Search Results

Search found 3409 results on 137 pages for 'distributed computing'.

Page 111/137 | < Previous Page | 107 108 109 110 111 112 113 114 115 116 117 118  | Next Page >

  • Programação paralela no .NET Framework 4 – Parte I

    - by anobre
    Introdução O avanço de tecnologia nos últimos anos forneceu, a baixo custo, acesso  a workstations com inúmeros CPUs. Facilmente encontramos hoje máquinas clientes com 2, 4 e até 8 núcleos, sem considerar os “super-servidores” com até 36 processadores :) Da wikipedia: A Unidade central de processamento (CPU, de acordo com as iniciais em inglês) ou o processador é a parte de um sistema de computador que executa as instruções de um programa de computador, e é o elemento primordial na execução das funções de um computador. Este termo tem sido usado na indústria de computadores pelo menos desde o início dos anos 1960[1]. A forma, desenho e implementação de CPUs têm mudado dramaticamente desde os primeiros exemplos, mas o seu funcionamento fundamental permanece o mesmo. Fazendo uma analogia, seria muito interessante delegarmos tarefas no mundo real que podem ser executadas independentemente a pessoas diferentes, atingindo desta forma uma  maior performance / produtividade na sua execução. A computação paralela se baseia na idéia que um problema maior pode ser dividido em problemas menores, sendo resolvidos de forma paralela. Este pensamento é utilizado há algum tempo por HPC (High-performance computing), e através das facilidades dos últimos anos, assim como a preocupação com consumo de energia, tornaram esta idéia mais atrativa e de fácil acesso a qualquer ambiente. No .NET Framework A plataforma .NET apresenta um runtime, bibliotecas e ferramentas para fornecer uma base de acesso fácil e rápido à programação paralela, sem trabalhar diretamente com threads e thread pool. Esta série de posts irá apresentar todos os recursos disponíveis, iniciando os estudos pela TPL, ou Task Parallel Library. Task Parallel Library A TPL é um conjunto de tipos localizados no namespace System.Threading e System.Threading.Tasks, a partir da versão 4 do framework. A partir da versão 4 do framework, o TPL é a maneira recomendada para escrever código paralelo e multithreaded. http://msdn.microsoft.com/en-us/library/dd460717(v=VS.100).aspx Task Parallelism O termo “task parallelism”, ou em uma tradução live paralelismo de tarefas, se refere a uma ou mais tarefas sendo executadas de forma simultanea. Considere uma tarefa como um método. A maneira mais fácil de executar tarefas de forma paralela é o código abaixo: Parallel.Invoke(() => TrabalhoInicial(), () => TrabalhoSeguinte()); O que acontece de verdade? Por trás nos panos, esta instrução instancia de forma implícita objetos do tipo Task, responsável por representar uma operação assíncrona, não exatamente paralela: public class Task : IAsyncResult, IDisposable É possível instanciar Tasks de forma explícita, sendo uma alternativa mais complexa ao Parallel.Invoke. var task = new Task(() => TrabalhoInicial()); task.Start(); Outra opção de instanciar uma Task e já executar sua tarefa é: var t = Task<int>.Factory.StartNew(() => TrabalhoInicialComValor());var t2 = Task<int>.Factory.StartNew(() => TrabalhoSeguinteComValor()); A diferença básica entre as duas abordagens é que a primeira tem início conhecido, mais utilizado quando não queremos que a instanciação e o agendamento da execução ocorra em uma só operação, como na segunda abordagem. Data Parallelism Ainda parte da TPL, o Data Parallelism se refere a cenários onde a mesma operação deva ser executada paralelamente em elementos de uma coleção ou array, através de instruções paralelas For e ForEach. A idéia básica é pegar cada elemento da coleção (ou array) e trabalhar com diversas threads concomitantemente. A classe-chave para este cenário é a System.Threading.Tasks.Parallel // Sequential version foreach (var item in sourceCollection) { Process(item); } // Parallel equivalent Parallel.ForEach(sourceCollection, item => Process(item)); Complicado né? :) Demonstração Acesse aqui um vídeo com exemplos (screencast). Cuidado! Apesar da imensa vontade de sair codificando, tome cuidado com alguns problemas básicos de paralelismo. Neste link é possível conhecer algumas situações. Abraços.

    Read the article

  • Oracle Virtualization at Oracle OpenWorld 2012

    - by Chris Kawalek
    Mini-Series Entry 1 of 3: Hands-On Virtualization This is the first entry of a 3 part mini-series aimed at highlighting server and desktop virtualization at this year’s Oracle OpenWorld.  Oracle OpenWorld 2012 is fast approaching! If you are as excited as we are about the fascinating new Oracle virtualization content featured at Oracle OpenWorld 2012, you won’t want to miss this blog mini-series. We will be highlighting sessions that cover advances and innovations in our products, our product strategy and roadmap, and hands on labs for step-by-step instructions from our field and product experts. In the blog mini-series you will learn about: The Oracle Virtualization general keynote session Hands-on labs  Key Oracle server and desktop virtualization sessions In this entry, we will cover the Oracle Virtualization keynote session and the hands-on labs you won't want to miss. General Session: Oracle Virtualization Strategy and Roadmap Session ID: GEN8725 Oracle offers the industry’s most complete and integrated virtualization portfolio enabling organizations to realize benefits beyond simple consolidation as they transform their data centers into flexible cloud-based infrastructures. Join Oracle executives and experts to learn about Oracle’s desktop-to-data-center virtualization solutions, such as the OS, with built-in management integration at all layers that can help you virtualize and manage the complete computing environment, from physical servers to virtual servers and applications. This “don’t-miss” session offers details of the latest product updates and strategy; product roadmaps; integration with enterprise applications; and real-world examples of how Oracle server, desktop, and storage virtualization is benefiting customers. Here are our top picks for Hands-On Labs for Oracle OpenWorld 2012: Oracle Virtual Desktop Infrastructure Performance and Tablet Mobility Session ID: HOL9907 This hands-on lab demonstrates the performance (using an industry-standard load tester) and roaming capabilities of Oracle Virtual Desktop Infrastructure with Oracle’s Sun Ray Clients, Apple iPad and other clients. Deploying an IaaS Environment with Oracle VM: Hands-On Lab  Session ID: HOL9558 This hands-on lab takes you through the planning and deployment of an infrastructure as a service (IaaS) environment with Oracle VM as the foundation. It covers a range of topics, from planning storage capacity, LUN creation, network bandwidth planning, and best practices to designing and streamlining the environment for ease of management. Learn from deeply experienced field engineers and product experts. Virtualize and Deploy Oracle Applications in Minutes with Oracle VM: Hands-On Lab Session ID: HOL9559 This hands-on lab is for application architects or system administrators who will need to deploy and manage Oracle Applications. You’ll learn how Oracle VM Templates can turn you into a power user who can virtualize and deploy complex Oracle Applications in minutes. Longtime field-experienced engineers and product experts will show you, step by step, how to download and import templates and deploy the applications. x86 Enterprise Cloud Infrastructure with Oracle VM 3.x and Sun ZFS Storage Appliance Session ID: HOL9870 The purpose of this hands-on lab is to demonstrate the functionality and usage of Oracle’s enterprise cloud infrastructure for x86 with Oracle VM 3.x. It covers:  Creation of VMs Migration of VMs  Quick and easy deployment of Oracle applications with Oracle VM Templates  Usage of the Storage Connect plug-in for the Sun ZFS Storage Appliance You can find these and other great sessions on the Oracle OpenWorld 2012 Content Catalogue. Start checking now to better plan and organize your week at the conference. Then you’ll be ready to sign up for all of your sessions in mid-July when the scheduling tool goes live. While the hands-on labs allow you to directly interact with Oracle virtualization products, the conference sessions allow you to hear from a wide variety of industry experts on how they're using they technology in real world deployments, solving specific challenges, and more. In tomorrow's entry, we'll start talking about the many conference sessions related to Oracle server and desktop virtualization you can attend during the show. See you then! - The Oracle Virtualization marketing team

    Read the article

  • Surface Review from Canadian Guy Who Didn&rsquo;t Go To Build

    - by D'Arcy Lussier
    I didn’t go to Build last week, opted to stay home and go trick-or-treating with my daughters instead. I had many friends that did go however, and I was able to catch up with James Chambers last night to hear about the conference and play with his Surface RT and Nokia 920 WP8 devices. I’ve been using Windows 8 for a while now, so I’m not going to comment on OS features – lots of posts out there on that already. Let me instead comment on the hardware itself. Size and Weight The size of the tablet was awesome. The Windows 8 tablet I’m using to reference this against is the one from Build 2011 (Samsung model) we received as well as my iPad. The Surface RT was taller and slightly heavier than the iPad, but smaller and lighter than the Samsung Win 8 tablet. I still don’t prefer the default wide-screen format, but the Surface RT is much more usable even when holding it by the long edge than the Samsung. Build Quality No issues with the build quality, it seemed very solid. But…y’know, people have been going on about how the Surface RT materials are so much better than the plastic feeling models Samsung and others put out. I didn’t really notice *that* much difference in that regard with the Surface RT. Interesting feature I didn’t expect – the Windows button on the device is touch-sensitive, not a mechanical one. I didn’t try video or anything, so I can’t comment on the media experience. The kickstand is a great feature, and the way the Surface RT connects to the combo case/keyboard touchcover is very slick while being incredibly simple. What About That Touch Cover Keyboard? So first, kudos to Microsoft on the touch cover! This thing was insanely responsive (including the trackpad) and really delivered on the thinness I was expecting. With that said, and remember this is with very limited use, I would probably go with the Type Cover instead of the Touch Cover. The difference is buttons. The Touch Cover doesn’t actually have “buttons” on the keyboard – hence why its a “touch” cover. You tap on a key to type it. James tells me after a while you get used to it and you can type very fast. For me, I just prefer the tactile feeling of a button being pressed/depressed. But still – typing on the touch case worked very well. Would I Buy One? So after playing with it, did I cry out in envy and rage that I wasn’t able to get one of these machines? Did I curse my decision to collect Halloween candy with my kids instead of being at Build getting hardware? Well – no. Even with the keyboard, the Surface RT is not a business laptop replacement device. While Office does come included, you can’t install any other applications outside of Windows Store Apps. This might be limiting depending on what other applications you need to have available on your computer. Surface RT is a great personal computing device, as long as you’re not already invested in a competing ecosystem. I’ve heard people make statements that they’re going to replace all the iPads in their homes with Surface tablets. In my home, that’s not feasible – my wife and daughters have amassed quite a collection of games via iTunes. We also buy all our music via iTunes as well, so even with the XBox streaming music service now available we’re still tied quite tightly to iTunes. So who is the Surface RT for? In my mind, if you’re looking for a solid, compact device that provides basic business functionality (read: email) or if you have someone that needs a very simple to use computer for email, web browsing, etc., then Surface RT is a great option. For me, I’m waiting on the Samsung Ativ Smart PC Pro and am curious to see what changes the Surface Pro will come with.

    Read the article

  • OBIEE 11.1.1 - Introduction to OBIEE 11g Full Sample App

    - by user809526
    Isn't it nice to discover OBIEE 11g around a nice "How To" catalog of features? to observe OBI and Essbase relationships at work? to discover TimesTen? The OBIEE 11g Full Sample App (FSA) is a comprehensive collection of examples designed to demonstrate the latest Oracle BIEE 11g capabilities and design best practices: Enhanced visualizations as Geo-spacial maps and interactive dashboards, Action Framework,  BI Publisher, Scorecard and Strategy Management, Mobile style sheets, Semantic layer modeling, Multi-source federation, Integration with products such as Essbase, Oracle OLAP, ODM, TimesTen, ODI and more The FSA is intended to be comprehensive, it is big (see CAVEAT below). The FSA is not an Oracle product, it is a good will free deployment of OBIEE/Essbase designed to exemplify OBIEE features, infrastructure and security around the Fusion Middleware components. Its contents and code are distributed free for demonstrative purposes only. It is neither maintained nor supported by Oracle as a licensed product. The OBIEE Full Sample App is independent of the default Sample App that comes with the OBIEE product. BENEFITS The FSA helps as a demonstrator of OBIEE 11g best practices, a tutorial, an environment "Test & Scrap", a SR bench (regression, conflicts), a tuning bench, a quick ready made POC seed for projects, a security options environment, ... The FSA - Is organized around a catalog of functional features - Has been deployed over 1000 times, it should be stable RELEASE The Full Sample App (V107) is bound to OBIEE 11.1.1.5 and Essbase 11.1.2.1 (November 2011). The FSA release dates are independent of the Product GA date (OBIEE). In early December 2011, a new functional Patch (V110) is released. It is easily applied (in less than 15 mins) on top of OBIEE SampleApp 11.1.1.5 (V107). The patch (V110) includes additional functional examples:        1. Web Catalog Statistics Application: Provides detailed insight into your web catalog content, dormant catalog objects, webcat impact analysis for metadata changes and more        2. Data inflation Scripts: A set of simple SQL procedures to quickly inflate SampleApp Fact and Dimension data to millions of records in a few minutes        3. Public Content Extensions Framework: A patching framework for public examples and contributions leveraging SampleApp        4. Additional report examples (including bridge report, external chart integrations) and bug fixes DISTRIBUTION as VBox image (November 2011) The ready made VBox image is designed to run on Virtual Box. It can be converted to VMware (see another BLOG). 1/ http://www.oracle.com/technetwork/middleware/bi-foundation/obiee-samples-167534.html VBox Image Deployment Guide Sampleapp_v107_GA.ovf - VBox image key file The above http URL provides the user:password for the ftp URLs below. 2/ ftp://user:[email protected]/static/SampleAppV107/ 12 "7-zip" files Sampleapp_v107_GA_7_20.7z.001 -> .012 We recommend 7-zip file manager for unzipping (http://www.7-zip.org/). Select Unzip here option, it will create the contents under a directory named "SampleApp_10722". On Windows, it is important to download and save zip file under the root directory (e.g. C:\ or D:\) because of possible long pathnames. 3/ ftp://user:[email protected]/static/SampleAppV107/Unzipped_Version/ 4 files Sampleapp_v107_GA-disk[1234].vmdk Important note: Check the provided checksums (md5sum). Please do it! DISTRIBUTION as Installation files for existing OBI 11.1.1.5 (November 2011) http://www.oracle.com/technetwork/middleware/bi-foundation/obiee-samples-167534.html Install files Deployment Guide SampleApp_10722_1.zip - 198 MB CAVEAT Many computers have RAM chips problems that keep often silent ... until you manipulate big files. It is strongly advised you run some memory check program eg MEMTEST in GRUB boot manager. Running md5sum repeatedly onto the very same big file must be consistent [same result], else a hardware memory problem is suspected. For Virtual Box, you should most likely enable VT-X (Vanderpool) hardware virtualization in BIOS. A free disk space of 80 GB is required to perform safely the VBox image installation. A Virtual Machine of minimum 6 to 7 GB memory fits the needs of combining OBIEE and Essbase execution.

    Read the article

  • Oracle’s New Memory-Optimized x86 Servers: Getting the Most Out of Oracle Database In-Memory

    - by Josh Rosen, x86 Product Manager-Oracle
    With the launch of Oracle Database In-Memory, it is now possible to perform real-time analytics operations on your business data as it exists at that moment – in the DRAM of the server – and immediately return completely current and consistent data. The Oracle Database In-Memory option dramatically accelerates the performance of analytics queries by storing data in a highly optimized columnar in-memory format.  This is a truly exciting advance in database technology.As Larry Ellison mentioned in his recent webcast about Oracle Database In-Memory, queries run 100 times faster simply by throwing a switch.  But in order to get the most from the Oracle Database In-Memory option, the underlying server must also be memory-optimized. This week Oracle announced new 4-socket and 8-socket x86 servers, the Sun Server X4-4 and Sun Server X4-8, both of which have been designed specifically for Oracle Database In-Memory.  These new servers use the fastest Intel® Xeon® E7 v2 processors and each subsystem has been designed to be the best for Oracle Database, from the memory, I/O and flash technologies right down to the system firmware.Amongst these subsystems, one of the most important aspects we have optimized with the Sun Server X4-4 and Sun Server X4-8 are their memory subsystems.  The new In-Memory option makes it possible to select which parts of the database should be memory optimized.  You can choose to put a single column or table in memory or, if you can, put the whole database in memory.  The more, the better.  With 3 TB and 6 TB total memory capacity on the Sun Server X4-4 and Sun Server X4-8, respectively, you can memory-optimize more, if not your entire database.   Sun Server X4-8 CMOD with 24 DIMM slots per socket (up to 192 DIMM slots per server) But memory capacity is not the only important factor in selecting the best server platform for Oracle Database In-Memory.  As you put more of your database in memory, a critical performance metric known as memory bandwidth comes into play.  The total memory bandwidth for the server will dictate the rate in which data can be stored and retrieved from memory.  In order to achieve real-time analysis of your data using Oracle Database In-Memory, even under heavy load, the server must be able to handle extreme memory workloads.  With that in mind, the Sun Server X4-8 was designed with the maximum possible memory bandwidth, providing over a terabyte per second of total memory bandwidth.  Likewise, the Sun Server X4-4 also provides extreme memory bandwidth in an even more compact form factor with over half a terabyte per second, providing customers with scalability and choice depending on the size of the database.Beyond the memory subsystem, Oracle’s Sun Server X4-4 and Sun Server X4-8 systems provide other key technologies that enable Oracle Database to run at its best.  The Sun Server X4-4 allows for up 4.8 TB of internal, write-optimized PCIe flash while the Sun Server X4-8 allows for up to 6.4 TB of PCIe flash.  This enables dramatic acceleration of data inserts and updates to Oracle Database.  And with the new elastic computing capability of Oracle’s new x86 servers, server performance can be adapted to your specific Oracle Database workload to ensure that every last bit of processing power is utilized.Because Oracle designs and tests its x86 servers specifically for Oracle workloads, we provide the highest possible performance and reliability when running Oracle Database.  To learn more about Sun Server X4-4 and Sun Server X4-8, you can find more details including data sheets and white papers here. Josh Rosen is a Principal Product Manager for Oracle’s x86 servers, focusing on Oracle’s operating systems and software.  He previously spent more than a decade as a developer and architect of system management software. Josh has worked on system management for many of Oracle's hardware products ranging from the earliest blade systems to the latest Oracle x86 servers. 

    Read the article

  • How to Install Oracle Software on Remote Linux Server

    - by James Taylor
    It is becoming more common these days to install Oracle software on remote Linux servers. This issue has always existed but was generally resolved either by silent installs or by someone physically going to the server to install the software. This is becoming more difficult with the popular virtualisation and cloud deployment strategies. This post provides the steps involved to install Oracle Software using the GUI interface on a remote Linux server. There are many ways to achieve this, the way I resolve this issue is via Virtual Network Computing (VNC) as it is shipped with RedHat and OEL out of the box. For this post I’m using OEL 5 deployed on a OVM guest. If not already done so download and install a client version of VNC so you can connect to the server. There are many out there, for the purpose of this post I use UltraVNC. You can download a free version from http://www.uvnc.com/download/index.html By default VNC Server is installed in your RedHat and OEL OS, but it is not configured. The way VNC works is when started it creates a client instance for the user and binds it to a specific port. So if have an account on the Linux box you can setup a VNC Server session for that user, you don’t need to be root. For the purpose of this document I’m going to use oracle as the user to setup a VNC Session as this is the user I want use to install the software. However to start the VNC Service you must be root. As the root user run the following command: service vncserver start Starting VNC server: no displays configured                [  OK  ] Login to the Linux box as the user  you wan to install the Oracle software [oracle@lisa ~]$ Run the command to create a new VNC server instance for the oracle user: vncserver You will be ask to supply password information. This is what you will enter when connecting from your desktop client. This password is also independent of the actual Linux user password. The VNC Server is acting as a proxy to this instance. You will require a password to access your desktops. Password: Verify: xauth:  creating new authority file /home/oracle/.Xauthority New 'lisa.nz.oracle.com:1 (oracle)' desktop is lisa.nz.oracle.com:1 Creating default startup script /home/oracle/.vnc/xstartup Starting applications specified in /home/oracle/.vnc/xstartup Log file is /home/oracle/.vnc/lisa.nz.oracle.com:1.log As you can see a new instance lisa.nz.oracle.com:1 has been created. If you were to run the vncserver command again another instance lisa.nz.oracle.com:2 will be created. If you are going through a firewall you will need to ensure that the port 5901 (port 1) is open between your client desktop and the Linux Server. Depending on the options chosen at install time a firewall could be in place. The simplest way to disable this is using the command. You will need to be root. service iptables stop This will stop the firewall while you install. If you just want to add a port to the accepted lists use the firewall UI. You will need to be root. system-config-security-level Now you are ready to connect to the server via the VNC. Using the software installed in step one start the VNC Client. You should be prompted for the server and port. If connectivity is established, you will be prompted for the password entered in step 5. You should now be presented with a terminal screen ready to install software Go to the location of the oracle install software and start the Oracle Universal Installer

    Read the article

  • Oracle Enterprise Manager 11g is Here!

    - by chung.wu
    We hope that you enjoyed the launch event. If you missed it, you may still watch it via our on demand webcast, which is being produced and will be posted very shortly. 11gR1 is a major release of Oracle Enterprise Manager, and as one would expect from a big release, there are many new capabilities that appeal to a broad set of audience. Before going into the laundry list of new features, let's talk about the key themes for this release to put things in perspective. First, this release is about Business Driven Application Management. The traditional paradigm of component centric systems management simply cannot satisfy the management needs of modern distributed applications, as they do not provide adequate visibility of whether these applications are truly meeting the service level expectations of the business users. Business Driven Application Management helps IT manage applications according to the needs of the business users so that valuable IT resources can be better focused to help deliver better business results. To support Business Driven Application Management, 11gR1 builds on the work that we started in 10g to provide better support for user experience management. This capability helps IT better understand how users use applications and the experience that the applications provide so that IT can take actions to help end users get their work done more effectively. In addition, this release also delivers improved business transaction management capabilities to make it faster and easier to understand and troubleshoot transaction problems that impact end user experience. Second, this release includes strengthened Integrated Application-to-Disk Management. Every component of an application environment, from the application logic to the application server, to database, host machines and storage devices, etc... can affect end user experience. After user experience improvement needs are identified, IT needs tools that can be used do deep dive diagnostics for each of the application environment component, analyze configurations and deploy changes. Enterprise Manager 11gR1 extends coverage of key application environment components to include full support for Oracle Database 11gR2, Exadata V2, and Fusion Middleware 11g. For composite and Java application management, two key pieces of technologies, JVM Diagnostic and Composite Application Monitoring and Modeler, are now fully integrated into Enterprise Manager so there is no need to install and maintain separate tools. In addition, we have delivered the first set of integration between Enterprise Manager Grid Control and Enterprise Manager Ops Center so that hardware level events can be centrally monitored via Grid Control. Finally, this release delivers Integrated Systems Management and Support for customers of Oracle technologies. Traditionally, systems management tools and tech support were separate silos. When problems occur, administrators used internally deployed tools to try to solve the problems themselves. If they couldn't fix the problems, then they would use some sort of support website to get help from the vendor's support staff. Oracle Enterprise Manager 11g integrates problem diagnostic and remediation workflow. Administrators can use Oracle Enterprise Manager's various diagnostic tools to begin the troubleshooting process. They can also use the integrated access to My Oracle Support to look up solutions and download software patches. If further help is needed, administrators can open service requests from right within Oracle Enterprise Manager and track status update. Oracle's support staff, using Enterprise Manager's configuration management capabilities, can collect important configuration information about customer environments in order to expedite problem resolution. This tight integration between Oracle Enterprise Manager and My Oracle Support helps Oracle customers achieve a Superior Ownership Experience for their Oracle products. So there you have it. This is a brief 50,000 feet overview of Oracle Enterprise Manager 11g. We know you are hungry for the details. We are going to write about it in the coming days and weeks. For those of you that absolutely can't wait to find out more, you may download our software to try it out today. In fact, for the first time ever, the initial release of Oracle Enterprise Manager is available for both 32 and 64 bit Linux. Additional O/S ports will arrive in the coming weeks. Please stay tuned on the Oracle Enterprise Manager blog for additional updates.

    Read the article

  • Oracle Database 12 c Training and Certification: What’s in it for Me?

    - by KJones
    Oracle Database 12c has officially launched! Through Oracle University, our expert instructors can introduce you to the features and functions of this new Oracle Database 12c product. Through training courses and certification exam prep seminars, you can build up your database knowledge and apply this knowledge to advance your career. Already an Oracle Database Expert? Why Oracle Database 12c Training is still a Good Idea Oracle is the industry leader for database technology and takes the release of new products very seriously. We continue to listen to customer needs and add features and functionality to address those needs. Oracle Database 12c is no exception. The following areas have been greatly enhanced and should be considered for your additional training or certification: • Database for Cloud Computing • Compression and Information Lifecycle Management (ILM) • Improved Performance & Scalability • Extreme Availability • Security Defense in Depth • Manageability Oracle Certified Database Administrators Reap Career Rewards Becoming an expert user of database technology through Oracle University's certification program widens your skill set to demonstrate your expertise implementing the most advanced database technology available. By doing so, you'll make yourself a more marketable employee and candidate in the job market.  Reasons to Become an Oracle Certified Database Administrator of Oracle Database 12c: • The new Oracle Database 12c certifications emphasize more advanced skills that align with industry standards, resulting in an even more valuable credential for customers and partners. • The Oracle Certified Associate (OCA) for Oracle Database 12c centers upon certification objectives that measure IT professionals' day-to-day skills, along with your ability to manage challenges. • Building upon all of the competencies incorporated into Oracle's Database 12c OCA certification, the Oracle Certified Professional (OCP) for Oracle Database 12c certification includes advanced knowledge and skills required of top-performing database administrators. • The Oracle Certified Master (OCM) for Oracle Database 12c - a very challenging and elite top-level certification - certifies the most highly skilled and experienced database experts. • Oracle offers 12c upgrade paths for existing Oracle Certified Professionals (OCP) and Oracle Certified Masters (OCM). Database 12c Training and Certification: Built with Your Input When creating Oracle Database 12c training courses and certifications, we wanted to know which tasks are most important in a DBA's day-to-day work. Instead of assuming what those tasks might be, we decided to develop a job task analysis survey for DBAs. The response rate from DBAs from around the world was overwhelming! The survey focused on the following key database areas: • DBA Core Essentials • Database Storage • High Availability • Scalability • Networking • Security • Very Large Database Administration • Distributed Databases After conducting this survey, we took this specific feedback and used it to help mold the new Oracle Database 12c training and certification curriculum. The benefit to you? You now have access to Oracle Database 12c courses and certification exams that were created with your specific on-the-job tasks in mind. Explore Oracle Database 12c Training & Certification Today Investing in Oracle Database 12c training courses and certifications will help you develop a great deal of knowledge, experience and expertise. Explore our portfolio of offerings to determine which skills you need as a DBA to get up-to-speed on Oracle Database 12c technology. Questions or comments about the new Oracle Database 12c offerings? Let us know in the comments below. - Diana Gray, Principle Curriculum Product Manager and Raza Siddiqui, Senior Principle Curriculum Product Manager

    Read the article

  • Talking JavaOne with Rock Star Simon Ritter

    - by Janice J. Heiss
    Oracle’s Java Technology Evangelist Simon Ritter is well known at JavaOne for his quirky and fun-loving sessions, which, this year include: CON4644 -- “JavaFX Extreme GUI Makeover” (with Angela Caicedo on how to improve UIs in JavaFX) CON5352 -- “Building JavaFX Interfaces for the Real World” (Kinect gesture tracking and mind reading) CON5348 -- “Do You Like Coffee with Your Dessert?” (Some cool demos of Java of the Raspberry Pi) CON6375 -- “Custom JavaFX Charts: (How to extend JavaFX Chart controls with some interesting things) I recently asked Ritter about the significance of the Raspberry Pi, the topic of one of his sessions that consists of a credit card-sized single-board computer developed in the UK with the intention of stimulating the teaching of basic computer science in schools. “I don't think there's one definitive thing that makes the RP significant,” observed Ritter, “but a combination of things that really makes it stand out. First, it's the cost: $35 for what is effectively a completely usable computer. OK, so you have to add a power supply, SD card for storage and maybe a screen, keyboard and mouse, but this is still way cheaper than a typical PC. The choice of an ARM processor is also significant, as it avoids problems like cooling (no heat sink or fan) and can use a USB power brick.  Combine these two things with the immense groundswell of community support and it provides a fantastic platform for teaching young and old alike about computing, which is the real goal of the project.”He informed me that he’ll be at the Raspberry Pi meetup on Saturday (not part of JavaOne). Check out the details here.JavaFX InterfacesWhen I asked about how JavaFX can interface with the real world, he said that there are many ways. “JavaFX provides you with a simple set of programming interfaces that can create complex, cool and compelling user interfaces,” explained Ritter. “Because it's just Java code you can combine JavaFX with any other Java library to provide data to display and control the interface. What I've done for my session is look at some of the possible ways of doing this using some of the amazing hardware that's available today at very low cost. The Kinect sensor has added a new dimension to gaming in terms of interaction; there's a Java API to access this so you can easily collect skeleton tracking data from it. Some clever people have also written libraries that can track gestures like swipes, circles, pushes, and so on. We use these to control parts of the UI. I've also experimented with a Neurosky EEG sensor that can in some ways ‘read your mind’ (well, at least measure some of the brain functions like attention and meditation).  I've written a Java library for this that I include as a way of controlling the UI. We're not quite at the stage of just thinking a command though!” Here Comes Java EmbeddedAnd what, from Ritter’s perspective, is the most exciting thing happening in the world of Java today? “I think it's seeing just how Java continues to become more and more pervasive,” he said. “One of the areas that is growing rapidly is embedded systems.  We've talked about the ‘Internet of things’ for many years; now it's finally becoming a reality. With the ability of more and more devices to include processing, storage and networking we need an easy way to write code for them that's reliable, has high performance, and is secure. Java fits all these requirements. With Java Embedded being a conference within a conference, I'm very excited about the possibilities of Java in this space.”Check out Ritter’s sessions or say hi if you run into him. Originally published on blogs.oracle.com/javaone.

    Read the article

  • Talking JavaOne with Rock Star Simon Ritter

    - by Janice J. Heiss
    Oracle’s Java Technology Evangelist Simon Ritter is well known at JavaOne for his quirky and fun-loving sessions, which, this year include: CON4644 -- “JavaFX Extreme GUI Makeover” (with Angela Caicedo on how to improve UIs in JavaFX) CON5352 -- “Building JavaFX Interfaces for the Real World” (Kinect gesture tracking and mind reading) CON5348 -- “Do You Like Coffee with Your Dessert?” (Some cool demos of Java of the Raspberry Pi) CON6375 -- “Custom JavaFX Charts: (How to extend JavaFX Chart controls with some interesting things) I recently asked Ritter about the significance of the Raspberry Pi, the topic of one of his sessions that consists of a credit card-sized single-board computer developed in the UK with the intention of stimulating the teaching of basic computer science in schools. “I don't think there's one definitive thing that makes the RP significant,” observed Ritter, “but a combination of things that really makes it stand out. First, it's the cost: $35 for what is effectively a completely usable computer. OK, so you have to add a power supply, SD card for storage and maybe a screen, keyboard and mouse, but this is still way cheaper than a typical PC. The choice of an ARM processor is also significant, as it avoids problems like cooling (no heat sink or fan) and can use a USB power brick.  Combine these two things with the immense groundswell of community support and it provides a fantastic platform for teaching young and old alike about computing, which is the real goal of the project.”He informed me that he’ll be at the Raspberry Pi meetup on Saturday (not part of JavaOne). Check out the details here.JavaFX InterfacesWhen I asked about how JavaFX can interface with the real world, he said that there are many ways. “JavaFX provides you with a simple set of programming interfaces that can create complex, cool and compelling user interfaces,” explained Ritter. “Because it's just Java code you can combine JavaFX with any other Java library to provide data to display and control the interface. What I've done for my session is look at some of the possible ways of doing this using some of the amazing hardware that's available today at very low cost. The Kinect sensor has added a new dimension to gaming in terms of interaction; there's a Java API to access this so you can easily collect skeleton tracking data from it. Some clever people have also written libraries that can track gestures like swipes, circles, pushes, and so on. We use these to control parts of the UI. I've also experimented with a Neurosky EEG sensor that can in some ways ‘read your mind’ (well, at least measure some of the brain functions like attention and meditation).  I've written a Java library for this that I include as a way of controlling the UI. We're not quite at the stage of just thinking a command though!” Here Comes Java EmbeddedAnd what, from Ritter’s perspective, is the most exciting thing happening in the world of Java today? “I think it's seeing just how Java continues to become more and more pervasive,” he said. “One of the areas that is growing rapidly is embedded systems.  We've talked about the ‘Internet of things’ for many years; now it's finally becoming a reality. With the ability of more and more devices to include processing, storage and networking we need an easy way to write code for them that's reliable, has high performance, and is secure. Java fits all these requirements. With Java Embedded being a conference within a conference, I'm very excited about the possibilities of Java in this space.”Check out Ritter’s sessions or say hi if you run into him.

    Read the article

  • Beginner Geek: Scan a Document or Picture in Windows 7

    - by Mysticgeek
    There may come a time when you want to digitize your priceless old pictures, or need to scan a receipts and documents for your company. Today we look at how to scan a picture or document in Windows 7. Scanning Your Document In this example we’re using an HP PSC 1500 All-In-One printer connected to a Windows 7 Home Premium 32-bit system. Different scanners will vary, however the process is essentially the same. The scanning process has changed a bit since the XP days. To scan a document in Windows 7, place the document or picture in the scanner, click on Start, and go to Devices and Printers.   When the Devices and Printers window opens, find your scanning device and double-click on it to get the manufacturers Printer Actions menu. For our HP PSC 1500 we have a few different options like printing, device setup, and scanner actions. Here we’ll click on the Scan a document or photo hyperlink. The New Scan window opens and from here you can adjust the quality of the scanned image and choose the output file type. Then click the Preview button to get an idea of what the image will look like.   If you’re not happy with the preview, then you can go back and make any adjustments to the quality of the document or photo. Once everything looks good, click on the Scan button. The scanning process will start. The amount of time it takes will depend on your scanner type, and the quality of the settings you choose. The higher the quality…the more time it will take. You will have the option to tag the picture if you want to… Now you can view your scanned document or photo inside Windows Photo Viewer. If you’re happy with the look of the document, you can send it off in an email, put it on an network drive, FTP it… whatever you need to do with it. Another method is to place the document of photo you wish to scan in the scanner, open up Devices and Printers, then right-click on the scanning device and select Start Scan from the context menu. This should bypass the manufacturer screen and go directly into the New Scan window, where you can start the scan process. From the Context Menu you can also choose Scan Properties. This will allow you to test the scanner if you’re having problems with it and change some of its settings. Or you can choose Scan Profiles which allows you to use pre-selected settings, create your own, or set one as the default. Although scanning documents and photos isn’t a common occurrence as it was a few years ago, Windows 7 still includes the feature. When you need to scan a document or photo in Windows 7, this should get you started. Similar Articles Productive Geek Tips Easily Rotate Pictures In Word 2007Beginner Geek: Delete User Accounts in Windows 7Customize Your Welcome Picture Choices in Windows VistaSecure Computing: Detect and Eliminate Malware Using Windows DefenderMark Your Document As Final in Word 2007 TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips VMware Workstation 7 Acronis Online Backup DVDFab 6 Revo Uninstaller Pro Creating a Password Reset Disk in Windows Bypass Waiting Time On Customer Service Calls With Lucyphone MELTUP – "The Beginning Of US Currency Crisis And Hyperinflation" Enable or Disable the Task Manager Using TaskMgrED Explorer++ is a Worthy Windows Explorer Alternative Error Goblin Explains Windows Error Codes

    Read the article

  • iPad Impressions

    - by Aaron Lazenby
    So, I spent some quality time with my new iPad on Saturday. Here are things I like/don't like: -- Don't like that it has to sync with iTunes before you use it: I was traveling and left my laptop at home thinking I'd use this iPad thing instead. But the first thing it asked me to do is connect it to a laptop. Ugh. Had to borrow my mother-in-law's MacBook Pro just to get the iPad rolling. -- Like that magazines and newspapers are forever changed: And I think for the better...it's why I bought this thing in the first place. I spent significant time with The New York Times, The Wall Street Journal, Time Magazine and Popular Science on the iPad. Sliding stories around, jumping from section to section, enlarging images = all excellent experiences. Actually prefer iPad magazine to print, which will require a major shift in editorial strategy, summed up by Popular Science's Mark Jannot in his editor's note "What defines a magazine? Curated expertise--not paper." -- Don't like the screwy human factors: I actually enjoy the virtual keyboard (although I think I'm in the minority), but you have to hunch over to look down at what you're typing. Bad technology ergonomics have already jacked my body in various ways. The iPad just introduced a new one.-- Like the multitouch: In fact, it's awesome. Hands down. Probably will have the most lasting impact on the personal computing industry as a whole.   -- Don't like that it's heavy: If you plan to read in bed, you'd better double up on the creatine and curls. Holding this thing up on your own gets pretty uncomfortable. -- Like the Netfilx app: I wanted to watch "The Big Lebowski," so I did. That is all. -- Don't like that people feel 3G is necessary: For $30 a month? Please. I'm already accustomed to limiting my laptop internet use to readily available free wi-fi. Why do I expect anything different with the iPad? Most anyplace I have time to sit and read/use a computer (cafe, airport, you house, library, etc.) has free wi-fi. I can live without web surfing in your car. That's what the iPhone is for. -- Don't like that not everyone was ready in day one: I'm looking at you Facebook. No iPad app for launch? Lame. iPhone apps scaled-up to work on the iPad look grainy and cheap. Not a quality befitting this beautiful $700 piece of glass.Verdict: I'm bringing it to COLLABORATE 08 and seeing if I can go the whole week using only the iPad. If I can trade this thing for my laptop, I know it's a winner. For now, I'm enjoying Popular Science.

    Read the article

  • Is Microsoft&rsquo;s Cloud Bet Placed on the Ground?

    - by andrewbrust
    Today at the Unversity of Washington, Steve Ballmer gave a speech on Microsoft’s cloud strategy.  Significantly, Azure was only briefly mentioned and was not shown.  Instead, Ballmer spoke about what he called the five “dimensions” of the cloud, and used that as the basis for an almost philosophical discussion.  Ballmer opined on how the cloud should be distinguished from the Internet.as well as what the cloud will and should enable.  Ballmer worked hard to portray the cloud not as a challenger to Windows and PCs (as Google would certainly suggest it is) but  really as just the latest peripheral that adds value to PCs and devices. At one point during his speech, Ballmer said “We start with Windows at Microsoft.  It’s the most popular smart device on the planet.  And our design center for the future of Windows is to make it one of those smarter devices that the cloud really wants.”  I’m not sure I agree with Ballmer’s ambition here, but I must admit he’s taken the “software + services” concept and expanded on it in more consumer-friendly fashion. There were demos too.  For example, Blaise Aguera y Arcas reprised his Bing Maps demo from the TED conference held last month.  And Simon Atwell showed how Microsoft has teamed with Sky TV in the UK to turn Xbox into something that looks uncannily like Windows Media Center.  Specifically, an Xbox console app called Sky Player provides full access to Sky’s on-demand programming but also live TV access to an array of networks carried on its home TV service, complete with an on-screen programming guide.  Windows Phone 7 Series was shown quickly and Ballmer told us that while Windows Mobile/Phone 6.5 and earlier were designed for voice and legacy functionality, Windows Phone 7 Series is designed for the cloud. Over and over during Ballmer’s talk (and those of his guest demo presenters), the message was clear: Microsoft believes that client (“smart”) devices, and not mere HTML terminals, are the technologies to best deliver on the promise of the cloud.  The message was that PCs running Windows, game consoles and smart phones  whose native interfaces are Internet-connected offer the most effective way to utilize cloud capabilities.  Even the Bing Maps demo conveyed this message, because the advanced technology shown in the demo uses Silverlight (and thus the PCs computing power), and not AJAX (which relies only upon the browser’s native scripting and rendering capabilities) to produce the impressive interface shown to the audience. Microsoft’s new slogan, with respect to the cloud, is “we’re all in.”  Just as a Texas Hold ‘em player bets his entire stash of chips when he goes all in, so too is Microsoft “betting the company” on the cloud.  But it would seem that Microsoft’s bet isn’t on the cloud in a pure sense, and is instead on the power of the cloud to fuel new growth in PCs and other client devices, Microsoft’s traditional comfort zone.  Is that a bet or a hedge?  If the latter, is Microsoft truly all in?  I don’t really know.  I think many people would say this is a sucker’s bet.  But others would say it’s suckers who bet against Microsoft.  No matter what, the burden is on Microsoft to prove this contrarian view of the cloud is a sensible one.  To do that, they’ll need to deliver on cloud-connected device innovation.  And to do that, the whole company will need to feel that victory is crucial.  Time will tell.  And I expect to present progress reports in future posts.

    Read the article

  • Juju stuck in "pending" state when using LXC

    - by Andre
    So I'm trying to get started with Juju, and tried to do this locally using LXC. I followed the instructions here: How do I configure juju for local usage? Unfortunately this doesn't seem to work for me. status shows the following: $ juju status machines: 0: agent-state: running dns-name: localhost instance-id: local instance-state: running services: mysql: charm: cs:precise/mysql-1 relations: db: - wordpress units: mysql/0: agent-state: pending machine: 0 public-address: null wordpress: charm: cs:precise/wordpress-0 exposed: true relations: db: - mysql units: wordpress/0: agent-state: pending machine: 0 open-ports: [] public-address: null 2012-05-10 14:09:38,155 INFO 'status' command finished successfully As you can see the agent-state is 'pending' and there is no public address where I'm able to access the newly created site. Am I missing something here? UPDATE: Tried destroying the environment an doing everything again (multiple times). This is the output for debug-log: ~$ juju debug-log 2012-05-11 08:50:23,790 INFO Enabling distributed debug log. 2012-05-11 08:50:23,806 INFO Tailing logs - Ctrl-C to stop. 2012-05-11 08:50:42,338 Machine:0: juju.agents.machine DEBUG: Units changed old:set([]) new:set(['mysql/0']) 2012-05-11 08:50:42,339 Machine:0: juju.agents.machine DEBUG: Starting service unit: mysql/0 ... 2012-05-11 08:50:42,459 Machine:0: unit.deploy DEBUG: Downloading charm cs:precise/mysql-1 to /home/andre/.juju/data/andre-local/charms 2012-05-11 08:50:42,620 Machine:0: unit.deploy DEBUG: Using <juju.machine.unit.UnitContainerDeployment object at 0x9c54b6c> for mysql/0 in /home/andre/.juju/data/andre-local 2012-05-11 08:50:42,648 Machine:0: unit.deploy DEBUG: Starting service unit mysql/0... 2012-05-11 08:50:42,649 Machine:0: unit.deploy DEBUG: Creating master container... 2012-05-11 08:54:33,992 Machine:0: unit.deploy DEBUG: Created master container andre-local-0-template 2012-05-11 08:54:33,993 Machine:0: unit.deploy INFO: Creating container mysql-0... 2012-05-11 08:56:18,760 Machine:0: unit.deploy INFO: Container created for mysql/0 2012-05-11 08:56:19,466 Machine:0: unit.deploy DEBUG: Charm extracted into container 2012-05-11 08:56:19,569 Machine:0: unit.deploy DEBUG: Starting container... 2012-05-11 08:56:22,707 Machine:0: unit.deploy INFO: Started container for mysql/0 2012-05-11 08:56:22,707 Machine:0: unit.deploy INFO: Started service unit mysql/0 2012-05-11 08:56:23,012 Machine:0: juju.agents.machine DEBUG: Units changed old:set(['mysql/0']) new:set(['wordpress/0', 'mysql/0']) 2012-05-11 08:56:23,039 Machine:0: juju.agents.machine DEBUG: Starting service unit: wordpress/0 ... 2012-05-11 08:56:23,154 Machine:0: unit.deploy DEBUG: Downloading charm cs:precise/wordpress-0 to /home/andre/.juju/data/andre-local/charms 2012-05-11 08:56:23,396 Machine:0: unit.deploy DEBUG: Using <juju.machine.unit.UnitContainerDeployment object at 0x9c519cc> for wordpress/0 in /home/andre/.juju/data/andre-local 2012-05-11 08:56:23,620 Machine:0: unit.deploy DEBUG: Starting service unit wordpress/0... 2012-05-11 08:56:23,621 Machine:0: unit.deploy INFO: Creating container wordpress-0... 2012-05-11 08:58:24,739 Machine:0: unit.deploy INFO: Container created for wordpress/0 2012-05-11 08:58:25,163 Machine:0: unit.deploy DEBUG: Charm extracted into container 2012-05-11 08:58:25,397 Machine:0: unit.deploy DEBUG: Starting container... 2012-05-11 08:58:27,982 Machine:0: unit.deploy INFO: Started container for wordpress/0 2012-05-11 08:58:27,983 Machine:0: unit.deploy INFO: Started service unit wordpress/0 This is the result for the status command (with verbose flag): ~$ juju -v status 2012-05-11 08:51:53,464 DEBUG Initializing juju status runtime 2012-05-11 08:51:53,625:4030(0xb7345b00):ZOO_INFO@log_env@658: Client environment:zookeeper.version=zookeeper C client 3.3.5 2012-05-11 08:51:53,625:4030(0xb7345b00):ZOO_INFO@log_env@662: Client environment:host.name=andre-ufo 2012-05-11 08:51:53,625:4030(0xb7345b00):ZOO_INFO@log_env@669: Client environment:os.name=Linux 2012-05-11 08:51:53,625:4030(0xb7345b00):ZOO_INFO@log_env@670: Client environment:os.arch=3.2.0-24-generic-pae 2012-05-11 08:51:53,625:4030(0xb7345b00):ZOO_INFO@log_env@671: Client environment:os.version=#37-Ubuntu SMP Wed Apr 25 10:47:59 UTC 2012 2012-05-11 08:51:53,626:4030(0xb7345b00):ZOO_INFO@log_env@679: Client environment:user.name=andre 2012-05-11 08:51:53,626:4030(0xb7345b00):ZOO_INFO@log_env@687: Client environment:user.home=/home/andre 2012-05-11 08:51:53,626:4030(0xb7345b00):ZOO_INFO@log_env@699: Client environment:user.dir=/home/andre 2012-05-11 08:51:53,626:4030(0xb7345b00):ZOO_INFO@zookeeper_init@727: Initiating client connection, host=192.168.122.1:41779 sessionTimeout=10000 watcher=0xb7780620 sessionId=0 sessionPasswd=<null> context=0x9242ee8 flags=0 2012-05-11 08:51:53,627:4030(0xb6b90b40):ZOO_INFO@check_events@1585: initiated connection to server [192.168.122.1:41779] 2012-05-11 08:51:53,649:4030(0xb6b90b40):ZOO_INFO@check_events@1632: session establishment complete on server [192.168.122.1:41779], sessionId=0x1373ae057d90007, negotiated timeout=10000 2012-05-11 08:51:53,651 DEBUG Environment is initialized. machines: 0: agent-state: running dns-name: localhost instance-id: local instance-state: running services: mysql: charm: cs:precise/mysql-1 relations: db: - wordpress units: mysql/0: agent-state: pending machine: 0 public-address: null wordpress: charm: cs:precise/wordpress-0 relations: db: - mysql units: wordpress/0: agent-state: pending machine: 0 public-address: null

    Read the article

  • links for 2011-01-13

    - by Bob Rhubart
    Webcast: Oracle WebCenter Suite: Giving Users a Modern Experience Speakers: Vince Casarez (VP Enterprise 2.0 Product Management, Oracle),  Erin Smith (Consulting Practice Manager – Portals, Oracle), Robert Wessa (Consulting Technical Director – Enterprise 2.0 Infrastructure, Oracle)  (tags: oracle otn webcenter webcast enterprise2.0) Oracle & StickyMinds.com Webcast: Load Testing Techniques for Enterprise Applications Mughees Minhas, Senior Director of Product Management, Oracle Server Technologies, answers your questions about the latest techniques for effectively and efficiently testing enterprise application performance. Thursday, January 20, 2011. 10am PT / 1pm ET. (tags: oracle otn stickymings webcast) Bay Area Coherence Special Interest Group (BACSIG) Jan 20, 5:30pm - 8:00pm PT. Presentations: Coherence 3.6 Clustering Features (Rob Lee), Efficient Management and Update of Coherence Clusters to Reduce Down Time ( Rao Bhethanabotla), How To Build a Coherence Practice (Christer Fahlgren). (tags: oracle, otn coherence bacsig) Podcast Show Notes: William Ulrich and Neal McWhorter on Business Architecture (ArchBeat) A four-part interview with the authors of  "Business Architecture: The Art and Practice of Business Transformation"  (tags: oracle otn podcast businessarchitecture) John Brunswick: Overlapping Social Networks in your Enterprise? Strategies to Understand and Govern "Overall it is important to consider if tacit knowledge being captured by the social systems is able to be retained and somehow summarized into an overall organizational directory." - John Brunswick (tags: oracle otn enterprise2.0 socialnetworking) Coherence - How to develop a custom push replication publisher (Middlewarepedia) Cosmin Todur describes "a way of developing a custom push replication publisher that publishes data to a database via JDBC."  (tags: oracle coherence grid) Aino Andriessen: Oracle Diagnostics Logging (ODL) for application development "Logging is a very important aspect of application development as it offers run-time access to the behaviour and data of the application. It’s important for debugging purposes but also to investigate exception situations on production." -- Aino Andriessen (tags: oracle odl java jdeveloper weblogic) Security issues when upgrading a Web Catalog from 10g to 11g Oracle BI By Bakboord "I blogged about upgrading from Oracle BI EE 10g to Oracle BI EE 11g R1 earlier. Although this is a very straight forward process, you could end up with some security issues." -- Daan Bakboord (tags: oracle businessintelligence obiee) Angelo Santagata: SOA Composite Sensors : Good Practice "A good best practice is that for any composites you create, consider publishing a composite sensor value using a primary key of some sort , e.g. orderId, that way if you need to manipulate/query composites you can easily look up the instanceId using the sensorid." - Angelo Santagata (tags: oracle soa sca) Javier Ductor: WebCenter Spaces 11g PS2 Task Flow Customization "Previously, I wrote about Spaces Template Customization. In order to adapt Spaces to customers prototype, it was necessary to change template and skin, as well as the members task flow. In this entry, I describe how to customize this task flow." - Javier Ductor (tags: oracle otn enterprise2.0 webcenter) RonBatra's blog: Cloud Computing Series: VI: Industry Directions "When someone says their 'Product/Solution is in the Cloud,' ask them basic questions to seperate the spin from the reality. I would start with 'tell me what that means' and see which way the conversation goes." - Oracle ACE Director Ron Batra (tags: oracle otn oracleace cloud) First JSRs Proposed for Java EE 7 (The Java Source) With the approval of Java SE 7 and Java SE 8 JSRs last month, attention is now shifting towards the Java EE platform. (tags: oracle java jsr javaee)

    Read the article

  • Why Cornell University Chose Oracle Data Masking

    - by Troy Kitch
    One of the eight Ivy League schools, Cornell University found itself in the unfortunate position of having to inform over 45,000 University community members that their personal information had been breached when a laptop was stolen. To ensure this wouldn’t happen again, Cornell took steps to ensure that data used for non-production purposes is de-identified with Oracle Data Masking. A recent podcast highlights why organizations like Cornell are choosing Oracle Data Masking to irreversibly de-identify production data for use in non-production environments. Organizations often copy production data, that contains sensitive information, into non-production environments so they can test applications and systems using “real world” information. Data in non-production has increasingly become a target of cyber criminals and can be lost or stolen due to weak security controls and unmonitored access. Similar to production environments, data breaches in non-production environments can cost millions of dollars to remediate and cause irreparable harm to reputation and brand. Cornell’s applications and databases help carry out the administrative and academic mission of the university. They are running Oracle PeopleSoft Campus Solutions that include highly sensitive faculty, student, alumni, and prospective student data. This data is supported and accessed by a diverse set of developers and functional staff distributed across the university. Several years ago, Cornell experienced a data breach when an employee’s laptop was stolen.  Centrally stored backup information indicated there was sensitive data on the laptop. With no way of knowing what the criminal intended, the university had to spend significant resources reviewing data, setting up service centers to handle constituent concerns, and provide free credit checks and identity theft protection services—all of which cost money and took time away from other projects. To avoid this issue in the future Cornell came up with several options; one of which was to sanitize the testing and training environments. “The project management team was brought in and they developed a project plan and implementation schedule; part of which was to evaluate competing products in the market-space and figure out which one would work best for us.  In the end we chose Oracle’s solution based on its architecture and its functionality.” – Tony Damiani, Database Administration and Business Intelligence, Cornell University The key goals of the project were to mask the elements that were identifiable as sensitive in a consistent and efficient manner, but still support all the previous activities in the non-production environments. Tony concludes,  “What we saw was a very minimal impact on performance. The masking process added an additional three hours to our refresh window, but it was well worth that time to secure the environment and remove the sensitive data. I think some other key points you can keep in mind here is that there was zero impact on the production environment. Oracle Data Masking works in non-production environments only. Additionally, the risk of exposure has been significantly reduced and the impact to business was minimal.” With Oracle Data Masking organizations like Cornell can: Make application data securely available in non-production environments Prevent application developers and testers from seeing production data Use an extensible template library and policies for data masking automation Gain the benefits of referential integrity so that applications continue to work Listen to the podcast to hear the complete interview.  Learn more about Oracle Data Masking by registering to watch this SANS Institute Webcast and view this short demo.

    Read the article

  • The Hunger Games for Aspiring IT Professionals

    - by Dain C. Hansen
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} It seems that no one can escape the buzz around Hunger Games. And who could? Stephen King said it best in his review when he referred to the Collins’ novel as “a violent, jarring speed-rap of a novel that generates nearly constant suspense and may also generate a fair amount of controversy”. So what’s the tie in for IT? Let’s leave the dystopia of District 12 and come back to today’s reality. This is the world of radical IT paradigm shifts that haven’t been seen since Java was introduced in 1995. Everything you learned in school is probably outdated as of Friday. And everything you learned on Friday will probably change when you get to work on Monday. Nevertheless, we’re eager, we’re aspiring, we’re hungry to learn. While the challenges upon us may not rival the venomous bees (or ‘tracker jackers’) seen in this blockbuster, there are certainly obstacles to be found. In preparation, I leave you two pieces of advice - aside from avoiding werewolves… Learn the Cloud If you had asked me what to learn in 1995, I would have said, “Go learn Java”. But now my advice is “Go learn Java and then learn Cloud”. Cloud computing and Java go hand in hand. This is especially true for Oracle’s own Public Cloud which uses Java (via WebLogic 12c) as well as Oracle Database at its core foundation. Understanding the connotations of elasticity, scale, virtualization, and multi-tenancy, (to name just a few) requires a strong foundation in computer science and especially Java to get it right. Without Java, the Cloud is nothing more than a brittle application meagerly deployed on the internet. Get Social and Actively Participate And at all levels. Socializing your ideas internally is dreadfully important. And this means socializing and communicating your good ideas to lines of business, to architects, business analysts, developers, DBAs and Operations. But don’t forget to go external. Stay current by being on the lookout for blogs, tweets, webcasts, papers, podcasts and videos for your technology area. Be not just a subscriber but a participant in these channels as well. Attend industry and vendor sponsored events to learn from the experts – and seek out opportunities to stay connected with those that are smarter than you. You’ll gain more understanding if you participate actively. At the same time you’ll make friends (and allies) and you’ll be glad you did. Tell help you get social and actively participate [while learning the Cloud] here are a couple of pointers for you: See our website on Cloud and Fusion Middleware Subscribe to our regular Fusion Middleware Newsletter Follow us on Twitter and Facebook Find us at one of our key events Meanwhile, happy IT hunger games!

    Read the article

  • Craig Mundie's video

    - by GGBlogger
    Timothy recently posted “Microsoft Shows Off Radical New UI, Could Be Used In Windows 8” on Slashdot. I took such grave exception to his post that I found it necessary to my senses to write this blog. We need to go back many years to the days of hand cranked calculators and early main frame computers. These devices had singular purposes – they were “number crunchers” used to make accounting easier. The front facing display in early mainframes was “blinken lights.” The calculators did provide printing – in the form of paper tape and the mainframes used line printers to generate reports as needed. We had other metaphors to work with. The typewriter was/is a mechanical device that substitutes for a type setting machine. The originals go back to 1867 and the keyboard layout has remained much the same to this day. In the earlier years the Morse code telegraphs gave way to Teletype machines. The old ASR33, seen on the left in this photo of one of the first computers I help manufacture, used a keyboard very similar to the keyboards in use today. It also generated punched paper tape that we generated to program this computer in machine language. Everything considered this computer which dates back to the late 1960s has a keyboard for input and a roll of paper as output. So in a very rudimentary fashion little has changed. Oh – we didn’t have a mouse! The entire point of this exercise is to point out that we still use very similar methods to get data into and out of a computer regardless of the operating system involved. The Altair, IMSAI, Apple, Commodore and onward to our modern machines changed the hardware that we interfaced to but changed little in the way we input, view and output the results of our computing effort. The mouse made some changes and the advent of windowed interfaces such as Windows and Apple made things somewhat easier for the user. My 4 year old granddaughter plays here Dora games on our computer. She knows how to start programs, use the mouse, play the game and is quite adept so we have come some distance in making computers useable. One of my chief bitches is the constant harangues leveled at Microsoft. Yup – they are a money making organization. You like Apple? No problem for me. I don’t use Apple mostly because I’m comfortable in the Windows environment but probably more because I don’t like Apple’s “Holier than thou” attitude. Some think they do superior things and that’s also fine with me. Obviously the iPhone has not done badly and other Apple products have fared well. But they are expensive. I just build a new machine with 4 Terabytes of storage, an Intel i7 Core 950 processor and 12 GB of RAMIII. It cost me – with dual monitors – less than 2000 dollars. Now to the chief reason for this blog. I’m going to continue developing software for as long as I’m able. For that reason I don’t see my keyboard, mouse and displays changing much for many years. I also don’t think Microsoft is going to spoil that for me by making radical changes to my developer experience. What Craig Mundie does in his video here:  http://www.ispyce.com/2011/02/microsoft-shows-off-radical-new-ui.html is explore the potential future of computer interfaces for the masses of potential users. Using a computer today requires a person to have rudimentary capabilities with keyboards and the mouse. Wouldn’t it be great if all they needed was hand gestures? Although not mentioned it would also be nice if computers responded intelligently to a user’s voice. There is absolutely no argument with the fact that user interaction with these machines is going to change over time. My personal prediction is that it will take years for much of what Craig discusses to come to a cost effective reality but it is certainly coming. I just don’t believe that what Craig discusses will be the future look of a Window 8.

    Read the article

  • Oracle Data Integration 12c: Simplified, Future-Ready, High-Performance Solutions

    - by Thanos Terentes Printzios
    In today’s data-driven business environment, organizations need to cost-effectively manage the ever-growing streams of information originating both inside and outside the firewall and address emerging deployment styles like cloud, big data analytics, and real-time replication. Oracle Data Integration delivers pervasive and continuous access to timely and trusted data across heterogeneous systems. Oracle is enhancing its data integration offering announcing the general availability of 12c release for the key data integration products: Oracle Data Integrator 12c and Oracle GoldenGate 12c, delivering Simplified and High-Performance Solutions for Cloud, Big Data Analytics, and Real-Time Replication. The new release delivers extreme performance, increase IT productivity, and simplify deployment, while helping IT organizations to keep pace with new data-oriented technology trends including cloud computing, big data analytics, real-time business intelligence. With the 12c release Oracle becomes the new leader in the data integration and replication technologies as no other vendor offers such a complete set of data integration capabilities for pervasive, continuous access to trusted data across Oracle platforms as well as third-party systems and applications. Oracle Data Integration 12c release addresses data-driven organizations’ critical and evolving data integration requirements under 3 key themes: Future-Ready Solutions : Supporting Current and Emerging Initiatives Extreme Performance : Even higher performance than ever before Fast Time-to-Value : Higher IT Productivity and Simplified Solutions  With the new capabilities in Oracle Data Integrator 12c, customers can benefit from: Superior developer productivity, ease of use, and rapid time-to-market with the new flow-based mapping model, reusable mappings, and step-by-step debugger. Increased performance when executing data integration processes due to improved parallelism. Improved productivity and monitoring via tighter integration with Oracle GoldenGate 12c and Oracle Enterprise Manager 12c. Improved interoperability with Oracle Warehouse Builder which enables faster and easier migration to Oracle Data Integrator’s strategic data integration offering. Faster implementation of business analytics through Oracle Data Integrator pre-integrated with Oracle BI Applications’ latest release. Oracle Data Integrator also integrates simply and easily with Oracle Business Analytics tools, including OBI-EE and Oracle Hyperion. Support for loading and transforming big and fast data, enabled by integration with big data technologies: Hadoop, Hive, HDFS, and Oracle Big Data Appliance. Only Oracle GoldenGate provides the best-of-breed real-time replication of data in heterogeneous data environments. With the new capabilities in Oracle GoldenGate 12c, customers can benefit from: Simplified setup and management of Oracle GoldenGate 12c when using multiple database delivery processes via a new Coordinated Delivery feature for non-Oracle databases. Expanded heterogeneity through added support for the latest versions of major databases such as Sybase ASE v 15.7, MySQL NDB Clusters 7.2, and MySQL 5.6., as well as integration with Oracle Coherence. Enhanced high availability and data protection via integration with Oracle Data Guard and Fast-Start Failover integration. Enhanced security for credentials and encryption keys using Oracle Wallet. Real-time replication for databases hosted on public cloud environments supported by third-party clouds. Tight integration between Oracle Data Integrator 12c and Oracle GoldenGate 12c and other Oracle technologies, such as Oracle Database 12c and Oracle Applications, provides a number of benefits for organizations: Tight integration between Oracle Data Integrator 12c and Oracle GoldenGate 12c enables developers to leverage Oracle GoldenGate’s low overhead, real-time change data capture completely within the Oracle Data Integrator Studio without additional training. Integration with Oracle Database 12c provides a strong foundation for seamless private cloud deployments. Delivers real-time data for reporting, zero downtime migration, and improved performance and availability for Oracle Applications, such as Oracle E-Business Suite and ATG Web Commerce . Oracle’s data integration offering is optimized for Oracle Engineered Systems and is an integral part of Oracle’s fast data, real-time analytics strategy on Oracle Exadata Database Machine and Oracle Exalytics In-Memory Machine. Oracle Data Integrator 12c and Oracle GoldenGate 12c differentiate the new offering on data integration with these many new features. This is just a quick glimpse into Oracle Data Integrator 12c and Oracle GoldenGate 12c. Find out much more about the new release in the video webcast "Introducing 12c for Oracle Data Integration", where customer and partner speakers, including SolarWorld, BT, Rittman Mead will join us in launching the new release. Resource Kits Meet Oracle Data Integration 12c  Discover what's new with Oracle Goldengate 12c  Oracle EMEA DIS (Data Integration Solutions) Partner Community is available for all your questions, while additional partner focused webcasts will be made available through our blog here, so stay connected. For any questions please contact us at partner.imc-AT-beehiveonline.oracle-DOT-com Stay Connected Oracle Newsletters

    Read the article

  • Getting UPK data into Excel

    - by maria.cozzolino(at)oracle.com
    Did you ever want someone to review your UPK outline outside of the Developer? You can send your outline to an Excel report, which can be distributed through email. Depending on how much additional data you want with your outline, there are two ways you can do this task. Basic data: • You can print a listing of all the items in the outline. • With your outline open, choose File/Print... • Choose the "Save document as" command on the right, and choose Excel (or xlsx). • HINT: If you have not expanded your entire outline, it's faster to use the commands in Developer to expand the entire outline. However, you can expand specific sections by clicking on them in the print preview. • NOTE: If you have the Details view displayed rather than the Player view, you can print all the data that appears in that view. Advanced data: If you desire a more detailed report, you can use the HP Quality Center publishing style, which also creates an Excel file. This style contains a default set of fields for use with Quality Center, but any of the metadata fields can be added to the report, and it can be used for more than just importing into HP Quality Center. To add additional columns to the HP Quality Center publishing style: 1. Make a copy of the publishing style. This process ensures that you have a good copy to revert to if something goes wrong with your customizations, and also allows you to keep your modifications when the software is upgraded. 2. Open the copy of the columnspec.xml file in your favorite XML editor - I use notepad. (This file is located in a language-specific folder in the HP Quality Center publishing style.) 3. Scroll down the columnspec file until you find the column to include. All the metadata fields that can be added to the report are listed in the columnspec file - you just need to tell the system to include the columns. 4. You will see a series of sections like this: 5. Change the value for "col export" to "yes". This will include the column in the Excel file. 6. If desired, change the value for "Play_ModesColHeader" to be whatever name you wish to appear in the Excel column heading. 7. Save the columnspec file. 8. Save the publishing style package. Now, when you publish for HP Quality Center, you will see your newly added columns. You can refer to the section on Customizing HP Quality Center Output in the Content Deployment Guide for additional customization details. Happy customization! I'd be interested in hearing what other uses you have for Excel reporting. Wishing you and yours a happy and healthy New Year! ~~Maria Cozzolino, Manager of Software Requirements and UI

    Read the article

  • Java Spotlight Episode 103: 2012 Duke Choice Award Winners

    - by Roger Brinkley
    Our annual interview with the 2012 Duke Choice Award Winners recorded live at the JavaOne 2012. Right-click or Control-click to download this MP3 file. You can also subscribe to the Java Spotlight Podcast Feed to get the latest podcast automatically. If you use iTunes you can open iTunes and subscribe with this link:  Java Spotlight Podcast in iTunes. Show Notes Events Oct 13, Devoxx 4 Kids Nederlands Oct 15-17, JAX London Oct 20, Devoxx 4 Kids Français Oct 22-23, Freescale Technology Forum - Japan, Tokyo Oct 30-Nov 1, Arm TechCon, Santa Clara Oct 31, JFall, Netherlands Nov 2-3, JMagreb, Morocco Nov 13-17, Devoxx, Belgium Feature Interview Duke Choice Award Winners 2012 - Show Presentation London Java CommunityThe second user group receiving a Duke’s Choice Award this year, the London Java Community (LJC) and its users have been active in the OpenJDK, the Java Community Process (JCP) and other efforts within the global Java community. Student Nokia Developer GroupThis year’s student winner, Ram Kashyap, is the founder and president of the Nokia Student Network, and was profiled in the “The New Java Developers” feature in the March/April 2012 issue of Java Magazine. Since then, Ram has maintained a hectic pace, graduating from the People’s Education Society Institute of Technology in Bangalore, India, while working on a Java mobile startup and training students on Java ME. Jelastic, Inc.Moving existing Java applications to the cloud can be a daunting task, but startup Jelastic, Inc. offers the first all-Java platform-as-a-service (PaaS) that enables existing Java applications to be deployed in the cloud without code changes or lock-in. NATOThe first-ever Community Choice Award goes to the MASE Integrated Console Environment (MICE) in use at NATO. Built in Java on the NetBeans platform, MICE provides a high-performance visualization environment for conducting air defense and battle-space operations. DuchessRather than focus on a specific geographic area like most Java User Groups (JUGs), Duchess fosters the participation of women in the Java community worldwide. The group has more than 500 members in 60 countries, and provides a platform through which women can connect with each other and get involved in all aspects of the Java community. AgroSense ProjectImproving farming methods to feed a hungry world is the goal of AgroSense, an open source farm information management system built in Java and the NetBeans platform. AgroSense enables farmers, agribusinesses, suppliers and others to develop modular applications that will easily exchange information through a common underlying NetBeans framework. Apache Software Foundation Hadoop ProjectThe Apache Software Foundation’s Hadoop project, written in Java, provides a framework for distributed processing of big data sets across clusters of computers, ranging from a few servers to thousands of machines. This harnessing of large data pools allows organizations to better understand and improve their business. Parleys.comE-learning specialist Parleys.com, based in Brussels, Belgium, uses Java technologies to bring online classes and full IT conferences to desktops, laptops, tablets and mobile devices. Parleys.com has hosted more than 1,700 conferences—including Devoxx and JavaOne—for more than 800,000 unique visitors. Winners not presenting at JavaOne 2012 Duke Choice Awards BOF Liquid RoboticsRobotics – Liquid Robotics is an ocean data services provider whose Wave Glider technology collects information from the world’s oceans for application in government, science and commercial applications. The organization features the “father of Java” James Gosling as its chief software architect.United Nations High Commissioner for RefugeesThe United Nations High Commissioner for Refugees (UNHCR) is on the front lines of crises around the world, from civil wars to natural disasters. To help facilitate its mission of humanitarian relief, the UNHCR has developed a light-client Java application on the NetBeans platform. The Level One registration tool enables the UNHCR to collect information on the number of refugees and their water, food, housing, health, and other needs in the field, and combines that with geocoding information from various sources. This enables the UNHCR to deliver the appropriate kind and amount of assistance where it is needed.

    Read the article

  • Iron Speed Designer 7.0 - the great gets greater!

    - by GGBlogger
    For Immediate Release Iron Speed, Inc. Kelly Fisher +1 (408) 228-3436 [email protected] http://www.ironspeed.com       Iron Speed Version 7.0 Generates SharePoint Applications New! Support for Microsoft SharePoint speeds application generation and deployment   San Jose, CA – June 8, 2010. Software development tools-maker Iron Speed, Inc. released Iron Speed Designer Version 7.0, the latest version of its popular Web 2.0 application generator. Iron Speed Designer generates rich, interactive database and reporting applications for .NET, Microsoft SharePoint and the Cloud.    In addition to .NET applications, Iron Speed Designer V7.0 generates database-driven SharePoint applications. The ability to quickly create database-driven applications for SharePoint eliminates a lot of work, helping IT departments generate productivity-enhancing applications in just a few hours.  Generated applications include integrated SharePoint application security and use SharePoint master pages.    “It’s virtually impossible to build database-driven application in SharePoint by hand. Iron Speed Designer V7.0 not only makes this possible, the tool makes it easy.” – Razi Mohiuddin, President, Iron Speed, Inc.     Integrated SharePoint application security Generated applications include integrated SharePoint application security. SharePoint sites and their groups are used to retrieve security roles. Iron Speed Designer validates the user against a Microsoft SharePoint server on your network by retrieving the logged in user’s credentials from the SharePoint Context.    “The Iron Speed Designer generated application integrates seamlessly with SharePoint security, removing the hassle of designing, testing and approving your own security layer.” -Michael Landi, Solutions Architect, Light Speed Solutions     SharePoint Solution Packages Iron Speed Designer V7.0 creates SharePoint Solution Packages (WSPs) for easy application deployment. Using the Deployment Wizard, a single application WSP is created and can be deployed to your SharePoint server.   “Iron Speed Designer is the first product on the market that allows easy and painless deployment of database-driven .NET web applications inside the SharePoint environment.” -Bryan Patrick, Developer, Pseudo Consulting     SharePoint master pages and themes In V7.0, generated applications use SharePoint master pages and contain the same content as other SharePoint pages. Generated applications use the current SharePoint color scheme and display standard SharePoint navigation controls on each page.   “Iron Speed Designer preserves the look and feel of the SharePoint environment in deployed database applications without additional hand-coding.” -Kirill Dmitriev, Software Developer, Iron Speed, Inc.     Iron Speed Designer Version 7.0 System Requirements Iron Speed Designer Version 7.0 runs on Microsoft Windows 7, Windows Vista, Windows XP, and Windows Server 2003 and 2008. It generates .NET Web applications for Microsoft SQL Server, Oracle, Microsoft Access and MySQL. These applications may be deployed on any machine running the .NET Framework. Iron Speed Designer supports Microsoft SharePoint 2007 and Windows SharePoint Services (WSS3). Find complete information about Iron Speed Designer Version 7.0 at www.ironspeed.com.     About Iron Speed, Inc. Iron Speed is the leader in enterprise-class application generation. Our software development tools generate database and reporting applications in significantly less time and cost than hand-coding. Our flagship product, Iron Speed Designer, is the fastest way to deliver applications for the Microsoft .NET and software-as-a-service cloud computing environments.   With products built on decades of experience in enterprise application development and large-scale e-commerce systems, Iron Speed products eliminate the need for developers to choose between "full featured" and "on schedule."   Founded in 1999, Iron Speed is well funded with a capital base of over $20M and strategic investors that include Arrow Electronics and Avnet, as well as executives from AMD, Excelan, Onsale, and Oracle. The company is based in San Jose, Calif., and is located online at www.ironspeed.com.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Willy Rotstein on Supply Chain Planning

    - by sarah.taylor(at)oracle.com
    Each time a merchandiser, buyer or planner in Retail makes a business decision around assortment, inventory, pricing and promotions there is an opportunity to improve both Profitability and Customer Service. Improving decision making, however, has always been a tricky business for retailers.  I have worked in this space for more than 15 years. I began my career as an academic, at Imperial College London, and then broadened this interest with Retailers, aiming to optimize their merchandising and supply chain decisions. Planning the business and optimizing profit is a complex process. The complexity arises from the variety of people involved, the large number of decisions to take across all business processes, the uncertainty intrinsic to the retail environment as well as the volume of data available for analysis.  Things are not getting any easier either. The advent of multi-channel, social media and mobile is taking these complexities to a new level and presenting additional opportunities for those willing to exploit them. I guess it is due to the complexities of the decision making process that, over the last couple of years working with Oracle Retail, I have witnessed a clear trend around the deployment of planning systems. Retailers are aiming to simplify their decision making processes. They want to use one joined up planning platform across the business and enhance it with "actionable" data mining and optimization techniques. At Oracle Retail, we have a vibrant community of international retailers who regularly come together to discuss the big issues in retail planning. It is a combination of fashion, grocery and speciality retailers, all sharing their best practice vision for planning and optimizing merchandise decisions. As part of the Retail Exchange program, at the recent National Retail Federation event in New York, I jointly hosted a Planning dinner with Peter Fitzgerald from Google UK, Retail Division. Those retailers from our international planning community who were in New York for the annual NRF event were able to attend. The group comprised some of Europe's great International Retail brands.  All sectors were represented by organisations like Mango, LVMH, Ahold, Morrisons, Shop Direct and River Island. They confirmed the current importance of engaging with Planning and Optimization issues. In particular the impact of the internet was a key topic. We had a great debate about new retail initiatives.  Peter highlighted how mobility is changing retail - in particular with the new "local availability search" initiative. We also had an exciting discussion around the opportunities to improve merchandising using the new data that is becoming available from search, social media and ecommerce sites. It will be our focus to continue to help retailers translate this data into better results while keeping their business operations simple. New developments in "actionable" analytics and computing capacity make this a very exciting area today. Watch this space for my contributions on these topics which will be made available through this blog. Oracle Retail has a strong Planning community. if you are a category manager, a planner, a buyer, a merchandiser, a retail supplier or any retail executive with a keen interest in planning then you would be very welcome to join Oracle Retail's Planning Community. As part of our community you will be able to join our in-person and virtual events, download topical white papers and best practice information specifically tailored to your area of interest.  If anyone would like to register their interest in joining our community of retailers discussing planning then please contact me at [email protected]   Willy Rotstein, Oracle Retail

    Read the article

  • Thinktecture.IdentityModel: Comparing Strings without leaking Timinig Information

    - by Your DisplayName here!
    Paul Hill commented on a recent post where I was comparing HMACSHA256 signatures. In a nutshell his complaint was that I am leaking timing information while doing so – or in other words, my code returned faster with wrong (or partially wrong) signatures than with the correct signature. This can be potentially used for timing attacks like this one. I think he got a point here, especially in the era of cloud computing where you can potentially run attack code on the same physical machine as your target to do high resolution timing analysis (see here for an example). It turns out that it is not that easy to write a time-constant string comparer due to all sort of (unexpected) clever optimization mechanisms in the CLR. With the help and feedback of Paul and Shawn I came up with this: Structure the code in a way that the CLR will not try to optimize it In addition turn off optimization (just in case a future version will come up with new optimization methods) Add a random sleep when the comparison fails (using Shawn’s and Stephen’s nice Random wrapper for RNGCryptoServiceProvider). You can find the full code in the Thinktecture.IdentityModel download. [MethodImpl(MethodImplOptions.NoOptimization)] public static bool IsEqual(string s1, string s2) {     if (s1 == null && s2 == null)     {         return true;     }       if (s1 == null || s2 == null)     {         return false;     }       if (s1.Length != s2.Length)     {         return false;     }       var s1chars = s1.ToCharArray();     var s2chars = s2.ToCharArray();       int hits = 0;     for (int i = 0; i < s1.Length; i++)     {         if (s1chars[i].Equals(s2chars[i]))         {             hits += 2;         }         else         {             hits += 1;         }     }       bool same = (hits == s1.Length * 2);       if (!same)     {         var rnd = new CryptoRandom();         Thread.Sleep(rnd.Next(0, 10));     }       return same; }

    Read the article

< Previous Page | 107 108 109 110 111 112 113 114 115 116 117 118  | Next Page >