Search Results

Search found 6030 results on 242 pages for 'exists'.

Page 110/242 | < Previous Page | 106 107 108 109 110 111 112 113 114 115 116 117  | Next Page >

  • CUDA 4.1 Update

    - by N0xus
    I'm currently working on porting a particle system to update on the GPU via the use of CUDA. With CUDA, I've already passed over the required data I need to the GPU and allocated and copied the date via the host. When I build the project, it all runs fine, but when I run it, the project says I need to allocate my h_position pointer. This pointer is my host pointer and is meant to hold the data. I know I need to pass in the current particle position to the required cudaMemcpy call and they are currently stored in a list with a for loop being created and interated for each particle calling the following line of code: m_particleList[i].positionY = m_particleList[i].positionY - (m_particleList[i].velocity * frameTime * 0.001f); My current host side cuda code looks like this: float* h_position; // Your host pointer. This holds the data (I assume it's already filled with the data.) float* d_position; // Your device pointer, we will allocate and fill this float* d_velocity; float* d_time; int threads_per_block = 128; // You should play with this value int blocks = m_maxParticles/threads_per_block + ( (m_maxParticles%threads_per_block)?1:0 ); const int N = 10; size_t size = N * sizeof(float); cudaMalloc( (void**)&d_position, m_maxParticles * sizeof(float) ); cudaMemcpy( d_position, h_position, m_maxParticles * sizeof(float), cudaMemcpyHostToDevice); Both of which were / can be found inside my UpdateParticle() method. I had originally thought it would be a simple case of changing the h_position variable in the cudaMemcpy to m_particleList[i] but then I get the following error: no suitable conversion function from "ParticleSystemClass::ParticleType" to "const void *" exists I've probably messed up somewhere, but could someone please help fix the issues I'm facing. Everything else seems to running fine, it's just when I try to run the program that certain things hit the fan.

    Read the article

  • How should I compress a file with multiple bytes that are the same with Huffman coding?

    - by Omega
    On my great quest for compressing/decompressing files with a Java implementation of Huffman coding (http://en.wikipedia.org/wiki/Huffman_coding) for a school assignment, I am now at the point of building a list of prefix codes. Such codes are used when decompressing a file. Basically, the code is made of zeroes and ones, that are used to follow a path in a Huffman tree (left or right) for, ultimately, finding a byte. In this Wikipedia image, to reach the character m the prefix code would be 0111 The idea is that when you compress the file, you will basically convert all the bytes of the file into prefix codes instead (they tend to be smaller than 8 bits, so there's some gain). So every time the character m appears in a file (which in binary is actually 1101101), it will be replaced by 0111 (if we used the tree above). Therefore, 1101101110110111011011101101 becomes 0111011101110111 in the compressed file. I'm okay with that. But what if the following happens: In the file to be compressed there exists only one unique byte, say 1101101. There are 1000 of such byte. Technically, the prefix code of such byte would be... none, because there is no path to follow, right? I mean, there is only one unique byte anyway, so the tree has just one node. Therefore, if the prefix code is none, I would not be able to write the prefix code in the compressed file, because, well, there is nothing to write. Which brings this problem: how would I compress/decompress such file if it is impossible to write a prefix code when compressing? (using Huffman coding, due to the school assignment's rules) This tutorial seems to explain a bit better about prefix codes: http://www.cprogramming.com/tutorial/computersciencetheory/huffman.html but doesn't seem to address this issue either.

    Read the article

  • LINQ – Skip() and Take() methods

    - by nmarun
    I had this issue recently where I have an array of integers and I’m doing some Skip(n) and then a Take(m) on the collection. Here’s an abstraction of the code: 1: int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 }; 2: var taken = numbers.Skip(3).Take(3); 3: foreach (var i in taken) 4: { 5: Console.WriteLine(i); 6: } The output is as expected: 3, 9, 8 – skip the first three and then take the next three items. But, what happens if I do something like: 1: var taken = numbers.Skip(7).Take(5); In English – skip the first seven and the take the next 5 items from an array that contains only 10 elements. Think it’ll throw the IndexOutOfRangeException exception? Nope. These extension methods are a little smarter than that. Even though the user has requested more elements than what exists in the collection, the Take method only returns the first three thereby making the output of the program as: 7, 2, 0. The scenario is handled similarly when you do: 1: var taken = numbers.Take(5).Skip(7); This one takes the first 5 elements from the numbers array and then skips 7 of them. This is what is looks like in the debug mode: Just wanted to share this behavior.

    Read the article

  • Cross-platform builds with OGRE3D via CMake. Any tips?

    - by frarees
    I've been trying to compile a simple project for both OSX and Windows platforms, using OGRE3D, but I've got some problems on the way. I'm using CMake to create my platform specific project files (VS solution & Xcode project). Some problems I found are: OGRE3D source is distributed in 2 flavors, Windows sources and UNIX/OSX sources. In OSX, compiling dependencies (freetype, FreeImage and specially OIS) is such a pain. I don't know how to handle precompiled dependencies (they exist for both Win & Mac). May sound like a noob question, but I would appreciate some tips on this. Resources, forum posts, anything. There exists any "cross-platform base project for OGRE3D" on the net? Would be really helpful if someone who already managed to do this can bring some light. Btw, I'm not basing the project on OGRE3D, it's just that is the biggest library I'm probably using, so I depend a lot on it. Thanks in advantage!

    Read the article

  • Using Queries with Coherence Read-Through Caches

    - by jpurdy
    Applications that rely on partial caches of databases, and use read-through to maintain those caches, have some trade-offs if queries are required. Coherence does not support push-down queries, so queries will apply only to data that currently exists in the cache. This is technically consistent with "read committed" semantics, but the potential absence of data may make the results so unintuitive as to be useless for most use cases (depending on how much of the database is held in cache). Alternatively, the application itself may manually "push down" queries to the database, either retrieving results equivalent to querying the cache directly, or may query the database for a key set and read the values from the cache (relying on read-through to handle any missing values). Obviously, if the result set is too large, reading through the cache may cause significant thrashing. It's also worth pointing out that if the cache is asynchronously synchronized with the database (perhaps via database change listener), that an application may commit a transaction to the database, then generate a key set from the database via a query, then read cache entries through the cache, possibly resulting in a race condition where the application sees older data than it had previously committed. In theory this is not problematic but in practice it is very unintuitive. For this reason it often makes sense to invalidate the cache when updating the database, forcing the next read-through to update the cache.

    Read the article

  • What is involved with writing a lobby server?

    - by Kira
    So I'm writing a Chess matchmaking system based on a Lobby view with gaming rooms, general chat etc. So far I have a working prototype but I have big doubts regarding some things I did with the server. Writing a gaming lobby server is a new programming experience to me and so I don't have a clear nor precise programming model for it. I also couldn't find a paper that describes how it should work. I ordered "Java Network Programming 3rd edition" from Amazon and still waiting for shipment, hopefully I'll find some useful examples/information in this book. Meanwhile, I'd like to gather your opinions and see how you would handle some things so I can learn how to write a server correctly. Here are a few questions off the top of my head: (may be more will come) First, let's define what a server does. It's primary functionality is to hold TCP connections with clients, listen to the events they generate and dispatch them to the other players. But is there more to it than that? Should I use one thread per client? If so, 300 clients = 300 threads. Isn't that too much? What hardware is needed to support that? And how much bandwidth does a lobby consume then approx? What kind of data structure should be used to hold the clients' sockets? How do you protect it from concurrent modification (eg. a player enters or exists the lobby) when iterating through it to dispatch an event without hurting throughput? Is ConcurrentHashMap the correct answer here, or are there some techniques I should know? When a user enters the lobby, what mechanism would you use to transfer the state of the lobby to him? And while this is happening, where do the other events bubble up? Screenshot : http://imageshack.us/photo/my-images/695/sansrewyh.png/

    Read the article

  • Enemy collision detection with movie clips

    - by user18080
    I have created multiple movieclips with animations within them. It is an obstacle avoidance game and I cannot seem to be able to get my enemies to contact my playableCharacter. The enemies I have created are each embedded on certain levels of my game. I have created an array, enemiesArray to have each of my enemies placed within it. Here is the code for that: //step 1: make sure array exists if(enemiesArray!=null && enemiesArray.length!=0) { //step 2: check all enemies against villain for(var i:int = 0;i < enemiesArray.length; i++) { //step 3: check for collision if(villain.hitTestObject(enemiesArray[i])) { //step 4: do stuff trace("HIT!"); removeChild(enemiesArray[i]); enemiesArray.splice(i,1); removeChild(villain); villain = null; } } } What I am unsure of is whether or not my enemiesArray is actually holding the movieclips I have suggested. If it was, this code would be tracing back a "HIT" for every time I ran into an enemy and would kill my character. It is not doing that however. I am thinking I have to push my movieclips into my array but I don't know how to do that or where for that matter. Any and all help would be much appreciated.

    Read the article

  • Query for server DefaultData & DefaultLog folders

    - by jamiet
    Do you ever need to query for the DefaultData & DefaultLog folders for your SQL Server instance? Well, I just did and the following script enabled me to do that: DECLARE @HkeyLocal NVARCHAR(18),@MSSqlServerRegPath NVARCHAR(31),@InstanceRegPath SYSNAME; SELECT @HkeyLocal=N'HKEY_LOCAL_MACHINE' SELECT @MSSqlServerRegPath=N'SOFTWARE\Microsoft\MSSQLServer' SELECT @InstanceRegPath=@MSSqlServerRegPath + N'\MSSQLServer' DECLARE @SmoDefaultFile NVARCHAR(512) EXEC MASTER.dbo.xp_instance_regread @HkeyLocal, @InstanceRegPath, N'DefaultData', @SmoDefaultFile OUTPUT DECLARE @SmoDefaultLog NVARCHAR(512) EXEC MASTER.dbo.xp_instance_regread @HkeyLocal, @InstanceRegPath, N'DefaultLog', @SmoDefaultLog OUTPUT SELECT ISNULL(@SmoDefaultFile,N'') AS [DefaultFile],ISNULL(@SmoDefaultLog,N'') AS [DefaultLog]' I haven’t done any rigorous testing or anything like that, all I can say is…it worked for me (on SQL Server 2012). Use as you see fit. Doubtless this information exists in a multitude of other places but nevertheless I’m putting it here so I know where to find it in the future. Just for fun I thought I’d try this out against SQL Azure Windows Azure SQL Database. Unsurprisingly it didn’t work there: Msg 40515, Level 15, State 1, Line 16 Reference to database and/or server name in 'MASTER.dbo.xp_instance_regread' is not supported in this version of SQL Server. @Jamiet

    Read the article

  • How to handle the fear of future licensing issues of third-party products in software development?

    - by Ian Pugsley
    The company I work for recently purchased some third party libraries from a very well-known, established vendor. There is some fear among management that the possibility exists that our license to use the software could be revoked somehow. The example I'm hearing is of something like a patent issue; i.e. the company we purchased the libraries from could be sued and legally lose the ability to distribute and provide the libraries. The big fear is that we get some sort of notice that we have to cease usage of the libraries entirely, and have some small time period to do so. As a result of this fear, our ability to use these libraries (which the company has spent money on...) is being limited, at the cost of many hours worth of development time. Specifically, we're having to develop lots of the features that the library already incorporates. Should we be limiting ourselves in this way? Is it possible for the perpetual license granted to us by the third party to be revoked in the case of something like a patent issue, and are there any examples of something like this happening? Most importantly, if this is something to legitimately be concerned about, how do people ever go about taking advantage third-party software while preparing for the possibility of losing that capability entirely? P.S. - I understand that this will venture into legal knowledge, and that none of the answers provided can be construed as legal advice in any fashion.

    Read the article

  • WiFi problems on several Ubuntu installations

    - by Rickyfresh
    Okay this is the first time I have ever had to ask a question as usually the Ubuntu community have answered everything already but on this occasion there are many people asking for the answer but not one good solution has become available so far so someone please help or I will have to install Windows on my sons and my girlfriends PCs and that would be a disaster as I am trying to help convince people to move from Windows. I installed 12.04 on three computers on the same day. Dell Inspiron (Works Perfect) Toshiba Satellite Home built Desktop The Dell works perfect but the other two either keep losing connection to the wireless Internet and even when they are connected they stop connecting to web sites, for some reason it searches Google fine but will not connect to web sites when a link is clicked. So far people have recommended in other forums: Removing network manager and installing wicd (didn't solve it) Changing the MTU in the wireless settings (didn't solve it) All sorts of messing about with Firefox settings (this doesn't solve it and even if it did this would leave most average PC users scratching their heads and wishing they had stuck to windows) The problem exists on two very different machines and different wireless cards so I doubt its a driver or hardware issue, also many other Ubuntu users are having the same problem with a vast array of different machines and wireless cards. Can someone please give a good solution to this as its going to turn a lot of people away from Ubuntu if they cannot get this sorted. I would give some PC specs but the two machines are vastly different and the other people complaining of this problem also have very different systems all showing the same problem.

    Read the article

  • How to work with processes?

    - by Viesturs
    I have seen similar questions here, but I didn't get my answer. Maybe it's because I am new to all this and just don't understand. I want my app to work mostly as an indicator. And if user would start it again it would check if it is already running, if it is then give all the input data to that process and quit. So first I need to check if it is running. I saw the answer where you can make a file witch when the program starts and then check if it exists... But what if someone would delete it? Can't I just ask the OS if there is process named "myApp" or something? The next thing I don't really get is how to communicate with the process. How do I give it the input data and what is it going to do with it? Does it work just like starting a new app, through the main() method? I am trying to create this using Quickly. So it would be nice if you can give me some python examples or link to something like that.

    Read the article

  • How to repair ubuntu or restore my windows 7 installation? Nothing helps

    - by AFRIKA
    i had windows 7 installed and I installed ubuntu alongside it. Booted ubuntu and explore it for a while. Turned pc off and went to bed. Next morning wanted to boot into windows but no luck... MBR error... Tried to repair windows using installation disk but it doesn't recognize win installation. Tried console bootrec /fixmbr bootrec /fixboot but still same. So I went back to ubuntu and tried with boot-repair, but got a write error. Restarted pc and now I cannot boot to either ubuntu or windows... Tried to recover NTFS partition with hiren's boot but it cannot find partition. Tried every solution there is on the web but no help... Is there any way to fix it because windows installation is very important to me?! btw, i noticed that grub indicates windows 7 to a sdb2 partition that doesn't exists... And when I RUN ubuntu from CD and browse disk, I dont see any files from windows 7. Is that normal or? http://paste.ubuntu.com/6338340/ PLEASE HELP...

    Read the article

  • Massive Affiliate Shopping Platform. Is WordPress really suitable? [closed]

    - by SPI
    I am working on an online shopping platform that acquires it's data from various affiliate programs through XML files. I am talking hundreds and thousands of items per program here that change often if they go out of stock. My clients choice of CMS was WordPress. I am guessing he assumed the user friendly interface would make life easy for him. However, the fact that he hired me to parse the XML files, store data in the back-end and basically make everything work tells me he had very little clue about what he was getting himself into. My impression is that WordPress has a very specific way of handling data as it divides everything into categories/sub-categories in the back-end which is very counter intuitive to a business model where data exists in numbers of over hundreds and thousands of items and is further cross referenced by programs so that any change in the programs XML file can easily be reflected products page. Conclusion I have a very specific database model implemented for handling my clients needs. However, this model conflicts with how wordpress chooses to save data in the back-end natively. I am absolutely convinced WordPress is geared towards anything that might resemble a blog and definitely not THIS. I am thinking about asking my client to shift to a custom CMS. Before making my pitch though, I wanted to run this by the stack community. Thanks for the input in advance.

    Read the article

  • while running mvn jetty:run showing the following error ..

    - by munna
    C:\source\myprojectmvn jetty:run [INFO] Scanning for projects... [INFO] ------------------------------------------------------------------------ [INFO] Building AppFuse Spring MVC Application [INFO] task-segment: [jetty:run] [INFO] ------------------------------------------------------------------------ [INFO] Preparing jetty:run [WARNING] POM for 'xfire:xfire-jsr181-api:pom:1.0-M1:compile' is invalid. Its dependencies (if any) will NOT be available to the current build. [INFO] [warpath:add-classes {execution: default}] [INFO] [aspectj:compile {execution: default}] [INFO] [native2ascii:native2ascii {execution: native2ascii-utf8}] [INFO] [native2ascii:native2ascii {execution: native2ascii-8859_1}] [INFO] [resources:resources {execution: default-resources}] [WARNING] File encoding has not been set, using platform encoding Cp1252, i.e. b uild is platform dependent! [WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources, i.e. build is platform dependent! [INFO] Copying 12 resources [INFO] Copying 1 resource [INFO] Copying 26 resources [INFO] Copying 26 resources [INFO] [compiler:compile {execution: default-compile}] [INFO] Nothing to compile - all classes are up to date [INFO] [resources:testResources {execution: default-testResources}] [WARNING] File encoding has not been set, using platform encoding Cp1252, i.e. b uild is platform dependent! [WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources, i.e. build is platform dependent! [INFO] Copying 4 resources [INFO] Copying 9 resources [INFO] Preparing hibernate3:hbm2ddl [WARNING] Removing: hbm2ddl from forked lifecycle, to prevent recursive invocati on. [INFO] [warpath:add-classes {execution: default}] [INFO] [aspectj:compile {execution: default}] [INFO] [native2ascii:native2ascii {execution: native2ascii-utf8}] [INFO] [native2ascii:native2ascii {execution: native2ascii-8859_1}] [INFO] [resources:resources {execution: default-resources}] [WARNING] File encoding has not been set, using platform encoding Cp1252, i.e. b uild is platform dependent! [WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources, i.e. build is platform dependent! [INFO] Copying 12 resources [INFO] Copying 1 resource [INFO] Copying 26 resources [INFO] Copying 26 resources [INFO] Copying 26 resources [INFO] Copying 26 resources [INFO] [hibernate3:hbm2ddl {execution: default}] [INFO] Configuration XML file loaded: file:/C:/source/myproject/src/main/resourc es/hibernate.cfg.xml [INFO] Configuration XML file loaded: file:/C:/source/myproject/src/main/resourc es/hibernate.cfg.xml [INFO] Configuration Properties file loaded: C:\source\myproject\target\classes\ jdbc.properties alter table user_role drop foreign key FK143BF46A4FD90D75; alter table user_role drop foreign key FK143BF46AF503D155; drop table if exists app_user; drop table if exists role; drop table if exists user_role; create table app_user (id bigint not null auto_increment, account_expired bit no t null, account_locked bit not null, address varchar(150), city varchar(50) not null, country varchar(100), postal_code varchar(15) not null, province varchar(1 00), credentials_expired bit not null, email varchar(255) not null unique, accou nt_enabled bit, first_name varchar(50) not null, last_name varchar(50) not null, password varchar(255) not null, password_hint varchar(255), phone_number varcha r(255), username varchar(50) not null unique, version integer, website varchar(2 55), primary key (id)) ENGINE=InnoDB; create table role (id bigint not null auto_increment, description varchar(64), n ame varchar(20), primary key (id)) ENGINE=InnoDB; create table user_role (user_id bigint not null, role_id bigint not null, primar y key (user_id, role_id)) ENGINE=InnoDB; alter table user_role add index FK143BF46A4FD90D75 (role_id), add constraint FK1 43BF46A4FD90D75 foreign key (role_id) references role (id); alter table user_role add index FK143BF46AF503D155 (user_id), add constraint FK1 43BF46AF503D155 foreign key (user_id) references app_user (id); [INFO] [compiler:testCompile {execution: default-testCompile}] [INFO] Nothing to compile - all classes are up to date [INFO] [dbunit:operation {execution: test-compile}] [INFO] [jetty:run {execution: default-cli}] [INFO] Configuring Jetty for project: AppFuse Spring MVC Application [INFO] Webapp source directory = C:\source\myproject\src\main\webapp [INFO] web.xml file = C:\source\myproject\src\main\webapp\WEB-INF\web.xml [INFO] Classes = C:\source\myproject\target\classes [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\applicationContext-validation.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\applicationContext.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\dispatcher-servlet.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\menu-config.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\urlrewrite.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\validation.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\validator-rules-custom.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\validator-rules.xml [INFO] Adding extra scan target from pattern: C:\source\myproject\src\main\webap p\WEB-INF\web.xml 2010-06-02 15:13:28.921::INFO: Logging to STDERR via org.mortbay.log.StdErrLog [INFO] Context path = / [INFO] Tmp directory = determined at runtime [INFO] Web defaults = org/mortbay/jetty/webapp/webdefault.xml [INFO] Web overrides = none [INFO] Webapp directory = C:\source\myproject\src\main\webapp [INFO] Starting jetty 6.1.9 ... 2010-06-02 15:13:28.983::INFO: jetty-6.1.9 2010-06-02 15:13:28.248::INFO: No Transaction manager found - if your webapp re quires one, please configure one. 2010-06-02 15:13:28.482:/:INFO: Initializing Spring root WebApplicationContext [myproject] ERROR [main] ContextLoader.initWebApplicationContext(215) | Context initialization failed org.springframework.beans.factory.BeanDefinitionStoreException: IOException pars ing XML document from ServletContext resource [/WEB-INF/xfire-servlet.xml]; nest ed exception is java.io.FileNotFoundException: Could not open ServletContext res ource [/WEB-INF/xfire-servlet.xml] at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:349) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:310) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:143) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:178) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:149) at org.springframework.web.context.support.XmlWebApplicationContext.load BeanDefinitions(XmlWebApplicationContext.java:124) at org.springframework.web.context.support.XmlWebApplicationContext.load BeanDefinitions(XmlWebApplicationContext.java:92) at org.springframework.context.support.AbstractRefreshableApplicationCon text.refreshBeanFactory(AbstractRefreshableApplicationContext.java:123) at org.springframework.context.support.AbstractApplicationContext.obtain FreshBeanFactory(AbstractApplicationContext.java:423) at org.springframework.context.support.AbstractApplicationContext.refres h(AbstractApplicationContext.java:353) at org.springframework.web.context.ContextLoader.createWebApplicationCon text(ContextLoader.java:255) at org.springframework.web.context.ContextLoader.initWebApplicationConte xt(ContextLoader.java:199) at org.springframework.web.context.ContextLoaderListener.contextInitiali zed(ContextLoaderListener.java:45) at org.mortbay.jetty.handler.ContextHandler.startContext(ContextHandler. java:540) at org.mortbay.jetty.servlet.Context.startContext(Context.java:135) at org.mortbay.jetty.webapp.WebAppContext.startContext(WebAppContext.jav a:1220) at org.mortbay.jetty.handler.ContextHandler.doStart(ContextHandler.java: 510) at org.mortbay.jetty.webapp.WebAppContext.doStart(WebAppContext.java:448 ) at org.mortbay.jetty.plugin.Jetty6PluginWebAppContext.doStart(Jetty6Plug inWebAppContext.java:110) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection .java:152) at org.mortbay.jetty.handler.ContextHandlerCollection.doStart(ContextHan dlerCollection.java:156) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection .java:152) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerWrapper.doStart(HandlerWrapper.java: 130) at org.mortbay.jetty.Server.doStart(Server.java:222) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.plugin.Jetty6PluginServer.start(Jetty6PluginServer. java:132) at org.mortbay.jetty.plugin.AbstractJettyMojo.startJetty(AbstractJettyMo jo.java:357) at org.mortbay.jetty.plugin.AbstractJettyMojo.execute(AbstractJettyMojo. java:293) at org.mortbay.jetty.plugin.AbstractJettyRunMojo.execute(AbstractJettyRu nMojo.java:203) at org.mortbay.jetty.plugin.Jetty6RunMojo.execute(Jetty6RunMojo.java:184 ) at org.apache.maven.plugin.DefaultPluginManager.executeMojo(DefaultPlugi nManager.java:490) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoals(Defa ultLifecycleExecutor.java:694) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeStandalone Goal(DefaultLifecycleExecutor.java:569) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoal(Defau ltLifecycleExecutor.java:539) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoalAndHan dleFailures(DefaultLifecycleExecutor.java:387) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeTaskSegmen ts(DefaultLifecycleExecutor.java:348) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.execute(DefaultLi fecycleExecutor.java:180) at org.apache.maven.DefaultMaven.doExecute(DefaultMaven.java:328) at org.apache.maven.DefaultMaven.execute(DefaultMaven.java:138) at org.apache.maven.cli.MavenCli.main(MavenCli.java:362) at org.apache.maven.cli.compat.CompatibleMain.main(CompatibleMain.java:6 0) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl. java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAcces sorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.codehaus.classworlds.Launcher.launchEnhanced(Launcher.java:315) at org.codehaus.classworlds.Launcher.launch(Launcher.java:255) at org.codehaus.classworlds.Launcher.mainWithExitCode(Launcher.java:430) at org.codehaus.classworlds.Launcher.main(Launcher.java:375) Caused by: java.io.FileNotFoundException: Could not open ServletContext resource [/WEB-INF/xfire-servlet.xml] at org.springframework.web.context.support.ServletContextResource.getInp utStream(ServletContextResource.java:116) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:336) ... 51 more 2010-06-02 15:13:29.919::WARN: Failed startup of context org.mortbay.jetty.plug in.Jetty6PluginWebAppContext@1ba4806{/,C:\source\myproject\src\main\webapp} org.springframework.beans.factory.BeanDefinitionStoreException: IOException pars ing XML document from ServletContext resource [/WEB-INF/xfire-servlet.xml]; nest ed exception is java.io.FileNotFoundException: Could not open ServletContext res ource [/WEB-INF/xfire-servlet.xml] at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:349) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:310) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:143) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:178) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:149) at org.springframework.web.context.support.XmlWebApplicationContext.load BeanDefinitions(XmlWebApplicationContext.java:124) at org.springframework.web.context.support.XmlWebApplicationContext.load BeanDefinitions(XmlWebApplicationContext.java:92) at org.springframework.context.support.AbstractRefreshableApplicationCon text.refreshBeanFactory(AbstractRefreshableApplicationContext.java:123) at org.springframework.context.support.AbstractApplicationContext.obtain FreshBeanFactory(AbstractApplicationContext.java:423) at org.springframework.context.support.AbstractApplicationContext.refres h(AbstractApplicationContext.java:353) at org.springframework.web.context.ContextLoader.createWebApplicationCon text(ContextLoader.java:255) at org.springframework.web.context.ContextLoader.initWebApplicationConte xt(ContextLoader.java:199) at org.springframework.web.context.ContextLoaderListener.contextInitiali zed(ContextLoaderListener.java:45) at org.mortbay.jetty.handler.ContextHandler.startContext(ContextHandler. java:540) at org.mortbay.jetty.servlet.Context.startContext(Context.java:135) at org.mortbay.jetty.webapp.WebAppContext.startContext(WebAppContext.jav a:1220) at org.mortbay.jetty.handler.ContextHandler.doStart(ContextHandler.java: 510) at org.mortbay.jetty.webapp.WebAppContext.doStart(WebAppContext.java:448 ) at org.mortbay.jetty.plugin.Jetty6PluginWebAppContext.doStart(Jetty6Plug inWebAppContext.java:110) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection .java:152) at org.mortbay.jetty.handler.ContextHandlerCollection.doStart(ContextHan dlerCollection.java:156) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection .java:152) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerWrapper.doStart(HandlerWrapper.java: 130) at org.mortbay.jetty.Server.doStart(Server.java:222) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.plugin.Jetty6PluginServer.start(Jetty6PluginServer. java:132) at org.mortbay.jetty.plugin.AbstractJettyMojo.startJetty(AbstractJettyMo jo.java:357) at org.mortbay.jetty.plugin.AbstractJettyMojo.execute(AbstractJettyMojo. java:293) at org.mortbay.jetty.plugin.AbstractJettyRunMojo.execute(AbstractJettyRu nMojo.java:203) at org.mortbay.jetty.plugin.Jetty6RunMojo.execute(Jetty6RunMojo.java:184 ) at org.apache.maven.plugin.DefaultPluginManager.executeMojo(DefaultPlugi nManager.java:490) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoals(Defa ultLifecycleExecutor.java:694) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeStandalone Goal(DefaultLifecycleExecutor.java:569) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoal(Defau ltLifecycleExecutor.java:539) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoalAndHan dleFailures(DefaultLifecycleExecutor.java:387) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeTaskSegmen ts(DefaultLifecycleExecutor.java:348) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.execute(DefaultLi fecycleExecutor.java:180) at org.apache.maven.DefaultMaven.doExecute(DefaultMaven.java:328) at org.apache.maven.DefaultMaven.execute(DefaultMaven.java:138) at org.apache.maven.cli.MavenCli.main(MavenCli.java:362) at org.apache.maven.cli.compat.CompatibleMain.main(CompatibleMain.java:6 0) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl. java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAcces sorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.codehaus.classworlds.Launcher.launchEnhanced(Launcher.java:315) at org.codehaus.classworlds.Launcher.launch(Launcher.java:255) at org.codehaus.classworlds.Launcher.mainWithExitCode(Launcher.java:430) at org.codehaus.classworlds.Launcher.main(Launcher.java:375) Caused by: java.io.FileNotFoundException: Could not open ServletContext resource [/WEB-INF/xfire-servlet.xml] at org.springframework.web.context.support.ServletContextResource.getInp utStream(ServletContextResource.java:116) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:336) ... 51 more 2010-06-02 15:13:29.152::WARN: Nested in org.springframework.beans.factory.Bean DefinitionStoreException: IOException parsing XML document from ServletContext r esource [/WEB-INF/xfire-servlet.xml]; nested exception is java.io.FileNotFoundEx ception: Could not open ServletContext resource [/WEB-INF/xfire-servlet.xml]: java.io.FileNotFoundException: Could not open ServletContext resource [/WEB-INF/ xfire-servlet.xml] at org.springframework.web.context.support.ServletContextResource.getInp utStream(ServletContextResource.java:116) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:336) at org.springframework.beans.factory.xml.XmlBeanDefinitionReader.loadBea nDefinitions(XmlBeanDefinitionReader.java:310) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:143) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:178) at org.springframework.beans.factory.support.AbstractBeanDefinitionReade r.loadBeanDefinitions(AbstractBeanDefinitionReader.java:149) at org.springframework.web.context.support.XmlWebApplicationContext.load BeanDefinitions(XmlWebApplicationContext.java:124) at org.springframework.web.context.support.XmlWebApplicationContext.load BeanDefinitions(XmlWebApplicationContext.java:92) at org.springframework.context.support.AbstractRefreshableApplicationCon text.refreshBeanFactory(AbstractRefreshableApplicationContext.java:123) at org.springframework.context.support.AbstractApplicationContext.obtain FreshBeanFactory(AbstractApplicationContext.java:423) at org.springframework.context.support.AbstractApplicationContext.refres h(AbstractApplicationContext.java:353) at org.springframework.web.context.ContextLoader.createWebApplicationCon text(ContextLoader.java:255) at org.springframework.web.context.ContextLoader.initWebApplicationConte xt(ContextLoader.java:199) at org.springframework.web.context.ContextLoaderListener.contextInitiali zed(ContextLoaderListener.java:45) at org.mortbay.jetty.handler.ContextHandler.startContext(ContextHandler. java:540) at org.mortbay.jetty.servlet.Context.startContext(Context.java:135) at org.mortbay.jetty.webapp.WebAppContext.startContext(WebAppContext.jav a:1220) at org.mortbay.jetty.handler.ContextHandler.doStart(ContextHandler.java: 510) at org.mortbay.jetty.webapp.WebAppContext.doStart(WebAppContext.java:448 ) at org.mortbay.jetty.plugin.Jetty6PluginWebAppContext.doStart(Jetty6Plug inWebAppContext.java:110) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection .java:152) at org.mortbay.jetty.handler.ContextHandlerCollection.doStart(ContextHan dlerCollection.java:156) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection .java:152) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.handler.HandlerWrapper.doStart(HandlerWrapper.java: 130) at org.mortbay.jetty.Server.doStart(Server.java:222) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java: 39) at org.mortbay.jetty.plugin.Jetty6PluginServer.start(Jetty6PluginServer. java:132) at org.mortbay.jetty.plugin.AbstractJettyMojo.startJetty(AbstractJettyMo jo.java:357) at org.mortbay.jetty.plugin.AbstractJettyMojo.execute(AbstractJettyMojo. java:293) at org.mortbay.jetty.plugin.AbstractJettyRunMojo.execute(AbstractJettyRu nMojo.java:203) at org.mortbay.jetty.plugin.Jetty6RunMojo.execute(Jetty6RunMojo.java:184 ) at org.apache.maven.plugin.DefaultPluginManager.executeMojo(DefaultPlugi nManager.java:490) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoals(Defa ultLifecycleExecutor.java:694) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeStandalone Goal(DefaultLifecycleExecutor.java:569) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoal(Defau ltLifecycleExecutor.java:539) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeGoalAndHan dleFailures(DefaultLifecycleExecutor.java:387) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.executeTaskSegmen ts(DefaultLifecycleExecutor.java:348) at org.apache.maven.lifecycle.DefaultLifecycleExecutor.execute(DefaultLi fecycleExecutor.java:180) at org.apache.maven.DefaultMaven.doExecute(DefaultMaven.java:328) at org.apache.maven.DefaultMaven.execute(DefaultMaven.java:138) at org.apache.maven.cli.MavenCli.main(MavenCli.java:362) at org.apache.maven.cli.compat.CompatibleMain.main(CompatibleMain.java:6 0) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl. java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAcces sorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.codehaus.classworlds.Launcher.launchEnhanced(Launcher.java:315) at org.codehaus.classworlds.Launcher.launch(Launcher.java:255) at org.codehaus.classworlds.Launcher.mainWithExitCode(Launcher.java:430) at org.codehaus.classworlds.Launcher.main(Launcher.java:375) 2010-06-02 15:13:29.417::INFO: Started [email protected]:8080 [INFO] Started Jetty Server [INFO] Starting scanner at interval of 3 seconds.

    Read the article

  • Differences Between NHibernate and Entity Framework

    - by Ricardo Peres
    Introduction NHibernate and Entity Framework are two of the most popular O/RM frameworks on the .NET world. Although they share some functionality, there are some aspects on which they are quite different. This post will describe this differences and will hopefully help you get started with the one you know less. Mind you, this is a personal selection of features to compare, it is by no way an exhaustive list. History First, a bit of history. NHibernate is an open-source project that was first ported from Java’s venerable Hibernate framework, one of the first O/RM frameworks, but nowadays it is not tied to it, for example, it has .NET specific features, and has evolved in different ways from those of its Java counterpart. Current version is 3.3, with 3.4 on the horizon. It currently targets .NET 3.5, but can be used as well in .NET 4, it only makes no use of any of its specific functionality. You can find its home page at NHForge. Entity Framework 1 came out with .NET 3.5 and is now on its second major version, despite being version 4. Code First sits on top of it and but came separately and will also continue to be released out of line with major .NET distributions. It is currently on version 4.3.1 and version 5 will be released together with .NET Framework 4.5. All versions will target the current version of .NET, at the time of their release. Its home location is located at MSDN. Architecture In NHibernate, there is a separation between the Unit of Work and the configuration and model instances. You start off by creating a Configuration object, where you specify all global NHibernate settings such as the database and dialect to use, the batch sizes, the mappings, etc, then you build an ISessionFactory from it. The ISessionFactory holds model and metadata that is tied to a particular database and to the settings that came from the Configuration object, and, there will typically be only one instance of each in a process. Finally, you create instances of ISession from the ISessionFactory, which is the NHibernate representation of the Unit of Work and Identity Map. This is a lightweight object, it basically opens and closes a database connection as required and keeps track of the entities associated with it. ISession objects are cheap to create and dispose, because all of the model complexity is stored in the ISessionFactory and Configuration objects. As for Entity Framework, the ObjectContext/DbContext holds the configuration, model and acts as the Unit of Work, holding references to all of the known entity instances. This class is therefore not lightweight as its NHibernate counterpart and it is not uncommon to see examples where an instance is cached on a field. Mappings Both NHibernate and Entity Framework (Code First) support the use of POCOs to represent entities, no base classes are required (or even possible, in the case of NHibernate). As for mapping to and from the database, NHibernate supports three types of mappings: XML-based, which have the advantage of not tying the entity classes to a particular O/RM; the XML files can be deployed as files on the file system or as embedded resources in an assembly; Attribute-based, for keeping both the entities and database details on the same place at the expense of polluting the entity classes with NHibernate-specific attributes; Strongly-typed code-based, which allows dynamic creation of the model and strongly typing it, so that if, for example, a property name changes, the mapping will also be updated. Entity Framework can use: Attribute-based (although attributes cannot express all of the available possibilities – for example, cascading); Strongly-typed code mappings. Database Support With NHibernate you can use mostly any database you want, including: SQL Server; SQL Server Compact; SQL Server Azure; Oracle; DB2; PostgreSQL; MySQL; Sybase Adaptive Server/SQL Anywhere; Firebird; SQLLite; Informix; Any through OLE DB; Any through ODBC. Out of the box, Entity Framework only supports SQL Server, but a number of providers exist, both free and commercial, for some of the most used databases, such as Oracle and MySQL. See a list here. Inheritance Strategies Both NHibernate and Entity Framework support the three canonical inheritance strategies: Table Per Type Hierarchy (Single Table Inheritance), Table Per Type (Class Table Inheritance) and Table Per Concrete Type (Concrete Table Inheritance). Associations Regarding associations, both support one to one, one to many and many to many. However, NHibernate offers far more collection types: Bags of entities or values: unordered, possibly with duplicates; Lists of entities or values: ordered, indexed by a number column; Maps of entities or values: indexed by either an entity or any value; Sets of entities or values: unordered, no duplicates; Arrays of entities or values: indexed, immutable. Querying NHibernate exposes several querying APIs: LINQ is probably the most used nowadays, and really does not need to be introduced; Hibernate Query Language (HQL) is a database-agnostic, object-oriented SQL-alike language that exists since NHibernate’s creation and still offers the most advanced querying possibilities; well suited for dynamic queries, even if using string concatenation; Criteria API is an implementation of the Query Object pattern where you create a semi-abstract conceptual representation of the query you wish to execute by means of a class model; also a good choice for dynamic querying; Query Over offers a similar API to Criteria, but using strongly-typed LINQ expressions instead of strings; for this, although more refactor-friendlier that Criteria, it is also less suited for dynamic queries; SQL, including stored procedures, can also be used; Integration with Lucene.NET indexer is available. As for Entity Framework: LINQ to Entities is fully supported, and its implementation is considered very complete; it is the API of choice for most developers; Entity-SQL, HQL’s counterpart, is also an object-oriented, database-independent querying language that can be used for dynamic queries; SQL, of course, is also supported. Caching Both NHibernate and Entity Framework, of course, feature first-level cache. NHibernate also supports a second-level cache, that can be used among multiple ISessionFactorys, even in different processes/machines: Hashtable (in-memory); SysCache (uses ASP.NET as the cache provider); SysCache2 (same as above but with support for SQL Server SQL Dependencies); Prevalence; SharedCache; Memcached; Redis; NCache; Appfabric Caching. Out of the box, Entity Framework does not have any second-level cache mechanism, however, there are some public samples that show how we can add this. ID Generators NHibernate supports different ID generation strategies, coming from the database and otherwise: Identity (for SQL Server, MySQL, and databases who support identity columns); Sequence (for Oracle, PostgreSQL, and others who support sequences); Trigger-based; HiLo; Sequence HiLo (for databases that support sequences); Several GUID flavors, both in GUID as well as in string format; Increment (for single-user uses); Assigned (must know what you’re doing); Sequence-style (either uses an actual sequence or a single-column table); Table of ids; Pooled (similar to HiLo but stores high values in a table); Native (uses whatever mechanism the current database supports, identity or sequence). Entity Framework only supports: Identity generation; GUIDs; Assigned values. Properties NHibernate supports properties of entity types (one to one or many to one), collections (one to many or many to many) as well as scalars and enumerations. It offers a mechanism for having complex property types generated from the database, which even include support for querying. It also supports properties originated from SQL formulas. Entity Framework only supports scalars, entity types and collections. Enumerations support will come in the next version. Events and Interception NHibernate has a very rich event model, that exposes more than 20 events, either for synchronous pre-execution or asynchronous post-execution, including: Pre/Post-Load; Pre/Post-Delete; Pre/Post-Insert; Pre/Post-Update; Pre/Post-Flush. It also features interception of class instancing and SQL generation. As for Entity Framework, only two events exist: ObjectMaterialized (after loading an entity from the database); SavingChanges (before saving changes, which include deleting, inserting and updating). Tracking Changes For NHibernate as well as Entity Framework, all changes are tracked by their respective Unit of Work implementation. Entities can be attached and detached to it, Entity Framework does, however, also support self-tracking entities. Optimistic Concurrency Control NHibernate supports all of the imaginable scenarios: SQL Server’s ROWVERSION; Oracle’s ORA_ROWSCN; A column containing date and time; A column containing a version number; All/dirty columns comparison. Entity Framework is more focused on Entity Framework, so it only supports: SQL Server’s ROWVERSION; Comparing all/some columns. Batching NHibernate has full support for insertion batching, but only if the ID generator in use is not database-based (for example, it cannot be used with Identity), whereas Entity Framework has no batching at all. Cascading Both support cascading for collections and associations: when an entity is deleted, their conceptual children are also deleted. NHibernate also offers the possibility to set the foreign key column on children to NULL instead of removing them. Flushing Changes NHibernate’s ISession has a FlushMode property that can have the following values: Auto: changes are sent to the database when necessary, for example, if there are dirty instances of an entity type, and a query is performed against this entity type, or if the ISession is being disposed; Commit: changes are sent when committing the current transaction; Never: changes are only sent when explicitly calling Flush(). As for Entity Framework, changes have to be explicitly sent through a call to AcceptAllChanges()/SaveChanges(). Lazy Loading NHibernate supports lazy loading for Associated entities (one to one, many to one); Collections (one to many, many to many); Scalar properties (thing of BLOBs or CLOBs). Entity Framework only supports lazy loading for: Associated entities; Collections. Generating and Updating the Database Both NHibernate and Entity Framework Code First (with the Migrations API) allow creating the database model from the mapping and updating it if the mapping changes. Extensibility As you can guess, NHibernate is far more extensible than Entity Framework. Basically, everything can be extended, from ID generation, to LINQ to SQL transformation, HQL native SQL support, custom column types, custom association collections, SQL generation, supported databases, etc. With Entity Framework your options are more limited, at least, because practically no information exists as to what can be extended/changed. It features a provider model that can be extended to support any database. Integration With Other Microsoft APIs and Tools When it comes to integration with Microsoft technologies, it will come as no surprise that Entity Framework offers the best support. For example, the following technologies are fully supported: ASP.NET (through the EntityDataSource); ASP.NET Dynamic Data; WCF Data Services; WCF RIA Services; Visual Studio (through the integrated designer). Documentation This is another point where Entity Framework is superior: NHibernate lacks, for starters, an up to date API reference synchronized with its current version. It does have a community mailing list, blogs and wikis, although not much used. Entity Framework has a number of resources on MSDN and, of course, several forums and discussion groups exist. Conclusion Like I said, this is a personal list. I may come as a surprise to some that Entity Framework is so behind NHibernate in so many aspects, but it is true that NHibernate is much older and, due to its open-source nature, is not tied to product-specific timeframes and can thus evolve much more rapidly. I do like both, and I chose whichever is best for the job I have at hands. I am looking forward to the changes in EF5 which will add significant value to an already interesting product. So, what do you think? Did I forget anything important or is there anything else worth talking about? Looking forward for your comments!

    Read the article

  • How to avoid the Portlet Skin mismatch

    - by Martin Deh
    here are probably many on going debates whether to use portlets or taskflows in a WebCenter custom portal application.  Usually the main battle on which side to take in these debates are centered around which technology enables better performance.  The good news is that both of my colleagues, Maiko Rocha and George Maggessy have posted their respective views on this topic so I will not have to further the discussion.  However, if you do plan to use portlets in a WebCenter custom portal application, this post will help you not have the "portlet skin mismatch" issue.   An example of the presence of the mismatch can be view from the applications log: The skin customsharedskin.desktop specified on the requestMap will be used even though the consumer's skin's styleSheetDocumentId on the requestMap does not match the local skin's styleSheetDocument's id. This will impact performance since the consumer and producer stylesheets cannot be shared. The producer styleclasses will not be compressed to avoid conflicts. A reason the ids do not match may be the jars are not identical on the producer and the consumer. For example, one might have trinidad-skins.xml's skin-additions in a jar file on the class path that the other does not have. Notice that due to the mismatch the portlet's CSS will not be able to be compressed, which will most like impact performance in the portlet's consuming portal. The first part of the blog will define the portlet mismatch and cover some debugging tips that can help you solve the portlet mismatch issue.  Following that I will give a complete example of the creating, using and sharing a shared skin in both a portlet producer and the consumer application. Portlet Mismatch Defined  In general, when you consume/render an ADF page (or task flow) using the ADF Portlet bridge, the portlet (producer) would try to use the skin of the consumer page - this is called skin-sharing. When the producer cannot match the consumer skin, the portlet would generate its own stylesheet and reference it from its markup - this is called mismatched-skin. This can happen because: The consumer and producer use different versions of ADF Faces, or The consumer has additional skin-additions that the producer doesn't have or vice-versa, or The producer does not have the consumer skin For case (1) & (2) above, the producer still uses the consumer skin ID to render its markup. For case (3), the producer would default to using portlet skin. If there is a skin mis-match then there may be a performance hit because: The browser needs to fetch this extra stylesheet (though it should be cached unless expires caching is turned off) The generated portlet markup uses uncompressed styles resulting in a larger markup It is often not obvious when a skin mismatch occurs, unless you look for either of these indicators: The log messages in the producer log, for example: The skin blafplus-rich.desktop specified on the requestMap will not be used because the styleSheetDocument id on the requestMap does not match the local skin's styleSheetDocument's id. It could mean the jars are not identical. For example, one might have trinidad-skins.xml's skin-additions in a jar file on the class path that the other does not have. View the portlet markup inside the iframe, there should be a <link> tag to the portlet stylesheet resource like this (note the CSS is proxied through consumer's resourceproxy): <link rel=\"stylesheet\" charset=\"UTF-8\" type=\"text/css\" href=\"http:.../resourceproxy/portletId...252525252Fadf%252525252Fstyles%252525252Fcache%252525252Fblafplus-rich-portlet-d1062g-en-ltr-gecko.css... Using HTTP monitoring tool (eg, firebug, httpwatch), you can see a request is made to the portlet stylesheet resource (see URL above) There are a number of reasons for mismatched-skin. For skin to match the producer and consumer must match the following configurations: The ADF Faces version (different versions may have different style selectors) Style Compression, this is defined in the web.xml (default value is false, i.e. compression is ON) Tonal styles or themes, also defined in the web.xml via context-params The same skin additions (jars with skin) are available for both producer and consumer.  Skin additions are defined in the trinidad-skins.xml, using the <skin-addition> tags. These are then aggregated from all the jar files in the classpath. If there's any jar that exists on the producer but not the consumer, or vice veras, you get a mismatch. Debugging Tips  Ensure the style compression and tonal styles/themes match on the consumer and producer, by looking at the web.xml documents for the consumer & producer applications It is bit more involved to determine if the jars match.  However, you can enable the Trinidad logging to show which skin-addition it is processing.  To enable this feature, update the logging.xml log level of both the producer and consumer WLS to FINEST.  For example, in the case of the WebLogic server used by JDeveloper: $JDEV_USER_DIR/system<version number>/DefaultDomain/config/fmwconfig/servers/DefaultServer/logging.xml Add a new entry: <logger name="org.apache.myfaces.trinidadinternal.skin.SkinUtils" level="FINEST"/> Restart WebLogic.  Run the consumer page, you should see the following logging in both the consumer and producer log files. Any entries that don't match is the cause of the mismatch.  The following is an example of what the log will produce with this setting: [SRC_CLASS: org.apache.myfaces.trinidadinternal.skin.SkinUtils] [APP: WebCenter] [SRC_METHOD: _getMetaInfSkinsNodeList] Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/announcement-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/calendar-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/custComps-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/forum-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/page-service-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/peopleconnections-kudos-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/peopleconnections-wall-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/portlet-client-adf-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/rtc-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/serviceframework-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/smarttag-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.skin/in1ar8/APP-INF/lib/spaces-service-skins.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/oracle.webcenter.composer/3yo7j/WEB-INF/lib/custComps-skin.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/adf.oracle.domain.webapp/q433f9/WEB-INF/lib/adf-richclient-impl-11.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/adf.oracle.domain.webapp/q433f9/WEB-INF/lib/dvt-faces.jar!/META-INF/trinidad-skins.xml Processing skin URL:zip:/tmp/_WL_user/adf.oracle.domain.webapp/q433f9/WEB-INF/lib/dvt-trinidad.jar!/META-INF/trinidad-skins.xml   The Complete Example The first step is to create the shared library.  The WebCenter documentation covering this is located here in section 15.7.  In addition, our ADF guru Frank Nimphius also covers this in hes blog.  Here are my steps (in JDeveloper) to create the skin that will be used as the shared library for both the portlet producer and consumer. Create a new Generic Application Give application name (i.e. MySharedSkin) Give a project name (i.e. MySkinProject) Leave Project Technologies blank (none selected), and click Finish Create the trinidad-skins.xml Right-click on the MySkinProject node in the Application Navigator and select "New" In the New Galley, click on "General", select "File" from the Items, and click OK In the Create File dialog, name the file trinidad-skins.xml, and (IMPORTANT) give the directory path to MySkinProject\src\META-INF In the trinidad-skins.xml, complete the skin entry.  for example: <?xml version="1.0" encoding="windows-1252" ?> <skins xmlns="http://myfaces.apache.org/trinidad/skin">   <skin>     <id>mysharedskin.desktop</id>     <family>mysharedskin</family>     <extends>fusionFx-v1.desktop</extends>     <style-sheet-name>css/mysharedskin.css</style-sheet-name>   </skin> </skins> Create CSS file In the Application Navigator, right click on the META-INF folder (where the trinidad-skins.xml is located), and select "New" In the New Gallery, select Web-Tier-> HTML, CSS File from the the Items and click OK In the Create Cascading Style Sheet dialog, give the name (i.e. mysharedskin.css) Ensure that the Directory path is the under the META-INF (i.e. MySkinProject\src\META-INF\css) Once the new CSS opens in the editor, add in a style selector.  For example, this selector will style the background of a particular panelGroupLayout: af|panelGroupLayout.customPGL{     background-color:Fuchsia; } Create the MANIFEST.MF (used for deployment JAR) In the Application Navigator, right click on the META-INF folder (where the trinidad-skins.xml is located), and select "New" In the New Galley, click on "General", select "File" from the Items, and click OK In the Create File dialog, name the file MANIFEST.MF, and (IMPORTANT) ensure that the directory path is to MySkinProject\src\META-INF Complete the MANIFEST.MF, where the extension name is the shared library name Manifest-Version: 1.1 Created-By: Martin Deh Implementation-Title: mysharedskin Extension-Name: mysharedskin.lib.def Specification-Version: 1.0.1 Implementation-Version: 1.0.1 Implementation-Vendor: MartinDeh Create new Deployment Profile Right click on the MySkinProject node, and select New From the New Gallery, select General->Deployment Profiles, Shared Library JAR File from Items, and click OK In the Create Deployment Profile dialog, give name (i.e.mysharedskinlib) and click OK In the Edit JAR Deployment dialog, un-check Include Manifest File option  Select Project Output->Contributors, and check Project Source Path Select Project Output->Filters, ensure that all items under the META-INF folder are selected Click OK to exit the Project Properties dialog Deploy the shared lib to WebLogic (start server before steps) Right click on MySkin Project and select Deploy For this example, I will deploy to JDeverloper WLS In the Deploy dialog, select Deploy to Weblogic Application Server and click Next Choose IntegratedWebLogicServer and click Next Select Deploy to selected instances in the domain radio, select Default Server (note: server must be already started), and ensure Deploy as a shared Library radio is selected Click Finish Open the WebLogic console to see the deployed shared library The following are the steps to create a simple test Portlet Create a new WebCenter Portal - Portlet Producer Application In the Create Portlet Producer dialog, select default settings and click Finish Right click on the Portlets node and select New IIn the New Gallery, select Web-Tier->Portlets, Standards-based Java Portlet (JSR 286) and click OK In the General Portlet information dialog, give portlet name (i.e. MyPortlet) and click Next 2 times, stopping at Step 3 In the Content Types, select the "view" node, in the Implementation Method, select the Generate ADF-Faces JSPX radio and click Finish Once the portlet code is generated, open the view.jspx in the source editor Based on the simple CSS entry, which sets the background color of a panelGroupLayout, replace the <af:form/> tag with the example code <af:form>         <af:panelGroupLayout id="pgl1" styleClass="customPGL">           <af:outputText value="background from shared lib skin" id="ot1"/>         </af:panelGroupLayout>  </af:form> Since this portlet is to use the shared library skin, in the generated trinidad-config.xml, remove both the skin-family tag and the skin-version tag In the Application Resources view, under Descriptors->META-INF, double-click to open the weblogic-application.xml Add a library reference to the shared skin library (note: the library-name must match the extension-name declared in the MANIFEST.MF):  <library-ref>     <library-name>mysharedskin.lib.def</library-name>  </library-ref> Notice that a reference to oracle.webcenter.skin exists.  This is important if this portlet is going to be consumed by a WebCenter Portal application.  If this tag is not present, the portlet skin mismatch will happen.  Configure the portlet for deployment Create Portlet deployment WAR Right click on the Portlets node and select New In the New Gallery, select Deployment Profiles, WAR file from Items and click OK In the Create Deployment Profile dialog, give name (i.e. myportletwar), click OK Keep all of the defaults, however, remember the Context Root entry (i.e. MyPortlet4SharedLib-Portlets-context-root, this will be needed to obtain the producer WSDL URL) Click OK, then OK again to exit from the Properties dialog Since the weblogic-application.xml has to be included in the deployment, the portlet must be deployed as a WAR, within an EAR In the Application dropdown, select Deploy->New Deployment Profile... By default EAR File has been selected, click OK Give Deployment Profile (EAR) a name (i.e. MyPortletProducer) and click OK In the Properties dialog, select Application Assembly and ensure that the myportletwar is checked Keep all of the other defaults and click OK For this demo, un-check the Auto Generate ..., and all of the Security Deployment Options, click OK Save All In the Application dropdown, select Deploy->MyPortletProducer In the Deployment Action, select Deploy to Application Server, click Next Choose IntegratedWebLogicServer and click Next Select Deploy to selected instances in the domain radio, select Default Server (note: server must be already started), and ensure Deploy as a standalone Application radio is selected The select deployment type (identifying the deployment as a JSR 286 portlet) dialog appears.  Keep default radio "Yes" selection and click OK Open the WebLogic console to see the deployed Portlet The last step is to create the test portlet consuming application.  This will be done using the OOTB WebCenter Portal - Framework Application.  Create the Portlet Producer Connection In the JDeveloper Deployment log, copy the URL of the portlet deployment (i.e. http://localhost:7101/MyPortlet4SharedLib-Portlets-context-root Open a browser and paste in the URL.  The Portlet information page should appear.  Click on the WSRP v2 WSDL link Copy the URL from the browser (i.e. http://localhost:7101/MyPortlet4SharedLib-Portlets-context-root/portlets/wsrp2?WSDL) In the Application Resources view, right click on the Connections folder and select New Connection->WSRP Connection Give the producer a name or accept the default, click Next Enter (paste in) the WSDL URL, click Next If connection to Portlet is succesful, Step 3 (Specify Additional ...) should appear.  Accept defaults and click Finish Add the portlet to a test page Open the home.jspx.  Note in the visual editor, the orange dashed border, which identifies the panelCustomizable tag. From the Application Resources. select the MyPortlet portlet node, and drag and drop the node into the panelCustomizable section.  A Confirm Portlet Type dialog appears, keep default ADF Rich Portlet and click OK Configure the portlet to use the shared skin library Open the weblogic-application.xml and add the library-ref entry (mysharedskin.lib.def) for the shared skin library.  See create portlet example above for the steps Since by default, the custom portal using a managed bean to (dynamically) determine the skin family, the default trinidad-config.xml will need to be altered Open the trinidad-config.xml in the editor and replace the EL (preferenceBean) for the skin-family tag, with mysharedskin (this is the skin-family named defined in the trinidad-skins.xml) Remove the skin-version tag Right click on the index.html to test the application   Notice that the JDeveloper log view does not have any reporting of a skin mismatch.  In addition, since I have configured the extra logging outlined in debugging section above, I can see the processed skin jar in both the producer and consumer logs: <SkinUtils> <_getMetaInfSkinsNodeList> Processing skin URL:zip:/JDeveloper/system11.1.1.6.38.61.92/DefaultDomain/servers/DefaultServer/upload/mysharedskin.lib.def/[email protected]/app/mysharedskinlib.jar!/META-INF/trinidad-skins.xml 

    Read the article

  • SQL Monitor’s data repository: Alerts

    - by Chris Lambrou
    In my previous post, I introduced the SQL Monitor data repository, and described how the monitored objects are stored in a hierarchy in the data schema, in a series of tables with a _Keys suffix. In this post I had planned to describe how the actual data for the monitored objects is stored in corresponding tables with _StableSamples and _UnstableSamples suffixes. However, I’m going to postpone that until my next post, as I’ve had a request from a SQL Monitor user to explain how alerts are stored. In the SQL Monitor data repository, alerts are stored in tables belonging to the alert schema, which contains the following five tables: alert.Alert alert.Alert_Cleared alert.Alert_Comment alert.Alert_Severity alert.Alert_Type In this post, I’m only going to cover the alert.Alert and alert.Alert_Type tables. I may cover the other three tables in a later post. The most important table in this schema is alert.Alert, as each row in this table corresponds to a single alert. So let’s have a look at it. SELECT TOP 100 AlertId, AlertType, TargetObject, [Read], SubType FROM alert.Alert ORDER BY AlertId DESC;  AlertIdAlertTypeTargetObjectReadSubType 165550397:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,9:SqlServer,1,4:Name,s0:,10 265549387:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,7:Machine,1,4:Name,s0:,10 365548187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 465547157:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 565546147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 665545187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 765544157:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 865543147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 965542187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 1065541147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 11…     So what are we seeing here, then? Well, AlertId is an auto-incrementing identity column, so ORDER BY AlertId DESC ensures that we see the most recent alerts first. AlertType indicates the type of each alert, such as Job failed (6), Backup overdue (14) or Long-running query (12). The TargetObject column indicates which monitored object the alert is associated with. The Read column acts as a flag to indicate whether or not the alert has been read. And finally the SubType column is used in the case of a Custom metric (40) alert, to indicate which custom metric the alert pertains to. Okay, now lets look at some of those columns in more detail. The AlertType column is an easy one to start with, and it brings use nicely to the next table, data.Alert_Type. Let’s have a look at what’s in this table: SELECT AlertType, Event, Monitoring, Name, Description FROM alert.Alert_Type ORDER BY AlertType;  AlertTypeEventMonitoringNameDescription 1100Processor utilizationProcessor utilization (CPU) on a host machine stays above a threshold percentage for longer than a specified duration 2210SQL Server error log entryAn error is written to the SQL Server error log with a severity level above a specified value. 3310Cluster failoverThe active cluster node fails, causing the SQL Server instance to switch nodes. 4410DeadlockSQL deadlock occurs. 5500Processor under-utilizationProcessor utilization (CPU) on a host machine remains below a threshold percentage for longer than a specified duration 6610Job failedA job does not complete successfully (the job returns an error code). 7700Machine unreachableHost machine (Windows server) cannot be contacted on the network. 8800SQL Server instance unreachableThe SQL Server instance is not running or cannot be contacted on the network. 9900Disk spaceDisk space used on a logical disk drive is above a defined threshold for longer than a specified duration. 101000Physical memoryPhysical memory (RAM) used on the host machine stays above a threshold percentage for longer than a specified duration. 111100Blocked processSQL process is blocked for longer than a specified duration. 121200Long-running queryA SQL query runs for longer than a specified duration. 131400Backup overdueNo full backup exists, or the last full backup is older than a specified time. 141500Log backup overdueNo log backup exists, or the last log backup is older than a specified time. 151600Database unavailableDatabase changes from Online to any other state. 161700Page verificationTorn Page Detection or Page Checksum is not enabled for a database. 171800Integrity check overdueNo entry for an integrity check (DBCC DBINFO returns no date for dbi_dbccLastKnownGood field), or the last check is older than a specified time. 181900Fragmented indexesFragmentation level of one or more indexes is above a threshold percentage. 192400Job duration unusualThe duration of a SQL job duration deviates from its baseline duration by more than a threshold percentage. 202501Clock skewSystem clock time on the Base Monitor computer differs from the system clock time on a monitored SQL Server host machine by a specified number of seconds. 212700SQL Server Agent Service statusThe SQL Server Agent Service status matches the status specified. 222800SQL Server Reporting Service statusThe SQL Server Reporting Service status matches the status specified. 232900SQL Server Full Text Search Service statusThe SQL Server Full Text Search Service status matches the status specified. 243000SQL Server Analysis Service statusThe SQL Server Analysis Service status matches the status specified. 253100SQL Server Integration Service statusThe SQL Server Integration Service status matches the status specified. 263300SQL Server Browser Service statusThe SQL Server Browser Service status matches the status specified. 273400SQL Server VSS Writer Service statusThe SQL Server VSS Writer status matches the status specified. 283501Deadlock trace flag disabledThe monitored SQL Server’s trace flag cannot be enabled. 293600Monitoring stopped (host machine credentials)SQL Monitor cannot contact the host machine because authentication failed. 303700Monitoring stopped (SQL Server credentials)SQL Monitor cannot contact the SQL Server instance because authentication failed. 313800Monitoring error (host machine data collection)SQL Monitor cannot collect data from the host machine. 323900Monitoring error (SQL Server data collection)SQL Monitor cannot collect data from the SQL Server instance. 334000Custom metricThe custom metric value has passed an alert threshold. 344100Custom metric collection errorSQL Monitor cannot collect custom metric data from the target object. Basically, alert.Alert_Type is just a big reference table containing information about the 34 different alert types supported by SQL Monitor (note that the largest id is 41, not 34 – some alert types have been retired since SQL Monitor was first developed). The Name and Description columns are self evident, and I’m going to skip over the Event and Monitoring columns as they’re not very interesting. The AlertId column is the primary key, and is referenced by AlertId in the alert.Alert table. As such, we can rewrite our earlier query to join these two tables, in order to provide a more readable view of the alerts: SELECT TOP 100 AlertId, Name, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType ORDER BY AlertId DESC;  AlertIdNameTargetObjectReadSubType 165550Monitoring error (SQL Server data collection)7:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,9:SqlServer,1,4:Name,s0:,00 265549Monitoring error (host machine data collection)7:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,7:Machine,1,4:Name,s0:,00 365548Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 465547Log backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 565546Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 665545Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 765544Log backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 865543Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 965542Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 1065541Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 Okay, the next column to discuss in the alert.Alert table is TargetObject. Oh boy, this one’s a bit tricky! The TargetObject of an alert is a serialized string representation of the position in the monitored object hierarchy of the object to which the alert pertains. The serialization format is somewhat convenient for parsing in the C# source code of SQL Monitor, and has some helpful characteristics, but it’s probably very awkward to manipulate in T-SQL. I could document the serialization format here, but it would be very dry reading, so perhaps it’s best to consider an example from the table above. Have a look at the alert with an AlertID of 65543. It’s a Backup overdue alert for the SqlMonitorData database running on the default instance of granger, my laptop. Each different alert type is associated with a specific type of monitored object in the object hierarchy (I described the hierarchy in my previous post). The Backup overdue alert is associated with databases, whose position in the object hierarchy is root → Cluster → SqlServer → Database. The TargetObject value identifies the target object by specifying the key properties at each level in the hierarchy, thus: Cluster: Name = "granger" SqlServer: Name = "" (an empty string, denoting the default instance) Database: Name = "SqlMonitorData" Well, look at the actual TargetObject value for this alert: "7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,". It is indeed composed of three parts, one for each level in the hierarchy: Cluster: "7:Cluster,1,4:Name,s7:granger," SqlServer: "9:SqlServer,1,4:Name,s0:," Database: "8:Database,1,4:Name,s14:SqlMonitorData," Each part is handled in exactly the same way, so let’s concentrate on the first part, "7:Cluster,1,4:Name,s7:granger,". It comprises the following: "7:Cluster," – This identifies the level in the hierarchy. "1," – This indicates how many different key properties there are to uniquely identify a cluster (we saw in my last post that each cluster is identified by a single property, its Name). "4:Name,s14:SqlMonitorData," – This represents the Name property, and its corresponding value, SqlMonitorData. It’s split up like this: "4:Name," – Indicates the name of the key property. "s" – Indicates the type of the key property, in this case, it’s a string. "14:SqlMonitorData," – Indicates the value of the property. At this point, you might be wondering about the format of some of these strings. Why is the string "Cluster" stored as "7:Cluster,"? Well an encoding scheme is used, which consists of the following: "7" – This is the length of the string "Cluster" ":" – This is a delimiter between the length of the string and the actual string’s contents. "Cluster" – This is the string itself. 7 characters. "," – This is a final terminating character that indicates the end of the encoded string. You can see that "4:Name,", "8:Database," and "14:SqlMonitorData," also conform to the same encoding scheme. In the example above, the "s" character is used to indicate that the value of the Name property is a string. If you explore the TargetObject property of alerts in your own SQL Monitor data repository, you might find other characters used for other non-string key property values. The different value types you might possibly encounter are as follows: "I" – Denotes a bigint value. For example, "I65432,". "g" – Denotes a GUID value. For example, "g32116732-63ae-4ab5-bd34-7dfdfb084c18,". "d" – Denotes a datetime value. For example, "d634815384796832438,". The value is stored as a bigint, rather than a native SQL datetime value. I’ll describe how datetime values are handled in the SQL Monitor data repostory in a future post. I suggest you have a look at the alerts in your own SQL Monitor data repository for further examples, so you can see how the TargetObject values are composed for each of the different types of alert. Let me give one further example, though, that represents a Custom metric alert, as this will help in describing the final column of interest in the alert.Alert table, SubType. Let me show you the alert I’m interested in: SELECT AlertId, a.AlertType, Name, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType WHERE AlertId = 65769;  AlertIdAlertTypeNameTargetObjectReadSubType 16576940Custom metric7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s6:master,12:CustomMetric,1,8:MetricId,I2,02 An AlertType value of 40 corresponds to the Custom metric alert type. The Name taken from the alert.Alert_Type table is simply Custom metric, but this doesn’t tell us anything about the specific custom metric that this alert pertains to. That’s where the SubType value comes in. For custom metric alerts, this provides us with the Id of the specific custom alert definition that can be found in the settings.CustomAlertDefinitions table. I don’t really want to delve into custom alert definitions yet (maybe in a later post), but an extra join in the previous query shows us that this alert pertains to the CPU pressure (avg runnable task count) custom metric alert. SELECT AlertId, a.AlertType, at.Name, cad.Name AS CustomAlertName, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType JOIN settings.CustomAlertDefinitions cad ON a.SubType = cad.Id WHERE AlertId = 65769;  AlertIdAlertTypeNameCustomAlertNameTargetObjectReadSubType 16576940Custom metricCPU pressure (avg runnable task count)7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s6:master,12:CustomMetric,1,8:MetricId,I2,02 The TargetObject value in this case breaks down like this: "7:Cluster,1,4:Name,s7:granger," – Cluster named "granger". "9:SqlServer,1,4:Name,s0:," – SqlServer named "" (the default instance). "8:Database,1,4:Name,s6:master," – Database named "master". "12:CustomMetric,1,8:MetricId,I2," – Custom metric with an Id of 2. Note that the hierarchy for a custom metric is slightly different compared to the earlier Backup overdue alert. It’s root → Cluster → SqlServer → Database → CustomMetric. Also notice that, unlike Cluster, SqlServer and Database, the key property for CustomMetric is called MetricId (not Name), and the value is a bigint (not a string). Finally, delving into the custom metric tables is beyond the scope of this post, but for the sake of avoiding any future confusion, I’d like to point out that whilst the SubType references a custom alert definition, the MetricID value embedded in the TargetObject value references a custom metric definition. Although in this case both the custom metric definition and custom alert definition share the same Id value of 2, this is not generally the case. Okay, that’s enough for now, not least because as I’m typing this, it’s almost 2am, I have to go to work tomorrow, and my alarm is set for 6am – eek! In my next post, I’ll either cover the remaining three tables in the alert schema, or I’ll delve into the way SQL Monitor stores its monitoring data, as I’d originally planned to cover in this post.

    Read the article

  • Sorting Algorithms

    - by MarkPearl
    General Every time I go back to university I find myself wading through sorting algorithms and their implementation in C++. Up to now I haven’t really appreciated their true value. However as I discovered this last week with Dictionaries in C# – having a knowledge of some basic programming principles can greatly improve the performance of a system and make one think twice about how to tackle a problem. I’m going to cover briefly in this post the following: Selection Sort Insertion Sort Shellsort Quicksort Mergesort Heapsort (not complete) Selection Sort Array based selection sort is a simple approach to sorting an unsorted array. Simply put, it repeats two basic steps to achieve a sorted collection. It starts with a collection of data and repeatedly parses it, each time sorting out one element and reducing the size of the next iteration of parsed data by one. So the first iteration would go something like this… Go through the entire array of data and find the lowest value Place the value at the front of the array The second iteration would go something like this… Go through the array from position two (position one has already been sorted with the smallest value) and find the next lowest value in the array. Place the value at the second position in the array This process would be completed until the entire array had been sorted. A positive about selection sort is that it does not make many item movements. In fact, in a worst case scenario every items is only moved once. Selection sort is however a comparison intensive sort. If you had 10 items in a collection, just to parse the collection you would have 10+9+8+7+6+5+4+3+2=54 comparisons to sort regardless of how sorted the collection was to start with. If you think about it, if you applied selection sort to a collection already sorted, you would still perform relatively the same number of iterations as if it was not sorted at all. Many of the following algorithms try and reduce the number of comparisons if the list is already sorted – leaving one with a best case and worst case scenario for comparisons. Likewise different approaches have different levels of item movement. Depending on what is more expensive, one may give priority to one approach compared to another based on what is more expensive, a comparison or a item move. Insertion Sort Insertion sort tries to reduce the number of key comparisons it performs compared to selection sort by not “doing anything” if things are sorted. Assume you had an collection of numbers in the following order… 10 18 25 30 23 17 45 35 There are 8 elements in the list. If we were to start at the front of the list – 10 18 25 & 30 are already sorted. Element 5 (23) however is smaller than element 4 (30) and so needs to be repositioned. We do this by copying the value at element 5 to a temporary holder, and then begin shifting the elements before it up one. So… Element 5 would be copied to a temporary holder 10 18 25 30 23 17 45 35 – T 23 Element 4 would shift to Element 5 10 18 25 30 30 17 45 35 – T 23 Element 3 would shift to Element 4 10 18 25 25 30 17 45 35 – T 23 Element 2 (18) is smaller than the temporary holder so we put the temporary holder value into Element 3. 10 18 23 25 30 17 45 35 – T 23   We now have a sorted list up to element 6. And so we would repeat the same process by moving element 6 to a temporary value and then shifting everything up by one from element 2 to element 5. As you can see, one major setback for this technique is the shifting values up one – this is because up to now we have been considering the collection to be an array. If however the collection was a linked list, we would not need to shift values up, but merely remove the link from the unsorted value and “reinsert” it in a sorted position. Which would reduce the number of transactions performed on the collection. So.. Insertion sort seems to perform better than selection sort – however an implementation is slightly more complicated. This is typical with most sorting algorithms – generally, greater performance leads to greater complexity. Also, insertion sort performs better if a collection of data is already sorted. If for instance you were handed a sorted collection of size n, then only n number of comparisons would need to be performed to verify that it is sorted. It’s important to note that insertion sort (array based) performs a number item moves – every time an item is “out of place” several items before it get shifted up. Shellsort – Diminishing Increment Sort So up to now we have covered Selection Sort & Insertion Sort. Selection Sort makes many comparisons and insertion sort (with an array) has the potential of making many item movements. Shellsort is an approach that takes the normal insertion sort and tries to reduce the number of item movements. In Shellsort, elements in a collection are viewed as sub-collections of a particular size. Each sub-collection is sorted so that the elements that are far apart move closer to their final position. Suppose we had a collection of 15 elements… 10 20 15 45 36 48 7 60 18 50 2 19 43 30 55 First we may view the collection as 7 sub-collections and sort each sublist, lets say at intervals of 7 10 60 55 – 20 18 – 15 50 – 45 2 – 36 19 – 48 43 – 7 30 10 55 60 – 18 20 – 15 50 – 2 45 – 19 36 – 43 48 – 7 30 (Sorted) We then sort each sublist at a smaller inter – lets say 4 10 55 60 18 – 20 15 50 2 – 45 19 36 43 – 48 7 30 10 18 55 60 – 2 15 20 50 – 19 36 43 45 – 7 30 48 (Sorted) We then sort elements at a distance of 1 (i.e. we apply a normal insertion sort) 10 18 55 60 2 15 20 50 19 36 43 45 7 30 48 2 7 10 15 18 19 20 30 36 43 45 48 50 55 (Sorted) The important thing with shellsort is deciding on the increment sequence of each sub-collection. From what I can tell, there isn’t any definitive method and depending on the order of your elements, different increment sequences may perform better than others. There are however certain increment sequences that you may want to avoid. An even based increment sequence (e.g. 2 4 8 16 32 …) should typically be avoided because it does not allow for even elements to be compared with odd elements until the final sort phase – which in a way would negate many of the benefits of using sub-collections. The performance on the number of comparisons and item movements of Shellsort is hard to determine, however it is considered to be considerably better than the normal insertion sort. Quicksort Quicksort uses a divide and conquer approach to sort a collection of items. The collection is divided into two sub-collections – and the two sub-collections are sorted and combined into one list in such a way that the combined list is sorted. The algorithm is in general pseudo code below… Divide the collection into two sub-collections Quicksort the lower sub-collection Quicksort the upper sub-collection Combine the lower & upper sub-collection together As hinted at above, quicksort uses recursion in its implementation. The real trick with quicksort is to get the lower and upper sub-collections to be of equal size. The size of a sub-collection is determined by what value the pivot is. Once a pivot is determined, one would partition to sub-collections and then repeat the process on each sub collection until you reach the base case. With quicksort, the work is done when dividing the sub-collections into lower & upper collections. The actual combining of the lower & upper sub-collections at the end is relatively simple since every element in the lower sub-collection is smaller than the smallest element in the upper sub-collection. Mergesort With quicksort, the average-case complexity was O(nlog2n) however the worst case complexity was still O(N*N). Mergesort improves on quicksort by always having a complexity of O(nlog2n) regardless of the best or worst case. So how does it do this? Mergesort makes use of the divide and conquer approach to partition a collection into two sub-collections. It then sorts each sub-collection and combines the sorted sub-collections into one sorted collection. The general algorithm for mergesort is as follows… Divide the collection into two sub-collections Mergesort the first sub-collection Mergesort the second sub-collection Merge the first sub-collection and the second sub-collection As you can see.. it still pretty much looks like quicksort – so lets see where it differs… Firstly, mergesort differs from quicksort in how it partitions the sub-collections. Instead of having a pivot – merge sort partitions each sub-collection based on size so that the first and second sub-collection of relatively the same size. This dividing keeps getting repeated until the sub-collections are the size of a single element. If a sub-collection is one element in size – it is now sorted! So the trick is how do we put all these sub-collections together so that they maintain their sorted order. Sorted sub-collections are merged into a sorted collection by comparing the elements of the sub-collection and then adjusting the sorted collection. Lets have a look at a few examples… Assume 2 sub-collections with 1 element each 10 & 20 Compare the first element of the first sub-collection with the first element of the second sub-collection. Take the smallest of the two and place it as the first element in the sorted collection. In this scenario 10 is smaller than 20 so 10 is taken from sub-collection 1 leaving that sub-collection empty, which means by default the next smallest element is in sub-collection 2 (20). So the sorted collection would be 10 20 Lets assume 2 sub-collections with 2 elements each 10 20 & 15 19 So… again we would Compare 10 with 15 – 10 is the winner so we add it to our sorted collection (10) leaving us with 20 & 15 19 Compare 20 with 15 – 15 is the winner so we add it to our sorted collection (10 15) leaving us with 20 & 19 Compare 20 with 19 – 19 is the winner so we add it to our sorted collection (10 15 19) leaving us with 20 & _ 20 is by default the winner so our sorted collection is 10 15 19 20. Make sense? Heapsort (still needs to be completed) So by now I am tired of sorting algorithms and trying to remember why they were so important. I think every year I go through this stuff I wonder to myself why are we made to learn about selection sort and insertion sort if they are so bad – why didn’t we just skip to Mergesort & Quicksort. I guess the only explanation I have for this is that sometimes you learn things so that you can implement them in future – and other times you learn things so that you know it isn’t the best way of implementing things and that you don’t need to implement it in future. Anyhow… luckily this is going to be the last one of my sorts for today. The first step in heapsort is to convert a collection of data into a heap. After the data is converted into a heap, sorting begins… So what is the definition of a heap? If we have to convert a collection of data into a heap, how do we know when it is a heap and when it is not? The definition of a heap is as follows: A heap is a list in which each element contains a key, such that the key in the element at position k in the list is at least as large as the key in the element at position 2k +1 (if it exists) and 2k + 2 (if it exists). Does that make sense? At first glance I’m thinking what the heck??? But then after re-reading my notes I see that we are doing something different – up to now we have really looked at data as an array or sequential collection of data that we need to sort – a heap represents data in a slightly different way – although the data is stored in a sequential collection, for a sequential collection of data to be in a valid heap – it is “semi sorted”. Let me try and explain a bit further with an example… Example 1 of Potential Heap Data Assume we had a collection of numbers as follows 1[1] 2[2] 3[3] 4[4] 5[5] 6[6] For this to be a valid heap element with value of 1 at position [1] needs to be greater or equal to the element at position [3] (2k +1) and position [4] (2k +2). So in the above example, the collection of numbers is not in a valid heap. Example 2 of Potential Heap Data Lets look at another collection of numbers as follows 6[1] 5[2] 4[3] 3[4] 2[5] 1[6] Is this a valid heap? Well… element with the value 6 at position 1 must be greater or equal to the element at position [3] and position [4]. Is 6 > 4 and 6 > 3? Yes it is. Lets look at element 5 as position 2. It must be greater than the values at [4] & [5]. Is 5 > 3 and 5 > 2? Yes it is. If you continued to examine this second collection of data you would find that it is in a valid heap based on the definition of a heap.

    Read the article

  • Is Social Media The Vital Skill You Aren’t Tracking?

    - by HCM-Oracle
    By Mark Bennett - Originally featured in Talent Management Excellence The ever-increasing presence of the workforce on social media presents opportunities as well as risks for organizations. While on the one hand, we read about social media embarrassments happening to organizations, on the other we see that social media activities by workers and candidates can enhance a company’s brand and provide insight into what individuals are, or can become, influencers in the social media sphere. HR can play a key role in helping organizations make the most value out of the activities and presence of workers and candidates, while at the same time also helping to manage the risks that come with the permanence and viral nature of social media. What is Missing from Understanding Our Workforce? “If only HP knew what HP knows, we would be three-times more productive.”  Lew Platt, Former Chairman, President, CEO, Hewlett-Packard  What Lew Platt recognized was that organizations only have a partial understanding of what their workforce is capable of. This lack of understanding impacts the company in several negative ways: 1. A particular skill that the company needs to access in one part of the organization might exist somewhere else, but there is no record that the skill exists, so the need is unfulfilled. 2. As market conditions change rapidly, the company needs to know strategic options, but some options are missed entirely because the company doesn’t know that sufficient capability already exists to enable those options. 3. Employees may miss out on opportunities to demonstrate how their hidden skills could create new value to the company. Why don’t companies have that more complete picture of their workforce capabilities – that is, not know what they know? One very good explanation is that companies put most of their efforts into rating their workforce according to the jobs and roles they are filling today. This is the essence of two important talent management processes: recruiting and performance appraisals.  In recruiting, a set of requirements is put together for a job, either explicitly or indirectly through a job description. During the recruiting process, much of the attention is paid towards whether the candidate has the qualifications, the skills, the experience and the cultural fit to be successful in the role. This makes a lot of sense.  In the performance appraisal process, an employee is measured on how well they performed the functions of their role and in an effort to help the employee do even better next time, they are also measured on proficiency in the competencies that are deemed to be key in doing that job. Again, the logic is impeccable.  But in both these cases, two adages come to mind: 1. What gets measured is what gets managed. 2. You only see what you are looking for. In other words, the fact that the current roles the workforce are performing are the basis for measuring which capabilities the workforce has, makes them the only capabilities to be measured. What was initially meant to be a positive, i.e. identify what is needed to perform well and measure it, in order that it can be managed, comes with the unintended negative consequence of overshadowing the other capabilities the workforce has. This also comes with an employee engagement price, for the measurements and management of workforce capabilities is to typically focus on where the workforce comes up short. Again, it makes sense to do this, since improving a capability that appears to result in improved performance benefits, both the individual through improved performance ratings and the company through improved productivity. But this is based on the assumption that the capabilities identified and their required proficiencies are the only attributes of the individual that matter. Anything else the individual brings that results in high performance, while resulting in a desired performance outcome, often goes unrecognized or underappreciated at best. As social media begins to occupy a more important part in current and future roles in organizations, businesses must incorporate social media savvy and innovation into job descriptions and expectations. These new measures could provide insight into how well someone can use social media tools to influence communities and decision makers; keep abreast of trends in fast-moving industries; present a positive brand image for the organization around thought leadership, customer focus, social responsibility; and coordinate and collaborate with partners. These measures should demonstrate the “social capital” the individual has invested in and developed over time. Without this dimension, “short cut” methods may generate a narrow set of positive metrics that do not have real, long-lasting benefits to the organization. How Workforce Reputation Management Helps HR Harness Social Media With hundreds of petabytes of social media data flowing across Facebook, LinkedIn and Twitter, businesses are tapping technology solutions to effectively leverage social for HR. Workforce reputation management technology helps organizations discover, mobilize and retain talent by providing insight into the social reputation and influence of the workforce while also helping organizations monitor employee social media policy compliance and mitigate social media risk.  There are three major ways that workforce reputation management technology can play a strategic role to support HR: 1. Improve Awareness and Decisions on Talent Many organizations measure the skills and competencies that they know they need today, but are unaware of what other skills and competencies their workforce has that could be essential tomorrow. How about whether your workforce has the reputation and influence to make their skills and competencies more effective? Many organizations don’t have insight into the social media “reach” their workforce has, which is becoming more critical to business performance. These features help organizations, managers, and employees improve many talent processes and decision making, including the following: Hiring and Assignments. People and teams with higher reputations are considered more valuable and effective workers. Someone with high reputation who refers a candidate also can have high credibility as a source for hires.   Training and Development. Reputation trend analysis can impact program decisions regarding training offerings by showing how reputation and influence across the workforce changes in concert with training. Worker reputation impacts development plans and goal choices by helping the individual see which development efforts result in improved reputation and influence.   Finding Hidden Talent. Managers can discover hidden talent and skills amongst employees based on a combination of social profile information and social media reputation. Employees can improve their personal brand and accelerate their career development.  2. Talent Search and Discovery The right technology helps organizations find information on people that might otherwise be hidden. By leveraging access to candidate and worker social profiles as well as their social relationships, workforce reputation management provides companies with a more complete picture of what their knowledge, skills, and attributes are and what they can in turn access. This more complete information helps to find the right talent both outside the organization as well as the right, perhaps previously hidden talent, within the organization to fill roles and staff projects, particularly those roles and projects that are required in reaction to fast-changing opportunities and circumstances. 3. Reputation Brings Credibility Workforce reputation management technology provides a clearer picture of how candidates and workers are viewed by their peers and communities across a wide range of social reputation and influence metrics. This information is less subject to individual bias and can impact critical decision-making. Knowing the individual’s reputation and influence enables the organization to predict how well their capabilities and behaviors will have a positive effect on desired business outcomes. Many roles that have the highest impact on overall business performance are dependent on the individual’s influence and reputation. In addition, reputation and influence measures offer a very tangible source of feedback for workers, providing them with insight that helps them develop themselves and their careers and see the effectiveness of those efforts by tracking changes over time in their reputation and influence. The following are some examples of the different reputation and influence measures of the workforce that Workforce Reputation Management could gather and analyze: Generosity – How often the user reposts other’s posts. Influence – How often the user’s material is reposted by others.  Engagement – The ratio of recent posts with references (e.g. links to other posts) to the total number of posts.  Activity – How frequently the user posts. (e.g. number per day)  Impact – The size of the users’ social networks, which indicates their ability to reach unique followers, friends, or users.   Clout – The number of references and citations of the user’s material in others’ posts.  The Vital Ingredient of Workforce Reputation Management: Employee Participation “Nothing about me, without me.” Valerie Billingham, “Through the Patient’s Eyes”, Salzburg Seminar Session 356, 1998 Since data resides primarily in social media, a question arises: what manner is used to collect that data? While much of social media activity is publicly accessible (as many who wished otherwise have learned to their chagrin), the social norms of social media have developed to put some restrictions on what is acceptable behavior and by whom. Disregarding these norms risks a repercussion firestorm. One of the more recognized norms is that while individuals can follow and engage with other individual’s public social activity (e.g. Twitter updates) fairly freely, the more an organization does this unprompted and without getting permission from the individual beforehand, the more likely the organization risks a totally opposite outcome from the one desired. Instead, the organization must look for permission from the individual, which can be met with resistance. That resistance comes from not knowing how the information will be used, how it will be shared with others, and not receiving enough benefit in return for granting permission. As the quote above about patient concerns and rights succinctly states, no one likes not feeling in control of the information about themselves, or the uncertainty about where it will be used. This is well understood in consumer social media (i.e. permission-based marketing) and is applicable to workforce reputation management. However, asking permission leaves open the very real possibility that no one, or so few, will grant permission, resulting in a small set of data with little usefulness for the company. Connecting Individual Motivation to Organization Needs So what is it that makes an individual decide to grant an organization access to the data it wants? It is when the individual’s own motivations are in alignment with the organization’s objectives. In the case of workforce reputation management, when the individual is motivated by a desire for increased visibility and career growth opportunities to advertise their skills and level of influence and reputation, they are aligned with the organizations’ objectives; to fill resource needs or strategically build better awareness of what skills are present in the workforce, as well as levels of influence and reputation. Individuals can see the benefit of granting access permission to the company through multiple means. One is through simple social awareness; they begin to discover that peers who are getting more career opportunities are those who are signed up for workforce reputation management. Another is where companies take the message directly to the individual; we think you would benefit from signing up with our workforce reputation management solution. Another, more strategic approach is to make reputation management part of a larger Career Development effort by the company; providing a wide set of tools to help the workforce find ways to plan and take action to achieve their career aspirations in the organization. An effective mechanism, that facilitates connecting the visibility and career growth motivations of the workforce with the larger context of the organization’s business objectives, is to use game mechanics to help individuals transform their career goals into concrete, actionable steps, such as signing up for reputation management. This works in favor of companies looking to use workforce reputation because the workforce is more apt to see how it fits into achieving their overall career goals, as well as seeing how other participation brings additional benefits.  Once an individual has signed up with reputation management, not only have they made themselves more visible within the organization and increased their career growth opportunities, they have also enabled a tool that they can use to better understand how their actions and behaviors impact their influence and reputation. Since they will be able to see their reputation and influence measurements change over time, they will gain better insight into how reputation and influence impacts their effectiveness in a role, as well as how their behaviors and skill levels in turn affect their influence and reputation. This insight can trigger much more directed, and effective, efforts by the individual to improve their ability to perform at a higher level and become more productive. The increased sense of autonomy the individual experiences, in linking the insight they gain to the actions and behavior changes they make, greatly enhances their engagement with their role as well as their career prospects within the company. Workforce reputation management takes the wide range of disparate data about the workforce being produced across various social media platforms and transforms it into accessible, relevant, and actionable information that helps the organization achieve its desired business objectives. Social media holds untapped insights about your talent, brand and business, and workforce reputation management can help unlock them. Imagine - if you could find the hidden secrets of your businesses, how much more productive and efficient would your organization be? Mark Bennett is a Director of Product Strategy at Oracle. Mark focuses on setting the strategic vision and direction for tools that help organizations understand, shape, and leverage the capabilities of their workforce to achieve business objectives, as well as help individuals work effectively to achieve their goals and navigate their own growth. His combination of a deep technical background in software design and development, coupled with a broad knowledge of business challenges and thinking in today’s globalized, rapidly changing, technology accelerated economy, has enabled him to identify and incorporate key innovations that are central to Oracle Fusion’s unique value proposition. Mark has over the course of his career been in charge of the design, development, and strategy of Talent Management products and the design and development of cutting edge software that is better equipped to handle the increasingly complex demands of users while also remaining easy to use. Follow him @mpbennett

    Read the article

  • Looking into Enum Support in Entity Framework 5.0 Code First

    - by nikolaosk
    In this post I will show you with a hands-on demo the enum support that is available in Visual Studio 2012, .Net Framework 4.5 and Entity Framework 5.0. You can have a look at this post to learn about the support of multilple diagrams per model that exists in Entity Framework 5.0. We will demonstrate this with a step by step example. I will use Visual Studio 2012 Ultimate. You can also use Visual Studio 2012 Express Edition. Before I move on to the actual demo I must say that in EF 5.0 an enumeration can have the following types. Byte Int16 Int32 Int64 Sbyte Obviously I cannot go into much detail on what EF is and what it does. I will give again a short introduction.The .Net framework provides support for Object Relational Mapping through EF. So EF is a an ORM tool and it is now the main data access technology that microsoft works on. I use it quite extensively in my projects. Through EF we have many things out of the box provided for us. We have the automatic generation of SQL code.It maps relational data to strongly types objects.All the changes made to the objects in the memory are persisted in a transactional way back to the data store. You can find in this post an example on how to use the Entity Framework to retrieve data from an SQL Server Database using the "Database/Schema First" approach. In this approach we make all the changes at the database level and then we update the model with those changes. In this post you can see an example on how to use the "Model First" approach when working with ASP.Net and the Entity Framework. This model was firstly introduced in EF version 4.0 and we could start with a blank model and then create a database from that model.When we made changes to the model , we could recreate the database from the new model. You can search in my blog, because I have posted many posts regarding ASP.Net and EF. I assume you have a working knowledge of C# and know a few things about EF. The Code First approach is the more code-centric than the other two. Basically we write POCO classes and then we persist to a database using something called DBContext. Code First relies on DbContext. We create 2,3 classes (e.g Person,Product) with properties and then these classes interact with the DbContext class. We can create a new database based upon our POCOS classes and have tables generated from those classes.We do not have an .edmx file in this approach.By using this approach we can write much easier unit tests. DbContext is a new context class and is smaller,lightweight wrapper for the main context class which is ObjectContext (Schema First and Model First). Let's begin building our sample application. 1) Launch Visual Studio. Create an ASP.Net Empty Web application. Choose an appropriate name for your application. 2) Add a web form, default.aspx page to the application. 3) Now we need to make sure the Entity Framework is included in our project. Go to Solution Explorer, right-click on the project name.Then select Manage NuGet Packages...In the Manage NuGet Packages dialog, select the Online tab and choose the EntityFramework package.Finally click Install. Have a look at the picture below   4) Create a new folder. Name it CodeFirst . 5) Add a new item in your application, a class file. Name it Footballer.cs. This is going to be a simple POCO class.Place it in the CodeFirst folder. The code follows public class Footballer { public int FootballerID { get; set; } public string FirstName { get; set; } public string LastName { get; set; } public double Weight { get; set; } public double Height { get; set; } public DateTime JoinedTheClub { get; set; } public int Age { get; set; } public List<Training> Trainings { get; set; } public FootballPositions Positions { get; set; } }    Now I am going to define my enum values in the same class file, Footballer.cs    public enum FootballPositions    {        Defender,        Midfielder,        Striker    } 6) Now we need to create the Training class. Add a new class to your application and place it in the CodeFirst folder.The code for the class follows.     public class Training     {         public int TrainingID { get; set; }         public int TrainingDuration { get; set; }         public string TrainingLocation { get; set; }     }   7) Then we need to create a context class that inherits from DbContext.Add a new class to the CodeFirst folder.Name it FootballerDBContext.Now that we have the entity classes created, we must let the model know.I will have to use the DbSet<T> property.The code for this class follows       public class FootballerDBContext:DbContext     {         public DbSet<Footballer> Footballers { get; set; }         public DbSet<Training> Trainings { get; set; }     } Do not forget to add  (using System.Data.Entity;) in the beginning of the class file 8) We must take care of the connection string. It is very easy to create one in the web.config.It does not matter that we do not have a database yet.When we run the DbContext and query against it,it will use a connection string in the web.config and will create the database based on the classes. In my case the connection string inside the web.config, looks like this      <connectionStrings>    <add name="CodeFirstDBContext"  connectionString="server=.\SqlExpress;integrated security=true;"  providerName="System.Data.SqlClient"/>                       </connectionStrings>   9) Now it is time to create Linq to Entities queries to retrieve data from the database . Add a new class to your application in the CodeFirst folder.Name the file DALfootballer.cs We will create a simple public method to retrieve the footballers. The code for the class follows public class DALfootballer     {         FootballerDBContext ctx = new FootballerDBContext();         public List<Footballer> GetFootballers()         {             var query = from player in ctx.Footballers where player.FirstName=="Jamie" select player;             return query.ToList();         }     }   10) Place a GridView control on the Default.aspx page and leave the default name.Add an ObjectDataSource control on the Default.aspx page and leave the default name. Set the DatasourceID property of the GridView control to the ID of the ObjectDataSource control.(DataSourceID="ObjectDataSource1" ). Let's configure the ObjectDataSource control. Click on the smart tag item of the ObjectDataSource control and select Configure Data Source. In the Wizzard that pops up select the DALFootballer class and then in the next step choose the GetFootballers() method.Click Finish to complete the steps of the wizzard. Build your application.  11)  Let's create an Insert method in order to insert data into the tables. I will create an Insert() method and for simplicity reasons I will place it in the Default.aspx.cs file. private void Insert()        {            var footballers = new List<Footballer>            {                new Footballer {                                 FirstName = "Steven",LastName="Gerrard", Height=1.85, Weight=85,Age=32, JoinedTheClub=DateTime.Parse("12/12/1999"),Positions=FootballPositions.Midfielder,                Trainings = new List<Training>                             {                                     new Training {TrainingDuration = 3, TrainingLocation="MelWood"},                    new Training {TrainingDuration = 2, TrainingLocation="Anfield"},                    new Training {TrainingDuration = 2, TrainingLocation="MelWood"},                }                            },                            new Footballer {                                  FirstName = "Jamie",LastName="Garragher", Height=1.89, Weight=89,Age=34, JoinedTheClub=DateTime.Parse("12/02/2000"),Positions=FootballPositions.Defender,                Trainings = new List<Training>                                             {                                 new Training {TrainingDuration = 3, TrainingLocation="MelWood"},                new Training {TrainingDuration = 5, TrainingLocation="Anfield"},                new Training {TrainingDuration = 6, TrainingLocation="Anfield"},                }                           }                    };            footballers.ForEach(foot => ctx.Footballers.Add(foot));            ctx.SaveChanges();        }   12) In the Page_Load() event handling routine I called the Insert() method.        protected void Page_Load(object sender, EventArgs e)        {                   Insert();                }  13) Run your application and you will see that the following result,hopefully. You can see clearly that the data is returned along with the enum value.  14) You must have also a look at the database.Launch SSMS and see the database and its objects (data) created from EF Code First.Have a look at the picture below. Hopefully now you have seen the support that exists in EF 5.0 for enums.Hope it helps !!!

    Read the article

  • Oracle Solaris: Zones on Shared Storage

    - by Jeff Victor
    Oracle Solaris 11.1 has several new features. At oracle.com you can find a detailed list. One of the significant new features, and the most significant new feature releated to Oracle Solaris Zones, is casually called "Zones on Shared Storage" or simply ZOSS (rhymes with "moss"). ZOSS offers much more flexibility because you can store Solaris Zones on shared storage (surprise!) so that you can perform quick and easy migration of a zone from one system to another. This blog entry describes and demonstrates the use of ZOSS. ZOSS provides complete support for a Solaris Zone that is stored on "shared storage." In this case, "shared storage" refers to fiber channel (FC) or iSCSI devices, although there is one lone exception that I will demonstrate soon. The primary intent is to enable you to store a zone on FC or iSCSI storage so that it can be migrated from one host computer to another much more easily and safely than in the past. With this blog entry, I wanted to make it easy for you to try this yourself. I couldn't assume that you have a SAN available - which is a good thing, because neither do I! What could I use, instead? [There he goes, foreshadowing again... -Ed.] Developing this entry reinforced the lesson that the solution to every lab problem is VirtualBox. Oracle VM VirtualBox (its formal name) helps here in a couple of important ways. It offers the ability to easily install multiple copies of Solaris as guests on top of any popular system (Microsoft Windows, MacOS, Solaris, Oracle Linux (and other Linuxes) etc.). It also offers the ability to create a separate virtual disk drive (VDI) that appears as a local hard disk to a guest. This virtual disk can be moved very easily from one guest to another. In other words, you can follow the steps below on a laptop or larger x86 system. Please note that the ability to use ZOSS to store a zone on a local disk is very useful for a lab environment, but not so useful for production. I do not suggest regularly moving disk drives among computers. In the method I describe below, that virtual hard disk will contain the zone that will be migrated among the (virtual) hosts. In production, you would use FC or iSCSI LUNs instead. The zonecfg(1M) man page details the syntax for each of the three types of devices. Why Migrate? Why is the migration of virtual servers important? Some of the most common reasons are: Moving a workload to a different computer so that the original computer can be turned off for extensive maintenance. Moving a workload to a larger system because the workload has outgrown its original system. If the workload runs in an environment (such as a Solaris Zone) that is stored on shared storage, you can restore the service of the workload on an alternate computer if the original computer has failed and will not reboot. You can simplify lifecycle management of a workload by developing it on a laptop, migrating it to a test platform when it's ready, and finally moving it to a production system. Concepts For ZOSS, the important new concept is named "rootzpool". You can read about it in the zonecfg(1M) man page, but here's the short version: it's the backing store (hard disk(s), or LUN(s)) that will be used to make a ZFS zpool - the zpool that will hold the zone. This zpool: contains the zone's Solaris content, i.e. the root file system does not contain any content not related to the zone can only be mounted by one Solaris instance at a time Method Overview Here is a brief list of the steps to create a zone on shared storage and migrate it. The next section shows the commands and output. You will need a host system with an x86 CPU (hopefully at least a couple of CPU cores), at least 2GB of RAM, and at least 25GB of free disk space. (The steps below will not actually use 25GB of disk space, but I don't want to lead you down a path that ends in a big sign that says "Your HDD is full. Good luck!") Configure the zone on both systems, specifying the rootzpool that both will use. The best way is to configure it on one system and then copy the output of "zonecfg export" to the other system to be used as input to zonecfg. This method reduces the chances of pilot error. (It is not necessary to configure the zone on both systems before creating it. You can configure this zone in multiple places, whenever you want, and migrate it to one of those places at any time - as long as those systems all have access to the shared storage.) Install the zone on one system, onto shared storage. Boot the zone. Provide system configuration information to the zone. (In the Real World(tm) you will usually automate this step.) Shutdown the zone. Detach the zone from the original system. Attach the zone to its new "home" system. Boot the zone. The zone can be used normally, and even migrated back, or to a different system. Details The rest of this shows the commands and output. The two hostnames are "sysA" and "sysB". Note that each Solaris guest might use a different device name for the VDI that they share. I used the device names shown below, but you must discover the device name(s) after booting each guest. In a production environment you would also discover the device name first and then configure the zone with that name. Fortunately, you can use the command "zpool import" or "format" to discover the device on the "new" host for the zone. The first steps create the VirtualBox guests and the shared disk drive. I describe the steps here without demonstrating them. Download VirtualBox and install it using a method normal for your host OS. You can read the complete instructions. Create two VirtualBox guests, each to run Solaris 11.1. Each will use its own VDI as its root disk. Install Solaris 11.1 in each guest.Install Solaris 11.1 in each guest. To install a Solaris 11.1 guest, you can either download a pre-built VirtualBox guest, and import it, or install Solaris 11.1 from the "text install" media. If you use the latter method, after booting you will not see a windowing system. To install the GUI and other important things, login and run "pkg install solaris-desktop" and take a break while it installs those important things. Life is usually easier if you install the VirtualBox Guest Additions because then you can copy and paste between the host and guests, etc. You can find the guest additions in the folder matching the version of VirtualBox you are using. You can also read the instructions for installing the guest additions. To create the zone's shared VDI in VirtualBox, you can open the storage configuration for one of the two guests, select the SATA controller, and click on the "Add Hard Disk" icon nearby. Choose "Create New Disk" and specify an appropriate path name for the file that will contain the VDI. The shared VDI must be at least 1.5 GB. Note that the guest must be stopped to do this. Add that VDI to the other guest - using its Storage configuration - so that each can access it while running. The steps start out the same, except that you choose "Choose Existing Disk" instead of "Create New Disk." Because the disk is configured on both of them, VirtualBox prevents you from running both guests at the same time. Identify device names of that VDI, in each of the guests. Solaris chooses the name based on existing devices. The names may be the same, or may be different from each other. This step is shown below as "Step 1." Assumptions In the example shown below, I make these assumptions. The guest that will own the zone at the beginning is named sysA. The guest that will own the zone after the first migration is named sysB. On sysA, the shared disk is named /dev/dsk/c7t2d0 On sysB, the shared disk is named /dev/dsk/c7t3d0 (Finally!) The Steps Step 1) Determine the name of the disk that will move back and forth between the systems. root@sysA:~# format Searching for disks...done AVAILABLE DISK SELECTIONS: 0. c7t0d0 /pci@0,0/pci8086,2829@d/disk@0,0 1. c7t2d0 /pci@0,0/pci8086,2829@d/disk@2,0 Specify disk (enter its number): ^D Step 2) The first thing to do is partition and label the disk. The magic needed to write an EFI label is not overly complicated. root@sysA:~# format -e c7t2d0 selecting c7t2d0 [disk formatted] FORMAT MENU: ... format fdisk No fdisk table exists. The default partition for the disk is: a 100% "SOLARIS System" partition Type "y" to accept the default partition, otherwise type "n" to edit the partition table. n SELECT ONE OF THE FOLLOWING: ... Enter Selection: 1 ... G=EFI_SYS 0=Exit? f SELECT ONE... ... 6 format label ... Specify Label type[1]: 1 Ready to label disk, continue? y format quit root@sysA:~# ls /dev/dsk/c7t2d0 /dev/dsk/c7t2d0 Step 3) Configure zone1 on sysA. root@sysA:~# zonecfg -z zone1 Use 'create' to begin configuring a new zone. zonecfg:zone1 create create: Using system default template 'SYSdefault' zonecfg:zone1 set zonename=zone1 zonecfg:zone1 set zonepath=/zones/zone1 zonecfg:zone1 add rootzpool zonecfg:zone1:rootzpool add storage dev:dsk/c7t2d0 zonecfg:zone1:rootzpool end zonecfg:zone1 exit root@sysA:~# oot@sysA:~# zonecfg -z zone1 info zonename: zone1 zonepath: /zones/zone1 brand: solaris autoboot: false bootargs: file-mac-profile: pool: limitpriv: scheduling-class: ip-type: exclusive hostid: fs-allowed: anet: ... rootzpool: storage: dev:dsk/c7t2d0 Step 4) Install the zone. This step takes the most time, but you can wander off for a snack or a few laps around the gym - or both! (Just not at the same time...) root@sysA:~# zoneadm -z zone1 install Created zone zpool: zone1_rpool Progress being logged to /var/log/zones/zoneadm.20121022T163634Z.zone1.install Image: Preparing at /zones/zone1/root. AI Manifest: /tmp/manifest.xml.RXaycg SC Profile: /usr/share/auto_install/sc_profiles/enable_sci.xml Zonename: zone1 Installation: Starting ... Creating IPS image Startup linked: 1/1 done Installing packages from: solaris origin: http://pkg.us.oracle.com/support/ DOWNLOAD PKGS FILES XFER (MB) SPEED Completed 183/183 33556/33556 222.2/222.2 2.8M/s PHASE ITEMS Installing new actions 46825/46825 Updating package state database Done Updating image state Done Creating fast lookup database Done Installation: Succeeded Note: Man pages can be obtained by installing pkg:/system/manual done. Done: Installation completed in 1696.847 seconds. Next Steps: Boot the zone, then log into the zone console (zlogin -C) to complete the configuration process. Log saved in non-global zone as /zones/zone1/root/var/log/zones/zoneadm.20121022T163634Z.zone1.install Step 5) Boot the Zone. root@sysA:~# zoneadm -z zone1 boot Step 6) Login to zone's console to complete the specification of system information. root@sysA:~# zlogin -C zone1 Answer the usual questions and wait for a login prompt. Then you can end the console session with the usual "~." incantation. Step 7) Shutdown the zone so it can be "moved." root@sysA:~# zoneadm -z zone1 shutdown Step 8) Detach the zone so that the original global zone can't use it. root@sysA:~# zoneadm list -cv ID NAME STATUS PATH BRAND IP 0 global running / solaris shared - zone1 installed /zones/zone1 solaris excl root@sysA:~# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 17.6G 11.2G 6.47G 63% 1.00x ONLINE - zone1_rpool 1.98G 484M 1.51G 23% 1.00x ONLINE - root@sysA:~# zoneadm -z zone1 detach Exported zone zpool: zone1_rpool Step 9) Review the result and shutdown sysA so that sysB can use the shared disk. root@sysA:~# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 17.6G 11.2G 6.47G 63% 1.00x ONLINE - root@sysA:~# zoneadm list -cv ID NAME STATUS PATH BRAND IP 0 global running / solaris shared - zone1 configured /zones/zone1 solaris excl root@sysA:~# init 0 Step 10) Now boot sysB and configure a zone with the parameters shown above in Step 1. (Again, the safest method is to use "zonecfg ... export" on sysA as described in section "Method Overview" above.) The one difference is the name of the rootzpool storage device, which was shown in the list of assumptions, and which you must determine by booting sysB and using the "format" or "zpool import" command. When that is done, you should see the output shown next. (I used the same zonename - "zone1" - in this example, but you can choose any valid zonename you want.) root@sysB:~# zoneadm list -cv ID NAME STATUS PATH BRAND IP 0 global running / solaris shared - zone1 configured /zones/zone1 solaris excl root@sysB:~# zonecfg -z zone1 info zonename: zone1 zonepath: /zones/zone1 brand: solaris autoboot: false bootargs: file-mac-profile: pool: limitpriv: scheduling-class: ip-type: exclusive hostid: fs-allowed: anet: linkname: net0 ... rootzpool: storage: dev:dsk/c7t3d0 Step 11) Attaching the zone automatically imports the zpool. root@sysB:~# zoneadm -z zone1 attach Imported zone zpool: zone1_rpool Progress being logged to /var/log/zones/zoneadm.20121022T184034Z.zone1.attach Installing: Using existing zone boot environment Zone BE root dataset: zone1_rpool/rpool/ROOT/solaris Cache: Using /var/pkg/publisher. Updating non-global zone: Linking to image /. Processing linked: 1/1 done Updating non-global zone: Auditing packages. No updates necessary for this image. Updating non-global zone: Zone updated. Result: Attach Succeeded. Log saved in non-global zone as /zones/zone1/root/var/log/zones/zoneadm.20121022T184034Z.zone1.attach root@sysB:~# zoneadm -z zone1 boot root@sysB:~# zlogin zone1 [Connected to zone 'zone1' pts/2] Oracle Corporation SunOS 5.11 11.1 September 2012 Step 12) Now let's migrate the zone back to sysA. Create a file in zone1 so we can verify it exists after we migrate the zone back, then begin migrating it back. root@zone1:~# ls /opt root@zone1:~# touch /opt/fileA root@zone1:~# ls -l /opt/fileA -rw-r--r-- 1 root root 0 Oct 22 14:47 /opt/fileA root@zone1:~# exit logout [Connection to zone 'zone1' pts/2 closed] root@sysB:~# zoneadm -z zone1 shutdown root@sysB:~# zoneadm -z zone1 detach Exported zone zpool: zone1_rpool root@sysB:~# init 0 Step 13) Back on sysA, check the status. Oracle Corporation SunOS 5.11 11.1 September 2012 root@sysA:~# zoneadm list -cv ID NAME STATUS PATH BRAND IP 0 global running / solaris shared - zone1 configured /zones/zone1 solaris excl root@sysA:~# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 17.6G 11.2G 6.47G 63% 1.00x ONLINE - Step 14) Re-attach the zone back to sysA. root@sysA:~# zoneadm -z zone1 attach Imported zone zpool: zone1_rpool Progress being logged to /var/log/zones/zoneadm.20121022T190441Z.zone1.attach Installing: Using existing zone boot environment Zone BE root dataset: zone1_rpool/rpool/ROOT/solaris Cache: Using /var/pkg/publisher. Updating non-global zone: Linking to image /. Processing linked: 1/1 done Updating non-global zone: Auditing packages. No updates necessary for this image. Updating non-global zone: Zone updated. Result: Attach Succeeded. Log saved in non-global zone as /zones/zone1/root/var/log/zones/zoneadm.20121022T190441Z.zone1.attach root@sysA:~# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 17.6G 11.2G 6.47G 63% 1.00x ONLINE - zone1_rpool 1.98G 491M 1.51G 24% 1.00x ONLINE - root@sysA:~# zoneadm -z zone1 boot root@sysA:~# zlogin zone1 [Connected to zone 'zone1' pts/2] Oracle Corporation SunOS 5.11 11.1 September 2012 root@zone1:~# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 1.98G 538M 1.46G 26% 1.00x ONLINE - Step 15) Check for the file created on sysB, earlier. root@zone1:~# ls -l /opt total 1 -rw-r--r-- 1 root root 0 Oct 22 14:47 fileA Next Steps Here is a brief list of some of the fun things you can try next. Add space to the zone by adding a second storage device to the rootzpool. Make sure that you add it to the configurations of both zones! Create a new zone, specifying two disks in the rootzpool when you first configure the zone. When you install that zone, or clone it from another zone, zoneadm uses those two disks to create a mirrored pool. (Three disks will result in a three-way mirror, etc.) Conclusion Hopefully you have seen the ease with which you can now move Solaris Zones from one system to another.

    Read the article

  • Seeking on a Heap, and Two Useful DMVs

    - by Paul White
    So far in this mini-series on seeks and scans, we have seen that a simple ‘seek’ operation can be much more complex than it first appears.  A seek can contain one or more seek predicates – each of which can either identify at most one row in a unique index (a singleton lookup) or a range of values (a range scan).  When looking at a query plan, we will often need to look at the details of the seek operator in the Properties window to see how many operations it is performing, and what type of operation each one is.  As you saw in the first post in this series, the number of hidden seeking operations can have an appreciable impact on performance. Measuring Seeks and Scans I mentioned in my last post that there is no way to tell from a graphical query plan whether you are seeing a singleton lookup or a range scan.  You can work it out – if you happen to know that the index is defined as unique and the seek predicate is an equality comparison, but there’s no separate property that says ‘singleton lookup’ or ‘range scan’.  This is a shame, and if I had my way, the query plan would show different icons for range scans and singleton lookups – perhaps also indicating whether the operation was one or more of those operations underneath the covers. In light of all that, you might be wondering if there is another way to measure how many seeks of either type are occurring in your system, or for a particular query.  As is often the case, the answer is yes – we can use a couple of dynamic management views (DMVs): sys.dm_db_index_usage_stats and sys.dm_db_index_operational_stats. Index Usage Stats The index usage stats DMV contains counts of index operations from the perspective of the Query Executor (QE) – the SQL Server component that is responsible for executing the query plan.  It has three columns that are of particular interest to us: user_seeks – the number of times an Index Seek operator appears in an executed plan user_scans – the number of times a Table Scan or Index Scan operator appears in an executed plan user_lookups – the number of times an RID or Key Lookup operator appears in an executed plan An operator is counted once per execution (generating an estimated plan does not affect the totals), so an Index Seek that executes 10,000 times in a single plan execution adds 1 to the count of user seeks.  Even less intuitively, an operator is also counted once per execution even if it is not executed at all.  I will show you a demonstration of each of these things later in this post. Index Operational Stats The index operational stats DMV contains counts of index and table operations from the perspective of the Storage Engine (SE).  It contains a wealth of interesting information, but the two columns of interest to us right now are: range_scan_count – the number of range scans (including unrestricted full scans) on a heap or index structure singleton_lookup_count – the number of singleton lookups in a heap or index structure This DMV counts each SE operation, so 10,000 singleton lookups will add 10,000 to the singleton lookup count column, and a table scan that is executed 5 times will add 5 to the range scan count. The Test Rig To explore the behaviour of seeks and scans in detail, we will need to create a test environment.  The scripts presented here are best run on SQL Server 2008 Developer Edition, but the majority of the tests will work just fine on SQL Server 2005.  A couple of tests use partitioning, but these will be skipped if you are not running an Enterprise-equivalent SKU.  Ok, first up we need a database: USE master; GO IF DB_ID('ScansAndSeeks') IS NOT NULL DROP DATABASE ScansAndSeeks; GO CREATE DATABASE ScansAndSeeks; GO USE ScansAndSeeks; GO ALTER DATABASE ScansAndSeeks SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE ScansAndSeeks SET AUTO_CLOSE OFF, AUTO_SHRINK OFF, AUTO_CREATE_STATISTICS OFF, AUTO_UPDATE_STATISTICS OFF, PARAMETERIZATION SIMPLE, READ_COMMITTED_SNAPSHOT OFF, RESTRICTED_USER ; Notice that several database options are set in particular ways to ensure we get meaningful and reproducible results from the DMVs.  In particular, the options to auto-create and update statistics are disabled.  There are also three stored procedures, the first of which creates a test table (which may or may not be partitioned).  The table is pretty much the same one we used yesterday: The table has 100 rows, and both the key_col and data columns contain the same values – the integers from 1 to 100 inclusive.  The table is a heap, with a non-clustered primary key on key_col, and a non-clustered non-unique index on the data column.  The only reason I have used a heap here, rather than a clustered table, is so I can demonstrate a seek on a heap later on.  The table has an extra column (not shown because I am too lazy to update the diagram from yesterday) called padding – a CHAR(100) column that just contains 100 spaces in every row.  It’s just there to discourage SQL Server from choosing table scan over an index + RID lookup in one of the tests. The first stored procedure is called ResetTest: CREATE PROCEDURE dbo.ResetTest @Partitioned BIT = 'false' AS BEGIN SET NOCOUNT ON ; IF OBJECT_ID(N'dbo.Example', N'U') IS NOT NULL BEGIN DROP TABLE dbo.Example; END ; -- Test table is a heap -- Non-clustered primary key on 'key_col' CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, padding CHAR(100) NOT NULL DEFAULT SPACE(100), CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col) ) ; IF @Partitioned = 'true' BEGIN -- Enterprise, Trial, or Developer -- required for partitioning tests IF SERVERPROPERTY('EngineEdition') = 3 BEGIN EXECUTE (' DROP TABLE dbo.Example ; IF EXISTS ( SELECT 1 FROM sys.partition_schemes WHERE name = N''PS'' ) DROP PARTITION SCHEME PS ; IF EXISTS ( SELECT 1 FROM sys.partition_functions WHERE name = N''PF'' ) DROP PARTITION FUNCTION PF ; CREATE PARTITION FUNCTION PF (INTEGER) AS RANGE RIGHT FOR VALUES (20, 40, 60, 80, 100) ; CREATE PARTITION SCHEME PS AS PARTITION PF ALL TO ([PRIMARY]) ; CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, padding CHAR(100) NOT NULL DEFAULT SPACE(100), CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col) ) ON PS (key_col); '); END ELSE BEGIN RAISERROR('Invalid SKU for partition test', 16, 1); RETURN; END; END ; -- Non-unique non-clustered index on the 'data' column CREATE NONCLUSTERED INDEX [IX dbo.Example data] ON dbo.Example (data) ; -- Add 100 rows INSERT dbo.Example WITH (TABLOCKX) ( key_col, data ) SELECT key_col = V.number, data = V.number FROM master.dbo.spt_values AS V WHERE V.[type] = N'P' AND V.number BETWEEN 1 AND 100 ; END; GO The second stored procedure, ShowStats, displays information from the Index Usage Stats and Index Operational Stats DMVs: CREATE PROCEDURE dbo.ShowStats @Partitioned BIT = 'false' AS BEGIN -- Index Usage Stats DMV (QE) SELECT index_name = ISNULL(I.name, I.type_desc), scans = IUS.user_scans, seeks = IUS.user_seeks, lookups = IUS.user_lookups FROM sys.dm_db_index_usage_stats AS IUS JOIN sys.indexes AS I ON I.object_id = IUS.object_id AND I.index_id = IUS.index_id WHERE IUS.database_id = DB_ID(N'ScansAndSeeks') AND IUS.object_id = OBJECT_ID(N'dbo.Example', N'U') ORDER BY I.index_id ; -- Index Operational Stats DMV (SE) IF @Partitioned = 'true' SELECT index_name = ISNULL(I.name, I.type_desc), partitions = COUNT(IOS.partition_number), range_scans = SUM(IOS.range_scan_count), single_lookups = SUM(IOS.singleton_lookup_count) FROM sys.dm_db_index_operational_stats ( DB_ID(N'ScansAndSeeks'), OBJECT_ID(N'dbo.Example', N'U'), NULL, NULL ) AS IOS JOIN sys.indexes AS I ON I.object_id = IOS.object_id AND I.index_id = IOS.index_id GROUP BY I.index_id, -- Key I.name, I.type_desc ORDER BY I.index_id; ELSE SELECT index_name = ISNULL(I.name, I.type_desc), range_scans = SUM(IOS.range_scan_count), single_lookups = SUM(IOS.singleton_lookup_count) FROM sys.dm_db_index_operational_stats ( DB_ID(N'ScansAndSeeks'), OBJECT_ID(N'dbo.Example', N'U'), NULL, NULL ) AS IOS JOIN sys.indexes AS I ON I.object_id = IOS.object_id AND I.index_id = IOS.index_id GROUP BY I.index_id, -- Key I.name, I.type_desc ORDER BY I.index_id; END; The final stored procedure, RunTest, executes a query written against the example table: CREATE PROCEDURE dbo.RunTest @SQL VARCHAR(8000), @Partitioned BIT = 'false' AS BEGIN -- No execution plan yet SET STATISTICS XML OFF ; -- Reset the test environment EXECUTE dbo.ResetTest @Partitioned ; -- Previous call will throw an error if a partitioned -- test was requested, but SKU does not support it IF @@ERROR = 0 BEGIN -- IO statistics and plan on SET STATISTICS XML, IO ON ; -- Test statement EXECUTE (@SQL) ; -- Plan and IO statistics off SET STATISTICS XML, IO OFF ; EXECUTE dbo.ShowStats @Partitioned; END; END; The Tests The first test is a simple scan of the heap table: EXECUTE dbo.RunTest @SQL = 'SELECT * FROM Example'; The top result set comes from the Index Usage Stats DMV, so it is the Query Executor’s (QE) view.  The lower result is from Index Operational Stats, which shows statistics derived from the actions taken by the Storage Engine (SE).  We see that QE performed 1 scan operation on the heap, and SE performed a single range scan.  Let’s try a single-value equality seek on a unique index next: EXECUTE dbo.RunTest @SQL = 'SELECT key_col FROM Example WHERE key_col = 32'; This time we see a single seek on the non-clustered primary key from QE, and one singleton lookup on the same index by the SE.  Now for a single-value seek on the non-unique non-clustered index: EXECUTE dbo.RunTest @SQL = 'SELECT data FROM Example WHERE data = 32'; QE shows a single seek on the non-clustered non-unique index, but SE shows a single range scan on that index – not the singleton lookup we saw in the previous test.  That makes sense because we know that only a single-value seek into a unique index is a singleton seek.  A single-value seek into a non-unique index might retrieve any number of rows, if you think about it.  The next query is equivalent to the IN list example seen in the first post in this series, but it is written using OR (just for variety, you understand): EXECUTE dbo.RunTest @SQL = 'SELECT data FROM Example WHERE data = 32 OR data = 33'; The plan looks the same, and there’s no difference in the stats recorded by QE, but the SE shows two range scans.  Again, these are range scans because we are looking for two values in the data column, which is covered by a non-unique index.  I’ve added a snippet from the Properties window to show that the query plan does show two seek predicates, not just one.  Now let’s rewrite the query using BETWEEN: EXECUTE dbo.RunTest @SQL = 'SELECT data FROM Example WHERE data BETWEEN 32 AND 33'; Notice the seek operator only has one predicate now – it’s just a single range scan from 32 to 33 in the index – as the SE output shows.  For the next test, we will look up four values in the key_col column: EXECUTE dbo.RunTest @SQL = 'SELECT key_col FROM Example WHERE key_col IN (2,4,6,8)'; Just a single seek on the PK from the Query Executor, but four singleton lookups reported by the Storage Engine – and four seek predicates in the Properties window.  On to a more complex example: EXECUTE dbo.RunTest @SQL = 'SELECT * FROM Example WITH (INDEX([PK dbo.Example key_col])) WHERE key_col BETWEEN 1 AND 8'; This time we are forcing use of the non-clustered primary key to return eight rows.  The index is not covering for this query, so the query plan includes an RID lookup into the heap to fetch the data and padding columns.  The QE reports a seek on the PK and a lookup on the heap.  The SE reports a single range scan on the PK (to find key_col values between 1 and 8), and eight singleton lookups on the heap.  Remember that a bookmark lookup (RID or Key) is a seek to a single value in a ‘unique index’ – it finds a row in the heap or cluster from a unique RID or clustering key – so that’s why lookups are always singleton lookups, not range scans. Our next example shows what happens when a query plan operator is not executed at all: EXECUTE dbo.RunTest @SQL = 'SELECT key_col FROM Example WHERE key_col = 8 AND @@TRANCOUNT < 0'; The Filter has a start-up predicate which is always false (if your @@TRANCOUNT is less than zero, call CSS immediately).  The index seek is never executed, but QE still records a single seek against the PK because the operator appears once in an executed plan.  The SE output shows no activity at all.  This next example is 2008 and above only, I’m afraid: EXECUTE dbo.RunTest @SQL = 'SELECT * FROM Example WHERE key_col BETWEEN 1 AND 30', @Partitioned = 'true'; This is the first example to use a partitioned table.  QE reports a single seek on the heap (yes – a seek on a heap), and the SE reports two range scans on the heap.  SQL Server knows (from the partitioning definition) that it only needs to look at partitions 1 and 2 to find all the rows where key_col is between 1 and 30 – the engine seeks to find the two partitions, and performs a range scan seek on each partition. The final example for today is another seek on a heap – try to work out the output of the query before running it! EXECUTE dbo.RunTest @SQL = 'SELECT TOP (2) WITH TIES * FROM Example WHERE key_col BETWEEN 1 AND 50 ORDER BY $PARTITION.PF(key_col) DESC', @Partitioned = 'true'; Notice the lack of an explicit Sort operator in the query plan to enforce the ORDER BY clause, and the backward range scan. © 2011 Paul White email: [email protected] twitter: @SQL_Kiwi

    Read the article

  • Inside the Concurrent Collections: ConcurrentDictionary

    - by Simon Cooper
    Using locks to implement a thread-safe collection is rather like using a sledgehammer - unsubtle, easy to understand, and tends to make any other tool redundant. Unlike the previous two collections I looked at, ConcurrentStack and ConcurrentQueue, ConcurrentDictionary uses locks quite heavily. However, it is careful to wield locks only where necessary to ensure that concurrency is maximised. This will, by necessity, be a higher-level look than my other posts in this series, as there is quite a lot of code and logic in ConcurrentDictionary. Therefore, I do recommend that you have ConcurrentDictionary open in a decompiler to have a look at all the details that I skip over. The problem with locks There's several things to bear in mind when using locks, as encapsulated by the lock keyword in C# and the System.Threading.Monitor class in .NET (if you're unsure as to what lock does in C#, I briefly covered it in my first post in the series): Locks block threads The most obvious problem is that threads waiting on a lock can't do any work at all. No preparatory work, no 'optimistic' work like in ConcurrentQueue and ConcurrentStack, nothing. It sits there, waiting to be unblocked. This is bad if you're trying to maximise concurrency. Locks are slow Whereas most of the methods on the Interlocked class can be compiled down to a single CPU instruction, ensuring atomicity at the hardware level, taking out a lock requires some heavy lifting by the CLR and the operating system. There's quite a bit of work required to take out a lock, block other threads, and wake them up again. If locks are used heavily, this impacts performance. Deadlocks When using locks there's always the possibility of a deadlock - two threads, each holding a lock, each trying to aquire the other's lock. Fortunately, this can be avoided with careful programming and structured lock-taking, as we'll see. So, it's important to minimise where locks are used to maximise the concurrency and performance of the collection. Implementation As you might expect, ConcurrentDictionary is similar in basic implementation to the non-concurrent Dictionary, which I studied in a previous post. I'll be using some concepts introduced there, so I recommend you have a quick read of it. So, if you were implementing a thread-safe dictionary, what would you do? The naive implementation is to simply have a single lock around all methods accessing the dictionary. This would work, but doesn't allow much concurrency. Fortunately, the bucketing used by Dictionary allows a simple but effective improvement to this - one lock per bucket. This allows different threads modifying different buckets to do so in parallel. Any thread making changes to the contents of a bucket takes the lock for that bucket, ensuring those changes are thread-safe. The method that maps each bucket to a lock is the GetBucketAndLockNo method: private void GetBucketAndLockNo( int hashcode, out int bucketNo, out int lockNo, int bucketCount) { // the bucket number is the hashcode (without the initial sign bit) // modulo the number of buckets bucketNo = (hashcode & 0x7fffffff) % bucketCount; // and the lock number is the bucket number modulo the number of locks lockNo = bucketNo % m_locks.Length; } However, this does require some changes to how the buckets are implemented. The 'implicit' linked list within a single backing array used by the non-concurrent Dictionary adds a dependency between separate buckets, as every bucket uses the same backing array. Instead, ConcurrentDictionary uses a strict linked list on each bucket: This ensures that each bucket is entirely separate from all other buckets; adding or removing an item from a bucket is independent to any changes to other buckets. Modifying the dictionary All the operations on the dictionary follow the same basic pattern: void AlterBucket(TKey key, ...) { int bucketNo, lockNo; 1: GetBucketAndLockNo( key.GetHashCode(), out bucketNo, out lockNo, m_buckets.Length); 2: lock (m_locks[lockNo]) { 3: Node headNode = m_buckets[bucketNo]; 4: Mutate the node linked list as appropriate } } For example, when adding another entry to the dictionary, you would iterate through the linked list to check whether the key exists already, and add the new entry as the head node. When removing items, you would find the entry to remove (if it exists), and remove the node from the linked list. Adding, updating, and removing items all follow this pattern. Performance issues There is a problem we have to address at this point. If the number of buckets in the dictionary is fixed in the constructor, then the performance will degrade from O(1) to O(n) when a large number of items are added to the dictionary. As more and more items get added to the linked lists in each bucket, the lookup operations will spend most of their time traversing a linear linked list. To fix this, the buckets array has to be resized once the number of items in each bucket has gone over a certain limit. (In ConcurrentDictionary this limit is when the size of the largest bucket is greater than the number of buckets for each lock. This check is done at the end of the TryAddInternal method.) Resizing the bucket array and re-hashing everything affects every bucket in the collection. Therefore, this operation needs to take out every lock in the collection. Taking out mutiple locks at once inevitably summons the spectre of the deadlock; two threads each hold a lock, and each trying to acquire the other lock. How can we eliminate this? Simple - ensure that threads never try to 'swap' locks in this fashion. When taking out multiple locks, always take them out in the same order, and always take out all the locks you need before starting to release them. In ConcurrentDictionary, this is controlled by the AcquireLocks, AcquireAllLocks and ReleaseLocks methods. Locks are always taken out and released in the order they are in the m_locks array, and locks are all released right at the end of the method in a finally block. At this point, it's worth pointing out that the locks array is never re-assigned, even when the buckets array is increased in size. The number of locks is fixed in the constructor by the concurrencyLevel parameter. This simplifies programming the locks; you don't have to check if the locks array has changed or been re-assigned before taking out a lock object. And you can be sure that when a thread takes out a lock, another thread isn't going to re-assign the lock array. This would create a new series of lock objects, thus allowing another thread to ignore the existing locks (and any threads controlling them), breaking thread-safety. Consequences of growing the array Just because we're using locks doesn't mean that race conditions aren't a problem. We can see this by looking at the GrowTable method. The operation of this method can be boiled down to: private void GrowTable(Node[] buckets) { try { 1: Acquire first lock in the locks array // this causes any other thread trying to take out // all the locks to block because the first lock in the array // is always the one taken out first // check if another thread has already resized the buckets array // while we were waiting to acquire the first lock 2: if (buckets != m_buckets) return; 3: Calculate the new size of the backing array 4: Node[] array = new array[size]; 5: Acquire all the remaining locks 6: Re-hash the contents of the existing buckets into array 7: m_buckets = array; } finally { 8: Release all locks } } As you can see, there's already a check for a race condition at step 2, for the case when the GrowTable method is called twice in quick succession on two separate threads. One will successfully resize the buckets array (blocking the second in the meantime), when the second thread is unblocked it'll see that the array has already been resized & exit without doing anything. There is another case we need to consider; looking back at the AlterBucket method above, consider the following situation: Thread 1 calls AlterBucket; step 1 is executed to get the bucket and lock numbers. Thread 2 calls GrowTable and executes steps 1-5; thread 1 is blocked when it tries to take out the lock in step 2. Thread 2 re-hashes everything, re-assigns the buckets array, and releases all the locks (steps 6-8). Thread 1 is unblocked and continues executing, but the calculated bucket and lock numbers are no longer valid. Between calculating the correct bucket and lock number and taking out the lock, another thread has changed where everything is. Not exactly thread-safe. Well, a similar problem was solved in ConcurrentStack and ConcurrentQueue by storing a local copy of the state, doing the necessary calculations, then checking if that state is still valid. We can use a similar idea here: void AlterBucket(TKey key, ...) { while (true) { Node[] buckets = m_buckets; int bucketNo, lockNo; GetBucketAndLockNo( key.GetHashCode(), out bucketNo, out lockNo, buckets.Length); lock (m_locks[lockNo]) { // if the state has changed, go back to the start if (buckets != m_buckets) continue; Node headNode = m_buckets[bucketNo]; Mutate the node linked list as appropriate } break; } } TryGetValue and GetEnumerator And so, finally, we get onto TryGetValue and GetEnumerator. I've left these to the end because, well, they don't actually use any locks. How can this be? Whenever you change a bucket, you need to take out the corresponding lock, yes? Indeed you do. However, it is important to note that TryGetValue and GetEnumerator don't actually change anything. Just as immutable objects are, by definition, thread-safe, read-only operations don't need to take out a lock because they don't change anything. All lockless methods can happily iterate through the buckets and linked lists without worrying about locking anything. However, this does put restrictions on how the other methods operate. Because there could be another thread in the middle of reading the dictionary at any time (even if a lock is taken out), the dictionary has to be in a valid state at all times. Every change to state has to be made visible to other threads in a single atomic operation (all relevant variables are marked volatile to help with this). This restriction ensures that whatever the reading threads are doing, they never read the dictionary in an invalid state (eg items that should be in the collection temporarily removed from the linked list, or reading a node that has had it's key & value removed before the node itself has been removed from the linked list). Fortunately, all the operations needed to change the dictionary can be done in that way. Bucket resizes are made visible when the new array is assigned back to the m_buckets variable. Any additions or modifications to a node are done by creating a new node, then splicing it into the existing list using a single variable assignment. Node removals are simply done by re-assigning the node's m_next pointer. Because the dictionary can be changed by another thread during execution of the lockless methods, the GetEnumerator method is liable to return dirty reads - changes made to the dictionary after GetEnumerator was called, but before the enumeration got to that point in the dictionary. It's worth listing at this point which methods are lockless, and which take out all the locks in the dictionary to ensure they get a consistent view of the dictionary: Lockless: TryGetValue GetEnumerator The indexer getter ContainsKey Takes out every lock (lockfull?): Count IsEmpty Keys Values CopyTo ToArray Concurrent principles That covers the overall implementation of ConcurrentDictionary. I haven't even begun to scratch the surface of this sophisticated collection. That I leave to you. However, we've looked at enough to be able to extract some useful principles for concurrent programming: Partitioning When using locks, the work is partitioned into independant chunks, each with its own lock. Each partition can then be modified concurrently to other partitions. Ordered lock-taking When a method does need to control the entire collection, locks are taken and released in a fixed order to prevent deadlocks. Lockless reads Read operations that don't care about dirty reads don't take out any lock; the rest of the collection is implemented so that any reading thread always has a consistent view of the collection. That leads us to the final collection in this little series - ConcurrentBag. Lacking a non-concurrent analogy, it is quite different to any other collection in the class libraries. Prepare your thinking hats!

    Read the article

  • Get XML from Server for Use on Windows Phone

    - by psheriff
    When working with mobile devices you always need to take into account bandwidth usage and power consumption. If you are constantly connecting to a server to retrieve data for an input screen, then you might think about moving some of that data down to the phone and cache the data on the phone. An example would be a static list of US State Codes that you are asking the user to select from. Since this is data that does not change very often, this is one set of data that would be great to cache on the phone. Since the Windows Phone does not have an embedded database, you can just use an XML string stored in Isolated Storage. Of course, then you need to figure out how to get data down to the phone. You can either ship it with the application, or connect and retrieve the data from your server one time and thereafter cache it and retrieve it from the cache. In this blog post you will see how to create a WCF service to retrieve data from a Product table in a database and send that data as XML to the phone and store it in Isolated Storage. You will then read that data from Isolated Storage using LINQ to XML and display it in a ListBox. Step 1: Create a Windows Phone Application The first step is to create a Windows Phone application called WP_GetXmlFromDataSet (or whatever you want to call it). On the MainPage.xaml add the following XAML within the “ContentPanel” grid: <StackPanel>  <Button Name="btnGetXml"          Content="Get XML"          Click="btnGetXml_Click" />  <Button Name="btnRead"          Content="Read XML"          IsEnabled="False"          Click="btnRead_Click" />  <ListBox Name="lstData"            Height="430"            ItemsSource="{Binding}"            DisplayMemberPath="ProductName" /></StackPanel> Now it is time to create the WCF Service Application that you will call to get the XML from a table in a SQL Server database. Step 2: Create a WCF Service Application Add a new project to your solution called WP_GetXmlFromDataSet.Services. Delete the IService1.* and Service1.* files and the App_Data folder, as you don’t generally need these items. Add a new WCF Service class called ProductService. In the IProductService class modify the void DoWork() method with the following code: [OperationContract]string GetProductXml(); Open the code behind in the ProductService.svc and create the GetProductXml() method. This method (shown below) will connect up to a database and retrieve data from a Product table. public string GetProductXml(){  string ret = string.Empty;  string sql = string.Empty;  SqlDataAdapter da;  DataSet ds = new DataSet();   sql = "SELECT ProductId, ProductName,";  sql += " IntroductionDate, Price";  sql += " FROM Product";   da = new SqlDataAdapter(sql,    ConfigurationManager.ConnectionStrings["Sandbox"].ConnectionString);   da.Fill(ds);   // Create Attribute based XML  foreach (DataColumn col in ds.Tables[0].Columns)  {    col.ColumnMapping = MappingType.Attribute;  }   ds.DataSetName = "Products";  ds.Tables[0].TableName = "Product";  ret = ds.GetXml();   return ret;} After retrieving the data from the Product table using a DataSet, you will want to set each column’s ColumnMapping property to Attribute. Using attribute based XML will make the data transferred across the wire a little smaller. You then set the DataSetName property to the top-level element name you want to assign to the XML. You then set the TableName property on the DataTable to the name you want each element to be in your XML. The last thing you need to do is to call the GetXml() method on the DataSet object which will return an XML string of the data in your DataSet object. This is the value that you will return from the service call. The XML that is returned from the above call looks like the following: <Products>  <Product ProductId="1"           ProductName="PDSA .NET Productivity Framework"           IntroductionDate="9/3/2010"           Price="5000" />  <Product ProductId="3"           ProductName="Haystack Code Generator for .NET"           IntroductionDate="7/1/2010"           Price="599.00" />  ...  ...  ... </Products> The GetProductXml() method uses a connection string from the Web.Config file, so add a <connectionStrings> element to the Web.Config file in your WCF Service application. Modify the settings shown below as needed for your server and database name. <connectionStrings>  <add name="Sandbox"        connectionString="Server=Localhost;Database=Sandbox;                         Integrated Security=Yes"/></connectionStrings> The Product Table You will need a Product table that you can read data from. I used the following structure for my product table. Add any data you want to this table after you create it in your database. CREATE TABLE Product(  ProductId int PRIMARY KEY IDENTITY(1,1) NOT NULL,  ProductName varchar(50) NOT NULL,  IntroductionDate datetime NULL,  Price money NULL) Step 3: Connect to WCF Service from Windows Phone Application Back in your Windows Phone application you will now need to add a Service Reference to the WCF Service application you just created. Right-mouse click on the Windows Phone Project and choose Add Service Reference… from the context menu. Click on the Discover button. In the Namespace text box enter “ProductServiceRefrence”, then click the OK button. If you entered everything correctly, Visual Studio will generate some code that allows you to connect to your Product service. On the MainPage.xaml designer window double click on the Get XML button to generate the Click event procedure for this button. In the Click event procedure make a call to a GetXmlFromServer() method. This method will also need a “Completed” event procedure to be written since all communication with a WCF Service from Windows Phone must be asynchronous.  Write these two methods as follows: private const string KEY_NAME = "ProductData"; private void GetXmlFromServer(){  ProductServiceClient client = new ProductServiceClient();   client.GetProductXmlCompleted += new     EventHandler<GetProductXmlCompletedEventArgs>      (client_GetProductXmlCompleted);   client.GetProductXmlAsync();  client.CloseAsync();} void client_GetProductXmlCompleted(object sender,                                   GetProductXmlCompletedEventArgs e){  // Store XML data in Isolated Storage  IsolatedStorageSettings.ApplicationSettings[KEY_NAME] = e.Result;   btnRead.IsEnabled = true;} As you can see, this is a fairly standard call to a WCF Service. In the Completed event you get the Result from the event argument, which is the XML, and store it into Isolated Storage using the IsolatedStorageSettings.ApplicationSettings class. Notice the constant that I added to specify the name of the key. You will use this constant later to read the data from Isolated Storage. Step 4: Create a Product Class Even though you stored XML data into Isolated Storage when you read that data out you will want to convert each element in the XML file into an actual Product object. This means that you need to create a Product class in your Windows Phone application. Add a Product class to your project that looks like the code below: public class Product{  public string ProductName{ get; set; }  public int ProductId{ get; set; }  public DateTime IntroductionDate{ get; set; }  public decimal Price{ get; set; }} Step 5: Read Settings from Isolated Storage Now that you have the XML data stored in Isolated Storage, it is time to use it. Go back to the MainPage.xaml design view and double click on the Read XML button to generate the Click event procedure. From the Click event procedure call a method named ReadProductXml().Create this method as shown below: private void ReadProductXml(){  XElement xElem = null;   if (IsolatedStorageSettings.ApplicationSettings.Contains(KEY_NAME))  {    xElem = XElement.Parse(     IsolatedStorageSettings.ApplicationSettings[KEY_NAME].ToString());     // Create a list of Product objects    var products =         from prod in xElem.Descendants("Product")        orderby prod.Attribute("ProductName").Value        select new Product        {          ProductId = Convert.ToInt32(prod.Attribute("ProductId").Value),          ProductName = prod.Attribute("ProductName").Value,          IntroductionDate =             Convert.ToDateTime(prod.Attribute("IntroductionDate").Value),          Price = Convert.ToDecimal(prod.Attribute("Price").Value)        };     lstData.DataContext = products;  }} The ReadProductXml() method checks to make sure that the key name that you saved your XML as exists in Isolated Storage prior to trying to open it. If the key name exists, then you retrieve the value as a string. Use the XElement’s Parse method to convert the XML string to a XElement object. LINQ to XML is used to iterate over each element in the XElement object and create a new Product object from each attribute in your XML file. The LINQ to XML code also orders the XML data by the ProductName. After the LINQ to XML code runs you end up with an IEnumerable collection of Product objects in the variable named “products”. You assign this collection of product data to the DataContext of the ListBox you created in XAML. The DisplayMemberPath property of the ListBox is set to “ProductName” so it will now display the product name for each row in your products collection. Summary In this article you learned how to retrieve an XML string from a table in a database, return that string across a WCF Service and store it into Isolated Storage on your Windows Phone. You then used LINQ to XML to create a collection of Product objects from the data stored and display that data in a Windows Phone list box. This same technique can be used in Silverlight or WPF applications too. NOTE: You can download the complete sample code at my website. http://www.pdsa.com/downloads. Choose Tips & Tricks, then "Get XML From Server for Use on Windows Phone" from the drop-down. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **Visit http://www.pdsa.com/Event/Blog for a free video on Silverlight entitled Silverlight XAML for the Complete Novice - Part 1.  

    Read the article

  • Branding Support for TopComponents

    - by Geertjan
    In yesterday's blog entry, you saw how a menu item can be created, in this case with the label "Brand", especially for Java classes that extend TopComponent: And, as you can see here, it's not about the name of the class, i.e., not because the class above is named "BlaTopComponent" because below the "Brand" men item is also available for the class named "Bla": Both the files BlaTopComponent.java and Bla.java have the "Brand" menu item available, because both extend the "org.openide.windows.TopComponent"  class, as shown yesterday. Now we continue by creating a new JPanel, with checkboxes for each part of a TopComponent that we consider to be brandable. In my case, this is the end result, at deployment, when the Brand menu item is clicked for the Bla class: When the user (who, in this case, is a developer) clicks OK, a constructor is created and the related client properties are added, depending on which of the checkboxes are clicked: public Bla() {     putClientProperty(TopComponent.PROP_SLIDING_DISABLED, false);     putClientProperty(TopComponent.PROP_UNDOCKING_DISABLED, true);     putClientProperty(TopComponent.PROP_MAXIMIZATION_DISABLED, false);     putClientProperty(TopComponent.PROP_CLOSING_DISABLED, true);     putClientProperty(TopComponent.PROP_DRAGGING_DISABLED, false); } At this point, no check is done to see whether a constructor already exists, nor whether the client properties are already available. That's for an upcoming blog entry! Right now, the constructor is always created, regardless of whether it already exists, and the client properties are always added. The key to all this is the 'actionPeformed' of the TopComponent, which was left empty yesterday. We start by creating a JDialog from the JPanel and we retrieve the selected state of the checkboxes defined in the JPanel: @Override public void actionPerformed(ActionEvent ev) {     String msg = dobj.getName() + " Branding";     final BrandTopComponentPanel brandTopComponentPanel = new BrandTopComponentPanel();     dd = new DialogDescriptor(brandTopComponentPanel, msg, true, new ActionListener() {         @Override         public void actionPerformed(ActionEvent e) {             Object result = dd.getValue();             if (DialogDescriptor.OK_OPTION == result) {                 isClosing = brandTopComponentPanel.getClosingCheckBox().isSelected();                 isDragging = brandTopComponentPanel.getDraggingCheckBox().isSelected();                 isMaximization = brandTopComponentPanel.getMaximizationCheckBox().isSelected();                 isSliding = brandTopComponentPanel.getSlidingCheckBox().isSelected();                 isUndocking = brandTopComponentPanel.getUndockingCheckBox().isSelected();                 JavaSource javaSource = JavaSource.forFileObject(dobj.getPrimaryFile());                 try {                     javaSource.runUserActionTask(new ScanTask(javaSource), true);                 } catch (IOException ex) {                     Exceptions.printStackTrace(ex);                 }             }         }     });     DialogDisplayer.getDefault().createDialog(dd).setVisible(true); } Then we start a scan process, which introduces the branding. We're already doing a scan process for identifying whether a class is a TopComponent. So, let's combine those two scans, branching out based on which one we're doing: private class ScanTask implements Task<CompilationController> {     private BrandTopComponentAction action = null;     private JavaSource js = null;     private ScanTask(JavaSource js) {         this.js = js;     }     private ScanTask(BrandTopComponentAction action) {         this.action = action;     }     @Override     public void run(final CompilationController info) throws Exception {         info.toPhase(Phase.ELEMENTS_RESOLVED);         if (action != null) {             new EnableIfTopComponentScanner(info, action).scan(                     info.getCompilationUnit(), null);         } else {             introduceBranding();         }     }     private void introduceBranding() throws IOException {         CancellableTask task = new CancellableTask<WorkingCopy>() {             @Override             public void run(WorkingCopy workingCopy) throws IOException {                 workingCopy.toPhase(Phase.RESOLVED);                 CompilationUnitTree cut = workingCopy.getCompilationUnit();                 TreeMaker treeMaker = workingCopy.getTreeMaker();                 for (Tree typeDecl : cut.getTypeDecls()) {                     if (Tree.Kind.CLASS == typeDecl.getKind()) {                         ClassTree clazz = (ClassTree) typeDecl;                         ModifiersTree methodModifiers = treeMaker.Modifiers(Collections.<Modifier>singleton(Modifier.PUBLIC));                         MethodTree newMethod =                                 treeMaker.Method(methodModifiers,                                 "<init>",                                 treeMaker.PrimitiveType(TypeKind.VOID),                                 Collections.<TypeParameterTree>emptyList(),                                 Collections.EMPTY_LIST,                                 Collections.<ExpressionTree>emptyList(),                                 "{ putClientProperty(TopComponent.PROP_SLIDING_DISABLED, " + isSliding + ");\n"+                                 "  putClientProperty(TopComponent.PROP_UNDOCKING_DISABLED, " + isUndocking + ");\n"+                                 "  putClientProperty(TopComponent.PROP_MAXIMIZATION_DISABLED, " + isMaximization + ");\n"+                                 "  putClientProperty(TopComponent.PROP_CLOSING_DISABLED, " + isClosing + ");\n"+                                 "  putClientProperty(TopComponent.PROP_DRAGGING_DISABLED, " + isDragging + "); }\n",                                 null);                         ClassTree modifiedClazz = treeMaker.addClassMember(clazz, newMethod);                         workingCopy.rewrite(clazz, modifiedClazz);                     }                 }             }             @Override             public void cancel() {             }         };         ModificationResult result = js.runModificationTask(task);         result.commit();     } } private static class EnableIfTopComponentScanner extends TreePathScanner<Void, Void> {     private CompilationInfo info;     private final AbstractAction action;     public EnableIfTopComponentScanner(CompilationInfo info, AbstractAction action) {         this.info = info;         this.action = action;     }     @Override     public Void visitClass(ClassTree t, Void v) {         Element el = info.getTrees().getElement(getCurrentPath());         if (el != null) {             TypeElement te = (TypeElement) el;             if (te.getSuperclass().toString().equals("org.openide.windows.TopComponent")) {                 action.setEnabled(true);             } else {                 action.setEnabled(false);             }         }         return null;     } }

    Read the article

< Previous Page | 106 107 108 109 110 111 112 113 114 115 116 117  | Next Page >