural generation and "neato" effects (think metroidvania). I've written up a list of some techniques to help me improve my personal skills (using XNA for the time being). The list is as follows: QuadTrees: Build a basic program in XNA that moves basic 2D sprites (circles and squares) around a set path and speed and changes their colour when they collide. Add functionality to add and delete objects of different sizes (select a direction and speed when adding and just drag and drop them in). Particles: Build a basic program in XNA in which you can select different colours and create particle effects of those colours on screen by clicking and dragging the mouse around (simple particles emerging from where the mouse is clicked). Add functionality where you can change the amount of particles to be drawn and the speed at which they travel and when they expire. Possibly implement gravity and wind after part 3 is complete. Physics: Build a basic program in XNA where you have a ball in a set 2D environment, a wind slider, and a gravity slider (can go to negative for reverse gravity). You can click to drag the ball around and release to throw it and, depending on what you do, the ball interacts with the environment. Implement other shapes afterwards. Random 2D terrain generation: Build a basic program in XNA that randomly generates terrain (including hills, caves, etc) created from 2D tiles. Add functionality that draws the tiles from a tileset and places different tiles depending on where they lie on the y-axis (dirt on top, then rock, then lava, etc). Randomised objects: Build a basic program in XNA that, when a button is clicked, displays a randomised item sprite based on parameters (type, colour, etc) with the images pulled from tilesets. Add the ability to save the item as an object, which stores it in a side-pane where it can be selected for viewing. Movement: Build a basic program in XNA where you can move an object around in an environment (tile-based) with a camera that pans with it. No gravity. Implement gravity and wind, allow the character to jump and fall with some basic platforms. So my question is this: Are there any other commonly used techniques that I should research, and can I get some suggestions as to the effectiveness of the techniques I've chosen to work on (e.g., don't do QuadTree stuff because [insert reason here], or, do [insert technique here] before you start working on particles because [insert reason here])? I hope this is clear enough and please let me know if I can further clarify anything!

    Read the article

  • How to implement a simple bullet trajectory

    - by AirieFenix
    I searched and searched and although it's a fair simple question, I don't find the proper answer but general ideas (which I already have). I have a top-down game and I want to implement a gun which shoots bullets that follow a simple path (no physics nor change of trajectory, just go from A to B thing). a: vector of the position of the gun/player. b: vector of the mouse position (cross-hair). w: the vector of the bullet's trajectory. So, w=b-a. And the position of the bullet = [x=x0+speed*time*normalized w.x , y=y0+speed*time * normalized w.y]. I have the constructor: public Shot(int shipX, int shipY, int mouseX, int mouseY) { //I get mouse with Gdx.input.getX()/getY() ... this.shotTime = TimeUtils.millis(); this.posX = shipX; this.posY = shipY; //I used aVector = aVector.nor() here before but for some reason didn't work float tmp = (float) (Math.pow(mouseX-shipX, 2) + Math.pow(mouseY-shipY, 2)); tmp = (float) Math.sqrt(Math.abs(tmp)); this.vecX = (mouseX-shipX)/tmp; this.vecY = (mouseY-shipY)/tmp; } And here I update the position and draw the shot: public void drawShot(SpriteBatch batch) { this.lifeTime = TimeUtils.millis() - this.shotTime; //position = positionBefore + v*t this.posX = this.posX + this.vecX*this.lifeTime*speed*Gdx.graphics.getDeltaTime(); this.posY = this.posY + this.vecY*this.lifeTime*speed*Gdx.graphics.getDeltaTime(); ... } Now, the behavior of the bullet seems very awkward, not going exactly where my mouse is (it's like the mouse is 30px off) and with a random speed. I know I probably need to open the old algebra book from college but I'd like somebody says if I'm in the right direction (or points me to it); if it's a calculation problem, a code problem or both. Also, is it possible that Gdx.input.getX() gives me non-precise position? Because when I draw the cross-hair it also draws off the cursor position. Sorry for the long post and sorry if it's a very basic question. Thanks!

    Read the article

  • How can I convert a 2D bitmap (Used for terrain) to a 2D polygon mesh for collision?

    - by Megadanxzero
    So I'm making an artillery type game, sort of similar to Worms with all the usual stuff like destructible terrain etc... and while I could use per-pixel collision that doesn't give me collision normals or anything like that. Converting it all to a mesh would also mean I could use an existing physics library, which would be better than anything I can make by myself. I've seen people mention doing this by using Marching Squares to get contours in the bitmap, but I can't find anything which mentions how to turn these into a mesh (Unless it refers to a 3D mesh with contour lines defining different heights, which is NOT what I want). At the moment I can get a basic Marching Squares contour which looks something like this (Where the grid-like lines in the background would be the Marching Squares 'cells'): That needs to be interpolated to get a smoother, more accurate result but that's the general idea. I had a couple ideas for how to turn this into a mesh, but many of them wouldn't work in certain cases, and the one which I thought would work perfectly has turned out to be very slow and I've not even finished it yet! Ideally I'd like whatever I end up using to be fast enough to do every frame for cases such as rapidly-firing weapons, or digging tools. I'm thinking there must be some kind of existing algorithm/technique for turning something like this into a mesh, but I can't seem to find anything. I've looked at some things like Delaunay Triangulation, but as far as I can tell that won't correctly handle concave shapes like the above example, and also wouldn't account for holes within the terrain. I'll go through the technique I came up with for comparison and I guess I'll see if anyone has a better idea. First of all interpolate the Marching Squares contour lines, creating vertices from the line ends, and getting vertices where lines cross cell edges (Important). Then, for each cell containing vertices create polygons by using 2 vertices, and a cell corner as the 3rd vertex (Probably the closest corner). Do this for each cell and I think you should have a mesh which accurately represents the original bitmap (Though there will only be polygons at the edges of the bitmap, and large filled in areas in between will be empty). The only problem with this is that it involves lopping through every pixel once for the initial Marching Squares, then looping through every cell (image height + 1 x image width + 1) at least twice, which ends up being really slow for any decently sized image...

    Read the article

  • How to resolve concurrent ramp collisions in 2d platformer?

    - by Shaun Inman
    A bit about the physics engine: Bodies are all rectangles. Bodies are sorted at the beginning of every update loop based on the body-in-motion's horizontal and vertical velocity (to avoid sticky walls/floors). Solid bodies are resolved by testing the body-in-motion's new X with the old Y and adjusting if necessary before testing the new X with the new Y, again adjusting if necessary. Works great. Ramps (rectangles with a flag set indicating bottom-left, bottom-right, etc) are resolved by calculating the ratio of penetration along the x-axis and setting a new Y accordingly (with some checks to make sure the body-in-motion isn't attacking from the tall or flat side, in which case the ramp is treated as a normal rectangle). This also works great. Side-by-side ramps, eg. \/ and /\, work fine but things get jittery and unpredictable when a top-down ramp is directly above a bottom-up ramp, eg. < or > or when a bottom-up ramp runs right up to the ceiling/top-down ramp runs right down to the floor. I've been able to lock it down somewhat by detecting whether the body-in-motion hadFloor when also colliding with a top-down ramp or hadCeiling when also colliding with a bottom-up ramp then resolving by calculating the ratio of penetration along the y-axis and setting the new X accordingly (the opposite of the normal behavior). But as soon as the body-in-motion jumps the hasFloor flag becomes false, the first ramp resolution pushes the body into collision with the second ramp and collision resolution becomes jittery again for a few frames. I'm sure I'm making this more complicated than it needs to be. Can anyone recommend a good resource that outlines the best way to address this problem? (Please don't recommend I use something like Box2d or Chipmunk. Also, "redesign your levels" isn't an answer; the body-in-motion may at times be riding another body-in-motion, eg. a platform, that pushes it into a ramp so I'd like to be able to resolve this properly.) Thanks!

    Read the article

  • Best way to implement a simple bullet trajectory

    - by AirieFenix
    I searched and searched and although it's a fair simple question, I don't find the proper answer but general ideas (which I already have). I have a top-down game and I want to implement a gun which shoots bullets that follow a simple path (no physics nor change of trajectory, just go from A to B thing). a: vector of the position of the gun/player. b: vector of the mouse position (cross-hair). w: the vector of the bullet's trajectory. So, w=b-a. And the position of the bullet = [x=x0+speed*time*normalized w.x , y=y0+speed*time * normalized w.y]. I have the constructor: public Shot(int shipX, int shipY, int mouseX, int mouseY) { //I get mouse with Gdx.input.getX()/getY() ... this.shotTime = TimeUtils.millis(); this.posX = shipX; this.posY = shipY; //I used aVector = aVector.nor() here before but for some reason didn't work float tmp = (float) (Math.pow(mouseX-shipX, 2) + Math.pow(mouseY-shipY, 2)); tmp = (float) Math.sqrt(Math.abs(tmp)); this.vecX = (mouseX-shipX)/tmp; this.vecY = (mouseY-shipY)/tmp; } And here I update the position and draw the shot: public void drawShot(SpriteBatch batch) { this.lifeTime = TimeUtils.millis() - this.shotTime; //position = positionBefore + v*t this.posX = this.posX + this.vecX*this.lifeTime*speed*Gdx.graphics.getDeltaTime(); this.posY = this.posY + this.vecY*this.lifeTime*speed*Gdx.graphics.getDeltaTime(); ... } Now, the behavior of the bullet seems very awkward, not going exactly where my mouse is (it's like the mouse is 30px off) and with a random speed. I know I probably need to open the old algebra book from college but I'd like somebody says if I'm in the right direction (or points me to it); if it's a calculation problem, a code problem or both. Also, is it possible that Gdx.input.getX() gives me non-precise position? Because when I draw the cross-hair it also draws off the cursor position. Sorry for the long post and sorry if it's a very basic question. Thanks!

    Read the article

  • Movement prediction for non-shooters

    - by ShadowChaser
    I'm working on an isometric (2D) game with moderate-scale multiplayer - 20-30 players. I've had some difficulty getting a good movement prediction implementation in place. Right now, clients are authoritative for their own position. The server performs validation and broad-scale cheat detection, and I fully realize that the system will never be fully robust against cheating. However, the performance and implementation tradeoffs work well for me right now. Given that I'm dealing with sprite graphics, the game has 8 defined directions rather than free movement. Whenever the player changes their direction or speed (walk, run, stop), a "true" 3D velocity is set on the entity and a packet it sent to the server with the new movement state. In addition, every 250ms additional packets are transmitted with the player's current position for state updates on the server as well as for client prediction. After the server validates the packet, it gets automatically distributed to all of the other "nearby" players. Client-side, all entities with non-zero velocity (ie/ moving entities) are tracked and updated by a rudimentary "physics" system - basically nothing more than changing the position by the velocity according to the elapsed time slice (40ms or so). What I'm struggling with is how to implement clean movement prediction. I have the nagging suspicion that I've made a design mistake somewhere. I've been over the Unreal, Half-life, and all other movement prediction/lag compensation articles I could find, but they all seam geared toward shooters: "Don't send each control change, send updates every 120ms, server is authoritative, client predicts, etc". Unfortunately, that style of design won't work well for me - there's no 3D environment so each individual state change is important. 1) Most of the samples I saw tightly couple movement prediction right into the entities themselves. For example, storing the previous state along with the current state. I'd like to avoid that and keep entities with their "current state" only. Is there a better way to handle this? 2) What should happen when the player stops? I can't interpolate to the correct position, since they might need to walk backwards or another strange direction if their position is too far ahead. 3) What should happen when entities collide? If the current player collides with something, the answer is simple - just stop the player from moving. But what happens if two entities take up the same space on the server? What if the local prediction causes a remote entity to collide with the player or another entity - do I stop them as well? If the prediction had the misfortune of sticking them in front of a wall that the player has gone around, the prediction will never be able to compensate and once the error gets to high the entity will snap to the new position.

    Read the article

  • Simulate 'Shock absorbtion' with tire rubber in PhysX (2.8.x)

    - by Mungoid
    This is a kinda tricky question and I fear there is no easy enough solution, but I figured I'd hit SE up before giving up on it and just doing what I can. A machine I am working on has no suspension or shocks or springs of any sort in the real machine, so you would think that when it drives over bumps, it would shake like crazy but because its tires (6 of them) are quite large they seem to absorb a lot of shock from the bumps. Part of this is because the machine is around 30k lbs and it just smashes/compresses any bumps in the ground down (This is another issue im still working on) and the other part is that the tires seem to have a lot of flex to them with a lot of air as well. So my current task is to simulate shock absorption in physx without visibly separating the tires from the spindle/axle.. I have been messing with all kinds of NxMaterial, NxSpring, Joints, etc. and have had no luck getting this to work. The main problem is that the spindle attached to the tire is directly in the center and the axle is basically solidly attached to the chassis, so if i give it any spring or suspension travel, that spindle on the tires will move upwards or downwards, looking very odd because now its not any longer in the center of the tire. I tried giving it a higher restitution but that just makes it bouncy without any shock absorption. Another avenue I am messing with is to actively smooth the terrain in front of the tires so that before it hits a bumpy patch, that patch is smoothed and it doesn't bounce. The only issue with this is that it is pretty expensive to do with 6 tires, high tesselation of the terrain and other complex things going on at the same time in this simulation. I am still working on this but I am hoping to mix and match a few different aspects to get the best possible outcome. This is a bit of a complex issue so I'm not expecting anyone to have a definitive answer, just hoping someone may think of something I haven't =-) -Side note: Yes i know PhysX 2.8.x is quite outdated but we have to stick with it for this implementation. We are in the process of going to another physics engine but it is out of scope to apply that engine to this project.

    Read the article

< Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >